
 

 

 
TI 2018-002/II 
Tinbergen Institute Discussion Paper  
 

 
 
The family of ideal values for 
cooperative games 
 
 
Wenna Wang1  
Hao Sun1 

Rene van den Brink2 

Genjiu Xu1 

 

 
 
 
 
 
 
 
 
 
 
 
1 Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, P.R. 
China  
2 Department of Econometrics and Operations Research, VU University, Amsterdam, The 
Netherlands 



 
 
 
Tinbergen Institute is the graduate school and research institute in economics of 
Erasmus University Rotterdam, the University of Amsterdam and VU University 
Amsterdam. 
 
Contact: discussionpapers@tinbergen.nl  
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl  
 
Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 598 4580 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
http://www.tinbergen.nl/


The family of ideal values for cooperative

games

Wenna Wang a,b,∗, Hao Sun a, René van den Brink b,
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Abstract

In view of the nature of pursuing profit, a selfish coefficient function is employed
to describe the degrees of selfishness of players in different coalitions, which is the
desired rate of return to the worth of coalitions. This function brings in the concept
of individual expected reward to every player. Built on different selfish coefficient
functions, the family of ideal values can be obtained by minimizing deviations from
the individual expected rewards. Then we show the relationships between the family
of ideal values and two other classical families of values: the procedural values and
the least square values. For any selfish coefficient function m, the m-ideal value
is characterized by efficiency, linearity, m-equal-expectation player property and
nullifying player m-punishment property. We also provide an interpretation of a
dynamic process for them-ideal value. As two dual cases in the family of ideal values,
the center-of-gravity of imputation-set value (CIS value) and the equal allocation
of nonseparable costs value (EANS value) are raised from new axiomatic angles.
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1 Introduction

In the theory of cooperative games with transferable utility, the Shapley
value [20] is the most eminent (single-valued) solution concept. It assigns to
every player its expected marginal contribution assuming that all possible or-
ders of entrance of the players occur with equal probability. The Banzhaf value
[1] assumes, for every player, that every coalition without this player has equal
probability to be the coalition that is present when this player enter. Under
this assumption, it gives every player its expected marginal contribution. Both
values determine the payoff distribution depending on the marginal contribu-
tions of the players. Deegan and Packel [3] switch perspectives and determine
the payoff for a player by considering the worths of coalitions the player be-
longs to. They put forward the Deegan-Packel (DP)-value, which provides for
every player the sum of the average worth of each coalition the player belongs
to.

The DP-value clearly is not efficient. Even though the DP value opens up a
new perspective, it ignores the possibility of coalition formation and the self-
ishness of the players. The social selfish coefficient is established by Wang et al.
[22] to offer a new interpretation for the egalitarian Shapley value with an un-
derlying procedure of sharing marginal contributions to coalitions formed by
players joining in random orders. To pursue more profit, the players assemble
to form ‘the grand’ coalition. When players join a coalition, it is appropriate
for them to ask a part of payoff from the coalition. The DP value divides
the worth equally among the players in the coalition. We assume that every
player wants a specific share of the worth of every coalition it belongs to. A
so-called selfish coefficient function is used to describe the players’ selfishness
in different coalitions, i.e. the shares they request from every coalitions worth.
The individual expected reward is the player’s expected payoff over all coali-
tions the player may take part in, assuming these coalitions occur with equal
probability.

Given a game, we are usually interested to know how the fruits of coop-
eration are shared among the players. In other words, we are looking for an
allocation rule, satisfying a list of requirements, the axioms, that attribute
payments to players in the game. One basic requirement is that all players
together have and can only distribute the worth of the grand coalition con-
sisting of all players. In consideration of this requirement, assigning to every
player its individual expected reward, is usually unattainable.

Yet another approach to allocate payoffs is the basis of the nucleolus (Schmei-
dler, [19]) and the prenucleolus (Sobolev, [21]) which are both the outcome
of a lexicographic minimization procedure over the excess vector that can be
associated with any coalition. Ruiz et al [16–18] introduce optimality theory
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to allocation in cooperative games. In order to look for an allocation in which
all the excesses are similar, according to an egalitarian philosophy, Ruiz et al.
[16] put forward the least square prenucleolus and the least square nucleolus
by choosing the payoff vector which minimizes the variance of the excesses of
the coalitions. Subsequently, Ruiz et al. [17,18] extend the definition to the
family of least square values by minimizing the weighted variance and to the
family of individually rational least square values with adding the constraint
condition of individual rationality. Different from considering the excess vec-
tor of coalitions, Nguyen [15] considers the allocation, belonging to the core
and being closest to the Shapley value, as the most fair core allocation. In
the underlying paper, the optimality problem, minimizing the deviations from
the individual expected rewards, will be the main pathway to define some
new allocation methods, resulting in what we call the family of ideal values,
by choosing the allocations that satisfy this optimization theory principle for
different selfish coefficient functions.

For any efficient, symmetric and linear value, Ruiz et al. [17] give a special
convey to characterize its payoff vector with a certain sequence of coefficients.
Driessen [6] presents another equivalent formula, which reveals the explicit re-
lationship between the Shapley value and any efficient, symmetric, and linear
value. Assuming that the players arrive in the grand coalition in a random
order, Malawski [13] introduces a new notion of “procedural” value for co-
operative TU games by redefining the distributive method of the marginal
contribution of every player. To further understand the family of ideal values,
our work shows a new equivalent statement for efficient, symmetric and linear
values. The family of least square values as well as the “procedural” values,
are both special subsets of the family of ideal values.

There are several approaches to justify a value for TU games. Two approach-
es are axiomatization and providing a dynamic process. An axiomatization
gives a set of axioms that are satisfied by only one solution. For any selfish
function m, the m-equal-expectation player property and the nullifying play-
er m-punishment property are used to axiomatically characterize the m-ideal
value. A dynamic process for a value leads the players to that value, starting
from an arbitrary efficient payoff vector. Hwang et al. [9] propose a dynamic
process leading to the Shapley value based on a modified version of Hamiache’s
notion of an associated game. Later, Hwang et al. [10] adopt excess functions
to propose a dynamic process for the efficient Banzhaf-Owen index. Following
the steps of Hwang, we offer a dynamic process for the family of ideal values
with respect to a new complaint function.

After providing general results on axiomatization and a dynamic process
for the ideal values, we look more close at two special ideal values. The CIS
value, defined by Driessen and Funaki [5], assigns to every player its individ-
ual worth, and distributes the remainder of the worth of the grand coalition
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equally among all players. The EANS value, introduced by Moulin [14], is the
dual of the CIS value. Using a reduced game consistency, van den Brink and
Funaki [2] provide characterizations for a class of equal surplus sharing solu-
tions including the CIS value and EANS value. Though Hamiache [7] initially
proposes the associated consistency with respect to a specific associated game,
Hwang [8,11] and Xu et al. [23,24] apply the associated consistency to the two
values by modifying the construction of associated game. Xu et al. [25] also
provide a bidding mechanism as the noncooperative interpretation to the CIS
value. The underlying work will provide characterizations that are based on
the individual expected reward for the CIS value and the EANS value.

The paper is organized as follows. Section 2 recalls some preliminaries on
cooperative game theory. Section 3 gives the definition of the family of ideal
values, and compares it with two other classical families of values: the procedu-
ral values and the least square values. Section 4 introduces the axiomatization
and dynamic process to characterize the ideal values. Section 5 focusses on
the CIS value and the EANS value. Section 6 concludes and develops some
suggestions for future research.

2 Preliminaries: Values for cooperative games

A cooperative game with transferable utility (TU) is a pair 〈N, v〉, where
N is the finite set of n players and v : 2N → R is the characteristic function
assigning to each coalition S ∈ 2N \ {∅} the worth v(S), with the convention
that v(∅) = 0. For each coalition S, the real number v(S) represents the reward
that coalition S can guarantee by itself without the cooperation of the other
players. The size of the player set S is denoted by s. We denote by GN the
game space consisting of all these TU-games with player set N .

In this context, any x ∈ RN will be called a payoff vector, and for any
coalition S, x(S) =

∑
i∈S xi. A payoff vector x is said to be efficient or a

preimputation if x(N) = v(N). The set of preimputations of a game 〈N, v〉 is
denoted I(N, v) = {x ∈ RN : x(N) = v(N)}. Formally, a value on GN is a
function φ that assigns a single payoff vector φ(N, v) = (φi(N, v))i∈N ∈ RN
to every game 〈N, v〉 ∈ GN . The value φi(N, v) of player i represents an
assessment by i of his or her gains for participating in the game 〈N, v〉.

The Shapley value [20] is the solution that assigns to every player in any
game 〈N, v〉 ∈ GN its expected marginal contribution assuming that all pos-
sible orders of entrance of the players to the grand coalition occur with equal
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probability,

Shi(N, v) =
∑

S⊆N,S3i

(n− s)!(s− 1)!

n!

(
v(S)− v(S\{i})

)
, for all i ∈ N.

The Banzhaf value [1] assigns to every player in any game 〈N, v〉 ∈ GN
its expected marginal contribution assuming that every coalition without this
player is the coalition that is present when this player enters, is equally likely
to occur,

Bai(N, v) =
1

2n−1

∑
S⊆N,S3i

(
v(S)− v(S\{i})

)
, for all i ∈ N.

As an alternative to the player’s marginal contributions to coalitions, the
assessment of player’s gains can also be determined by the worths of the
coalitions they belong to. The Deegan-Packel (DP)-value [3] assumes that all
coalitions are equally likely to form, and players in a coalition divide the payoff
(or the loss) equally. For any game 〈N, v〉 ∈ GN ,

DPi(N, v) =
∑

S⊆N,S3i

v(S)

s
, for all i ∈ N.

For any game 〈N, v〉 ∈ GN , two players i, j ∈ N are symmetric if, for
every coalition S ⊆ N\{i, j}, v(S ∪ {i}) = v(S ∪ {j}). A game 〈N, v〉 ∈ GN
is inessential, if for all S ⊆ N , it holds that v(S) =

∑
i∈S v({i}). Denote

by IN the linear space of all inessential games with player set N . A game
〈N, v〉 ∈ GN is monotonic, if for all T ⊆ S ⊆ N , it holds that v(T ) ≤ v(S).
Let φ : GN → RN be a value. We give the following axioms for a value φ,

• Efficiency: For any game 〈N, v〉 ∈ GN ,
∑
i∈N φi(N, v) = v(N).

• Symmetry (or, Equal treatment property): For any game 〈N, v〉 ∈ GN , if
players i, j ∈ N are symmetric, then φi(N, v) = φj(N, v).
• Linearity: For any game 〈N, v〉, 〈N,w〉 ∈ GN and a, b ∈ R, φ(N, av+ bw) =
aφ(N, v)+bφ(N,w), where av+bw is given by (av+bw)(S) = av(S)+bw(S),
for all S ⊆ N .
• Inessential game property: For any inessential game 〈N, v〉 ∈ IN , the value

satisfies φi(N, v) = v({i}) for all i ∈ N .
• Weak monotonicity: For any monotonic game 〈N, v〉 ∈ GN , the value satis-

fies φi(N, v) ≥ 0, for all i ∈ N .
• Coalitional monotonicity: For any game 〈N, v〉, 〈N,w〉 ∈ GN and for every

coalition T ⊆ N , if v(T ) > w(T ) and v(S) = w(S) for every S 6= T , then
φi(N, v) ≥ φi(N,w) for i ∈ T .
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For any efficient, symmetric and linear value, Ruiz et al. [17] propose an
universal formula with respect to a sequence of coefficients.

Proposition 2.1 (Ruiz et al. 1998) A value φ : GN → RN satisfies ef-
ficiency, symmetry and linearity if and only if there exists ps ∈ R, s =
1, 2, · · · , n− 1, such that for any game 〈N, v〉 ∈ GN and i ∈ N ,

φi(N, v) =
1

n
v(N) +

∑
S N,S3i

ps
s
v(S)−

∑
S N,S 63i

ps
n− s

v(S). (1)

On account of the universal formula of efficient, symmetric and linear values
provided by Ruiz et al. [17], Malawski [13] lists the conditions that a value
satisfies efficiency, symmetry, linearity and coalitional monotonicity and that
a value satisfies efficiency, symmetry, linearity and weak monotonicity.

Lemma 2.2 (Malawski 2013) (i) A linear efficient value having the equal
treatment property is coalitionally monotonic if and only if, for every t < n,
pt ≥ 0.

(ii) If a linear efficient value on GN with the equal treatment property is
weakly monotonic, then for every t = 1, 2, · · · , n− 1, the coefficients pt satisfy

(a)
(
n
t

)
pt ≤ 1;

(b) ∀u = 1, 2, · · · , t,
t∑

s=u

(
n
s

)
ps ≥ −1.

Malawski [13] introduces a new notion of a “procedural” value, which is
determined by an underlying procedure of sharing marginal contributions to
coalitions formed by players joining in random order. A procedure r is a family
of nonnegative coefficients ((rk,j)

k
j=1)nk=1 such that

∑k
j=1 rk,j = 1, ∀k. The

coefficient rk,j describes the share of player who is at place j in the order in the
marginal contribution of player who is at place k. For any game 〈N, v〉 ∈ GN
and all players i ∈ N , the corresponding procedural value is

ψri (N, v) =
∑
π∈Π

∑
j∈Nπ,i

rπ(j),π(i)mj,π(v)

n!
,

where Π is the set of all permutations of the set N . For any player j ∈ N
and any permutation π ∈ Π, we denote Hπ,j = {i|π(i) ≤ π(j)} and Nπ,j =
{i|π(i) ≥ π(j)}. Then mj,π(v) is the marginal contribution of player j to
coalition Hπ,j, i.e. mj,π(v) = v(Hπ,j)− v(Hπ,j \ j).

Theorem 2.3 (Malawski 2013) A value on GN is procedural if and only if
it satisfies efficiency, linearity, the equal treatment property, weak monotonic-
ity and coalitional monotonicity.

Based on the excess vector, Ruiz et al. [16] select the unique payoff vector
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which minimizes the variance of the excesses of the coalitions. Assuming dif-
ferent weights for different coalitions, they [17] introduce the family of least
square values by minimizing the weighted variance of the excesses. For any
coalitional weights function w : 2N \ {∅} → R and any game 〈N, v〉 ∈ GN ,
the corresponding least square value is the optimal solution of the following
minimization problem,

Minimizex∈RN
∑
S⊆N

w(s)[v(S)− x(S)]2 s.t.
∑
i∈N

xi = v(N). (2)

The corresponding least square value is given by

LSwi (N, v) =
v(N)

n
+

1

nα
[
∑
S:i∈S

(n− s)w(s)v(S)−
∑
S:i/∈S

sw(s)v(S)],

where α =
∑n−1
s=1 w(s)

(
n−2
s−1

)
, i.e. LSw(N, v) is the solution of the minimalization

problem (2).

They also provide an axiomatic characterization for the least square family.

Proposition 2.4 (Ruiz et al. 1998) A value φ : GN → RN satisfies ef-
ficiency, linearity, symmetry, coalitional monotonicity and inessential game
property if and only if it belongs to the family of least square values.

3 The family of ideal values

3.1 Definition

As mentioned in the introduction, the DP value offers an interesting alter-
native to the Shapley and Banzhaf values, focussing on the worths of coalitions
a player belongs to, instead of marginal contributions of a player. Especially
in situations where players do not focus on their individual marginal contribu-
tions but more on what they can earn by cooperating with other players, the
DP value seems an attractive value. However, in our opinion, the DP value
misses two important points. The first is that it emphasizes the equal possi-
bility of the coalitions to form, ignoring that coalitions are build sequentially.
The second is that it assumes that players in a coalition divide the full worth
of that coalition equally. Together, this implies that the sum of all coalitional
worths are allocated, which might not be feasible. 1

1 The Shapley value allocates the dividends of every coalition equally over the
players in the coalition, and since the sum of the dividends over all coalitions equals
the worth of the grand coalition, the Shapley value is efficient.
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Every player, who is motivated by profit to cooperate and join a coalition,
may want selfishly to get part of the formed coalition’s worth. We employ
a function of coalitional selfish coefficients to describe the individual selfish
degree in the coalition. A selfish coefficient function on N is a weights’ map
m : 2N \ {∅} → R that associates with every nonempty S ⊆ N a real number
m(S), which identifies the selfish degree of players in this coalition. It means
that every player wants to get m(S)v(S) from the cooperation within coalition
S. Without loss of generality, we restrict our attention to nonnegative selfish
coefficient function, namely, such that m(S) ≥ 0 for all S ⊆ N . Further,
we assume the selfish coefficient function to be symmetric assigning the same
selfish coefficient to coalitions of the same size, i.e. m(S) = m(s) for all S ⊆ N .

Based on a selfish coefficient function m, assuming that the probability
that the player participates to every coalition S ⊆ N , S 3 i, is equal, the
m-individual expected reward of player i ∈ N in game 〈N, v〉 ∈ GN is defined
as

Em
i (N, v) =

1

2n−1

∑
S⊆N,S3i

m(s)v(S).

We try to select the payoff vector in the preimputation set that makes ev-
ery player closer to their expected reward. Formally, consider the following
problem for any game 〈N, v〉 ∈ GN ,

Problem X : Minimizex∈RN+

∑
i∈N

∑
S⊆N,S3i

[m(s)v(S)− xi]2

s.t.
∑
i∈N

xi = v(N). (3)

Notice the difference with the minimization problem in (2) where the min-
imum is taken over coalitional payoffs instead of individual rewards.

Theorem 3.1 Given any selfish coefficient function m, for every game 〈N, v〉 ∈
GN , Problem X has a unique solution xm that it is given by

xmi =
∑

S⊆N,S3i

m(s)

2n−1
v(S) +

1

n

[
v(N)−

∑
j∈N

∑
S⊆N,S3j

m(s)

2n−1
v(S)

]
, i ∈ N. (4)

Proof. The Lagrangian of Problem X is

L(x, λ) =
∑
i∈N

∑
S⊆N,S3i

[m(s)v(S)− xi]2 + λ[
∑
i∈N

xi − v(N)].

Then the derivative with respect to xi, i ∈ N of L(x, λ) is the following

Lxi(x, λ) = −2
∑

S⊆N,S3i
[m(s)v(S)− xi] + λ = 0.

8



Obviously, the derivative with respect to λ gives the efficiency constraint

Lλ(x, λ) =
∑
i∈N

xi − v(N) = 0.

A simple calculation solves this linear system and shows that the unique point
xm satisfying these conditions is given by (4). 2

The solutions (4) to the maximization problem X form, what we call, the
family of ideal values . Notice that, using the individual expected rewards
Em
i (N, v), these solutions can be written as in the following definition.

Definition 3.2 For every selfish coefficient function m, the value IV m : GN →
RN which for any game 〈N, v〉 ∈ GN assigns the payoff vector

IV m
i (N, v) = Em

i (N, v) +
1

n
[v(N)−

∑
j∈N

Em
j (N, v)] for every i ∈ N,

is called an ideal value.

So, for any given selfish coefficient function m, the corresponding ideal value
distributes the m-individual expected reward to every player, and then the
remainder of the worth of the grand coalition N is equally distributed over all
players. This gives the solution of Problem X. Next, we explore the relation
of ideal values with the least square values and procedural values.

3.2 Relationships with procedural and least square values

It is obvious that all ideal values are efficient, symmetric and linear. Aiming
to facilitate research of the family of ideal values, we develop the further rela-
tionship between any ideal value and any efficient, symmetric and linear value
by relating the selfish coefficients m(s) to the coefficients ps in Proposition 2.1
(Ruiz et al. [17]).

Proposition 3.3 A value φ : GN → RN satisfies efficiency, symmetry and
linearity if and only if there exists ms ∈ R, s = 1, 2, · · · , n − 1 such that for
any game 〈N, v〉 ∈ GN and i ∈ N ,

φi(N, v) =
∑

S N,S3i
msv(S) +

1

n
[v(N)−

∑
j∈N

∑
S N,S3j

msv(S)]. (5)

Proof. The right hand of (5) can be rewritten as
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∑
S N,S3i

msv(S) + 1
n
[v(N)− ∑

j∈N

∑
S N,S3j

msv(S)]

= 1
n
v(N) +

∑
S N,S3i

msv(S)− 1
n

∑
S(N

smsv(S)

= 1
n
v(N) +

∑
S N,S3i

(1− s
n
)msv(S)− ∑

S N,S 63i

s
n
msv(S)

= 1
n
v(N) +

∑
S N,S3i

(n−s
n

)msv(S)− ∑
S N,S 63i

s
n
msv(S)

By straightforward computations, it then follows that the expression on the
right hand of (5) agrees with the one on the right hand of (1) by choosing
ms = n

s(n−s)ps for all s = 1, 2, · · · , n− 1. 2

For any game 〈N, v〉 ∈ GN and for any selfish coefficient function m :

2N \ {∅} → R, taking ms = m(s)
2n−1 , we can get the ideal value IV m(N, v).

Especially coefficients ms obtained from ideal values satisfy ms ≥ 0. Moreover,
the relationship between m(s) and ps is m(s) = n2n−1

s(n−s)ps.

Notice that the value of m(n) doesn’t have any influence on the ideal value,
so from now on we put away the requirement on m(n).

From the expression m(s) = 2n−1ms = n2n−1

s(n−s)ps from the proof above, it is

clear that ps ≥ 0 if and only if m(s) ≥ 0 for all for all s = 1, 2, · · · , n − 1.
Then, using the nonnegativity of the selfish coefficient function, with Lemma
2.2.(i) we obtain an axiomatic characterization for the family of ideal values.

Theorem 3.4 A value φ : GN → RN satisfies efficiency, symmetry, linearity,
and coalitional monotonicity if and only if it belongs to the family of ideal
values.

This result strongly motivates the family of ideal values as being the coali-
tional monotionic values among the ESL (efficient, symmetric and linear) val-
ues.

Combining Theorem 3.4 with Theorem 2.3, the family of ideal values has
the following connection with the procedural values.

Corollary 3.5 A value on GN belonging to the family of ideal values, is pro-
cedural if and only if it satisfies weak monotonicity.

Combining with Lemma 2.2.(ii), we get the conditions on the selfish coeffi-
cient functions to obtain ideal values that are procedural.

Proposition 3.6 For any given selfish coefficient function m, if the ideal val-
ue IV m : GN → RN is procedural, then for every s = 1, 2, · · · , n − 1, the
coefficients m(s) satisfy

(
n
s

)
s(n−s)
n2n−1 m(s) ≤ 1.
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Proof. The equation can be deduced easily from condition (a) in Lemma
2.2.(ii) and the relation between m(s) and ps, s = 1, 2 · · · , n − 1. Condition
(b) follows directly from the selfish coefficients being nonnegative. 2

From Theorem 3.4, using Proposition 2.4, we also obtain the connection
between the family of ideal values and the family of least square values.

Corollary 3.7 A value on GN , belonging to the family of ideal values, is a
least square value if and only if it satisfies the inessential game property.

Next, we want an explicit condition on m(s) for an ideal value to be a least
square value. For that, we first derive the explicit condition on the coefficients
ps.

Lemma 3.8 An efficient, symmetric and linear value satisfies the inessential

game property, if and only if,
n−1∑
s=1

(
n
s

)
ps = n− 1.

Proof. Consider the unanimity game 〈N, uT 〉 which is defined as: for each
S ⊆ N , uT (S) = 1 if S ⊇ T , and uT (S) = 0 if S + T . The ordered collection of
unanimity games (〈N, u{1}〉, 〈N, u{2}〉, · · · , 〈N, u{n}〉) forms a basis for IN . So
any inessential game 〈N, v〉 ∈ IN , can be written as v(S) =

∑
j∈N v({j})uj(S),

for all S ⊆ N .

Let φ : GN → RN be a value that satisfies efficiency, symmetry and linearity.
Following the definition of the inessential game property, the value φ owning
the inessential game property is equivalent to that, for i ∈ N , φi(v) = v({i})
if 〈N, v〉 ∈ IN , i.e.

φi(v) = φi(
∑
j∈N

v({j})uj) =
∑
j∈N

v({j})φi(uj) = v({i}).

It is also equivalent to φi(ui) = ui({i}) = 1;

φi(uj) = uj({i}) = 0, j 6= i.

By Proposition 2.1, the equivalent condition can be inferred as

φi(N, ui) =
1

n
ui(N) +

∑
S N,S3i

ps
s
ui(S)−

∑
S N,S 63i

ps
n− s

ui(S)

=
1

n
+

∑
S N,S3i

ps
s

= 1.

So, n
∑

S N,S3i

ps
s

=
n−1∑
s=1

n
(
n−1
s−1

)
ps
s

=
n−1∑
s=1

(
n
s

)
ps = n− 1.
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And for any j ∈ N, j 6= i,

φi(N, uj) =
1

n
uj(N) +

∑
S N,S3i

ps
s
uj(S)−

∑
S N,S 63i

ps
n− s

uj(S)

=
1

n
+

∑
S N,S3{i,j}

ps
s
−

∑
S⊆N\{i},S3j

ps
n− s

=
1

n
+

n−1∑
s=2

(
n− 2

s− 2

)
ps
s
−

n−1∑
s=1

(
n− 2

s− 1

)
ps

n− s

=
1

n
−

n−1∑
s=1

(
n

s

)
ps

n(n− 1)

= 0.

This also indicates that
n−1∑
s=1

(
n
s

)
ps = n− 1. 2

From this we obtain the conditions on the selfish coefficient functions m(s).

Proposition 3.9 For any given selfish coefficient function m, the ideal value
IV m : GN → RN is a least square value, if and only if, the coefficients m(s)

satisfy
n−1∑
s=1

(
n
s

)
s(n−s)
n2n−1 m(s) = n− 1.

In this subsection, we described the relationship between the family of ideal
values and two important families of values from the literature: the proce-
dural values and the least square values. In the next section we provide two
characterizations of specific values within this family.

4 Characterization of the ideal values

There are several approaches to justify values for TU games. Two of these
approaches are axiomatization and providing a dynamic process.

4.1 Axiomatization

For any game 〈N, v〉 ∈ GN and for any selfish coefficient function m, two
players i, j ∈ N are m-equal-expectation players if their individual expected
reward is equal, i.e. Em

i (N, v) = Em
j (N, v). Player i ∈ N is a nullifying player

if, v(S) = 0 for all coalition S ⊆ N with i ∈ S. Given any selfish coefficient
function m, let φ : GN → RN be a value. We consider the following properties.

• m-Equal-expectation player property: For every game 〈N, v〉 ∈ GN , if players

12



i, j ∈ N are m-equal-expectation player, then φi(N, v) = φj(N, v).
• Nullifying player m-punishment property: For every game 〈N, v〉 ∈ GN , if

players i ∈ N is a nullifying player, then φi(N, v) = − 1
n

∑
j∈N E

m
j (N, v).

The m-equal-expectation player property points out that players should get
the same payoff, if their individual expected rewards are equal. This makes
sense if the players take their individual expected reward as basis for their
claim on the payoff.

The nullifying player m-punishment property determines the payoff for nul-
lifying players. If a player is a nullifying player, then every coalition he belongs
to, specifically the grand coalition, will gain zero. If the coalition without this
player earns a positive worth, then the nullifying player has a negative impact
on the worth of this coalition. In that case it seems appropriate to punish the
nullifying player. The nullifying player m-punishment property puts this pun-
ishment for a nullifying player equal to the average of all players’ individual
expected rewards.

This punishment can be motivated as follows. Although this paper considers
classes of games on a fixed player set N , suppose that a nullifying player i
leaves the game. The resulting game is the projection 〈N \ {i}, v−i〉 given
by v−i(S) = v(S) for all S ⊆ N \ {i}. Assuming that the selfish coefficients
m(s), s = 1, . . . , n− 1, do not change, the total gain for the other players of
i leaving the game is

∑
j∈N\{i}

[
Em
j (N \ {i}, v−i)− Em

j (N, v)
]

=
∑

j∈N\{i}

[
1

2n−2

∑
S⊆N\{i}

m(s)v(S)− 1

2n−1

∑
S⊆N

m(s)v(S)
]

=
∑

j∈N\{i}

[
2

2n−1

∑
S⊆N

m(s)v(S)− 1

2n−1

∑
S⊆N

m(s)v(S)
]

=
∑

j∈N\{i}

1

2n−1

∑
S⊆N

m(s)v(S)

=
∑

j∈N\{i}
Em
j (N, v) =

∑
j∈N

Em
j (N, v),

where the second and fifth equality follow since v(S) = 0 if i ∈ S. So, the nul-
lifying player pays an equal share in the total loss resulting from its presence.

Remark 4.1 Let φ : GN → RN be a value. For any 〈N,w〉 ∈ GN , if φ(N, v)
satisfies symmetry, then given any selfish coefficient function m, the value
φ(N, v) also satisfies the m-equal-expectation player property since Em

j (N, v) =
Em
j (N, v) if i and j are symmetric players in 〈N, v〉.

13



With efficiency and linearity, these axioms characterize the corresponding
ideal value.

Theorem 4.2 For any given selfish coefficient function m, the ideal value
IV m : GN → RN is the unique value which satisfies efficiency, linearity, the
m-equal-expectation player property and the nullifying player m-punishment
property.

Proof. For any given selfish coefficient function m, it is obvious that the ideal
value IV m : GN → RN satisfies efficiency, linearity, the m-equal-expectation
player property and the nullifying player m-punishment property.

It remains to prove the uniqueness part. For any given selfish coefficient
function m, suppose that φm : GN → RN is a value with the four mentioned
properties. For any T ⊆ N and T 6= ∅, consider the standard game 〈N, bT 〉
defined as: for each S ⊆ N ,

bT (S) =

 1, S = T ;

0, otherwise.

Let T ⊆ N , T 6= ∅. Given any player i ∈ N \ T , we have bT (S) = 0 for all
i ∈ S ⊆ N , so Em

i (N, bT ) = 0. Now discussing player i ∈ T , it is apparent
that bT (T ) = 1 and bT (S) = 0 for all i ∈ S ⊆ N , S 6= T . This yields (i)

Em
i (N, bT ) = m(t)

2n−1 for all i ∈ T , (ii) all players in coalition T are m-equal-

expectation players, and (iii)
∑
j∈N E

m
j (N, bT ) =

∑
j∈T E

m
j (N, bT ) = tm(t)

2n−1 .

Since any player i ∈ N \ T is a nullifying player, by the nullifying player
m-punishment property, we have

φmi (N, bT ) = − 1

n

∑
j∈N

Em
j (N, bT ) = − tm(t)

n2n−1
for all i ∈ N \ T.

According to efficiency,

∑
i∈T

φmi (N, bT ) = bT (N)−
∑

i∈N\T
φmi (N, bT ) = bT (N) +

(n− t)tm(t)

n2n−1
.

Because of the m-equal-expectation player property, for any player i ∈ T ,

φmi (N, bT ) =
bT (N)

t
+

(n− t)m(t)

n2n−1
.

14



Summarizing,

φmi (N, bT ) =


bT (N)
t

+ (n−t)m(t)
n2n−1 , i ∈ T ;

− tm(t)
n2n−1 , i ∈ N \ T .

We conclude that φm(N, bT ) is unique for any T ⊆ N , T 6= ∅. Recall that
the game set {〈N, bT 〉 ∈ GN |T ⊆ N, T 6= ∅} forms a basis of the linear space
GN . Together with the linearity for φm(N, v), this implies that φm(N, v) is
unique for any 〈N, v〉 ∈ GN . So, if φm(N, v) exists, it can only be the ideal
value IV m. 2

4.2 Dynamic process

In a characterization by a dynamic process, it is shown how, starting from
any efficient payoff vector, such a process can lead to an ideal value. In our
dynamic process, the main basis is a complaint function based on the selfish
coefficient.

For any game 〈N, v〉 ∈ GN and payoff vector x ∈ I(N, v), the excess of
the coalition S with respect to the vector x in the game 〈N, v〉 is defined to
be e(S, v, x) = v(S) − x(S). i.e. it is the difference between the worth of the
coalition and the total payoff assigned to the players in this coalition. For
every selfish coefficient function m, each player in coalition S wants to take
the payoff m(s)v(S). So, the complaint of player i in coalition S with respect
to m is the real number emi (S, v, x) = m(s)v(S)− xi.

Theorem 4.3 Let 〈N, v〉 ∈ GN and x ∈ I(N, v). For any selfish coefficient
function m, we have∑

S⊆N\{i,j}
emi (S ∪ {i}, v, 2x) =

∑
S⊆N\{i,j}

emj (S ∪ {j}, v, 2x) ∀i, j ∈ N

⇐⇒ x = IV m(N, v).

Proof. Let 〈N, v〉 ∈ GN and x ∈ I(N, v). For any selfish coefficient function
m, and i, j ∈ N ,∑

S⊆N\{i,j}
emi (S ∪ {i}, v, 2x) =

∑
S⊆N\{i,j}

emj (S ∪ {j}, v, 2x)

⇐⇒
∑

S⊆N\{i,j}
[m(s+ 1)v(S ∪ {i})− 2xi]

=
∑

S⊆N\{i,j}
[m(s+ 1)v(S ∪ {j})− 2xj]
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⇐⇒
∑

S⊆N\{i,j}
2(xi − xj) =

∑
S⊆N\{i,j}

m(s+ 1)[v(S ∪ {i})− v(S ∪ {j})]

⇐⇒ xi − xj =
∑

S⊆N\{i,j}

m(s+ 1)

2n−1
[v(S ∪ {i})− v(S ∪ {j})]. (6)

On the other hand, by the definitions of IV m(N, v),

IV m
i (N, v)− IV m

j (N, v)

=
∑

S⊆N,S3i

1

2n−1
m(s)v(S)−

∑
S⊆N,S3j

1

2n−1
m(s)v(S)

=
[ ∑
S⊆N\{i,j}

1

2n−1
m(s+ 1)v(S ∪ {i}) +

∑
S⊆N\{i,j}

1

2n−1
m(s+ 2)v(S ∪ {i, j})

]
−
[ ∑
S⊆N\{i,j}

1

2n−1
m(s+ 1)v(S ∪ {j}) +

∑
S⊆N\{i,j}

1

2n−1
m(s+ 2)v(S ∪ {i, j})

]

=
∑

S⊆N\{i,j}

m(s+ 1)

2n−1
[v(S ∪ {i})− v(S ∪ {j})]. (7)

By equations (6) and (7), xi−xj = IV m
i (N, v)− IV m

j (N, v) for all i, j ∈ N .
Hence, ∑

j∈N
(xi − xj) =

∑
j∈N

[IV m
i (N, v)− IV m

j (N, v)].

That is, nxi −
∑
j∈N xj = nIV m

i (N, v) −∑j∈N IV
m
j (N, v). Because of x ∈

I(N, v) and efficiency of IV m(N, v), nxi − v(N) = nIV m
i (N, v) − v(N). So,

x = IV m(N, v). 2

Notice that emi (S ∪ {i}, v, 2x) in Theorem 4.3 is the complaint of player i
in coalition S ∪ {i} with respect to the payoff vector 2x. Although it is not
immediately clear why to consider twice the payoff vector, notice that the
equation on the left side of the equivalence in Theorem 4.3 can be written, for
all i, j ∈ N , as∑

S⊆N\{i,j}
(emi (S ∪ {i}, v, x)− xi) =

∑
S⊆N\{i,j}

(emj (S ∪ {j}, v, x)− xj)

which is equivalent to

xi − xj =
1

2n−2

∑
S⊆N\{i,j}

(emi (S ∪ {i}, v, x)− emj (S ∪ {j}, v, x)) ∀i, j ∈ N

Defining the complaint of player i against player j as the difference between
the average complaint of i in all coalitions that contain player i and do not
contain player j (and vice versa), this can be seen as some kind of balanced
mutual complaint property stating that the difference in average complaint of

16



i against j and the average complaint of j against i, is equal to the difference
in their payoffs. In this way, the ideal value IV m is the unique efficient value
satisfying the balanced mutual complaint property.

Next, we adopt complaint functions to introduce a dynamic process that
leads the players to the ideal value. Let 〈N, v〉 ∈ GN and x ∈ I(N, v). For
any selfish coefficient function m, we define the m−correction function fm :
I(N, v)→ RN as follows: for all i ∈ N ,

fmi (x) = xi + λ
∑

j∈N\{i}

∑
T⊆N\{i,j}

[
emi (T ∪ {i}, v, 2x)− emj (T ∪ {j}, v, 2x)

]

= xi + λ
∑

j∈N\{i}

∑
T⊆N\{i,j}

[
(emi (T ∪ {i}, v, x)− emj (T ∪ {j}, v, x))− (xi − xj)

]
.

where λ belongs to (0, 1). Here, the sum
∑
j∈N\{i}

∑
T⊆N\{i,j}

[
(emi (T∪{i}, v, x)−

emj (T ∪{j}, v, x))−(xi−xj)
]
, is a correction on the current payoff assignment.

The correction is based on the differences in payoffs and mutual complaints.
The m-correction function reflects the assumption that player i does not ask
for full correction (when λ = 1) but only a fraction λ of it.

The following lemma shows that the correction function is well-defined, i.e.,
if x ∈ I(N, v), then fm(x) ∈ I(N, v). This lemma plays a key role to prove
the necessary convergence results.

Lemma 4.4 Let 〈N, v〉 ∈ GN with n ≥ 3 and x ∈ I(N, v). For any selfish
coefficient function m, and for all i ∈ N ,

∑
j∈N\{i}

{ ∑
T⊆N\{i,j}

[
emi (T ∪ {i}, v, 2x)− emj (T ∪ {j}, v, 2x)

]}
= n2n−1(IV m

i (N, v)− xi)

and

∑
i∈N

∑
j∈N\{i}

{ ∑
T⊆N\{i,j}

[
emi (T ∪ {i}, v, 2x)− emj (T ∪ {j}, v, 2x)

]}
= 0.

Proof. Let 〈N, v〉 ∈ GN and x ∈ I(N, v). For any selfish coefficient function
m, i, j ∈ N ,

∑
j∈N\{i}

{ ∑
T⊆N\{i,j}

[
emi (T ∪ {i}, v, 2x)− emj (T ∪ {j}, v, 2x)

]}

=
∑

j∈N\{i}

{ ∑
T⊆N\{i,j}

[
m(s+ 1)v(S ∪ {i})− 2xi
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−m(s+ 1)v(S ∪ {j}) + 2xj
]}

=
∑

j∈N\{i}

{ ∑
T⊆N\{i,j}

m(s+ 1)[v(S ∪ {i})− v(S ∪ {j})]− 2n−1(xi − xj)
}

Eq (7)
=

∑
j∈N\{i}

2n−1[IV m
i (N, v)− IV m

j (N, v)− xi + xj]

= n2n−1(IV m
i (N, v)− xi),

where the last equality follows from x and IV m(N, v) both belonging to
I(N, v). Moreover,

∑
i∈N

∑
j∈N\{i}

{ ∑
T⊆N\{i,j}

[
emi (T ∪ {i}, v, 2x)− emj (T ∪ {j}, v, 2x)

]}
=
∑
i∈N

n2n−1(IV m
i (N, v)− xi) = n2n−1(v(N)− v(N)) = 0.

This completes the proof. 2

Let 〈N, v〉 ∈ GN and x ∈ I(N, v). For any selfish coefficient function m, we
define the dynamic sequence {xqfm}∞q=1 with respect to the correction function
fm, for all q ∈ N, by

x0
fm = x, x1

fm = fm(x0
fm), x2

fm = fm(x1
fm), · · · , xqfm = fm(xq−1

fm ).

For ‘small enough’ values of λ, this dynamic process converges to the cor-
responding ideal value.

Theorem 4.5 Let 〈N, v〉 ∈ GN . For any selfish coefficient function m, if
0 < λ < 1

n2n−2 , then {xqfm}∞q=1 converges geometrically to IV m(N, v) for each
x ∈ I(N, v).

Proof. Let 〈N, v〉 ∈ GN , x ∈ I(N, v), and take any selfish coefficient function
m. By definition of fm and Lemma 4.4, for i ∈ N ,

fmi (x)− xi
= λ

∑
j∈N\{i}

{ ∑
T⊆N\{i,j}

[
emi (T ∪ {i}, v, 2x)− emj (T ∪ {j}, v, 2x)

]}
= n2n−1λ(IV m

i (N, v)− xi).

Hence,

IV m
i (N, v)− fmi (x) = IV m

i (N, v)− xi + xi − fmi (x)

= (1− n2n−1λ)(IV m
i (N, v)− xi).
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For all q ∈ N,

IV m(N, v)− xqfm = (1− n2n−1λ)q(IV m(N, v)− x).

If 0 < λ < 1
n2n−2 , then −1 < 1− n2n−1λ < 1 and {xqfm}∞q=1 converges geomet-

rically to IV m(N, v). 2

5 Two special cases: the CIS and the EANS value

The center-of-gravity of imputation set value (CIS value), introduced by
Driessen and Funaki [5], is a solution on GN , which associates with each game
〈N, v〉 and all players i ∈ N ,

CISi(N, v) = v({i}) +
1

n
[v(N)−

∑
j∈N

v({j})].

The CIS value assigns to every player its individual worth, and distributes the
remainder of the worth of the grand coalition N equally among all players.

The equal allocation of nonseparable cost value (EANS value) introduced
by Moulin [14], is given as

EANSi(N, v) = SCi(N, v) +
1

n
[v(N)−

∑
j∈N

SCj(N, v)],

where SCj(N, v) = v(N)−v(N \{j}) means the separable cost and the EANS
value refers to all players sharing the nonseparable cost v(N)−∑j∈N SCj(N, v)
equally.

For any game 〈N, v〉 ∈ GN , its dual game 〈N, vD〉 is defined by vD(S) =
v(N) − v(N \ S) for all S ⊆ N . Obviously, EANS(N, v) = CIS(N, vD) for
all 〈N, v〉 ∈ GN since by the definition of dual game, SCj(N, v) = vD(j) for
all j ∈ N . So, the CIS value and the EANS value are dual to each other.
Furthermore, it is easy to show that the CIS value is an ideal value by taking
m(1) = 2n−1 and m(s) = 0, s = 2, 3, · · · , n−1, so is the EANS value by taking
m(n− 1) = 2n−1 and m(s) = 0, s = 1, 2 · · · , n− 2.

Consistency, including in reduced consistency and associated consistency,
has been used to characterize the CIS value [2,23,24] and the EANS value
[2,8,11,23,24]. Xu et al. [25] also provide noncooperative interpretation of the
α-CIS value, the extension of CIS value, by a bidding mechanism. Next, we
appy Theorem 4.2 to the specific selfish coefficient functions of the CIS and
EANS values.
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Taking as selfish coefficient function m̄, where m̄(1) = 2n−1 and m̄(s) = 0,
s = 2, 3, · · · , n−1, for any game 〈N, v〉 ∈ GN , Em̄

i (N, v) = v({i}), i ∈ N . Using
this selfish coefficient function in Theorem 4.2, characterizes the CIS-value. In
that case, we can replace the nullifying player m-punishment property by the
inessential player property.

Theorem 5.1 For any game 〈N, v〉 ∈ GN , the CIS value is the unique value
that satisfies efficiency, linearity, the inessential game property and the m̄-
equal-expectation player property.

Proof. It can be easily checked that the CIS value satisfies efficiency, linearity,
the inessential game property and the m̄-equal-expectation player property. It
remains to prove the uniqueness.

Suppose that a solution φ : GN → RN satisfies these four properties. For
any game 〈N, v〉 ∈ GN , define v0(S) := v(S) − ∑j∈S v({j}), S ⊆ N . Then
∀i, j ∈ N , 0 = v0(i) = Em̄

i (N, v0) = Em̄
j (N, v0) = v0(j) = 0. Because of the

m̄-equal-expectation player property, we have φi(N, v
0) = φj(N, v

0). So based
on the efficiency, for any i ∈ N ,

φi(N, v
0) =

1

n
v0(N) =

1

n
[v(N)−

∑
j∈N

v({j})].

Let w := v− v0, it is obvious that 〈N,w〉 is an inessential game. According
to the inessential game property, we have φi(N,w) = w({i}) = v({i}).

Because v = w + v0, with linearity it follows that

φi(N, v) = φi(N,w) + φi(N, v
0)

= v({i}) +
1

n
[v(N)−

∑
j∈N

v({j})]

= CIS(N, v).

This completes the proof. 2

Notice that in the proof of Theorem 5.1, we used ony part of the linearity
axiom. In fact, in the axiomatization, we can replace linearity by the weaker
additivity axiom.

• Additivity: For any game 〈N, v〉, 〈N,w〉 ∈ GN , φ(N, v + w) = φ(N, v) +
φ(N,w), where v +w is given by (v +w)(S) = v(S) +w(S), for all S ⊆ N .

With the appropriate selfish coefficient function, we can also obtain an ax-
iomatization of the EANS value as a corollary from Theorem 4.2. However,
we can also take the dual axiom of the m̄-equal-expectation player property.
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• Dual m̄-equal-expectation player property: For any game 〈N, v〉 ∈ GN and
i, j ∈ N , if Em̄

i (N, vD) = Em̄
j (N, vD), then φi(N, v) = φj(N, v).

Theorem 5.2 For any game 〈N, v〉 ∈ GN , the EANS value is the unique
value that satisfies efficiency, additivity, the inessential game property and
dual m̄-equal-expectation player property.

Proof. This proof is similar to the proof of Theorem 5.1 except the following
point.

For any game 〈N, v〉 ∈ GN , define v0(S) := v(S)−∑j∈S SCj(N, v), S ⊆ N ,
where SCj(N, v) = v(N) − v(N \ {j}). It is easy to verify that ∀i, j ∈ N ,
Em̄
i (N, (v0)D) = Em̄

j (N, (v0)D). Then imitating the proof of Theorem 5.1, we
can complete this proof. 2

Motivated by the duality of the CIS value and the EANS value, we build
the relationship of selfish coefficient functions of dual values in the family of
ideal values as follow.

Proposition 5.3 Let 〈N, v〉 ∈ GN . For any two selfish coefficient functions
m and m∗, the ideal values, IV m(N, v) and IV m∗

(N, v), are dual if the selfish
coefficient functions satisfy m∗(n− s) = m(s), s = 1, 2, . . . , n− 1.

Proof. Let 〈N, v〉 ∈ GN . For any two selfish coefficient functionsm andm∗, the
ideal values, IV m(N, v) and IV m∗

(N, v), are dual if and only if, IV m(N, v) =
IV m∗

(N, vD). So we need to prove that m∗(n− s) = m(s), s = 1, 2, . . . , n− 1
implies that IV m(N, v) = IV m∗

(N, vD).

According to Proposition 3.3, it is easy to get that, for i ∈ N ,

IV m
i (N, v)

=
∑

S(N,S3i

1
2n−1m(s)v(S) + 1

n
[v(N)− ∑

j∈N

∑
S(N,S3j

1
2n−1m(s)v(S)]

= 1
n
v(N) +

∑
S(N,S3i

n−s
n2n−1m(s)v(S)− ∑

S(N,S 63i

s
n2n−1m(s)v(S).

(8)
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Similarly,

IV m∗
i (N, vD)

=
∑

S(N,S3i

1
2n−1m

∗(s)vD(S) + 1
n
[vD(N)− ∑

j∈N

∑
S(N,S3j

1
2n−1m

∗(s)vD(S)]

= 1
n
v(N) +

∑
S(N,S3i

n−s
n2n−1m

∗(s)vD(S)− ∑
S(N,S 63i

s
n2n−1m

∗(s)vD(S)

= 1
n
v(N) +

∑
S(N,S3i

n−s
n2n−1m

∗(s)[v(N)− v(N \ S)]

− ∑
S(N,S 63i

s
n2n−1m

∗(s)[v(N)− v(N \ S)]

= 1
n
v(N)− ∑

S(N,S3i

n−s
n2n−1m

∗(s)v(N \ S) +
∑

S(N,S 63i

s
n2n−1m

∗(s)v(N \ S)

= 1
n
v(N) +

∑
S(N,S3i

n−s
n2n−1m

∗(n− s)v(S)− ∑
S(N,S 63i

s
n2n−1m

∗(n− s)v(S).

(9)

By comparing Equation (8) with Equation (9), we can get that m∗(n−s) =
m(s), s = 1, 2, . . . , n − 1, implies that IV m(N, v) = IV m∗

(N, vD). So this
completes the proof. 2

As a corollary, we obtain that the family of ideal values is self-dual.

6 Concluding remarks

In this paper, we gave two types of characterization of ideal values for co-
operative TU-games: an axiomatization and a dynamic process. Ideal values
are based on the idea that players expect to receive a certain part, determined
by a selfish coefficient function, from the worths of the coalitions they belong
to. Since it usually is not feasible to respect all players individual expected
rewards, the values need to be normalized in some way, yielding the class of
ideal values. We compared the ideal values with three other classes from the
literature, and saw that (i) they are exactly the coalitional monotonic ESL
values, (ii) contain the class of procedural values being the weakly monotonic
ideal values, and (iii) contain the least square values being the ideal values
satisfying the inessential game property.

Future research on ideal values will be done on, for example, strategic im-
plementation. Also, we will consider more general selfish coefficient functions.
In this paper, we assumed the selfish coefficient function to be symmetric
meaning that the share the players in a coalition expect to receive from the
coalition’s worth only depends on the size of the coalition. In reality, individ-
ual players might have different expectations about their share in the worths
of coalitions, and it is interesting to see what results are still valid (in original
or modified form) for these more general selfish coefficient functions. Also,
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the impact of different degrees of selfishness on the above mentioned strategic
implementation will be studied.

Since the family of ideal values contains the procedural values, it also con-
tains the egalitarian Shapley values (see Joosten (1996) and van den Brink,
Funaki and Ju (2013)) as a special class. It is worthwhile to investigate if
within the family of ideal values there are other ways to bring egalitarianism
into TU-game solutions.

Finally, certain specific ideal values might be worth investigating in more
detail. In this paper, we already considered the CIS and EANS values. Another
interesting ideal value might be based on the DP-value, where the selfish
coefficient function and corresponding individual expected rewards are simply
taken as every player expecting a fraction 1

s
of the worth of coalition S.
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