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Abstract

The ratio of consumption to total household wealth (i.e., tangible assets plus unobserved human

wealth) is commonly calculated from the estimation of a log-linear version of the household intertem-

poral budget constraint as a cointegrating relationship between consumption, assets and earnings

(i.e., the variable ”cay”). The evidence in favor of a stable cointegrating relationship between these

variables in the US is weak however. This paper follows an alternative empirical approach using an

unobserved component model applied to US data over the period 1951Q4-2016Q4. The regression

of consumption on assets and earnings is augmented with an unobserved stochastic trend, i.e., an

integrated component. The results strongly support the presence of such an unobserved compo-

nent in the consumption equation. We provide evidence that this component is related to financial

liberalization which, by relaxing liquidity constraints of consumers, has permanently increased the

consumption-to-wealth ratio over the sample period. We calculate an alternative ”cay” variable, i.e.,

the stationary part of the consumption-to-wealth ratio, and find that its predictive ability for future

(excess) stock returns is comparable to that of the standard ”cay” variable.
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1 Introduction

The study of the long run aggregate relationship between consumption and total household wealth (i.e.,

the sum of tangible assets and unobserved human wealth) serves a twofold purpose. First, it is central

to the estimation of long run elasticities of consumption to wealth and its components. These elasticities

are useful, among other things, to evaluate and predict the implications of wealth changes for economic

growth. Second, it allows for the estimation of the unobserved ratio of consumption to total wealth.

According to the aggregate intertemporal household budget constraint, the consumption-to-wealth ratio

contains information about future variables, in particular future consumption changes and future returns

to wealth.

The contemporaneous literature on the long run aggregate relationship between consumption and

wealth originates from Lettau and Ludvigson (2001, 2004) who propose a cointegration approach to proxy

the unobserved consumption to total wealth ratio. To this end, they regress log consumption on log assets

and log earnings (as a proxy for human wealth) using US data and argue in favor of a stable cointegration

relationship between these variables. From the stationary regression residuals, they calculate a proxy for

the consumption to total wealth ratio (i.e, the variable ”cay”) and find that it has strong predictive

power for (excess) stock returns. Rudd and Whelan (2006) however find no cointegration in the US

upon adjusting the data to make it more consistent with the underlying intertemporal household budget

constraint, i.e., they argue that ”cay” is not stationary.1 Their finding suggests that results obtained

from the cointegration approach to measure wealth effects on consumption and to predict stock returns

using the estimated consumption-wealth ratio ”cay” are spurious.2 In a recent contribution, Bianchi et al.

(2017) acknowledge these issues and - after adjusting the data along the lines of Rudd and Whelan (2006)

and failing to find stationarity for the standard ”cay” measure - propose a new proxy for the consumption-

wealth ratio obtained from a regression that includes a two-state Markov switching intercept. This allows

for regime shifts in the consumption to wealth ratio which they link to the US Federal Reserve’s monetary

policy. They argue that the consumption-wealth ratio obtained from this approach is stationary and has

stronger predictive ability for (excess) stock returns when compared to the traditional ”cay” variable.

This paper contributes to the literature by estimating the long run consumption-wealth relationship

using an alternative empirical approach. In particular, we propose an unobserved component model

applied to US data over the period 1951Q4-2016Q4. The regression equation of log consumption on log

1As far as international evidence is concerned, Slacalek (2004) fails to find evidence in favor of a stable cointegrating

relationship between consumption, earnings and assets in a sample of 26 countries.
2Given considerations like absence of cointegration and instability of the cointegrating vector, Carroll et al. (2011) argue

against cointegration methods to measure wealth effects and instead propose an indirect approach based on the consumption

Euler equation and stickiness in consumption growth.
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assets and log earnings is augmented with an integrated unobserved component (see e.g., Harvey et al.,

1986; Canarella et al., 1990; Sarantis and Stewart, 2001; Planas et al., 2007; Everaert, 2010, for the

inclusion of such a component in regressions conducted in a different context). This inclusion allows us to

reliably estimate the long run relationship between consumption and total household wealth, even though

consumption, assets and earnings are not cointegrated. Our unobserved component model is estimated

using Bayesian state space methods with model selection along the lines of Frühwirth-Schnatter and

Wagner (2010). This allows for the calculation of the posterior probability that an integrated unobserved

component is present in the regression equation. Posterior distributions are calculated for the elasticities

of consumption to assets and earnings and these elasticities are compared to elasticities obtained for

models without an integrated unobserved component. An alternative ”cay” variable - i.e., the stationary

part of the consumption to wealth ratio - is calculated from this set-up and its persistence and predictive

ability for (excess) stock returns are evaluated and compared to that of the standard ”cay” variable.

The paper contains the following results. Using standard frequentist cointegration tests, we confirm

that the evidence in favour of a stable cointegrating relationship between consumption, earnings and assets

in the US is very weak. Our Bayesian unobserved component approach with model selection strongly

supports the presence of an unobserved integrated component in the consumption equation. We argue that

a model with an integrated unobserved component added to the regression is preferred over alternative

options to deal with the non-stationarity of the consumption-to-wealth ratio such as the modelling of

regime switches in its mean. With respect to the estimates of the elasticities of consumption to assets

and earnings we find, in line with the previous literature, that asset wealth has a much smaller impact on

consumption than earnings (as a proxy for human wealth), and that non-stock asset wealth (i.e., housing

wealth) is more important for consumption than stock assets (see e.g., Davis and Palumbo, 2001; Carroll

et al., 2011). Importantly, we find that the estimated elasticities for assets (and their components)

tend to be overestimated when we wrongfully exclude the unobserved integrated component from the

model. Hence, the failure to appropriately account for the non-stationarity in the consumption equation

leads to elasticity estimates that are misleading. We further provide an interpretation for the unobserved

integrated component and test this interpretation. In particular, we argue that financial liberalization has,

by relaxing liquidity constraints of consumers, permanently increased the consumption-to-wealth ratio

over the sample period. Finally, we evaluate both the in-sample and out-of-sample predictive ability for

excess stock returns of our new ”cay” variable, i.e., the stationary part of the consumption to wealth ratio.

In-sample, we find that its predictive ability for future excess stock returns, while diminished compared

to that of the traditional ”cay” variable, is statistically and economically significant and in line with the

univariate predictability results typically reported in the literature for excess stock returns using other
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predictors (see e.g., Ferson et al., 2003, for an overview). Out-of-sample, we find that its predictive ability

for future excess stock returns is comparable to that of the standard ”cay” variable.

The structure of the paper is as follows. Section 2 derives the estimable equations that relate con-

sumption to earnings and asset wealth (and its components). Section 3 provides a brief description of the

data while Section 4 provides evidence on cointegration between consumption, assets and earnings based

on standard frequentist cointegration tests. Section 5 presents and discusses our unobserved component

approach and the results obtained using this method. A theoretical interpretation of the estimated inte-

grated unobserved component is presented and tested and the predictive ability for excess stock returns

of our alternative ”cay” is discussed. Finally, Section 6 concludes.

2 Theoretical framework

This section derives two estimable equations that relate consumption to earnings and assets and to

earnings and asset components (i.e., stock wealth and non-stock wealth). The derivations are largely

based on the intertemporal budget constraint framework considered initially by Campbell and Mankiw

(1989) and then explored further by Lettau and Ludvigson (2001, 2004). Note that linearization constants

are ignored throughout the section.

The per period budget constraint of a representative consumer is given by,

At+1

1 + rt+1
= At + Yt − Ct (1)

where At are real assets, Yt is real disposable labor income (earnings), Ct is real consumption and rt is

the real rate of return. Alternatively, write

Wt+1

1 + rt+1
= Wt − Ct (2)

where Wt ≡ At +Ht is total wealth and Ht is human wealth.

To reconcile both eqs.(1) and (2), note that

Ht = Yt +
Ht+1

1 + rt+1
(3)

which is consistent with the definition of human wealth as the presented discounted value of future

earnings.3

After log-linearizing eq.(2) and solving the resulting log-linearized per period constraint forward, we

3For ease of exposition, we do not decompose the return on total wealth into a return on human wealth and a return on

asset wealth hence effectively assuming these returns are equal. The framework can be easily extended to incorporate this

distinction but this does not offer additional insight.
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can write

ct − wt = Et

∞∑
j=1

ρj(rt+j −∆ct+j) + lim
k→∞

ρkEt(ct+k − wt+k) (4)

where ct is the log of real consumption Ct, wt is the log of total real wealth Wt, Et is the expectation

operator conditional on period t information and ρ is the discount factor (0 < ρ < 1).4 The transversality

condition limk→∞ ρkEt(ct+k − wt+k) = 0 is imposed so that

ct = wt + nt (5)

where nt = Et
∑∞
j=1 ρ

j(rt+j −∆ct+j).

We then log-linearize Wt ≡ At +Ht to obtain wt = αat + βht so that eq.(5) becomes

ct = αat + βht + nt (6)

where at is the log of assets At, ht is the log of human wealth Ht, α is the elasticity of consumption with

respect to assets and β is the elasticity of consumption with respect to human wealth.5

Since log human wealth ht is unobserved, we log-linearize eq.(3), solve the resulting expression forward

and impose a transversality condition to obtain

ht = yt +mt (7)

where mt = Et
∑∞
j=1 ρ̄

j(∆yt+j − rt+j) with discount factor ρ̄ (0 < ρ̄ < 1).6

Substituting eq.(7) into eq.(6) then gives the baseline equation,

ct = αat + βyt + zt (8)

with zt = nt + βmt.

If we decompose assets At into stock wealth Ast (financial wealth) and non-stock wealth Anst (mainly

housing wealth), we have Wt ≡ Ast +Anst +Ht and we can derive the extended equation,

ct = αsast + αnsanst + βyt + zt (9)

where ast is the log of stock wealth Ast , a
ns
t is the log of non-stock wealth Anst , αs is the elasticity

of consumption with respect to stock wealth and αns is the elasticity of consumption with respect to

non-stock wealth.7

4In particular, ρ = 1− C
W

where C and W are the steady state values of Ct and Wt around which we linearize.
5We note that α = A

W
and β = H

W
where A, H and W are the steady state values of At, Ht and Wt around which we

linearize.
6In particular, ρ̄ = 1− Y

H
where Y and H are the steady state values of Yt and Ht around which we linearize.

7We note that αs = As

W
and αns = Ans

W
where As, Ans and W are the steady state values of Ast , A

ns
t and Wt around

which we linearize.
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This set-up allows for the estimation of the elasticities of consumption to assets and to asset compo-

nents, but also for the construction of a proxy for the consumption to total wealth ratio ct −wt, i.e., the

estimated variable zt - which in the case of eq.(8) - is commonly denoted by ”cay”. The ways to estimate

these equations are discussed in detail in Sections 4 and 5 after a description of the data is first given in

the next section.

3 Data

For the estimation of eqs.(8) and (9) we use quarterly US data over the period 1951Q4 − 2016Q4. A

detailed description of the data can be found in Appendix A. Our dataset is constructed identically as

the dataset considered by Lettau and Ludvigson (2015). For ct we use the log of real per capita total

personal consumption expenditures.8 For yt we use the log of real per capita disposable labor income.

For at we use the log of real per capita household total net worth which includes stock and non-stock

financial assets, housing wealth and durable goods.9 For ast we use the log of real per capita stock market

assets while for anst we use the log of real per capita non-stock assets (i.e., real estate, non-stock financial

assets, durable goods) minus liabilities. The asset variables at, a
s
t and anst are all measured at the end of

the period.

4 Cointegration

This section investigates whether regression eqs.(8) and (9) are cointegrating relationships. First, we

briefly discuss the integratedness of the variables included in these equations. Next, we conduct a standard

frequentist cointegration analysis and discuss its results.

8Lettau and Ludvigson (2001, 2004) originally used expenditures on nondurable goods and services as a proxy for

consumption but they recently switched to the use of total personal consumption expenditures (see Lettau and Ludvigson,

2015).
9Rudd and Whelan (2006) argue in favor of excluding durable goods from assets as ct already includes expenditures on

durable goods. However, as durable goods are not fully consumed in the period of purchase, we follow Lettau and Ludvigson

(2004, 2015) and do not exclude them from net asset wealth at. Our results are robust to using a definition of wealth that

excludes durable goods however. These results are not reported but are available from the authors upon request.
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Figure 1: Real per capita personal consumption expenditures (c), disposable labor income (y), net assets (a),

net stock wealth (as) and net non-stock wealth (ans) - US data 1951Q4 − 2016Q4.
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4.1 Integrated variables

Figure 1 presents the variables ct, yt, at, a
s
t and anst (logs) and ∆ct, ∆yt, ∆at, ∆ast and ∆anst (growth rates)

used in our analysis. From the figure, we note that the variables ct, yt, at, a
s
t and anst are stochastically

trended. In particular, unreported (augmented) Dickey-Fuller tests suggest that they are integrated of

order one - I(1) - and become integrated of order zero - I(0) - upon first differencing, i.e., implying that

the growth rates ∆ct, ∆yt, ∆at, ∆ast and ∆anst are stationary. With respect to the stationarity of these

growth rates, it should be noted however that Dickey-Fuller tests may fail to detect a unit root if it

underlies a volatile high frequency component. As such, growth rates may appear stationary rather than

be stationary. We argue below that, due to financial liberalization, aggregate consumption growth ∆ct

contains a slow moving low frequency stochastic trend underneath its volatile high frequency component.

4.2 Cointegration

If the regressions given by eqs.(8) and (9) are believed to consist of integrated I(1) variables, then

the standard approach to estimate the elasticities α, β, αs and αns is to estimate these equations as

cointegrating regressions (see Engle and Granger, 1987). For this approach to be valid, the term zt in

both equations should be stationary, i.e., the variables ct, yt and at in eq.(8) and the variables ct, yt, a
s
t

and anst in eq.(9) must be cointegrated. In Section 4.2.1, we use standard frequentist cointegration tests

to find out whether zt is stationary. In Section 4.2.2, we provide potential reasons why zt is found to be

non-stationary. In Section 4.2.3, we discuss the implications of a non-stationary zt.

4.2.1 Testing whether zt is stationary

Table 1: Engle-Granger cointegration test between c, a and y and between c, as, ans and y

c, a, y c, as, ans, y

1951Q4− 2016Q4 1951Q4− 2007Q3 1951Q4− 2016Q4 1951Q4− 2007Q3

Dickey-Fuller t-statistic

-2.32 -2.57 -2.36 -2.47

5% and 10% critical values (3 variables) 5% and 10% critical values (4 variables)

5% −3.74 5% −4.10

10% −3.45 10% −3.81

Notes: The null hypothesis tested is the no cointegration hypothesis. A constant is included in the cointe-

grating equation. The 5% and 10% critical values are taken from MacKinnon (2010). The number of lags

included in the augmented Dickey-Fuller regression is based on the Bayesian information criterion.
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To check whether zt is stationary or not, we conduct a standard Engle-Granger cointegration test (see

Engle and Granger, 1987) and report the results in Table 1. From the table, we note that there is very

little evidence in favor of cointegration between the variables ct, yt and at or between the variables ct, yt,

ast and anst . This is the case for the full sample period (i.e., the period 1951Q4− 2016Q4) as well as for

the sample that excludes the years from the Great Recession onward (i.e., the period 1951Q4− 2007Q3).

We have also conducted a number of alternative cointegration tests, the results of which are reported

in Appendix B. These tests also strongly suggest that there is no cointegration between the variables

considered. As we argue in the appendix, the failure of finding cointegration does not seem to originate

from statistical issues - i.e., the lack of power to reject a false null hypothesis - but rather suggests that

there is in fact a unit root present in zt.

4.2.2 Reasons why zt is non-stationary

There are different potential reasons as to why eqs.(8) and (9) are not cointegrating regressions. First, the

stationarity of zt requires the stationarity of the term nt in eq.(5). Since the result in eq.(5) is obtained

after imposing a transversality condition, a violation of this condition renders nt in eq.(5) non-stationary.

Additionally, the log-linearization conducted to derive eq.(5) pushes potentially non-stationary higher-

order terms in nt. The same arguments can be evoked when considering the stationarity of the term mt

in eq.(7), which also is a component of zt. Second, the model presented in Section 2 assumes stability in

the steady state ratios of the model variables and hence in the resulting elasticities. This assumption may

not hold in practice.10 Structural instability in the cointegrating equation may lead to an I(1) component

in zt.
11 Third, from the definition of the terms nt in eq.(5) and mt in eq.(7) these terms are stationary

only if the variables rt, ∆ct, and ∆yt in the model are stationary. As argued by Bianchi et al. (2017),

regime shifts in US monetary policy may - through rt - have caused shifts in the mean of the consumption

to wealth ratio, rendering it non-stationary. In this paper, we instead focus on aggregate consumption

growth ∆ct. In what follows we argue that financial liberalization occurring over the sample period has

rendered ∆ct non-stationary, i.e., underneath the volatile high frequency component which is apparent

from Figure 1, there is a slow moving low frequency stochastic trend.

10For instance, different forms of heterogeneity at the micro level may imply structural instability in the aggregate

relationship estimated using time series data (see Cooper, 2016, and references therein).
11To see this, note that if the true relationship between ct, at and yt is given by ct = αtat + βtyt + vt where the time-

varying parameters αt and βt are given by αt = α+ α̃t and βt = β + β̃t - i.e., consisting of a constant and a time-varying

component where the latter can be stationary or integrated - then estimating ct = αat + βyt + zt causes zt to have an I(1)

component since zt = vt + α̃tat + β̃tyt.

9



4.2.3 Implications of a non-stationary zt

The estimation of the relationship given by eq.(8) or eq.(9) as a cointegrating relationship using standard

methods like static OLS or dynamic OLS is spurious if zt is non-stationary (see Granger and Newbold,

1974; Phillips, 1986). Highly significant OLS estimates could be obtained for the elasticities α and β

with high R2’s even if ct and the regressors at and yt are completely independent merely because these

variables are all stochastically trended. While it is unlikely that the variables in eqs.(8) and (9) are

completely independent, the estimates for the elasticities obtained via standard cointegration analysis

are nonetheless unreliable if zt contains a unit root. Additionally, the non-stationarity of the variable

zt may invalidate its use as a predictor for other variables, in particular (excess) stock returns (see e.g.,

Rudd and Whelan, 2006). These issues are tackled in the next section where we discuss an alternative

empirical approach based on an unobserved component model.

5 Unobserved component model

We can reliably estimate the long-run relationship between ct, at and yt in eq.(8) or between ct, a
s
t , a

ns
t

and yt in eq.(9) - even when these variables are not cointegrated - using an unobserved component or

state space framework (see Harvey, 1989; Durbin and Koopman, 2001). In such a set-up, the omitted

I(1) component in zt can be explicitly added to the regression equation as an unobserved component

and estimated together with the parameters - among which are the elasticities α, αs, αns and β - of the

model (see e.g., Harvey et al., 1986; Canarella et al., 1990; Planas et al., 2007; Everaert, 2010). Section

5.1 presents the specification of the unobserved component model. Section 5.2 discusses the methodology

used to estimate the model. Section 5.3 presents the main estimation results.

5.1 Empirical specification

5.1.1 Set-up

We can write eqs.(8) and (9) in general form as,

ct = xtφ+ zt (10)

where xt =
[
at yt

]
and φ =

[
α β

]′
for eq.(8) or xt =

[
ast anst yt

]
and φ =

[
αs αns β

]′
for eq.(9).

The unobserved variable zt is modelled as the sum of an I(1) non-stationary component µt and an

I(0) stationary component vt. As such, we have,

zt = µt + vt (11)
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The non-stationary component µt is modelled as a random walk process, i.e.,

µt = µt−1 + ηt (12)

where ηt ∼ iidN
(
0, σ2

η

)
.

Following the literature where dynamic OLS is typically applied to the estimation of regression equa-

tions between consumption, earnings and assets, the stationary component vt is modelled as consisting

of an error term εt and lags, leads and contemporaneous values of the first difference of the regressors xt,

i.e.,

vt =

p∑
j=−p

∆xt+jρj + εt (13)

where εt ∼ iidN
(
0, σ2

ε

)
.12

5.1.2 Discussion

The presence of an integrated unobserved component µt in eq.(10) may have multiple causes.13 As noted

in Section 4.2.2 above, the reason for failing to find cointegration between the variables ct, yt and at -

or between the variables ct, yt, a
s
t and anst - may be due to a violation of the transversality condition,

the neglect of potentially integrated higher-order terms in the conducted log-linearizations or structural

instability in the steady state ratios of the model variables. And while Bianchi et al. (2017) argue that

monetary policy shifts render the returns on wealth non-stationary, this paper focusses instead on financial

liberalization and its impact on aggregate consumption growth (see Section 5.4). Of course, objections

can be raised to giving an integrated variable or unit root interpretation to some of these failures of finding

cointegration. For instance, violations of the transversality condition may be short-lived (i.e., bubbles

tend to burst). However, for other failures this concern seems unwarranted. For example, the neglected

higher-order terms in the log-linearizations are functions of the levels of the variables in the model and

are therefore unquestionably integrated variables. Additionally, even if one objects to the principle of

there being an integrated component in this context, this component may actually provide the best way

to approximate the non-stationarity of zt within a given sample period. Indeed, as we detail in Appendix

C, using an alternative and more general modelling approach for the unobserved component suggests

that the non-stationarity of zt is best modelled through an integrated variable. More specifically, we find

that the data supports a regression model with an integrated unobserved component included to capture

non-stationarity rather than a regression model containing a Markov switching intercept along the lines

12The results reported in this section change very little if, additionally, lags of the first difference of the dependent variable

ct are added to the component vt.
13Instead of an ”unobserved component”, the variable µt could alternatively be denoted as a ”time-varying intercept”

without changing the implications of the results found in the paper.
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of Bianchi et al. (2017). Before discussing the results of the estimation of the unobserved component

model, the next section first elaborates on the methodology used.

5.2 Methodology

We first discuss the advantages of Bayesian estimation. Then, we present the Bayesian model selection

approach to determine whether or not a non-stationary unobserved component is present in the regression.

Finally, we discuss our choice of parameter priors. The general outline and technical details of the Gibbs

sampling algorithm together with a convergence analysis of the sampler are provided in Appendix D.

5.2.1 Bayesian estimation

Using a standard classical approach to state space estimation, the Kalman filter could be applied to

estimate the unobserved component and calculate the likelihood, where the latter would be maximized

with respect to the model parameters using an iterative numerical procedure.14 This paper instead

follows a Bayesian approach. In particular, we use a Gibbs sampling approach which is a Markov Chain

Monte Carlo (MCMC) method used to simulate draws from the intractable joint posterior distribution

of the parameters and the unobserved state using only tractable conditional distributions. Our Bayesian

approach has a number of advantages. First, as discussed in the next section, model selection allows for

the calculation of the posterior probability that an integrated unobserved component is present in the

regression, i.e., we calculate the probability of a model with integrated unobserved component versus

a model without integrated unobserved component. Second, model averaging is possible so that we

may calculate parameter estimates - in particular, elasticities - averaged across both models. In this

way, valid parameter estimates can be obtained for any value of the posterior probability that a non-

stationary unobserved component is present in the regression. This stands in contrast to the standard

classical cointegration approach where valid parameter estimates can only be obtained under stationarity,

i.e., when there is no integrated unobserved component in the regression error term. Third, the Gibbs

sampler provides small sample posterior distributions of the parameters making it possible to avoid the

use of asymptotic approximations to parameter distributions.15

14Under stationarity assumptions, the obtained maximum likelihood estimates are consistent and asymptotically Gaussian

provided that the model is identified (see e.g, Hamilton, 1994). Chang et al. (2009) show that these asymptotic properties

can be extended to state space models with integrated observed and latent variables.
15Further advantages compared to the standard classical maximum likelihood (ML) estimation approach to state space

models are (i) the fact that Gibbs sampling is computationally easier to implement than ML estimation and, as such, does

not suffer from the numerical optimization problems inherent to ML estimation (see Kim and Kim, 2011) and (ii) the

fact that both the parameters and the unobserved state are treated as random variables in a Bayesian setting whereas the

traditional ML approach treats the ML estimates of the parameters as if they are the true values hence neglecting parameter

uncertainty when conducting inference on the unobserved state (see Kim and Nelson, 1999).
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5.2.2 Model selection

We test whether to include or exclude the integrated unobserved component to the regression equation

using the stochastic model selection approach for Bayesian state space models as developed by Frühwirth-

Schnatter and Wagner (2010). Testing whether or not an integrated unobserved component µt is present in

eq.(10) amounts to testing σ2
η > 0 against σ2

η = 0. This is a non-regular testing problem from a classical

viewpoint as the null hypothesis lies on the boundary of parameter space. Our Bayesian approach is

convenient to deal with this problem. In a Bayesian setting each of the two potential models - i.e. the

model for ct that includes the integrated unobserved component and the model for ct that excludes the

integrated unobserved component - is assigned a prior probability, and the posterior probability of each

model is then calculated conditional on the data. Frühwirth-Schnatter and Wagner (2010) extend the

Bayesian model selection approach of George and McCulloch (1993) to state space models. Following

their approach, we consider a non-centered parameterization of the unobserved component µt. A binary

stochastic indicator is then assigned to the integrated unobserved component so that it is either included

in or excluded from eq.(10). This indicator is sampled together with the model parameters in our Gibbs

sampling algorithm.

Non-centered specification

We can rewrite eq.(12) as

µt = µ+ σηµ
∗
t (14)

µ∗t = µ∗t−1 + η∗t µ∗0 = 0 η∗t ∼ iidN (0, 1) (15)

where µ is the initial value of µt if µt is time-varying (σ2
η > 0) and it is the constant value of µt when µt

is constant (σ2
η = 0). Crucially, the non-centered specification is not identified as the signs of ση - i.e.,

the square root of the variance σ2
η - and µ∗t in eq.(14) can be changed without changing their product. As

a result of this non-identification, the likelihood is symmetric around 0 along the ση dimension. When

σ2
η > 0, the likelihood is bimodal with modes −ση and ση. When σ2

η = 0, the likelihood is unimodal

around zero. Allowing for non-identification of ση therefore provides useful information on whether

σ2
η > 0, and this non-identification can be exploited when drawing ση and µ∗t in the Gibbs algorithm

through the use of a random sign switch, i.e., when sampling we multiply both by −1 with probability

0.5 and leave both unaltered with probability 0.5.
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Selection of the integrated unobserved component

The non-centered parameterization is useful for model selection as the transformed component µ∗t , in

contrast to µt, does not degenerate to a static component if the innovation variance equals zero. This

means that if the variance σ2
η = 0, then ση = 0 in eq.(14) and the time-varying part µ∗t of the unobserved

component µt drops from the model. Hence, in the non-centered parameterization the presence or absence

of a non-stationary unobserved component can be expressed as a standard variable selection problem. In

particular, we write

µt = µ+ ισηµ
∗
t (16)

where ι is a binary inclusion indicator which is either 0 or 1. If ι = 1, there is an integrated unobserved

component, µ is the initial value of µt and ση is estimated from the data. If, on the other hand, ι = 0,

there is no integrated unobserved component, µt becomes constant as µt = µ and ση is set to 0. The

binary indicator ι is sampled together with the other parameters so that from its posterior distribution we

can calculate the posterior inclusion probability of the integrated unobserved component in the regression.

5.2.3 Parameter priors

Our Bayesian estimation approach requires choosing prior distributions for the model parameters.

Prior for the binary indicator ι

For the binary inclusion indicator, we assume a Bernoulli prior distribution with probability p0. When

calculating the posterior probability of the unobserved integrated component in the regression, we set

p0 = 0.5 but also report results for p0 = 0.25 and p0 = 0.75.

Prior for the innovation variance σ2
η of the unobserved component

Following Frühwirth-Schnatter and Wagner (2010), the standard inverse gamma (IG) prior for the vari-

ance of the innovation to the unobserved component is replaced by a Gaussian prior centered at zero

for the square root of the variance. The reason for this is that when using the standard IG prior dis-

tribution for variance parameters, the choice of the shape and scale hyperparameters that define this

distribution has a strong influence on the posterior distribution when the true value of the variance is

close to zero. More specifically, as the IG distribution does not have probability mass at zero, using it as

a prior distribution tends to push the posterior density away from zero. This is of particular importance

when estimating the variance σ2
η of the innovation to the unobserved component µt as we want to decide

whether or not to include this component in the regression. As can be noted from eqs.(10), (11) and
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(14), since ση is a regression coefficient in the consumption equation, a further important advantage of

the non-centered parameterization is therefore that it allows us to replace the standard IG prior on the

variance parameter σ2
η by a Gaussian prior centered at zero on ση. Centering the prior distribution at

zero makes sense as, for both σ2
η = 0 and σ2

η > 0, ση is symmetric around zero. Frühwirth-Schnatter and

Wagner (2010) show that the posterior density of ση is much less sensitive to the hyperparameters of the

Gaussian distribution and is not pushed away from zero when σ2
η = 0. In Table 2 we report the prior

distributions assumed for the model parameters. As can be seen in the table, we use a Gaussian prior

distribution for ση with mean zero and a variance equal to 0.10. The variance is chosen such that the

prior distribution has support over a sufficiently large range of relevant parameter values.

Other priors

As can be seen in Table 2, we also use Gaussian prior distributions centered at zero for the elasticities φ, for

the constant µ of the integrated unobserved component and for the coefficients ρ on the contemporaneous

values and leads and lags of the first differences of the regressors. Again, the variances of these prior

distributions are chosen such that the distributions have support over a sufficiently large range of relevant

parameter values, i.e., a unit variance is used for the prior distributions of φ, µ and ρ. Finally, for the

variance σ2
ε of the error term ε we use an IG prior distribution with a relatively high belief equal to

0.01 and a relatively low strength equal to 0.01 (see Bauwens et al., 2000, for details on prior beliefs and

strengths).16 By giving a relatively high prior value to the parameter σ2
ε , we give a relatively high weight

to the stationary component in the regression vt compared to the integrated component µt. In general,

all priors are rather flat so that the results reported in the next section are driven mostly by the data

and are not very sensitive to the priors chosen.

16Note that the strength 0.01 times the sample size T can be interpreted as the number of fictional observations used to

construct the prior belief.
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Table 2: Prior distributions regression parameters

Gaussian priors N (b0, V0) Percentiles

mean (b0) variance (V0) 5% 95%

Elasticities on regressors xt φ 0.00 1.00 −1.64 1.64

Constant I(1) component µ 0.00 1.00 −1.64 1.64

Square root variance I(1) component ση 0.00 0.10 −0.52 0.52

Coeff. on lags/leads of ∆xt (DOLS terms) ρ 0.00 1.00 −1.64 1.64

Inverse Gamma prior IG(ν0T, ν0Tσ
2
0) Percentiles

belief (σ2
0) strength (ν0) 5% 95%

Variance error term εt σ2
ε 0.01 0.01 0.004 0.12

Notes: The regression equation is ct = xtφ+µt+vt. The random walk I(1) component is µt = µ+ ισηµ
∗
t with µ∗t = µ∗t−1 +η∗t .

The stationary I(0) component is vt =
∑p
j=−p ∆xt+jρj +εt. With p = 6 and data available over the period 1951Q4−2016Q4,

the effective sample period is 1953Q3 − 2015Q2 and the effective sample size is T = 248 (i.e., 261 observations minus 1 for

first-differencing and minus 12 for constructing leads and lags).

5.3 Results

This section presents the results of the estimation of the unobserved component model. Table 3 presents

the posterior probabilities that there is an integrated unobserved component present in the basic regression

eq.(10). These are reported for different prior probabilities p0 and for the two regression specifications that

we consider, i.e., for regressor vector xt =
[
at yt

]
(panel A) and regressor vector xt =

[
ast anst yt

]
(panel B). The results provide strong evidence that there is an unobserved random walk component

present in the regression, i.e., all posterior probabilities are found to be equal to 1.

Table 3: Posterior inclusion probabilities p(ι = 1) of an integrated unob-

served component (for different prior inclusion probabilities p0)

(A) (B)

xt =
[
at yt

]
xt =

[
ast anst yt

]

p0 = 0.5 1 1

p0 = 0.75 1 1

p0 = 0.25 1 1

Notes: The regression equation is ct = xtφ+µt+vt. Reported is the posterior inclusion

probability of the integrated unobserved component µt. It is calculated as the average

of the 10.000 ι’s with each ι sampled in a Gibbs iteration. The prior distribution of

the binary indicator ι is Bernoulli with probability p0. The effective sample period is

1953Q3− 2015Q2.
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In Table 4 we present the posterior means and 90% highest posterior density (HPD) intervals of the

posterior distributions for the fixed parameters of the unobserved component model given by eqs.(10),

(11), (13), (16) and (15) with the exception of the coefficients ρj in eq.(13) which are excluded due

to space constraints. Again, we present results for regressor vector xt =
[
at yt

]
(panel A) and for

regressor vector xt =
[
ast anst yt

]
(panel B). Furthermore, we present results both with the binary

indicator set to 1 and with the binary indicator set to 0. Setting ι = 1 is in line with the posterior

inclusion probabilities equal to 1 as reported in Table 3, i.e., the integrated component is included in

the model and estimated. Setting ι = 0 is in line with the models estimated in the existing literature,

i.e., the non-stationarity of zt in eq.(10) is typically not accounted for. From the table we note that

when we neglect the non-stationary component in zt (i.e. when ι = 0) the impact of log assets at on log

consumption ct is somewhat overestimated, i.e., in panel A the elasticity α is found to be equal to 0.27

when ι = 0 and equal to 0.24 when ι = 1. From panel B in the table we find that this difference can be

attributed to the non-stock part of assets ans as αns equals 0.25 when ι = 0 and only 0.18 when ι = 1

(while the estimates for αs are essentially the same when ι = 0 and when ι = 1). Panel B of the table

further shows that non-stock asset wealth, which consists mainly of housing wealth, has a larger long run

impact on consumption than stock wealth. This finding is in line with results reported in the literature

(see e.g., Davis and Palumbo, 2001; Carroll et al., 2011). The standard deviation |ση| of the error term

of the integrated random walk component µt is estimated only when ι = 1 and is found to be larger than

zero both in panels A and B. This result for |ση| suggests that there is important time-variation in µt

and corroborates the finding of a posterior inclusion probability p(ι = 1) equal to 1 as reported in Table

3.
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Table 4: Posterior distributions parameters of equation

ct = xtφ+ µt + vt

(A) (B)

xt =
[
at yt

]
xt =

[
ast anst yt

]
(1) (2) (1) (2)

ι = 1 ι = 0 ι = 1 ι = 0

α 0.2382 0.2728 - -

[0.1722,0.3041] [0.2405,0.3050] [-,-] [-,-]

αs - - 0.0817 0.0881

[-,-] [-,-] [0.0428,0.1243] [0.0763,0.1000]

αns - - 0.1783 0.2486

[-,-] [-,-] [0.1175,0.2391] [0.2078,0.2895]

β 0.7209 0.7575 0.7161 0.7115

[0.6412,0.8004] [0.7218,0.7934] [0.6249,0.8045] [0.6662,0.7576]

µ 0.0718 -0.6491 0.0424 -0.7449

[-0.1781,0.3196] [-0.7226,-0.5753] [-0.1800,0.2778] [-0.8554,-0.6345]

|ση| 0.0033 - 0.0035 -

[0.0025,0.0043] [-,-] [0.0026,0.0045] [-,-]

σ2
ε .00028 .00055 .00027 .00045

[.00024,.00032] [.00048,.00064] [.00023,.00032] [.00039,.00052]

Notes: Reported are the posterior mean with 90% HPD interval (in square brackets). In panel A

of the table the coefficient vector is φ =
[
α β

]′
and in panel B it is φ =

[
αs αns β

]′
.

The random walk I(1) component is µt = µ + ισηµ
∗
t with µ∗t = µ∗t−1 + η∗t . The stationary I(0)

component is vt =
∑p
j=−p ∆xt+jρj +εt. The coefficients ρj are excluded from the table due to space

constraints. With p = 6 and data available over the period 1951Q4 − 2016Q4, the effective sample

period is 1953Q3 − 2015Q2 and the effective sample size is T = 248 (i.e., 261 observations minus 1

for first-differencing and minus 12 for constructing leads and lags).

Figure 2 presents the estimated random walk µt and its components as obtained from the estimation

of eq.(10) with xt =
[
at yt

]
and ι = 1, i.e., as obtained from the estimates reported in Table 4 panel

A with ι = 1. Results obtained with xt =
[
ast anst yt

]
and ι = 1 are very similar and therefore not

reported. The upper left panel of the figure presents µt. From the non-centered specification given by

eq.(14), the initial value µ of the random walk is presented in the upper right panel of the figure while the

time-varying part σηµ
∗
t of the random walk is presented in the lower left panel. Based on these figures

we confirm that there is considerable time-variation in µt. The rather wide 90% HPD intervals around

the posterior mean of µt stem mainly from uncertainty surrounding the initial value µ while the HPD

intervals around the time-varying part σηµ
∗
t are much narrower. The posterior distribution of ση (i.e.,
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the square root of the variance σ2
η) presented in the lower right panel of the figure is clearly bimodal and

therefore again constitutes evidence that points toward time-variation in µt and thus to the presence of

a random walk µt in eq.(10).

Figure 2: The integrated component µt, its initial value µ and time-varying part σηµ
∗
t , and the posterior distri-

bution of the square root of its error variance ση
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Note: Depicted in the first three figures are the posterior means with shaded areas denoting the 90% HPD interval. All figures are

based on the results of Table 4 panel A with ι = 1. The effective sample period is 1953Q3− 2015Q2.

Figure 3 then presents the posterior means and 90% HPD intervals of the stationary component vt

both for ι = 0, i.e., when no integrated unobserved component is included in the model, and for ι = 1,

i.e., when the non-stationary random walk µt is included in the model and estimated. In the former case,

vt corresponds to the traditional proxy for the consumption to total wealth ratio ”cay” estimated in the

literature so we denote it by cayt. We find that it is nearly identical to the standard ”cay” as calculated

and reported by Lettau and Ludvigson (2015). In the latter case, vt constitutes a new ”cay” obtained

after controlling for an unobserved integrated component. We denote this series by cayintt . The figure

reveals that cayintt is considerably less persistent (i.e., more stationary) than cayt as the non-stationarity

in zt in eq.(10) is entirely soaked up by µt in this case.17 The variable cayintt can be interpreted as the

17Moreover, note from the figure that the HPD interval around cayintt is wider than that around cayt which stems from

the fact that the estimation of cayintt entails the estimation of both fixed parameters and a time-varying state - i.e., the
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stationary or transitory component of the consumption-to-wealth ratio while the integrated unobserved

component µt constitutes the permanent component of the consumption-to-wealth ratio. In Section 5.5,

we take a closer look at cayintt but first, in Section 5.4, we present an interpretation for the unobserved

integrated component µt.

Figure 3: The stationary component vt for ι = 1 (cayintt ) and ι = 0 (cayt)
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Notes: Depicted are the posterior means. The shaded areas denote the 90% HPD interval. cayintt is calculated from the results of

Table 4 panel A with ι = 1. cayt is calculated from the results of Table 4 panel A with ι = 0. The effective sample period is

1953Q3− 2015Q2.

5.4 Interpretation of the unobserved component µt

In this section we first link the estimated integrated unobserved component found in the regression

of consumption on assets and earnings to a proxy for financial liberalization. Second, we discuss and

estimate the theoretical channel by which the unobserved component - interpreted as stemming from

financial liberalization - affects the consumption-to-wealth ratio.

5.4.1 Linking the unobserved component to financial liberalization

By relaxing liquidity constraints, financial liberalization may have increased the propensity to consume

out of (total) wealth over time, and thereby raised the consumption to wealth ratio. Figure 4 shows the

estimated unobserved component µt and Abiad et al. (2008)’s proxy for financial liberalization in the US

which we denote by flt and which is available over the period 1973Q1− 2005Q4. Note that in the figure

both variables are re-scaled so as to make them comparable graphically. The financial liberalization index

of Abiad et al. (2008) is a mixture of indicators of financial development (credit controls and ceilings,

interest rate liberalization, capital account transactions, securities market development, banking sector

unobserved component µt - while the estimation of cayt entails only the estimation of fixed parameters.
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supervision). More details on this index are provided in Appendix A. We choose this particular proxy over

other proxies because - since it is based on readings of laws and regulations - it is more likely to be driven

by credit supply and less by demand.18 From the figure, we note the similar trend in both measures.

This suggests that financial liberalization may be - at least partially - responsible for the structural

increase in the proxied consumption-to-wealth ratio and hence for the failure to find a stationary long-

run relationship (i.e., cointegration) between consumption and wealth (where the latter is proxied by

assets and earnings). We note that the structural increase in the (unobserved) US consumption to total

wealth ratio due to financial liberalization is in line with the structural decrease in the (observed) US

household saving to disposable income ratio as documented by Carroll et al. (2012). They note that this

development can be largely attributed to financial liberalization.

Figure 4: The unobserved component µt and Abiad et al. (2008)’s index of financial liberalization flt
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Notes: Depicted is the posterior mean of µt re-scaled by subtracting its mean and dividing by its standard deviation. µt is

calculated from the results of Table 4 panel A with ι = 1. Depicted is Abiad et al. (2008)’s index of financial liberalization flt

re-scaled by subtracting its mean and dividing by its standard deviation. The effective sample period is 1953Q3− 2015Q2 but flt

is only available over the period 1973Q1− 2005Q4.

A more formal approach however is needed to investigate the financial liberalization interpretation

of µt. To this end, we conduct Engle-Granger cointegration tests between consumption, assets, earnings

and our proxy for financial liberalization. We note that ct, at, yt and µt are cointegrated by construction

since the unobserved component µt is added to the regression equation for that specific purpose. Finding

cointegration between ct, at, yt and flt however when - as noted in Section 4.2.1 - there is no cointegration

between ct, at and yt would provide strong support for the liberalization story. The results of the

18This in contrast to alternative measures such as household liabilities to disposable income or the credit easing accumu-

lated (CEA) index - see Carroll et al. (2012) - which is strongly based on the household liabilities ratio. Upon using the

CEA index instrumented by the Abiad et al. (2008) index, we find similar results as those reported in this section for the

Abiad et al. (2008) index.
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conducted tests are presented in Table 5. We test for cointegration between ct, at, yt and flt/fl
+
t where

fl+t equals flt over the period 1973Q1 − 2005Q4 after which it is set to the last available value of flt

for the remainder of the sample which is a value that indicates full financial liberalization. We also test

for cointegration between ct, a
s
t , a

ns
t , yt and flt/fl

+
t . From the table, we note that the null hypothesis

of no cointegration is rejected at the 10% level for all the conducted regressions between the variables

ct, at, yt and flt/fl
+
t . For the variables ct, a

s
t , a

ns
t , yt and flt/fl

+
t , the null of no cointegration is

rejected at the 10% level only over the sample period 1973Q1− 2016Q4 (i.e., for the largest sample size

which provides more power to the test). All in all, the results presented provide reasonable evidence

that the lack of cointegration between consumption, assets and earnings and, therefore, the presence

of an integrated unobserved component in the relationship between these variables - which implies a

non-stationary consumption-to-wealth ratio ct − wt - can be attributed to financial liberalization. The

theoretical channel by which this occurs is investigated in the next section.

Table 5: Engle-Granger cointegration test between c, a, y and fl and between c, as, ans, y and fl

c, a, y, fl c, as, ans, y, f l

73Q1− 05Q4 73Q1− 16Q4 73Q1− 07Q3 73Q1− 05Q4 73Q1− 16Q4 73Q1− 07Q3

Dickey-Fuller t-statistic

-3.82 -4.09 -3.98 -3.81 -4.25 -3.99

5% and 10% critical values (4 variables) 5% and 10% critical values (5 variables)

5% −4.10 5% −4.41

10% −3.81 10% −4.13

Notes: The null hypothesis tested is the no cointegration hypothesis. A constant is included in the cointegrating equation.

The 5% and 10% critical values are taken from MacKinnon (2010). The number of lags included in the augmented

Dickey-Fuller regression is based on the Bayesian information criterion. The sample 1973Q1 − 2005Q4 uses Abiad et al.

(2008)’s index of financial liberalization flt which is only available over this period. The samples 1973Q1 − 2016Q4 and

1973Q1− 2007Q3 use the financial liberalization variable fl+t which equals Abiad et al. (2008)’s index flt over the period

1973Q1−2005Q4 after which it is set to the last value flt takes for the remainder of the sample which is a value indicating

full financial liberalization.

5.4.2 Channel

The theoretical framework of Section 2 is based only on the budget constraint of a representative con-

sumer. To incorporate financial liberalization into our model, we now also impose behavioral restrictions

on the representative consumer. In particular, we consider a first-order condition that incorporates a

potentially binding liquidity constraint (see e.g, Zeldes, 1989), i.e.,

Et

[
δRt+1

u′(Ct+1)

u′(Ct)
(1 + λt)

]
= 1 (17)
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where δ is the consumer’s discount factor, Rt = 1 + rt+1 is the gross real rate of return on assets, u′(Ct)

is marginal utility of consumption with u(Ct) the utility function and Ct the period t consumption level,

and λt is the (normalized) Lagrange multiplier associated with the period t liquidity constraint which is

positive when the constraint is binding and zero when the constraint is not binding. From eq.(17), we

can write δRt+1
u′(Ct+1)
u′(Ct)

(1 + λt) = 1 + et+1 where et+1 is an expectation error uncorrelated with period t

information. We can then specify the utility function as being of the CRRA type so that u(C) = C1−θ

1−θ

with coefficient of relative risk aversion θ > 0 and write δRt+1

(
Ct+1

Ct

)−θ
(1 +λt) = 1 + et+1. After taking

logs of both sides of this expression and solving for the growth rate in consumption ∆ct+1 = ct+1 − ct =

ln(Ct+1)− ln(Ct), we obtain,

∆ct+1 =
1

θ
ln δ +

1

θ
lnRt+1 +

1

θ
ln(1 + λt)−

1

θ
(1 + et+1) (18)

Financial liberalization can be expected to make liquidity constraints less binding, thereby reducing λt

and leading to a lower future consumption growth rate ∆ct+1. If financial liberalization is (stochastically)

trended, aggregate consumption growth is non-stationary. And if the trend in financial liberalization is

upward, then consumption growth decreases permanently. If future consumption growth is permanently

reduced, the intertemporal budget constraint then suggests that - ceteris paribus - the (log) current

consumption-to-wealth ratio ct − wt can increase permanently. This should be clear from eq.(5), which

is repeated here for convenience, i.e.,

ct − wt = Et

∞∑
j=1

ρj(rt+j −∆ct+j) (19)

The proposed channel can be tested by conducting regressions of the present discounted value of

future consumption growth
∑h
j=1 ρ

j∆ct+j - with h the considered horizon - on the integrated unobserved

component µt, which is the permanent component of the consumption-to-wealth ratio ct − wt. The

financial liberalization interpretation of µt suggests that the impact of µt should be negative, i.e., higher

financial liberalization and therefore a higher µt and ct −wt implies lower future aggregate consumption

growth. In Table 6, we present the results of the estimation of this relationship for discount factors ρ

equal to 1 and 0.99. Because µt is non-stationary and ∆ct is expected to be non-stationary - whereby

considering longer horizons exacerbates the problem as summing consumption growth rates increases their

persistence by construction - our estimation method must be such that spurious results are avoided. As

noted by Hamilton (1994, pages 561-562), this can be achieved by a Cochrane-Orcutt adjustment for first-

order serial correlation in the residuals of the regression of
∑h
j=1 ρ

j∆ct+j on µt (which is asymptotically

equivalent to first-differencing the regression equation). In the table we further report the results of a

Cochrane-Orcutt regression of
∑h
j=1 ρ

jrt+j on µt. We do this because from eq.(19), it can be seen that
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an integrated unobserved component µt leading to a structural increase in the consumption to wealth

ratio ct − wt could stem from a negative impact of that component on the present discounted value

of aggregate consumption growth, but also from a positive impact of that component on the present

discounted value of the returns on wealth. Since no data are available for the returns on total wealth,

we use real stock market returns rs,t as a proxy for rt (see Appendix A for details). The results reported

in the table show that there is indeed a negative impact of the unobserved component µt on the present

discounted value of future consumption growth, which is significant for all horizons considered with the

exception of the one quarter horizon case. This result provides further support for the interpretation of

the integrated unobserved component µt as stemming from financial liberalization and acting through the

channel described above. On the other hand, while the impact of µt on the present discounted value of

future returns on wealth (proxied by stock market returns) is as expected positive, it is never significant.

Table 6: Cochrane-Orcutt estimation of equation
∑h
j=1 ρ

jmt+j = a+ bµt + εt+h

(with εt+h = δεt+h−1 + εt+h)

ρ = 1 ρ = 0.99

Horizon h (in quarters) Horizon h (in quarters)

mt = 1 16 32 48 64 1 16 32 48 64

∆ct -0.02 -1.24 -2.56 -1.54 -2.63 -0.02 -1.25 -2.32 -1.50 -2.16

(-0.91) (-2.21) (-3.86) (-1.98) (-3.43) (-0.92) (-2.38) (-3.85) (-2.35) (-3.41)

rs,t 0.10 2.91 2.78 6.18 1.19 0.10 2.64 2.64 5.00 1.94

(0.61) (1.28) (0.68) (1.12) (0.16) (0.61) (1.25) (0.74) (1.11) (0.36)

Notes: The table reports maximum likelihood estimates of the parameter b with t-statistics between brackets. The t-statistics

are calculated from standard errors based on outer gradient products. ∆ct is the growth rate in real per capita personal

consumption expenditures and rs,t is the real stock market return. For µt the posterior mean of the integrated unobserved

component is used which is obtained from estimating the unobserved component model discussed above. The effective sample

period is different in every case depending on the horizon h considered.

5.5 Characteristics of the cayint variable

Following the discussion of the non-stationary component of the consumption-to-wealth ratio ct−wt, we

now take a closer look at the stationary component of ct−wt, which we denoted in Section 5.3 by cayintt .

The persistence and stationarity properties of the cay variables calculated from the unobserved component

model - i.e., cayintt which is calculated from the model with an unobserved integrated component included

and estimated, and cayt which is calculated from the standard model with no unobserved integrated

component included - are quite different. The AR(1) coefficient obtained from a regression of each cay on

its own lag and a constant shows that cayintt - with an AR(1) coefficient of less than 0.5 - is considerably
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less persistent than the standard cayt - which has an AR(1) coefficient equal to 0.91. We also conduct

an (augmented) Dickey-Fuller unit root test on the standard cayt variable, which shows that a unit root

cannot be rejected using the standard critical values at both the 5% and even 10% levels of significance.

This confirms the results reported above in Table 1 for the standard cointegration approach. The cayintt

variable, on the other hand, is stationary by construction.

The findings concerning the persistence and stationarity of the variables cayintt and cayt are important

to evaluate their predictive ability for excess stock returns. According to the theory discussed in Section

2, the consumption to total wealth ratio is expected to have predictive power for the returns on wealth.

The literature has in particular focussed on the ability of the ”cay” proxy to predict future excess stock

returns, as much of the variation in ”cay” is attributed to the stock market component of assets at

around the less variable consumption ct and earnings yt variables (see e.g, Lettau and Ludvigson, 2004).

As noted by Ferson et al. (2003), if underlying expected excess returns are persistent then using highly

persistent (i.e. non-stationary) regressors in typical forecasting models of excess returns will yield spurious

results. Moreover, as noted by Rudd and Whelan (2006), this problem is likely more serious when longer

horizon excess returns are used, as these are more persistent by construction. Since the variable cayintt

is stationary by construction while the evidence reported above suggests that the standard cayt variable

is not stationary, it is useful to investigate the predictive power of cayintt for excess stock returns and

compare it to the potentially spurious predictive ability of the cayt variable. We consider both the in-

sample and out-of-sample predictive ability for excess stock returns of our cayintt variable as calculated

from a regression of ct on at and yt that contains an integrated unobserved component. Excess stock

returns, denoted by res,t, are defined as the difference between the log real stock market return and the

log real three-month Treasury bill rate. More details on this series and its calculation are provided in

Appendix A. We note that the results for stock returns not in excess of a risk-free rate are very similar

to those for excess stock returns. Hence, we follow the literature which has focussed especially on excess

returns and report these results. The results for returns that are not in excess of a risk-free rate are

unreported but available from the authors upon request.

Table 7 presents the results of in-sample forecast regressions at different horizons for excess stock

returns using as predictors the cayintt and cayt variables. Following the literature, we consider horizons of

one, four, eight, twelve and sixteen quarters and we report the regression coefficient on each ”cay” variable

of the forecast regression for res,t, its corresponding Newey-West corrected t-statistic, and the adjusted R2

of the forecast regression. From the t-statistics and adjusted R2’s reported in the table, we note that the

standard cayt variable has strong predictive power for excess stock returns and that this predictive ability

increases considerably when longer horizons are considered. However, since the discussion of the previous
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section casts doubt on the stationarity of the variable cayt, these results may be spurious. It is therefore

interesting to note that our variable cayintt , which is stationary by construction, still has considerable

predictive power for excess stock returns. As can be seen when comparing the t-statistics and R2’s in

the table, the predictive power of cayintt is lower compared to that of cayt, but it is nonetheless still

important. We find t-statistics of the regression coefficient on cayintt in the forecast regression above 2.5

for horizons from four to sixteen quarters and R2’s of the forecast regression as high as 10% and 12%

at eight and twelve quarter horizons respectively. Ferson et al. (2003) argue that R2’s of this magnitude

can be considered economically significant. Moreover, the magnitudes of the R2’s reported in Table 7 are

in accordance with the univariate predictability results typically reported in the literature using other

predictors for excess stock returns (see Ferson et al., 2003, for an overview).

Table 7: In-sample forecast regressions for excess stock returns∑h
j=1 r

e
s,t+i = a+ bkt + εt+h

Horizon h (in quarters)

kt = 1 4 8 12 16

cayintt 1.50 5.93 10.79 10.93 9.32

(1.80) (3.16) (4.49) (3.61) (2.68)

[0.01] [0.06] [0.12] [0.10] [0.09]

cayt 0.73 2.91 5.54 7.20 8.27

(2.71) (3.21) (4.37) (5.60) (6.91)

[0.02] [0.10] [0.21] [0.27] [0.31]

Notes: The effective sample period is 1953Q3− 2015Q2. The table reports OLS

estimates of the parameter b with Newey-West corrected t-statistics between

brackets and the adjusted R2 of the regression between square brackets. res,t is

the stock excess return (see Appendix A). cayintt is the estimated stationary part

of the log consumption to wealth ratio as obtained from the model containing

an integrated unobserved component. cayt is the estimated log consumption

to wealth ratio as obtained from the standard model without an integrated

unobserved component.

We next consider the the out-of-sample forecast performance of the cayintt variable for excess stock

returns. In particular, our evaluation is based on root mean squared error (RMSE) ratios calculated from

60-quarter rolling forecasting regressions for excess stock returns, again over different horizons. Table

8 presents RMSE ratios which are calculated as the ratio of the RSME based on a forecast regression

for cayint over the RSME based on a forecast regression for an alternative predictor. As alternative

predictors for the excess stock returns res,t, we consider the variable cayt, the lagged excess stock return

res,t−1 (i.e., assuming an AR(1) process for excess returns) and a constant c (i.e., using the sample mean
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of res,t as a predictor). A ratio below one means that the cayintt based forecast model performs better than

the alternative forecast model and a ratio above one means that the cayintt based model performs worse.

We also calculate the modified Diebold-Mariano (MDM) statistic that tests the null hypothesis that the

mean squared error (MSE) of the forecasts obtained with cayintt is the same as the one obtained from

the alternative forecast model considered. The p-value of this test is reported between square brackets.

From the table we note that, based on the reported RMSE ratios, the cayintt variable performs worse than

cayt at longer horizons (i.e., at horizons of twelve and sixteen quarters) and better at shorter horizons

(i.e., at horizons of four and eight quarters). The reported MDM statistics however suggest that - with

the exception of the sixteen quarter horizon case - these differences are not significant. Hence, we can

conclude that the predictive ability of cayintt for excess stock returns is largely comparable to that of

cayt. The table further shows that the RMSE ratios obtained from using cayintt as a predictor for excess

stock returns versus lagged returns or a simple constant are lower than one at all horizons. This suggests

out-of-sample prediction using cayintt which is superior to that which can be achieved by these naive

models. However, upon looking at the p-values of the MDM statistics reported in the table, we find that

these differences are seldom significant (i.e., only in the eight quarter horizon case).
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Table 8: Out-of-sample forecast evaluations for excess stock returns

(RMSEcayintt
/RMSEkt measure)

Horizon h (in quarters)

kt = 1 4 8 12 16

cayt 1.00 0.97 0.95 1.06 1.22

[0.59] [0.58] [0.60] [0.17] [0.02]

res,t−1 0.98 0.98 0.96 0.95 0.95

[0.88] [0.11] [0.03] [0.21] [0.20]

c 0.99 0.99 0.96 0.97 0.96

[0.70] [0.35] [0.05] [0.29] [0.38]

Notes: The effective sample period is 1953Q3−2015Q2. The table reports root

mean squared error (RMSE) ratios obtained from out-of-sample h-period ahead

forecasts of the excess stock returns res,t using 60-quarter rolling subsamples.

Forecasts are based on the predictive variables cayintt and kt where kt is either

cayt, the lagged excess return res,t−1 or a constant c. RMSE ratios are calcu-

lated as the ratio of the RSME based on cayint as a predictive variable over

the RSME based on kt as a predictive variable. A ratio below 1 means that

the cayint based forecast model performs better than the alternative forecast

model and a ratio above 1 means that the cayint based model performs worse.

Between square brackets is the p-value of the modified Diebold-Mariano statis-

tic that tests the null hypothesis that the mean squared error (MSE) of the

forecasts obtained with cayintt and kt are the same. cayintt is the estimated

stationary part of the log consumption to wealth ratio as obtained from the

model containing an integrated unobserved component. cayt is the estimated

log consumption to wealth ratio as obtained from the standard model without

an integrated unobserved component.

6 Conclusions

This paper proposes an alternative empirical approach to study the long run aggregate relationship be-

tween household consumption and household wealth, where household wealth consists of tangible assets

and unobserved human wealth. The evidence in favor of a stable cointegrating relationship between

consumption, assets and earnings (as a proxy for human wealth) in the US is weak. Hence, the consump-

tion to total wealth ratio (i.e., the variable ”cay”) estimated from such a relationship is non-stationary -

rendering it inadequate to predict excess stock returns - while the elasticities of consumption to wealth

estimated from this type of regression are unreliable.

The approach followed in this paper applies an unobserved component model to US data over the

period 1951Q4 − 2016Q4 whereby the regression of consumption on assets and earnings is augmented

with an integrated unobserved component. Our results strongly support the presence of an integrated

unobserved component in the consumption equation. The residuals of this regression are stationary
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because consumption, assets, earnings and the integrated unobserved component are cointegrated by

construction. The elasticities of consumption to assets and earnings are positive and those estimated for

assets (and their components) tend to be lower compared to the case where no integrated component

is added to the regression. We interpret the integrated unobserved component as stemming from finan-

cial liberalization which, by relaxing liquidity constraints of consumers, has permanently increased the

consumption-to-wealth ratio over the sample period. We calculate an alternative ”cay” variable, i.e., the

stationary part of the consumption-to-wealth ratio, which is much less persistent than the traditional

”cay” variable. In-sample, we find that its predictive ability for future excess stock returns, while di-

minished compared to that of the traditional ”cay” variable, is statistically and economically significant

and in line with the univariate predictability results typically reported in the literature for excess stock

returns using other predictors. Out-of-sample, we find that its predictive ability for future excess stock

returns is comparable to that of the standard ”cay” variable.
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Appendix A Data

Quarterly seasonally adjusted data for consumption, earnings (disposable labor income), population and

the price deflator are collected from the National income and Product Accounts (NIPA) from the Bureau

of Economic Analysis (BEA) at the U.S. Department of Commerce. The assets (wealth) data are collected

from the Flow of Funds Accounts of the Board of Governors of the Federal Reserve System.

Consumption is measured as total personal consumption expenditures (line 1 of NIPA Table 2.3.5).

Earnings are defined as the sum of compensation for employees (line 2 of NIPA Table 2.1) plus

personal current transfer receipts (line 16) minus contributions for domestic government social insurance

(line 25) and minus personal labor taxes. Personal labor taxes are derived by first calculating the labor

income fraction of total income, and subsequently using this ratio to back out the share of labor taxes

from the total personal current taxes (line 26). The labor income to total income ratio is defined as the

ratio of wages and salaries (line 3) to the sum of wages and salaries (line 3), proprietors’ income (line 9),

rental income (line 12) and personal income receipts on assets (line 13).

Assets are defined as the net worth of households and nonprofit organizations, measured at the end

of the period. Stock market wealth is defined as households’ and nonprofit organizations’ holdings of
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corporate equities, mutual fund shares, life insurance reserves, and private and public pension entitle-

ments. Non-stock wealth is defined as non-stock assets minus liabilities. The non-stock assets consist of

households’ and nonprofit organizations’ holdings of consumer durable goods, real estate, and non-stock

financial assets (total currency and deposits including money market fund shares, debt securities, mort-

gages, proprietors’ equity in non-corporate business and other assets). Liabilities include all loans, such

as mortgages, consumer debt and other loans.

Stock returns are the returns (excluding dividends) of the value-weighted CRSP index from the Center

for Research in Security Prices. The CRSP index is a broad stock market index including the NYSE,

AMEX, NASDAQ and ARCA, and the data are collected from CRSP via Wharton Research Data Services

(WRDS).

Excess stock returns are defined as the difference between the quarterly log real stock market return

(as stated above) and the quarterly log real 3-month Treasury Bill return (i.e., the ”risk free rate”). The

3-month Treasury Bill data is the secondary market rate, not seasonally adjusted, collected from the

Federal Reserve Bank of St.Louis.

Financial liberalization is proxied by the Index of Financial Reform by Abiad et al. (2008). The

annual index covers the period 1973-2005 and includes seven different dimensions of financial sector

policy: credit controls and reserve requirements, interest rate controls, entry barriers, state ownership,

policies on securities markets, banking regulations and restrictions on the capital account. Liberalization

scores for each category are combined in a graded index which is normalized from zero to one.

All series except the financial liberalization proxy are deflated with the price index for total personal

consumption expenditures (line 1 of NIPA Table 2.3.4) with base year 2009 = 100. All variables except

the (excess) stock returns and the financial liberalization proxy are further expressed in per capita terms,

with population data also collected from the NIPA (line 40 of Table 2.1).
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Appendix B Cointegration tests

Table B-1: A battery of frequentist tests for cointegration between c, a and y and between c, as, ans and y

c, a, y c, as, ans, y

Sample 1951Q4− 2016Q4 1951Q4− 2007Q3 1951Q4− 2016Q4 1951Q4− 2007Q3

Engle-Granger No No No No

Phillips-Ouliaris No No No No

Johansen Trace 1 lag No No No No

Johansen Max Eig. 1 lag No No No No

Park’s H(0,1) test Yes No Yes No

Park’s H(0,3) test No No No No

Notes: The residual-based Engle-Granger and Phillips-Ouliaris cointegration tests and the Johansen Trace and Maximum Eigenvalue

methodology test the null hypothesis of no cointegration, whereas Park’s H(q, p) added variable test, with time trends of powers q up

to order p, evaluates the null hypothesis of cointegration. Conclusions are based on 5% significance levels.

In Table B-1, we present a summary of the results of a number of additional tests conducted to determine

whether there is cointegration between the variables c, a and y or between the variables c, as, ans and

y. These tests by and large suggest that there is no cointegration between the variables c, a and y nor

between the variables c, as, ans and y. We note that some of these tests like the Engle and Granger

(1987), Phillips and Ouliaris (1990), and Johansen (1988, 1991) tests have the absence of cointegration as

the null hypothesis while others like Park (1990)’s added variable test have the presence of cointegration

as the null hypothesis. According to Park (1990) and Ogaki and Park (1997), the inability to reject the

null hypothesis of a unit root in the variable zt in eqs.(8) and (9) may be due to a potential lack of

power of cointegration tests that have the absence of cointegration as the null hypothesis. Park’s (1990)

added variable test has cointegration as the null hypothesis and - for the full sample period - cannot

reject the null of cointegration when a linear deterministic time trend is added to mimic the potential

stochastic trend in zt, but does reject cointegration when the potential stochastic trend is mimicked in

a more general and realistic way through the addition of a linear, quadratic and cubic time trend to the

regression. This suggests that the failure of finding cointegration does not stem from statistical issues -

i.e., the lack of power to reject a false null hypothesis - of standard cointegration tests. Rather, it suggests

that there is in fact a unit root present in zt.

Appendix C A more general unobserved component model

We also consider and estimate a more general unobserved component model. Specifically, we model the

unobserved component µt as a weighted average of two random walks, µ̆t and µ̃t, with the weights given
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by a regime switching variable St, i.e.,

µt = (1− St)µ̆t + Stµ̃t (C-1)

The variable St is assumed to follow a first-order two-state Markov switching process (i.e., it takes on

either the value of 0 or the value of 1). As in Section 5.2.2, we specify the random walks in non-centered

form as,

µ̆t = µ′ + σ′ηµ̆
∗
t = µ′ (C-2)

and

µ̃t = µ+ σηµ
∗
t (C-3)

where µ̆∗t and µ∗t are standardized random walks given by µ̆∗t = µ̆∗t−1+η′t with µ̆∗0 = 0 and η′t ∼ iidN (0, 1),

respectively µ∗t = µ∗t−1 +η∗t with µ∗0 = 0 and η∗t ∼ iidN (0, 1). In eq.(C-2), we assume that σ′η = 0 so that

µ̆t is constant and the unobserved component µt is a constant µ′ in one regime and follows a standard

random walk with initial value µ in the other regime. Using eqs.(C-2) and (C-3) into eq.(C-1) then gives,

µt = (1− St)µ′ + Stµ+ Stσηµ
∗
t (C-4)

This specification nests a number of models. First, if ση = 0, the consumption equation does not contain

an unobserved integrated process but includes a Markov switching intercept along the lines of Bianchi

et al. (2017). Second, if µ = µ′, the unobserved component is given by µt = µ + Stσηµ
∗
t . This model is

similar in spirit to a mixture innovation model along the lines of McCulloch and Tsay (1993), i.e., if the

variable St = 0 then µt = µ and the unobserved component is constant while if St = 1 then µt = µ+σηµ
∗
t

and the unobserved component follows a random walk. Third, if St = 1 (∀t), the model collapses to the

model discussed in Sections 5.1.1 and 5.2.2 of the main text, i.e., with an unobserved component given

by µt = µ + σηµ
∗
t . Upon estimation of the state space model presented in the text with a more general

specification for the unobserved component µt as given by eq.(C-4), we do indeed estimate St = 1 (∀t)

while we find ση 6= 0 so that this model collapses to the model presented in the main text of this paper.

We do not present the estimation details nor the estimation results for this model but these are available

from the authors upon request.

Appendix D Gibbs sampler

This appendix, first, briefly presents the steps of the Gibbs sampler in Section D.1. Then, the technical

details are discussed in Section D.2. Finally, a convergence analysis is provided in Section D.3.
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D.1 General outline

We collect the constant parameters in a vector Γ, i.e., Γ = (ι, φ, ρ, µ, ση, σ
2
ε). The Gibbs approach allows

us to simulate draws from the intractable joint posterior distribution of parameters Γ and state µ∗, i.e.,

f(Γ, µ∗|data), using only tractable conditional distributions. In particular, given the prior distribution

of the parameter vector f(Γ) and an initial draw for µ∗ taken from its prior distribution, the following

steps are implemented:

1. Sample the constant parameters Γ conditional on the unobserved state µ∗ and the data

(a) Sample the binary indicator ι marginalizing over the parameter ση for which variable selection

is carried out (see Frühwirth-Schnatter and Wagner, 2010).

(b) If ι = 1, sample the parameters φ, ρ, µ, ση, σ2
ε . If ι = 0, sample the parameters φ, ρ, µ and

σ2
ε . In the latter case, we set ση = 0.

2. Sample the unobserved state µ∗ conditional on the constant parameters Γ and the data. To this

end, if ι = 1, we use the multimove sampler for state space models of Carter and Kohn (1994)(see

also Kim and Nelson, 1999). If ι = 0, we draw µ∗ from its prior distribution. To exploit the

non-identification of the non-centered specification discussed in Section 5.2.2, we conduct a random

sign switch on µ∗ and ση, i.e., with probability 0.5 we multiply both by −1 and with probability

0.5 we leave both unaltered.

These steps are iterated J times and in each iteration Γ and µ∗ are sampled. After a number of

burn-in draws B, the sequence (B + 1, ..., J) of draws of Γ and µ∗ approximates a sample from the

posterior distributions of Γ and µ∗. The results reported below are based on J = 20.000 iterations with

the first B = 10.000 draws discarded as a burn-in sequence, i.e., the reported results are all based on

posterior distributions constructed from J − B = 10.000 draws. Note further that from the distribution

of the binary indicator ι, we calculate the posterior probability that there is an unobserved integrated

component in regression eq.(10) as the fraction of ι’s that are equal to 1 over the J − B draws of the

Gibbs sampler.

D.2 Details on the steps of the sampler

D.2.1 Sample the constant parameters Γ

The parameters contained in Γ can be sampled from a standard regression model,

y = wrγr + χ (D-1)

36



where y is a T × 1 vector containing T observations on the dependent variable, w is a T ×M matrix

containing T observations of M predictor variables, γ is the M × 1 parameter vector and χ is the

T × 1 vector of error terms for which χ ∼ iidN
(
0, σ2

χIT
)
. If the binary indicators κ are equal to

1 then the restricted parameter vector γr and the corresponding restricted predictor matrix wr are

equal to γ respectively w. Otherwise, the restricted γr and wr exclude those elements in w and γ for

which the corresponding binary indicators κ are equal to 0. The prior distribution of γr is given by

γr ∼ N
(
br0, B

r
0σ

2
χ

)
with br0 a Mr × 1 vector and Br0 a Mr ×Mr matrix. The prior distribution of σ2

χ is

given by σ2
χ ∼ IG (s0, S0) with scalars s0 (shape) and S0 (scale). The posterior distributions (conditional

on y, wr, and κ) of γr and σ2
χ are then given by γr ∼ N

(
br, Brσ2

χ

)
and σ2

χ ∼ IG (s, Sr) with,

Br =
[
(wr)′wr + (Br0)−1

]−1

br = Br
[
(wr)′y + (Br0)−1br0

]
(D-2)

s = s0 + T/2

Sr = S0 +
1

2

[
y′y + (br0)′(Br0)−1br0 − (br)′(Br)−1br

]
Following Frühwirth-Schnatter and Wagner (2010), we marginalize over the parameters γ when sam-

pling κ and then draw γr conditional on κ. The posterior distribution of the binary indicators κ is

obtained from Bayes’ theorem as,

p(κ|y, w, σ2
χ) ∝ p(y|κ,w, σ2

χ)p(κ) (D-3)

where p(κ) is the prior distribution of κ and p(y|κ,w, σ2
χ) is the marginal likelihood of regression eq.(D-

1) where the effect of the parameters γ has been integrated out. We refer to Frühwirth-Schnatter and

Wagner (2010) (their eq.(25)) for the closed-form expression of the marginal likelihood for the regression

model of eq.(D-1).

Sample the binary indicator ι

Our regression has one binary indicator ι, so κ = ι. We sample ι by calculating the marginal likeli-

hoods p(y|ι = 1, w, σ2
χ) and p(y|ι = 0, w, σ2

χ) (see Frühwirth-Schnatter and Wagner, 2010, for the correct

expressions). Upon combining the marginal likelihoods with the Bernoulli prior distributions of the bi-

nary indicators p(ι = 1) = p0 and p(ι = 0) = 1 − p0, the posterior distributions p(ι = 1|y, w, σ2
χ) and

p(ι = 0|y, w, σ2
χ) are obtained from which the probability prob(ι = 1|y, w, σ2

χ) =
p(ι=1|y,w,σ2

χ)

p(ι=1|y,w,σ2
χ)+p(ι=0|y,w,σ2

χ)

is calculated which is used to sample ι, i.e., draw a random number r from a uniform distribution with

support between 0 and 1 and set ι = 1 if r < prob(.) and ι = 0 if r > prob(.).
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Sample the other parameters in Γ

We then sample the regression coefficients φ, ρ, µ and ση and the regression error variance σ2
ε conditional

on ι, the data and the unobserved component µ∗t . The dependent variable is y = c where c is the T × 1

vector containing consumption ct stacked over time while the error term is χ = ε with ε containing

εt stacked over time and where the variance is given by σ2
χ = σ2

ε . When ι = 1, we have wr = w =[
x ∆x−p ... ∆x+p e µ∗

]
and γr = γ =

[
φ′ ρ′−p ... ρ′+p µ ση

]′
where e is a T × 1

vector of ones and µ∗ is a T × 1 vector containing µ∗t stacked over time. With x and every ∆xj (for

j = −p...+p) being T×K matrices then φ and every ρj are K×1 vectors and we have M = K(2p+2)+2.

When ι = 0, we have wr =
[
x ∆x−p ... ∆x+p e

]
and γr =

[
φ′ ρ′−p ... ρ′+p µ

]′
. In this

case, we have Mr = K(2p+ 2) + 1. Once the matrices of eq.(D-1) are determined, the parameters γr and

σ2
χ can be sampled from the Gaussian posterior distributions given above with the prior distributions as

specified in Table 2 in the text.19

D.2.2 Sample the unobserved state µ∗

If ι = 0, the unobserved component is drawn from its prior distribution. In particular, µ∗t is drawn from

eq.(15), i.e., as a cumulative sum of standard normally distributed shocks η∗t so µ∗t =
∑t
s=1 η

∗
s . If ι = 1,

the unobserved component µ∗t is sampled conditional on the constant parameters and on the data using a

state space approach. In particular, we use the forward-filtering backward-sampling approach discussed

in detail in Kim and Nelson (1999) to sample the unobserved state. The general form of the state space

model is given by,

Yt = ZSt + Vt, Vt ∼ iidN (0, H) , (D-4)

St = TSt−1 +KEt, Et ∼ iidN (0, Q) , (D-5)

S0 ∼ iidN (s0, P0) , (D-6)

(where t = 1, ..., T ) with observation vector Yt (n×1), state vector St (ns×1), error vectors Vt (n×1) and

Et (nss × 1 with nss ≤ ns) that are assumed to be serially uncorrelated and independent of each other,

and with the system matrices that are assumed to be known (conditioned upon) namely Z (n × ns), T

(ns×ns), K (ns×nss), H (n×n), Q (nss×nss) and the mean s0 (ns×1) and variance P0 (ns×ns) of the

initial state vector S0. As eqs. (D-4)-(D-6) constitute a linear Gaussian state space model, the unknown

state variables in St can be filtered using the standard Kalman filter. Sampling S = [S1, . . . , ST ] from its

19From the specification of the prior distributions in Table 2, we note that s0 = ν0T = 0.01T , S0 = ν0Tσ2
0 = 0.01×T×0.01

and that br0 is a Mr × 1 vector of zeros. Further, Br0 is an Mr ×Mr diagonal matrix containing as elements the variances

0.1 (for parameter ση) or 1 (for all other regression parameters) - i.e., the variable V0 in Table 2 - divided by the prior belief

for σ2
ε - i.e., the variable σ2

0 in Table 2.
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conditional distribution can then be done using the multimove Gibbs sampler of Carter and Kohn (1994).

Given our state space system presented in eqs.(10), (11), (13), (14) and (15) we have n = ns = nss = 1.

The matrices are then given by Yt = ct − xtφ− µ−
∑p
j=−p ∆xt+jρj , Z = ση, St = µ∗t , Vt = εt, H = σ2

ε ,

T = 1, K = 1, Et = η∗t , Q = 1, s0 = µ∗0 = 0 and P0 = 10−6.

D.3 Convergence analysis

We analyse the convergence of the MCMC sampler using the simulation inefficiency factors as proposed

by Kim et al. (1998) and the convergence diagnostic of Geweke (1992) for equality of means across

subsamples of draws from the Markov chain (see Groen et al., 2013, for a similar convergence analysis).

For each fixed parameter and for every point-in-time estimate of the unobserved component, we

calculate the inefficiency factor as IF = 1 + 2
∑m
l=1 κ(l,m)θ̂(l) where θ̂(l) is the estimated the l-th order

autocorrelation of the chain of retained draws and κ(l,m) is the kernel used to weigh the autocorrelations.

We use a Bartlett kernel with bandwidth m, i.e., κ(l,m) = 1− l
m+1 where we set m equal to 4% of the

retained sampler draws J−B = 10.000 (see Section D.1 above). If we assume that n draws are sufficient to

cover the posterior distribution in the ideal case where draws from the Markov chain are fully independent,

then n × IF provides an indication of the minimum number of draws that are necessary to cover the

posterior distribution when the draws are not independent. Usually, n is set to 100. Then, for example,

an inefficiency factor equal to 20 suggests that we need at least 2.000 draws from the sampler for a

reasonably accurate analysis of the parameter of interest. Additionally, we also compute the p-values of

the Geweke (1992) test which tests the null hypothesis of equality of the means of the first 20% and last

40% of the retained draws obtained from the sampler for each fixed parameter and for every point-in-time

estimate of the unobserved component. The variances of the respective means are calculated using the

Newey and West (1987) robust variance estimator using a Bartlett kernel with bandwidth equal to 4%

of the respective sample sizes.

In Table D-1, we present the convergence analysis corresponding to the results reported in Table 4

in the text. The convergence results are reported for individual parameters or for groups of parameters.

Groups are considered when the parameters can be meaningfully grouped which is the case for the

k elasticity parameters in φ (with k = 2 or k = 3 depending on whether xt =
[
at yt

]
or xt =[

ast anst yt

]
), for the k× (p+1) parameters ρ of the DOLS specification of the stationary component

vt (where, given p = 6, we have 26 or 39 parameters depending again on whether xt =
[
at yt

]
or

xt =
[
ast anst yt

]
), and for the unobserved component µ∗ which is a state, i.e., a time series of length

T = 248. In both tables, we report statistics of the distributions of the inefficiency factors for every

parameter or parameter group, i.e., median, minimum, maximum, and - for the state µ∗ - the 5% and
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10% quantiles. Obviously, these statistics are identical for the non-grouped parameters. The tables also

report the rejection rates of the Geweke tests conducted both at the 5% and 10% levels of significance.

These rates are equal to the number of rejections of the null hypothesis of the test per parameter group

divided by the number of parameters in a parameter group. These rates can only be 0 or 1 for individual

(non-grouped) parameters but can lie between 0 and 1 for the grouped parameters.

The calculated inefficiency factors suggest that the MCMC sampler performs well and that all param-

eters are well converged using our retained 10.000 draws. In fact, an accurate analysis could have been

conducted with less than 10.000 draws. From the tables, we note that more draws are required when

the integrated unobserved component (UC) is included in the model and estimated, i.e., for cases where

ι = 1, while the inefficiency factors are all close to 1 when the estimated model is a standard regression

without unobserved component, i.e, when ι = 0. When ι = 1, the most draws are required to estimate

the posterior distribution of the initial values µ of the unobserved component. That this parameter is

somewhat harder to estimate is not surprising and is also clear from inspection of the wide 90% HPD

interval surrounding its posterior mean as for instance depicted in Figure 2 (for the case corresponding

to the convergence results in Table D-1 with xt =
[
at yt

]
and ι = 1). Our findings for the inefficiency

factors are corroborated by the results for the Geweke (1992) test for equality of means across subsamples

of the retained draws. The rejection rates reported in the tables are, with few exceptions, equal to 0 and

therefore strongly suggest that the means of the first 20% and last 40% of the retained draws are equal.

In a few instances, high rejection rates rates are observed, in particular again for the parameter µ and

sometimes also for the elasticities φ. We argue that these high rejection rates are due to the particular

sample of draws and are not indicative of non-convergence as these rejection rates are not withheld when

we rerun the sampler using another seed. Hence, in general, we can conclude that the convergence of the

sampler for the retained number of draws is satisfactory.
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Table D-1: Inefficiency factors and convergence diagnostics (results Table 4)

Inefficiency factors Convergence

(Stats distribution) (Rejection rates)

Regressors UC Parameters Number Median Min Max 5% 10% 5% 10%

xt =
[
at yt

]
ι = 1 φ 2 16.15 9.12 23.18 - - 0.00 0.00

µ 1 55.42 55.42 55.42 - - 0.00 0.00

|ση| 1 28.68 28.68 28.68 - - 0.00 0.00

σ2
ε 1 1.13 1.13 1.13 - - 0.00 0.00

ρ 26 1.44 1.02 1.86 - - 0.00 0.08

µ∗ 248 1.07 0.83 1.16 0.92 1.12 0.00 0.02

ι = 0 φ 2 0.83 0.83 0.83 - - 0.00 0.00

µ 1 0.78 0.78 0.78 - - 0.00 0.00

|ση| 1 - - - - - - -

σ2
ε 1 1.03 1.03 1.03 - - 0.00 0.00

ρ 26 0.95 0.81 1.18 - - 0.04 0.08

µ∗ 248 - - - - - - -

xt =
[
ast anst yt

]
ι = 1 φ 3 23.96 17.30 26.83 - - 0.67 0.67

µ 1 27.34 27.34 27.34 - - 1.00 1.00

|ση| 1 15.93 15.93 15.93 - - 0.00 0.00

σ2
ε 1 1.12 1.12 1.12 - - 0.00 0.00

ρ 39 1.83 0.95 4.02 - - 0.08 0.15

µ∗ 248 0.93 0.84 1.14 0.88 1.07 0.00 0.00

ι = 0 φ 3 1.09 1.05 1.17 - - 0.00 0.00

µ 1 0.86 0.86 0.86 - - 0.00 0.00

|ση| 1 - - - - - - -

σ2
ε 1 0.91 0.91 0.91 - - 0.00 0.00

ρ 39 0.94 0.80 1.25 - - 0.05 0.10

µ∗ 248 - - - - - - -

Notes: The convergence analysis corresponds to the results reported in Table 4. The statistics of the distribution of the inefficiency factors are

presented in columns 5 to 9 for every parameter or group of parameters. These statistics are identical when parameters are considered individually

as only one inefficiency factor is calculated in these cases. The inefficiency factors are calculated for every fixed parameter and for every point-

in-time estimate of the unobserved component using a Bartlett kernel with bandwidth equal to 4% of the 10.000 retained sampler draws. The

rejection rates of the Geweke (1992) test conducted at the 5% and 10% levels of significance are reported in columns 10 and 11. These rates are

equal to the number of rejections of the null hypothesis of the test per parameter group divided by the number of parameters in a parameter

group. These rates are either 1 or 0 for parameters that are considered individually. They are based on the p-value of the Geweke test of the

hypothesis of equal means across the first 20% and last 40% of the 10.000 retained draws which is calculated for every fixed parameter and for

every point-in-time estimate of the unobserved component. The variances of the respective means in the Geweke (1992) test are calculated with

the Newey and West (1987) robust variance estimator using a Bartlett kernel with bandwidth equal to 4% of the respective sample sizes.

41


