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Learning to Average Predictively over
Good and Bad:

Comment on: Using Stacking to
Average Bayesian Predictive Distributions∗

Lennart Hoogerheide†andHerman K. van Dijk‡

Abstract. We suggest to extend the stacking procedure for a combination of
predictive densities, proposed by Yao, Vehtari, Simpson, and Gelman(2018), to
a setting where dynamic learning occurs about features of predictive densities of
possibly misspecified models. This improves the averaging process of good and bad
model forecasts. We summarise how this learning is done in economics and finance
using mixtures. We also show that our proposal can be extended to combining
forecasts and policies. The technical tools necessary for the implementation refer
to filtering methods from nonlinear time series and we show their connection
with machine learning. We illustrate our suggestion using results from Baştürk,
Borowska, Grassi, Hoogerheide, and VanDijk(2018) based on financial data about
US portfolios from 1928 until 2015.

1 Introduction

A basic practice in macroeconomic and financial forecasting 1 is to make use of a
weighted combination of forecasts from several sources, say models, experts and/or
large micro-data sets. Let yt be the variable of interest, and assume that some form of
predictive values ỹ1t, . . . , ỹnt is available for yt with a set of weights w1t, . . . , wnt where
n is also a decision variable. Then, basic practice in economics and finance is to make
use of:

n∑
i=1

witỹit. (1.1)

This measure is intended as an accurate forecast of the variable of interest.
A major purpose of academic and professional forecasting is to give this practice a
probabilistic foundation in order to quantify the uncertainty of such predictive density
features as means, volatilities and tail behaviour. A leading example of a forecast density

∗This working paper should not be reported as representing the views of Norges Bank. The views
expressed are those of the authors and do not necessarily reflect those of Norges Bank. A reduced
version of this paper will appear in Bayesian Analysis. For expository purposes, we write this more
extended version.
†VU University Amsterdam and Tinbergen Institute l.f.hoogerheide@vu.nl
‡Erasmus University Rotterdam, Norges Bank and Tinbergen Institute hkvandijk@ese.eur.nl
1In applied statistics and economics the usual terminology is forecasting instead of prediction. In

more theoretical work the usage of the word prediction is common. In this comment we use both
terminologies interchangeably.
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being produced and used in practice is the Bank of England’s fan chart for GDP growth
and inflation, which has been published each quarter since 1996. For a survey on the
evolution of density forecasting in economics, see Aastveit etal.(2018a) and for a related
formal Bayesian foundational motivation, see McAlinn and West(2018).
In recent literature and practice in statistics as well as in econometrics, it is shown that
Bayesian Model Averaging (BMA) has its limitations for forecast averaging, see the
earlier reference for a summary of the literature in economics. Yao, Vehtari, Simpson,
and Gelman(2018) focus in their paper on the specific limitation of BMA when the
true data generating process is not in the set. The authors also indicate the sensitivity
of BMA in case of weakly or non-informative priors. As a better approach in terms of
forecast accuracy and robustness, the authors propose the use of stacking, which is used
in point estimation, and extend it to the case of combinations of predictive densities. A
key step in the stacking procedure is that an optimisation step is used to determine the
weights of a mixture model in such a way that the averaging method is then relatively
robust for misspecified models, in particular, in large samples.
We fully agree that BMA has the earlier mentioned restrictions. However, we argue that
a static approach to forecast averaging, as suggested by the authors, will in many cases
remain sensitive for the presence of a bad forecast and extremely sensitive to a very bad
forecast. We suggest to extend the approach of the authors to a setting where learning
about features of predictive densities of possibly incomplete or misspecified models can
take place. This extension will improve the process of averaging over good and bad
forecasts. To back-up our suggestion, we summarise how this has been developed in
empirical econometrics in recent years by Billio etal.(2013), Casarin etal.(2015,2018),
Aastveit etal.(2018b) and Baştürk, Borowska, Grassi, Hoogerheide, and VanDijk(2018).
Moreover, we show that this approach can be extended to combining not only forecasts
but also policies. The technical tools necessary for the implementation refer to filtering
methods from the nonlinear time series literature and we show their connection with
dynamic machine learning. We illustrate our suggestion using financial data about US
portfolios from 1928 until 2015.

2 Bayesian and diagnostic learning about misspecified
models

The Fundamental Predictive Density Combination. Let the predictive proba-
bility distribution of the variable of interest yt of equation (1.1), given the set ỹt =
(ỹ1t, . . . , ỹnt)

′
, be specified as a large discrete mixture of conditional probabilities of yt

given ỹt coming from n different models 2 with weights wt = (w1t, . . . , wnt)
′

that are
interpreted as probabilities and form a convex combination. One can then give (1.1) a
stochastic interpretation using mixtures. Such a probability model, in terms of densities,
is given as:

f(yt|ỹt) =

n∑
i=1

witf(yt|ỹit). (2.1)

2For convenience, we take as example models, but the approach holds equally for experts opinions
etc.
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Let the predictive densities from the n models be denoted as f(ỹit|Ii), i = 1, ..., n, where
Ii is the information set of model i. Given the fundamental density combination model
of equation(2.1) and the predictive densities from the n models, one can specify, given
standard regularity conditions about existence of sums and integrals, that the marginal
predictive density of yt is given as a discrete/continuous mixture,

f(yt|I) ∼
n∑
i=1

wit

∫
f(yt|ỹit)f(ỹit|Ii)dỹit (2.2)

where I is the joint set of information of all models. The numerical evaluation of this
equation is simple when all distributions have known simulation properties. An impor-
tant research line in economics and finance has been to make this approach operational
to more realistic environments by allowing for model incompleteness and dynamic learn-
ing where the densities have no known simulation properties; see the earlier cited refer-
ences.
Mixtures with model incompleteness. A first step is to introduce, possibly, time-
varying model incompleteness by specifying a Gaussian mixture combination model as

f(yt|ỹt, σ2
t ) ∼

n∑
i=1

witf(yt|ỹit, σ2
t ) (2.3)

where σ2
t , t = 1, . . . , T , is defined to follow the stochastic volatility process

log σ2
t ∼ f(log σ2

t | log σ2
t−1, σ

2
η) (2.4)

The process σ2
t controls the potential size of the misspecification in all models in the

mixture. 3 When the value of σ2
t is large, the overall uncertainty and the misspecification

of one or more predictor models are substantial. When the uncertainty level tends to
zero then the mixture of experts or the smoothly mixing regressions model is recovered
as limiting case, see Geweke and Keane(2007), Jacobs etal.(1991). Clearly, the analysis
is also conditional upon the choice of the number n and the information specified in
the different models. The propose methodology allows to study overall incompleteness
as well as incompleteness of each model over time. The importance of this diagnostic
learning is shown in our empirical illustration.
Dynamic weight learning. Let the unrestricted weights stem from a multivariate
normal random walk weight process. Other cases with more information are easily in-
corporated. Next, map the unrestricted weights to the simplex using a logistic transfor-
mation so that the weights can be interpreted as a convex set of probabilistic weights
of different models which are updated periodically using Bayesian learning procedures.
The learning aspect can, for instance, be specified by making use of log scores of the
different forecasts.
Representation as a nonlinear state space model with corresponding algo-
rithms. One can write the model in the form of a nonlinear state space where the
measurement equation is a finite mixture of densities with a time-varying volatility to
determine model incompleteness and the transition density is a logistic normal density

3Note that, for simplicity, σ2
t is constant among models. This assumption can be relaxed.
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Figure1: Data driven density combinations and machine learning

Data driven time series models for asset returns
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Policy combination Mixture of policies

of the set of mixture weights. The analytic solution of the optimal filtering problem is
generally not known. But the representation allows to make use of algorithms based on
sequential Monte Carlo methods such as particle filters in order to approximate combi-
nation weight and predictive densities.

Table1: Returns and risk for individual models and one strategy using US industry
portfolios between 1926M7 and 2015M6.

Model Momentum
Mean Vol. S.R. L.L.

VAR-N 0.02 5.0 0.005 -24.1
SV 0.10 5.1 0.019 -34.7

DFM-N(4,2) -0.05 5.5 -0.009 -27.4

Forecast combinations, policy combinations and machine learning. To ex-
tend the predictive density combination approach to a policy combination one with
time-varying learning weights is a very natural step in economics. It is well-known that
fiscal and monetary policy should be combined with time-varying weights over the ex-
pansionary and recessionary stages of the business cycle in order to be more effective in
controlling the amplitude and length of the cycle. The resulting gains in the accuracy of
the complete forecast density constitute also very relevant information for events that
occur in the tail of densities like the probability of a recession. We summarise in Fig-
ure1 how to combine forecasts and policies using a two-layer mixture. That is, we start
with a mixture of predictive densities of three data driven time series models, i.e. a
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Table2: Returns and risks from a mixture of three basic models and two investment
strategies as well as from a mixture of two flexible models and two strategies, using US
industry portfolios between 1926M7 and 2015M6. 0.11cm 1.2pt

Model Strategy Mean Vol. S.R. L.L.

Mixture of basic models and two strategies

VAR-N & SV M.M. & R.M. 0.10 3.9 0.025 -23.0
& DFM-N(4,2) (0.01,0.18) (3.6,4.2) (0.002,0.047) (-28.8,-17.5)

Mixture of two flexible models and two strategies

VAR-SV M.M. & R.M. 0.15 3.7 0.041 -21.6
& DFM-SV(1-4,1-2) (0.08, 0.22) (3.5, 3.9) (0.021, 0.061) (-26.4, -16.4)

Vector-Autoregressive model (VAR), a Stochastic Volatility model (SV) and a Dynamic
Factor Model (DFM). These are combined with a mixture of two data driven portfo-
lio strategies that are known as momentum strategies. The basic idea of a momentum
strategy is that at each portfolio decision time, past performance of the returns are
assessed and one invests in the top set of ’winner’ stocks and goes short in the bottom
set of ’loser’ stocks. For background on the model and residual momentum strategies we
refer to to Baştürk, Borowska, Grassi, Hoogerheide, and VanDijk(2018). The mixture
of mixtures approach results in this case in 3 × 2 possibilities. Figure1 is a graphical
representation of equation (2.3). In the top row of Figure1, the predictions of the dif-
ferent models coming from f(ỹit|Ii) are shown. The next row, labeled as hidden layer
of unobserved weights wit, contains the information on the weights which have to be
integrated out. The third row refers to the combination model f(yt|ỹt). It is noteworthy
that this graphical representation is similar to the one used in machine learning. In our
procedure the unobserved weights are integrated out using (particle) filtering methods
from nonlinear time series. However, one may also use neural network specifications
from machine learning to allow for different flexible functional forms.
Illustration: Forecast combination, policy combination and risk-management
We report a selected set of results of forecast density combinations of alternative mod-
els in combination with a set of portfolio policies from Baştürk, Borowska, Grassi,
Hoogerheide, and VanDijk(2018). Table1 reports Means, Volatilities (Vol.), Sharpe Ra-
tios (S.R.) and the Largest Losses (L.L.) for realised returns for the three basic models
and one strategy, known as Model Momentum. It is clear that the VAR-N model pro-
duces a bad prediction of mean returns and that DFM-N(4,2) produces a very bad
prediction. The top panel of Table2 shows return and risk features from a mixture of
the three basic models (VAR-N, SV, DFM-N(4,2)) combined with a mixture of two
investment strategies. The bottom panel reports these results for the mixture of the
two same investment strategies combined with only two, but more flexible, models. The
DFM-N(4,2) has been removed. The 90% credible intervals are reported in parentheses.
These results lead to the following advice for portfolio strategy of an investment com-
pany:
Conditional upon the information set that consists of US industry portfolios between
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1926M7 and 2015M6 and conditional upon our set of data driven dynamic models and
the two equity momentum strategies:
Mixtures of data driven models combined with mixtures of data driven strategies yield
better return and risk features than single models combined with a single strategy.
In order to obtain higher mean returns and better risk features, it pays to average over
flexible models instead of over simple basic models and it is effective to remove a ‘bad’
model.
Thus, learning about the choice of a model set in a mixture is important for effective
policies.We emphasise that approach from Baştürk, Borowska, Grassi, Hoogerheide, and
VanDijk(2018) is fully Bayesian and does not contain an optimisation step as is used in
stacking approach. However, the optimisation can be easily made dynamic. For a similar
technique used in optimal pooling of forecasts we refer to Geweke and Amisano(2011).
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