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Abstract

We propose a basic high-dimensional dynamic model for tennis match results with time
varying player-specific abilities for different court surface types. Our statistical model can be
treated in a likelihood-based analysis and is capable of handling high-dimensional datasets
while the number of parameters remains small. In particular, we analyze 17 years of tennis
matches for a panel of over 500 players, which leads to more than 2000 dynamic strength
levels. We find that time varying player-specific abilities for different court surfaces are of
key importance for analyzing tennis matches. We further consider several other extensions
including player-specific explanatory variables and the accountance of specific configurations
for Grand Slam tournaments. The estimation results can be used to construct rankings of
players for different court surface types. We finally show that our proposed model can also
be effective in forecasting. We provide evidence that our model significantly outperforms
existing models in the forecasting of tennis match results.

1 Introduction

Modeling and predicting the outcome of tennis matches has attracted much attention over the
last few years. Statistical models can be useful to describe the main features of tennis matches
and elicit the ability level of tennis players in different situations. This can be used to construct
rankings and determine entry and seeding of tennis tournaments. Models can also be employed to
obtain predictions of matches and tournaments and test the efficiency of betting markets.

The default approach to the statistical analysis of tennis matches is based on the Bradley-Terry
model, Bradley and Terry (1952). Boulier and Stekler (1999) and Clarke and Dyte (2000) have
considered ATP rankings points to describe the strength level of tennis players. Glickman (1999)
has introduced an algorithm to dynamically update the parameter estimates of the Bradley-Terry
model within a Bayesian analysis. McHale and Morton (2011) has used a weighted likelihood
approach to account for time variation in the ability level of the players within the Bradley-Terry
model. Baker and McHale (2014) and Baker and McHale (2017) have adopted a modified version
of the Bradley-Terry model to determine the greatest male and female tennis player of all time;
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in their analyses, the strengths of players were allowed to vary over time by barycentric rational
interpolation which compared favourably against spline interpolation methods.

It is widely acknowledged in the literature that time variation in the strength level of tennis
players is one of the key ingredients to properly describe the outcome of tennis matches. The
strength of a player typically increases from a young age and reaches a certain peak when he/she
is in his/her twenties, followed by a decline until the he/she ends his/her career. However, in all
studies so far, time variation is achieved through a modification of an estimation method; it has
not been modeled explicitly by means of a fully specified probability measure for the outcome of a
tennis match at some time period. Given that the outcome of a match relies mainly on the abilities
of the two players, we require to model the strength of each player explicitly. Furthermore, since
the strength of a player can vary considerably with the court surface type, the model also needs
to identify strength levels for different surfaces. We propose a fully specified high-dimensional
dynamic model where the abilities of the players vary over time as stochastic processes. As far
as we know, the formulation of a complete dynamic model and the likelihood-based analysis for
tennis matches are innovative developments in the literature.

Modeling tennis matches is challenging in many ways. The major challenge is the parameter
dimension. To allow for the individual strength of each player, we require as many coefficients as
players in the data set. In addition, when we let these coefficients to vary over time, we clearly
have an intrinsically difficult problem at our hands: the vector of strength coefficients is high-
dimensional and it should be allowed to evolve over time. In our study we consider more than
500 players. Another challenge is to account for the different playing surfaces of tennis courts
because each surface type has its own characteristics and impacts on the tennis game and the
players. For example, consider two of the strongest tennis players of all times, Roger Federer and
Rafael Nadal. Federer won 19 Grand Slam tournaments but only one of them was on the clay
surface of the French Open. We notice that the French Open is the only Grand Slam tournament
played on clay. On the other hand, Nadal won 16 Grand Slam tournaments of which 10 were wins
of the French Open on clay. This basic fact strongly suggests that taking into account the ability
of a tennis player on different surfaces is important for the effective modeling of tennis matches.
When different strengths for different court surface types need to be specified in the model, then
a multiple of strength coefficients are required. In our study we consider three different surfaces:
hard court, clay and grass. Hence each player has 4 strength levels: 1 baseline strength plus 1 for
each surface type. This yields more than 2000 strength coefficients and all are allowed to vary over
time. Finally, our model specification treats some short-falls of the Bradley-Terry model which are
typically encountered in empirical work; see, for instance, Baker and McHale (2017). A particular
example is that the estimated strength of a player tends towards plus or minus infinity when this
player wins or loses all, or almost all, matches in the data set.

The dynamic strengths in our model are specified as score-driven processes. We refer the
reader to Creal et al. (2013) and Harvey (2013) for a review on score-driven models, see also
Salvatierra and Patton (2015) and Harvey and Luati (2014) for further applications. The resulting
dynamic model forms the basis of our analysis of a large data set of ATP (Association of Tennis
Professionals) world tournament match results, characteristics and player information over a pe-
riod of 17 years. The in-sample fit of our model appears promising when compared to earlier and
simplified versions of the model specification. Also the out-of-sample forecasting performance
is rather convincing. Our modeling framework is able to extract four time-varying strengths per
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player from the data: one baseline strength and three surface specific strengths. Since our data set
contains information about more than 500 male tennis players, we have more than 2000 unique
time-varying player strengths. These evolving paths over time are driven by past observations (all
realized match results in the past) and a small number of underlying and unknown parameters.
Apart from the time-varying strengths, our preferred model also includes some features of tennis
matches which we capture by the inclusion of explanatory variables (in particular the seniority
of a tennis player) and by accounting for the match configuration (five sets) in a Grand Slam
tournament. Given the model specification and the likelihood-based analysis, we can properly
measure the significance of regression coefficients by means of a standard likelihood ratio test.
The proposed model can also be used to construct surface-specific rankings that are capable of
better reflecting the actual abilities of tennis players compared to the ATP point system.

The paper proceeds as follows. Section 2 introduces the modeling framework and several
extensions. Section 3 presents the empirical application. Section 4 concludes.

2 The model

2.1 The basic Bradley-Terry model

We consider the Bradley-Terry model. Let yij,t be the outcome of a tennis match played between
player i and player j at time t. We assume that we have information about K different players
over a time period of length n, that is i, j = 1, . . . ,K and t = 1, . . . , n. The outcome yij,t equals
unity if player i wins the match at time t, that is yij,t = 1. The outcome yij,t equals zero if player
j wins the match at time t, that is yij,t = 0. The conditional probability that yij,t = 1 is given by

pij,t = P (yij,t = 1|δij,t) =
exp(δij,t)

1 + exp(δij,t)
, δij,t = λi,t − λj,t, (1)

where λi,t represents the strength (or ability) of player i at time t and λj,t represents the strength
of player j at time t. The conditional probability of yij,t = 0 is instead equal to 1− pij,t. In case,
the strength λk,t of player k is fixed over time, that is λk,t = λk, and under the assumption that
sufficient observations for player k are available, we can estimate λk via logistic regression, see
Cox (1958).

2.2 Time-varying strength

The strength of a tennis player is, after reaching its peak, inevitably subject to permanent decline
due to the ageing process. In many sports, especially those which require much physical strain, a
player in its twenties is often at its best. This phenomenon applies to most individual sports. Of
course, it also applies to team sports when we consider individual players in a team. But when we
consider the team, its ageing process can be alleviated via re-selection. For example, in a football
team older and weaker players are replaced by young and more talented players with the aim to
keep or improve the overall ability of the team. In sport statistics, we treat the team as the same
entity over time although its composition typically varies heavily over time. The strength of the
team can still vary over time but at a more constant level, partly depending on the financial budget
of a team. The time variation in the strength of an individual player is clearly more dramatic.
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There is no difference for a tennis player. When we consider dynamic processes for time varying
strength, we may consider mean reverting processes for team sports while non-stationary dynamic
processes may be more appropriate for individual sports.

Consider a match between tennis players i and j at time t and assume that the strengths λi,t
and λj,t are given such that the probability pij,t of a win for player i can be computed by (1); the
probability of a win for player j equals 1− pij,t. After the match is played, we record the realized
outcome yij,t. This observation provides new information about the (relative) strengths of both
players i and j. Hence after the match we need to adjust the strength levels of both players. We
formally specify this adjustment process over time using a dynamic specification for each strength
λk,t, for k = 1, . . . ,K. We consider a simple random walk process as given by

λk,t+1 = λk,t + τsk,t, k = i, j, (2)

with scaling coefficient τ > 0 and innovation of the dynamic process sk,t. After observing the
match outcome yij,t, the innovations si,t and sj,t are given by

si,t = yij,t(1− pij,t)− (1− yij,t)pij,t, sj,t = −si,t, (3)

with pij,t as defined in (1). The innovations si,t and sj,t equal the score function of the predictive
or conditional density function for yij,t, with respect to the strengths λi,t and λj,t, respectively.
This specification originates from the score-driven time varying parameter models of Creal et al.
(2013) and Harvey (2013). In the Appendix we provide further details. The use of a score-driven
innovation is appealing given its optimality properties in terms of Kullback-Leibler divergence,
see Blasques et al. (2015). Furthermore, the innovation specification si,t is realistic. In case the
strengths of both players are far apart and pij,t = 0.99, then the observation yij,t = 1 is very
likely; the resulting score value is 0.01 such that the strengths of both players do not need to be
adjusted very much (0.01 τ and −0.01 τ ). However, in the opposite case of yij,t = 0, the score
value is −0.99 and the strength of player i is downgraded by 0.99 τ while the strength of player
j is upgraded by 0.99 τ . The scaling coefficient τ in (2) is the same for each player. Although τ
is common to all players, all time-varying strengths are unique because the score innovations are
player-specific. This strict “pooling” restriction for τ can be relaxed and different τ coefficients
can be considered for different groups or categories of players.

Figure 1 presents the impact curve for the score innovation si,t as a function of the difference
in strength between player i and j, that is δij,t, and the match outcome, that is yij,t. We find that
the functional form of the score innovation is also intuitive with respect to the strength difference
δij,t = λi,t−λj,t. First, the innovation for player i is positive if he wins the match, that is yij,t = 1,
and negative if he loses the match, that is yij,t = 1. Second, if player i wins but he is stronger than
player j, that is δij,t > 0, then the innovation is attenuated because a win from player i is expected.
Similar arguments apply when player i loses the game and when he is weaker than player j. From
Figure 1 we also find that even if a player wins or loses all of his matches, the corresponding
strength does not diverge to ± infinity since the score approaches zero for large values of δij,t for
yij,t = 1 and vice versa for yij,t = 0. Hence our specification solves one of the practical problems
encountered with Bradley-Terry models; see the discussions in Baker and McHale (2017).
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Figure 1: Impact curve for the score innovation of player i as a function of δij,t and yij,t.

2.3 Maximum likelihood estimation

The loglikelihood function of the dynamic model is available in closed form via the prediction
error decomposition

L(ψ) =
T∑
t=1

∑
(i,j)∈It

log
(
yij,tpij,t + (1− yij,t)(1− pij,t)

)
,

where
It =

{
(i, j) : a match between player i and j is played at time t

}
denotes the pairs of players for which a match takes place at time t, and where ψ is the parameter
vector that includes τ . The estimation of ψ relies simply on the numerical maximization of the
loglikelihood function with respect to ψ.

Given the specification in terms of predictions, the strengths for each player at time t = 0 need
to be given initial values. These initial values can be treated as static parameters and estimated
by the method of maximum likelihood, jointly with the other parameters. However, this solution
requires an additional number of parameters that is equal to the number of players. In our study this
number exceeds 500. An alternative and more parsimonious solution is to base the initialization on
the player ranking points or simply to set all strengths equal zero. In the empirical application we
use the ranking points to initialize the strengths. However, we have found that the other methods
lead to very similar results.

2.4 Court surface effects

Tennis matches are played on four types of court surfaces: hard court, carpet, clay and grass.
For instance, the four Grand Slam tournaments, which are the most important tennis tournaments,

5



are played on three different surfaces: the Australian and US Open are played on hard court, the
French Open is played on clay court and Wimbledon is played on grass court. It is well-known
that tennis players have different performances when playing on different surface courts. The
type of surface affects how the ball bounces as well as the player movements. This has strong
consequences on the characteristics of the match. For instance, the ball tends to bounce slower
and higher on a clay surface. This leads to a slower game that favours the so-called baseliners that
have a strong defensive game. A notable example is Rafael Nadal who is particularly strong on
clay courts. He detains a record of ten French Open titles.

The court surface can be considered one of the crucial ingredients to properly predict tennis
matches and assess the strength level of a tennis player. However, in general, the problem is not
straightforward from a statistical point of view. Each player should have a different strength level
for each surface type. A simple solution would be to include in the model static parameters to
account for the surface type. However, this is not a very appealing solution and it may not even
be feasible to model a panel dataset with a very large number of players. For instance, in our
application this would lead to over two thousand parameters to be estimated. The consequence
would be a time-consuming optimization problem as well as very large estimation uncertainty
and in-sample overfitting issues. The approach we propose requires only one additional static
parameter for each surface type and it allows the model to have a player-specific and dynamic
surface effect.

We introduce the surface effect through the following specification

λi,t = λbi,t +
∑

s∈{h,c,g}

Isi,tλ
s
i,t, (4)

where λbi,t represents the baseline strength of player i at time t, λsi,t represents the surface specific
strength of player i at time t on surface s and Isi,t is an indicator variable that is equal to 1 if
the match of player i at time t is played in surface s. The surface type s belongs to the set
{h, c, g} where h denotes hard court, c denotes clay and g denotes grass. Here we merge hard
court and carpet court because the characteristics of these surfaces are similar and carpet court
is not very common. We note that

∑
s∈{h,c,g} I

s
i,t = 1 because any match is played on one of

these three surfaces. The above specification implies that the strength of player i at time t is
λi,t = λbi,t + λhi,t if the match is played on hard court, λi,t = λbi,t + λci,t if the match is played on
clay and λi,t = λbi,t + λgi,t if the match is played on grass. We consider a score-driven process for
λbi,t and λsi,t as in (7), which leads to the following dynamic equations

λbi,t+1 = λbi,t + τbsi,t,

λsi,t+1 = λsi,t + τsI
s
i,tsi,t, for s = h, c, g. (5)

with τb, τh, τc and τg part of the parameter vector ψ and where the score innovation si,t has the
same functional form as in (3).

The dynamic specification described in (5) is quite intuitive. The strength on a certain surface
s depends on two components: one driven only by past matches on that surface and one driven
by all past matches. The parameters τb and τs determine the relative importance of these two
components. If τb is equal to zero then the strength of a player on the surface s depends only on
matches that are played on that surface. Instead, if τs is equal to zero there is no surface effect
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and the strength of the player depends equally on matches played on different surfaces. We also
note that this model nests the basic model when τs = 0 for any s ∈ {h, c, g} with surface-specific
strengths λsi,t initialized at zero.

2.5 Explanatory variables

Explanatory variables can be easily included in the model. We denote by xi,t the vector of ex-
planatory variables of player i at time t. The strength λi,t can be specified as

λ̃i,t = λi,t + g(xi,t)

where λi,t is the dynamic strength as specified in (4) and g(·) is some parametric function. For
instance, in the empirical application we consider the home ground advantage hi and the age of the
players ai,t as explanatory variables. The home ground advantage hi,t is simply a dummy variable
that is equal to one if the match at time t is played in the country of player i and zero otherwise.
Instead, the age ai,t represents the age of player i at time t. We consider the ability of a player to
be a nonlinear and smooth function of age and therefore we employ a quadratic approximation1.
The resulting specification is

g(xi,t) = βhhi,t + βa1ai,t + βa2a
2
i,t.

We have no constant terms in the above specification because they are not identified in our mod-
eling framework with player-specific strengths.

Other explanatory variables can be included in the model in a similar fashion. For instance, a
dummy variable indicating whether a player is left- or right-handed can be considered. This may
be useful to test the hypothesis that left-handed players have an advantage against right-handed
players. In our analysis of the ATP tennis matches we do not find empirical evidence that left-
handed players have a significant advantage.

2.6 Grand Slam tournaments

It is often observed that good players tend to perform better in Grand Slam tournaments compared
to any other standard ATP tournament. This may be due to the fact that to win a Grand Slam
match a player needs to win three sets (best of five) compared to two sets (best of three) for
standard tournaments. With more sets played, less randomness is involved. This is easily shown
by the following statistical experiment. Assume independence of events and let the probability
that player i wins an event against player j be given by P (i wins) = 0.60. A best of five event
would result in a winning probability for the whole event of P (i wins event) = 0.683 compared
to P (i wins event) = 0.648 in a best of three event.

To take this into account, we specify a model for the probability of winning a set (rather than
winning the whole match) and derive the corresponding probability of winning the match under
the assumption that the set results are independent. We denote by p̃ij,t the probability that player

1A cubic or higher order approximation can also be used. However, we find that the inclusion of a cubic term is not
significant.
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i wins a set against player j at time t. It follows that the probability of player i winning a Grand
Slam match against player j is given by

pij,t = p̃3ij,t + 3(1− p̃ij,t)p̃3ij,t + 6(1− p̃ij,t)2p̃3ij,t.

Similarly, the probability that player i wins a standard ATP match is

pij,t = p̃2ij,t + 2(1− p̃ij,t)p̃2ij,t.

The probability p̃ij,t can be specified as in (1) and (2). Furthermore, the surface effect and the
explanatory variables can be included in the model in the same way as discussed before.

We note that the resulting score innovations of this model are different from the previous
specification. In particular, the score innovation for player i obtained observing the outcome yij,t
of a Grand Slam match is given by

si,t = yij,t

(
30p̃3ij,t(1− p̃ij,t)3

pij,t

)
− (1− yij,t)

(
30p̃3ij,t(1− p̃ij,t)3

1− pij,t

)
,

whereas the score innovation from a standard ATP match is given by

si,t = yij,t

(
6p̃2ij,t(1− p̃ij,t)2

pij,t

)
− (1− yij,t)

(
6p̃2ij,t(1− p̃ij,t)2

1− pij,t

)
.

In both cases, the score innovation for player j is sj,t = −si,t.
Figure 2 shows the impact curve for the score innovations based on sets. It is interesting to

see that the outcome of a Grand Slam match delivers a larger (in absolute value) score innovation
compared to a standard ATP match. The reason for this is that a Grand Slam match has more sets
and therefore the outcome of a match is more informative to assess the strength level of the players
involved. Concerning the shape of the score innovation, we note that a similar interpretation as
discussed for Figure 1 remains valid.

One could opt for an additional strategy of modeling Grand Slam tournaments. A tennis player
could be regarded as an economic agent who puts in extra time and effort for tournaments where
the price pool is large. The strength of top players could be temporarily higher during Grand Slam
tournaments which could be modeled as

δij,t = γ(λi,t − λj,t)

where γ amplifies the difference in strength between players. This can be formally tested by a
t-test or a likelihood ratio test that test for significant difference from 1 of the parameter γ. We
incorporated this in our model but found γ to be not significantly different from 1 for the set model
described in this section. We conclude that the ’Grand Slam’ effect is most likely a statistical effect
and not due to extra effort because of a larger price pool.

3 Analysis of ATP tennis match results

3.1 The dataset

The dataset we consider contains tennis match results of Grand Slam tournaments, ATP World
Tour Finals, ATP World Tour Masters 1000 and ATP World Tour 500 and 250 series from January
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Figure 2: Impact curve for the score innovations of player i as a function of δij,t and yij,t.

2000 to February 2017. The dataset contains information on the tennis matches as well as the
tennis players. For instance, for each player we have the official ATP ranking points, the ranking
position, the age of the player and his country of origin. Instead, for each match we have the date,
the location, the type of tournament, the players involved and the outcome of the match. Several
matches were excluded from the dataset in a cleaning process. Matches in which a player retired,
invalid set and/or match results, and matches with missing ATP points were excluded from the
data. We also excluded players that played less than ten games. We noticed that leaving them
in leads to roughly the same estimation and forecasting results. We emphasize that we did not
remove those matches because of estimation problems, our new model can handle a low number
of player matches with ease. After cleaning, the number of players in the dataset is 561 who
played a total of 43,175 matches.

3.2 Estimation results

In this section we estimate the models that were introduced in the previous section. Table 1
summarizes the model specifications and shows the number of parameters. In all five model
specifications, parameter α is an initialization parameter which is multiplied by the log of the
ATP ranking points to initialize the time-varying strengths. The likelihood of the most extensive
model, that is Model 5, is optimized in less than one minute on a standard new model laptop with
i7 processor. We regard this as very fast given the high dimensionality of the model.

Table 2 reports the parameter estimates of the models. We note that the effect of the surface is
highly significant: the additional parameters τh, τc and τg are all significantly different from zero.
This can also be seen by comparing the likelihood of Model 1 with the likelihood of Model 2.
Furthermore, from the estimation results of Model 2, we can conclude that to predict the strength
of a player on a certain surface also the information on matches played in the other surfaces is
useful. This finding can be elicited from the significance of the parameter τb. In fact, if τb is equal

9



Label Model description # parameters
Model 1 Basic model as in (1) - (3) 2
Model 2 Model with surface effect as in (4) and (5) 5
Model 3 Model 2 with home ground advantage 6
Model 4 Model 3 with the variable age 8
Model 5 Set model with surface effect and all variables 8

Table 1: Model specifications.

to zero then only matches played on, for example, a clay court are useful to predict the strength
of a player on a clay court. The same holds true for the other surface types. Concerning the home
ground advantage, we can see that there is a significant and positive effect for players playing
in their country of origin. This finding is also coherent with the results in Koning (2011). We
excluded so called wild card players from the home ground analysis. Including them made the
home ground advantage less pronounced. From the estimation results of Model 4, we can see that
the effect of the variable age is significant. Figure 3 shows the plot of the estimated age function.
We can see that the performance of players is highest at the age of 25. This means that on average
players are their best at the age of 25. This result has an intuitive interpretation: a player strength
increases when he is young by gaining experience but then after 25 his strength starts decreasing as
his physical skills deteriorate. Finally, we note that modeling the set results instead of directly the
match results leads to a better in-sample fit. In particular, Model 5 has the smallest AIC and this
indicates a better fit. Note that Model 5 does not nest the other models and therefore a likelihood
ratio test cannot be employed. However, the AIC can be a useful means of comparison in this
case.

τb τh τc τg α βh βa1 βa2 llik AIC

Model 1 0.138 - - - 0.120 - - - -26054.3 52113
(0.069) (0.033)

Model 2 0.117 0.033 0.099 0.134 0.117 - - - -25768.2 51546
(0.005) (0.006) (0.008) (0.019) (0.019)

Model 3 0.118 0.031 0.098 0.131 0.120 0.228 - - -25740.0 51492
(0.005) (0.006) (0.008) (0.019) (0.019) (0.030)

Model 4 0.115 0.032 0.098 0.134 0.131 0.226 2.905 -0.591 -25715.1 51446
(0.005) (0.006) (0.009) (0.019) (0.021) (0.030) (0.484) (0.093)

Model 5 0.045 0.014 0.039 0.045 0.083 0.147 1.847 -0.376 -25658.3 51333
(0.002) (0.002) (0.003) (0.007) (0.013) (0.019) (0.304) (0.059)

Table 2: Parameter estimates of the models.

Figure 4 illustrates the importance of having a player-specific surface. Rafael Nadal is well-
known to be very strong on clay courts. He managed to win the French Open ten times. The
French Open is the only Grand Slam tournament that is played on a clay court. His rival Roger
Federer won more Grand Slam tournaments than Rafael Nadal, but he won the French Open only
once in 2009. As we can see in Figure 4, our model suggests that Federer is stronger than Nadal
on hard court and grass courts, except for a short period of time around 2014. In contrast, Nadal
is stronger than Federer on clay courts. Note that before 2005 Nadal was at the beginning of his
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professional career and for this reason his level of strength is quite lower than the one of Federer.
This difference reduces dramatically after 2005 when Nadal won his first Grand Slam tournament.
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Figure 4: Dynamic strengths of Roger Federer and Rafael Nadal for each surface type. Confi-
dence bounds for the strengths at 90% and 99% levels are represented by the shaded area. The
confidence bounds are obtained as in Blasques et al. (2016).

3.3 Out-of-sample comparison

We perform an out-of-sample study to evaluate the forecasting performance of the proposed mod-
els. We include two benchmark models in our comparison: one based on the ATP ranking posi-
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tion of the players, Boulier and Stekler (1999), and one based on ranking points, Clarke and Dyte
(2000). These models exploit information provided by the rankings to predict a match outcome.
The specification of these models are given by

pij,t =
exp(δij,t)

1 + exp(δij,t)
, δij,t = κ(ri,t − rj,t),

where κ is a parameter to be estimated and ri,t is a measure of performance of player i at time
t. For the model based on the ATP ranking position, ri,t denotes the position in the ranking,
instead for the model based on the ATP ranking points, ri,t is the logarithm of the ranking points.
The logarithm is considered in Clarke and Dyte (2000) and it provides a better fit compared to
not having any transformation. The estimated coefficient κ of both models is highly significant
and equal to −0.0068 and 0.78 for the model based on the ATP ranking position and points,
respectively.

All courts Hard court Clay court Grass court
Loss DM stat. Loss DM stat. Loss DM stat. Loss DM stat.

ATP position -3261.19 -10.88 -1936.65 -8.83 -924.79 -4.95 -399.75 -4.23
(-0.655) (-0.654) (-0.647) (-0.679)

ATP points -3003.82 -5.95 -1773.78 -4.78 -863.77 -2.58 -366.27 -2.88
(-0.603) (-0.599) (-0.604) (-0.622)

Model 1 -2907.24 -3.38 -1714.80 -2.17 -849.32 -2.66 -343.08 -0.80
(-0.584) (-0.579) (-0.594) (-0.582)

Model 2 -2885.82 -2.53 -1709.00 -2.04 -836.22 -1.52 -340.55 -0.69
(-0.580) (-0.577) (-0.585) (-0.578)

Model 3 -2883.59 -2.54 -1708.50 -2.24 -835.91 -1.63 -339.16 -0.17
(-0.578) (-0.577) (-0.585) (-0.576)

Model 4 -2878.19 -1.89 -1703.10 -0.90 -834.64 -1.58 -340.48 -0.93
(-0.578) (-0.575) (-0.584) (-0.578)

Model 5 -2870.81 - -1700.60 - -831.46 - -338.79 -
(-0.577) (-0.575) (-0.582) (-0.575)

Table 3: Log score total loss and average loss (in brackets). The second column of each court type
reports the DM statistics of the models against the benchmark model (set model).

We split the dataset into two sub-samples: a training sample from 2000 to 2014 and a fore-
casting evaluation sample from 2015 to 2017. We re-estimate all the models at each time point by
considering an expanding window approach. The performance evaluation of the models is based
on the log score criterion as considered by Geweke and Amisano (2011) and by McHale and Mor-
ton (2011) in the context of tennis forecasts. The log score criterion is: N−1

∑N
i log pwi , where

pwi is the probability of the winner predicted by the model and N is the evaluation sample size.
We consider the Diebold-Mariano (DM) test to assess the statistical significance of the predictive
ability of the models, Diebold and Mariano (1995). Table 3 reports the out-of-sample results.
We can see that Model 5 is the best model for all types of surfaces and it performs significantly
better than the ATP points and ranking models. Furthermore, we also note that also our most
basic specification, that is Model 1, performs significantly better than the ATP points and ranking
models
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3.4 Ranking tennis players

The ATP ranking is used to determine the entry and the seeding of tennis tournaments. This is of
great importance, for instance, to avoid that the two strongest players play against each other in
the first stage of a tournament. The ranking should therefore reflect the ability level of the players.
Furthermore, surface-specific rankings are also useful since the strength of players vary across
different surfaces. The effect of the surface is, for instance, considered in the seeding system
adopted for Wimbledon.

It is often shown in the literature that statistical methods are often capable of outperforming
the ATP scoring system in terms of predictive ability. In the previous section, we have seen how
our model produces significantly better predictions than the ATP ranking points and the actual
ranking on all surfaces. In this section, we derive rankings based solely on the estimated strength
of our model for the different surfaces. In particular, we can sort the players with respect to their
strength level on each surface. The baseline strength is used to obtain an overall ranking. We
note that the model-based rankings can be considered better than the ATP ranking to sort players
in terms of ability but these rankings may lack other desirable features. We refer to Irons et al.
(2014) for a discussion on how to construct tennis rankings using statistical models.

Table 4 reports the first ten players in the ATP ranking and the rankings obtained from our
model on the 9th of February 2017. We note that there are some similarities but also some differ-
ences across the rankings. Seven out of ten players that are in the top ten of the ATP raking are
also in the top ten of the baseline ranking. However, there are quite some differences in the order
as, for instance, Novak Djokovic is first in the baseline ranking but only third in the ATP ranking.
Concerning rankings for different surfaces, as expected, Rafael Nadal is better positioned in the
clay ranking compared to the other rankings: 2nd position in clay but outside the top five in all
other rankings.

ATP rank Baseline Hard court Clay court Grass court
Andy Murray Novak Djokovic Novak Djokovic Novak Djokovic Andy Murray
Novak Djokovic Roger Federer Roger Federer Rafael Nadal Roger Federer
Milos Raonic Andy Murray Andy Murray Andy Murray Novak Djokovic
Stanislas Wawrinka Rafael Nadal Kei Nishikori Roger Federer Ivo Karlovic
Kei Nishikori Kei Nishikori Stanislas Wawrinka Stanislas Wawrinka Jo Wilfried Tsonga
Gael Monfils Stanislas Wawrinka Rafael Nadal Kei Nishikori Kei Nishikori
Marin Cilic Jo Wilfried Tsonga Milos Raonic Juan Martin Del Potro Milos Raonic
Dominic Thiem Milos Raonic Jo Wilfried Tsonga Jo Wilfried Tsonga Tomas Berdych
Rafael Nadal Tomas Berdych Tomas Berdych Dominic Thiem Nick Kyrgios
Tomas Berdych Juan Martin Del Potro Juan Martin Del Potro Milos Raonic Rafael Nadal

Table 4: First ten players in each ranking.

In order to evaluate how the rankings are related to each other, we measure their closeness
by using the Kendall correlation measure. The Kendall correlation is a measure of correlation
between rankings: it is equal to one if two rankings are the same and equal to minus one if two
rankings are the same but reversed. Figure 5 presents the Kendall correlation between the different
rankings. We can see that the ATP ranking is the ranking that is farther apart from all the other
rankings with a correlation around 0.5. Focusing on the model-based rankings, we can see that the
clay ranking is the least correlated with the grass, hard and baseline ranking. This indicates that
the clay surface differs most from the other surfaces in terms of players abilities. Finally, we see
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that the ranking based on the hard court is the closest to the baseline ranking. This finding is not
surprising since the baseline strength accounts for all surfaces in the same way and the majority
of tennis matches in the dataset are played on hard court.
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Figure 5: Kendall correlation between the different rankings.

4 Conclusion

We have introduced a novel approach to the analysis, modeling and forecasting of tennis matches.
Our likelihood-based approach accounts for time-varying strengths and different court surface
effects. The proposed modeling framework is able to describe several interesting features of tennis
matches and it delivers accurate forecasts. The strength levels for different surface types that are
extracted from our model can be used to construct improved rankings of players. These rankings
are capable of reflecting the actual abilities of tennis players more accurately when compared to
ATP points. These findings are confirmed in out-of-sample experiments. Surface-specific rankings
can be useful for entry and seeding of tennis tournaments.

Appendix

A short review of score-driven time series models

Assume we have a large panel of time series variables denoted yij,t, for i 6= j = 1, . . . ,M and
t = 1, . . . , T . All observations at time t are contained in the vector yt, which in our case consists
of binary variables for all match results at time t. We assume that the data has a conditional density
function of the form

yt ∼ p (yt|λt;ψ) ,
where λt = (λ1,t, . . . , λM,t)

′ is a M -dimensional vector of time-varying parameters and ψ is a
static parameter vector. The GAS framework of Creal et al. (2013) and Harvey (2013) specifies
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the dynamics of λt as
λi,t+1 = ωi + φiλi,t + τisi,t, (6)

where ωi, τi and φi are unknown parameters to be estimated, and si,t is the score innovation of the
process defined by

si,t = Si,t∇i,t, ∇i,t =
∂ log p(yij,t|λt;ψ)

∂λi,t
, (7)

with ∇i,t being the score of the predictive likelihood and Si,t being a scaling factor. A possible
choice for the scaling factor is the inverse of the Fisher information to account for the curvature
of the likelihood function. Alternatively, the scaling can be set equal to one and we can simply
consider si,t = ∇i,t. A more detailed discussion is provided in Creal et al. (2013).
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