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Abstract

This article generalises the results of Säıdi and Zakoian (2006) to a considerably larger
class of nonlinear ARCH models with discontinuities, leverage effects and robust news
impact curves. We propose a new method of proof for the existence of a strictly
stationary and ϕ-mixing solution. Moreover, we show that any path converges to this
solution. The proof relies on stochastic recurrence equation theory and builds on the
work of Bougerol (1993) and Straumann (2005). The assumptions that we need for
this approach are less restrictive than those imposed in Säıdi and Zakoian (2006) and
typically found in Markov chain theory, as they require very little from the distribution
of the underlying process. Furthermore, they can be stated in a general setting for
random functions on a separable Banach space as is done in Straumann and Mikosch
(2006). Finally, we state sufficient conditions for the existence of moments.

1 Introduction

Since Engle (1982) introduced the autoregressive conditional heteroskedasticity (ARCH)
model, many extensions and variations have been proposed in the literature to model the
volatility of time series. These models typically define the dynamics of a heteroskedastic
time series (εt)t∈Z as

εt = σtηt,

σ2t = σ(εt−1, εt−2, . . .),

where (ηt)t∈Z is a strictly stationary and ergodic sequence of random variables and the
volatility σt is a positive and measurable function of the past (εt−1, εt−2, . . .). Important
examples are the generalized ARCH (GARCH) model of Bollerslev (1986), the exponential
GARCH model of Nelson (1991) and the threshold GARCH model introduced by Zakoian
(1994).

In this paper we study a class of nonlinear ARCH processes that generalise the model
introduced in Säıdi and Zakoian (2006), which takes the form

εt = σtηt,

σ2t = ω + αε2t−11
{
ε2t−1 > kε2t−2

}
,

(1.1)
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where again (ηt)t∈Z is a strictly stationary and ergodic sequence of random variables,
the parameters α and k are nonnegative and ω is positive. Note that (1.1) includes the
traditional ARCH(1) at k = 0 and the conditional homoskedastic model, a model with
constant volatility, at α = 0. In fact, model (1.1) is an endogenous regime switching
model between these two specifications. The model changes from the constant volatility
regime to the ARCH(1) specification when the relative variation ε2t−1/ε

2
t−2 becomes large,

indicating a setting in which it is more likely for the volatility to be time varying. See the
original paper for a more extensive discussion of the model and Säıdi (2003) for empirical
motivation based on financial time series data.

The stability properties of (1.1) are non standard because the updating equation has
a discontinuity. Firstly, this creates nonlinear dynamics so that the theory on Lyapunov
exponents as developed in Bougerol and Picard (1992a,b) cannot be used. Secondly,
stochastic recurrence equation theory as developed in Bougerol (1993) and Straumann
(2005) cannot be directly applied. That approach in general tries to expand the model
back into the infinite past and attempts to show that this converges to a limit. This limit
can then be shown to be a solution of the model with nice properties such as stationarity.
However, nonlinear models often make expanding backwards next to impossible and thus
one has to resort to imposing contraction conditions involving Lipschitz continuity to en-
sure convergence. The discontinuity in our updating equation violates those assumptions.

Säıdi and Zakoian (2006) avoid the described problems by opting for another approach
based on Markov chain theory to study the stability properties of (1.1). They show the
existence of a stationary and β-mixing solution, under the condition that the distribution of
the underlying process (ηt)t∈Z is independent and identically distributed (iid), has strict
positive density and fixed moments E(ηt) = 0 and E(η2t ) = 1. This paper extends the
stochastic recurrence equation theory by introducing new assumptions that allow for the
discontinuity and ensure backward expanding converges. These assumptions are based on
the observation that there is a positive probability for the volatility to be constant, that
is σ2t equals ω, irrespective of the past volatility (σ2s)s<t. Under moderate conditions, this
will occur for infinitely many t ∈ Z and thus expanding backwards into the past becomes
a finite operation, which immediately guarantees convergence. With our approach we
show the existence of a stationary and ergodic or ϕ-mixing solution, and that any path
converges to this solution at any rate. The assumptions needed to get these results are less
strict than those imposed in Säıdi and Zakoian (2006). Moreover, the condition that σ2t
equals ω with positive probability can easily be extended to a general setting for random
functions on a separable Banach space: the functions need to have a positive probability
to be constant. This allows us to model the time varying variables εt and σt as functions of
the model parameters, which can be used to obtain stronger inference results as is done in
Straumann and Mikosch (2006). Moreover, the theory extends to a general setting beyond
volatility models.

In what follows, Section 2 discusses stability conditions for random functions on sep-
arable Banach spaces and states our main results in their most general form. Section 3
specifies a class of nonlinear ARCH models that contains model (1.1), applies the results of
Section 2 and discusses some examples including leverage effects and robust news impact
curves. Section 4 derives a sufficient condition for the existence of moments to the class
of models in Section 3 and applies it to the examples introduced.
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2 General results

The aim of this section is to prove our main results on the existence of a stationary ergodic
solution to which all paths converge (Theorem 2.1) and the existence of a solution that
is ϕ-mixing at geometric rate (Theorem 2.4). We will base our treatment of stability on
stochastic recurrence equations (SREs) as is done in Straumann (2005) and Straumann and
Mikosch (2006). The main advantage of stochastic recurrence equation (SRE) techniques
is that they are very general. For example, proposition 7.6 in Kallenberg (2002) proves
that any homogeneous Markov chain can be seen as a solution to a SRE. We refer the
reader to Diaconis and Freedman (1999) for a thorough overview of SREs.

Let S be a closed subset of a separable Banach space equipped with a norm ‖ · ‖ and
Borel sigma-algebra B(S) and let (E, E) be a measurable space. Let (ηt)t∈Z be a sequence
of stochastic elements taking values in E and let φ : S × E → S be a measurable map.
Then we can define a sequence of random functions (φt)t∈Z by setting φt := φ(·, ηt). Let
T be either Z or N. A stochastic process (Xt)t∈T taking values in S that satisfies

Xt+1 = φt(Xt) ∀t ∈ T(2.1)

is said to be a solution to the SRE associated with (φt)t∈Z if T = Z, and a partial solution
if T = N. We now construct a specific possible solution (Yt)t∈Z to (2.1) by using the

backward iterates defined as φ
(0)
t = IdS and

φ
(m)
t = φt ◦ φt−1 · · · ◦ φt−m+1, m ∈ N.

Let x ∈ S be an element such that

Yt+1 := lim
m→∞

φ
(m)
t (x)(2.2)

exists almost surely for all t ∈ Z. Bougerol (1993) and Straumann and Mikosch (2006)
show that this is the case under appropriate regularity conditions involving the contracting
behavior of each φt and the distribution of (φt)t∈Z. Moreover, they show that the sequence
of limits (Yt)t∈Z is then the unique ergodic solution to (2.1) and that any partial solution
converges to this unique one at a geometric rate as t → ∞. In this article we pursue a
similar approach, we also focus on the limit of the backward iterates in (2.2), show that
it is well defined and that the resulting sequence (Yt)t∈Z possesses the right properties.
However, we rely on considerably different conditions. In particular, we do not make use
of the contraction condition in Bougerol (1993).

Assumption A. The sequence (φt)t∈Z satisfies the following conditions:

A1. The function φ is B(S)× E/B(S) measurable.

A2. The sequence (ηt)t∈Z is strictly stationary ergodic.

A3. There exists anM ∈ N, an eventA ∈ EM and a c ∈ S such that (ηt, ηt−1, . . . , ηt−M+1) ∈
A with positive probability and

(ηt, ηt−1, . . . , ηt−M+1) ∈ A ⇒ φ
(M)
t (x) = c ∀x ∈ S.
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Condition A1 is rather weak and designed to ensure that backward iterates of (φt)t∈Z
evaluated at any point x ∈ S are proper random variables in S. Condition A2 is common
in the literature on SREs, note that it is less strict than assuming that the sequence
(ηt)t∈Z is independent and identically distributed. An in depth discussion on stationarity
and ergodicity can, for example, be found in chapter one of Krengel (1985). Condition A3
is less common, but generalises the main feature of the nonlinear ARCH model studied in
Säıdi and Zakoian (2006). Specifically, condition A3 defines a model where the random
function φt has a positive probability of being equal to a constant function with value c.

Under Assumption A we can prove that the limit of the backward iterates (2.2) ex-

ists, by showing that the sequence of backward iterates (φ
(m)
t (x))m∈N is almost surely

eventually constant. The proof relies on the fact that events of positive probability occur
infinitely often over time in a strictly stationary ergodic sequence. Therefore the event
(ηt, ηt−1, . . . , ηt−M+1) ∈ A occurs for infinitely many t ∈ Z and thus the limit of the back-
ward iterates at such a t then trivially exists and is equal to c. Uniqueness and convergence
of paths follow from the same observation, since any two paths in model (2.1) will coincide
at all such t, and therefore must be the same (eventually).

Theorem 2.1. Let Assumption A hold and x ∈ S. Then the sequence (φ
(m)
t (x))m∈N is

almost surely eventually constant for all t ∈ Z. Consequently, (Yt)t∈Z is well defined,
strictly stationary ergodic and the unique solution to (2.1). Moreover, for any partial
solution (Ỹt)t∈N and function f : N→ R we have limt→∞ f(t)‖Yt − Ỹt‖ = 0.

We have to discuss some preliminary results on strictly stationary ergodic (SE) se-
quences before we can prove Theorem 2.1. One reason that SE sequences play a big role
in time series analysis is that they satisfy the conditions needed for Birkhoff’s ergodic
theorem, Birkhoff (1931). This theorem applied to an SE sequence of real valued random
variables (Xt)t∈N states that if E|X1| <∞, then almost surely

lim
n→∞

1

n

n∑
t=1

Xt = E(X1).

SE sequences are also easy to manipulate to create new SE sequences. We provide two
results from Straumann (2005).

Lemma 2.2. Let (E, E) and (Ẽ, Ẽ) be two measurable spaces, let (Xt)t∈Z be an SE sequence
of E-valued random elements and let f : EN → Ẽ be a EN/Ẽ measurable function. Then
the sequence of Ẽ-valued random elements (X̃t)t∈Z defined as X̃t = f(Xt, Xt−1, . . .) is SE.

Proof. See proposition 2.1.1 in Straumann (2005). �

Lemma 2.3. Let (E, E) be a measurable space and let (S,B(S)) be a closed subset of a
separable Banach space endowed with its Borel sigma-algebra. Let (Xt)t∈Z be a SE sequence
of E-valued random elements and let (fm)m∈N be a sequence of functions EN → S that
are EN/B(S) measurable. Suppose that there exists a t ∈ Z such that

lim
m→∞

fm(Xt, Xt−1, . . .)

exists almost surely. Then there exists a function f : EN → S that is EN/B(S) measurable
and satisfies

X̃t := lim
m→∞

fm(Xt, Xt−1, . . .) = f(Xt, Xt−1, . . .)
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for all t ∈ Z. Moreover, the sequence of S-valued random elements (X̃t)t∈Z is SE.

Proof. See corollary 2.1.3 in Straumann (2005). �

Proof of Theorem 2.1. Fix a t ∈ Z. We begin by proving that (φ
(m)
t (x))m∈N is

almost surely eventually constant. Define for s ≥ 0,

Is = 1{(ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A}.

The sequence (Is)s≥0 is SE by Lemma 2.2. Then, by Birkhoff’s ergodic theorem, almost
surely

lim
n→∞

1

n

n−1∑
s=0

Is = E(I0) = P((ηt, ηt−1, . . . , ηt−M+1) ∈ A) > 0.

This implies that the event Is = 1 occurs almost surely for infinitely many s ≥ 0. Therefore
we can choose the smallest such s, note that it is a random variable, and conclude that

φ
(m)
t (x) = φ

(s)
t

(
φ
(m−s)
t−s (x)

)
= φ

(s)
t

(
φ
(M)
t−s

(
φ
(m−s−M)
t−s−M (x)

))
= φ

(s)
t (c)

for all m ≥ s+M . It follows by Lemma 2.3 that the sequence (Yt)t∈Z is well defined and
SE. Moreover, for s = 0 we get Yt+1 = c = φt(Yt), while for s ≥ 1 we have

Yt+1 = lim
m→∞

φ
(m)
t (x) = φ

(s)
t (c) = φt

(
φ
(s−1)
t−1 (c)

)
= φt

(
lim
m→∞

φ
(m)
t−1(x)

)
= φt(Yt).

Therefore (Yt)t∈Z is a solution to (2.1). If (Xt)t∈Z is any other solution to (2.1), then

Xt+1 = φ
(s)
t

(
φ
(M)
t−s (Xt−s−M )

)
= φ

(s)
t (c) = Yt+1,

and hence it is identical to (Yt)t∈Z.
It remains to prove the final statement. Similarly as before, we can almost surely find

an s > M − 1 such that (ηs, ηs−1, . . . , ηs−M+1) ∈ A and thus

Yt+1 = φ
(t−s)
t

(
φ(M)
s (Ys−M+1)

)
= φ

(t−s)
t (c) = φ

(t−s)
t

(
φ(M)
s

(
Ỹs−M+1

))
= Ỹt+1

for all t ≥ s. We conclude that

lim
t→∞

f(t)‖Yt − Ỹt‖ = 0,

irrespective of the function f , because ‖Yt − Ỹt‖ is almost surely eventually zero. �

A consequence of Theorem 2.1 is that we can derive sufficient conditions for the process
(Yt)t∈Z to be ϕ-mixing. Let (Xt)t∈Z be a stationary process and let F ts, for −∞ ≤ s <
t ≤ ∞, denote the sigma algebra generated by (Xs, Xs+1, . . . , Xt). Then the ϕ-mixing
coefficients for (Xt)t∈Z are given by

ϕX(t) = sup
C∈F0

−∞, D∈F∞t , P(C)>0

|P(D|C)− P(D)|

and the process is called ϕ-mixing if ϕX(t)→ 0 as t→∞.
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Theorem 2.4. Suppose Assumption A holds and that additionally (ηt)t∈Z is ϕ-mixing
with geometric rate. Then (Yt, ηt)t∈Z is ϕ-mixing with geometric rate.

The proof will depend on Theorem 2.1 as follows. Usually Yt+1 depends on the entire
past (ηt, ηt−1, . . .). However, if the event (ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A occurs for some

s ≥ 0, then Yt+1 = φ
(s)
t (c) and thus Yt+1 depends only on (ηt, . . . , ηt−s+1). Therefore it

will be enough to show that the probability that s is large vanishes at a geometric rate.
To show this we need the following two lemma’s.

Lemma 2.5. Let (E, E) and (Ẽ, Ẽ) be two measurable spaces, let (Xt)t∈Z be a sequence of
E-valued random elements that is ϕ-mixing (with geometric rate). For a m ∈ N we denote
f : Em → Ẽ to be a Em/Ẽ measurable function. Then the sequence of Ẽ-valued random
elements (X̃t)t∈Z defined as

X̃t = f(Xt, . . . , Xt−m)

is ϕ-mixing (with geometric rate).

Proof. The sigma-algebra generated by (. . . , X̃−1, X̃0) is contained in the sigma-algebra
generated by (. . . , X−1, X0). Similarly, the sigma-algebra generated by (X̃t, X̃t+1, . . .) is
contained in the sigma-algebra generated by (Xt−m, Xt−m+1, . . .). Therefore ϕX̃(t) ≤
ϕX(t−m) for all t ≥ m. �

Lemma 2.6. Let (E, E) be a measurable space and let (Xi)i∈Z be a strictly stationary
sequence of E-valued random elements that is ϕ-mixing. Then for any B ∈ E such that
P(X1 /∈ B) < 1, we have

P

(
t⋂
i=1

{Xi /∈ B}

)
→ 0 as t→∞

at a geometric rate.

Proof. For a real number z ∈ R we write bzc to denote the largest integer that is not
larger than z. Also, we use the ; symbol to denote joint probabilities. For any integer
k ≤ t we have

P(Xt /∈ B; . . . ;X1 /∈ B)

=

bt/kc−1∏
i=0

P(Xt−ik /∈ B; . . . ;Xt−(i+1)k+1 /∈ B | Xt−(i+1)k /∈ B; . . . ;X1 /∈ B)

≤
bt/kc−1∏
i=0

P(Xt−ik /∈ B | Xt−(i+1)k /∈ B; . . . ;X1 /∈ B)

≤
bt/kc−1∏
i=0

P(Xt−ik /∈ B) + ϕX(k)

= (P(X1 /∈ B) + ϕX(k))bt/kc−1 .

Choose k big enough such that P(X1 /∈ B)+ϕX(k) < 1, which can be done since ϕX(k)→ 0
as k → ∞. Note that if any of the events that we conditioned on has probability zero,
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then the lemma follows immediately. �

Proof of Theorem 2.4. For −∞ ≤ s < t ≤ ∞ we write Gts to denote the sigma
algebra generated by (ηs, ηs+1, . . . , ηt) and Hts to denote the sigma algebra generated by
((Ys, ηs), (Ys+1, ηs+1), . . . , (Yt, ηt)). Fix t ∈ N and let s ≥ 0 again be the random variable
that denotes the smallest number such that (ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A occurs. Then

we have Yt+1 = limm→∞ φ
(m)
t (x) = φ

(s)
t (c). Therefore, for a B ∈ B(S) and a k ≥ 0 the

event {Yt+1 ∈ B ; s ≤ k} ∈ Gtt−k−M+1, since {s ≤ k} ∈ Gtt−k−M+1. Similarly, for any
D ∈ H∞t the event D ∩ {s ≤ t/2 −M + 1} ∈ G∞dt/2e, where we write dze to denote the

smallest integer that is not smaller than z. It follows for C ∈ H0
−∞ ⊆ G0−∞, by partitioning

on s ≤ t/2−M + 1 and its complement, that

|P(D|C)− P(D)| ≤ ϕη(dt/2e) + P(D ; s > t/2−M + 1|C) + P(D ; s > t/2−M + 1).

Since {s > t/2−M + 1} ∈ Gtdt/2e we get

P(D ; s > t/2−M + 1|C) ≤ P(s > t/2−M + 1|C) ≤ P(s > t/2−M + 1) + ϕη(dt/2e).

It follows that

ϕ(Y,η)(t) ≤ 2ϕη(dt/2e) + 2P(s > t/2−M + 1).

The first term goes geometrically fast to zero by assumption. For the second part we
define Xt = (ηt, ηt−1, . . . , ηt−M+1). Then (Xt)t∈Z is ϕ-mixing by Lemma 2.5. Therefore,
by Lemma 2.6, and the fact that P(Xt ∈ A) > 0, we have

P(s > t/2−M + 1) = P

dt/2e⋂
i=0

{Xt−i /∈ A}

→ 0

geometrically fast as t→∞. �

3 Application to Nonlinear ARCH

We now introduce a general nonlinear ARCH model that contains the model of Säıdi and
Zakoian (2006) and illustrate how to apply our main results of Section 2. Let u : R2 →
[0,∞) be a nonnegative Borel measurable function that possibly depends on a vector of
parameters θ that lie in a parameter space Θ. The general model of interest is given by

εt = σtηt,

σ2t = ω + u(εt−1, σ
2
t−1; θ)1

{
ε2t−1 > kε2t−2

}
,

(3.1)

where ω and k are strictly positive. The generalisation compared to (1.1) is that we
replace the term αε2t−1 with a general updating function u. We discuss model (1.1) and
other examples in Section 3.1.

We start by analysing the dynamics concerning the time varying volatility. Given
that u is nonnegative we immediately see that any possible solution to (3.1) must satisfy
σ2t ∈ I := [ω,∞). Assuming that the model is well specified, we get

σ2t = ω + ũ(σ2t−1, ηt−1; θ)1
{
σ2t−1η

2
t−1 > kσ2t−2η

2
t−2
}
,(3.2)
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where ũ(σ2t−1, ηt−1; θ) = u(εt−1(σt−1, ηt−1), σ
2
t−1; θ). Our analysis will focus on this model,

since any solution to (3.2) can be used to create a solution to (3.1). Note that σ2t depends
both on σ2t−1 and σ2t−2. The random functions (φt)t∈Z associated with (3.2) will therefore
be defined on I2 and are given by

φt−1(x, y) = φ(x, y, ηt−1, ηt−2) = ω + ũ(x, ηt−1; θ)1
{
xη2t−1 > kyη2t−2

}
.

Unfortunately these are not in the framework of the SRE theory in Section 2, since φ :
I2 × R2 → I. Therefore we will look at the two dimensional model

(σ2t , σ
2
t−1) = (φt−1(σ

2
t−1, σ

2
t−2), σ

2
t−1),(3.3)

which has state space S := I2. The random functions associated with (3.3) are given by

ψt−1(x, y) = ψ(x, y, ηt−1, ηt−2) = (φt−1(x, y), x).

Define φ
(−1)
t (x, y) = y and φ

(0)
t (x) = x, then the backward iterates for m ∈ N are given by

φ
(m)
t (x, y) = φt

(
φ
(m−1)
t−1 (x, y), φ

(m−2)
t−2 (x, y)

)
,

ψ
(m)
t (x, y) =

(
φ
(m)
t (x, y), φ

(m−1)
t−1 (x, y)

)
.

We now state the weakest assumption for our nonlinear ARCH model that ensures we
satisfy Assumption A and therefore obtain the results from Theorems 2.1 and 2.4. This
result is derived in Theorem 3.2.

Assumption B.

B1. The sequence (ηt)t∈Z is SE.

B2. The following event has positive probability of occurring:

η2t ≤ inf
x∈I

kxη2t−1
ω + ũ(x, η2t−1; θ)

and η2t−1 ≤ inf
x∈I

kxη2t−2
ω + ũ(x, η2t−2; θ)

.(3.4)

Assumption B is very general, but quite complex and thus hard to interpret. It is a
restriction on the joint probability law of (ηt, ηt−1, ηt−2) that confines ηt and ηt−1 with
positive probability to an area described by the functions in (3.4). This area can be
abstract and depends on the parameters k and θ. In what follows we derive a condition
that is easier to verify than Assumption B2 by only focussing on this area close to the
origin. Note that if ηt and ηt−1 given ηt−2 can be arbitrarily small with positive probability,
then Assumption B2 is satisfied if the infima are nonzero. To that end we define the
function

g(η; θ) := sup
x∈I

ũ(x, η; θ)

x
.

Assumption C.

C1. For all η ∈ R and θ ∈ Θ we have g(η; θ) <∞.

C2. The sequence (ηt)t∈Z is SE.

8



C3. There exist a N ∈ N such that P(|ηt| < 1/n; |ηt−1| < 1/m | ηt−2) > 0 almost surely
for all n,m ≥ N . Also the probability that ηt = 0 is zero.

Assumption C1 is an assumption on the updating function u of model (3.1). The
condition is of a similar nature as those found in theory on geometric ergodicity of nonlinear
time series, see Cline and Pu (1999). It implies that the function ũ as a function of x is
bounded on any closed interval, and asymptotically as x → ∞ is bounded by a linear
function. These two facts ensure that the infima in (3.4) are nonzero.

The other conditions are purely on the distribution of (ηt)t∈Z. Assumption C3 entails
that ηt and ηt−1 have positive probability of being arbitrarily small, independent of the
value of ηt−2. An example on how Assumption C3 can be derived is if (ηt)t∈Z is obtained
as a SE solution from another model. For example, suppose that (ηt)t∈Z is given by a SE
solution to an autoregressive process of order one

ηt+1 = βηt + ζt.

Then a sufficient condition would be that (ζt)t∈Z is iid, that ζt is absolutely continuous
with respect to the Lebesque measure on R and that ζt has a strictly positive probability
density function. Note that these conditions imply that any set in B ∈ B(R×R×R) has
P((ηt, ηt−1, ηt−2) ∈ B) > 0, so in particular Assumption C3 is implied.

If we can assume that the sequence (ηt)t∈Z is independent, then Assumption C simpli-
fies as follows:

Assumption D.

D1. For all η ∈ R and θ ∈ Θ we have g(η; θ) <∞.

D2. The sequence (ηt)t∈Z is iid.

D3. There exist a N ∈ N such that P(|ηt| < 1/n) > 0 for all n ≥ N . Also the probability
that ηt = 0 is zero.

Assumption D3 implies Assumption C3 if (ηt)t∈Z is iid and describes that ηt being
arbitrarily small has positive probability. This, for example, is implied if ηt is absolutely
continuous with respect to the Lebesque measure on R and the probability density function
of ηt is strictly positive on an open interval around zero. Common distributions such as
the normal and student-t distribution satisfy this condition.

Lemma 3.1. Assumption C implies Assumption B.

Proof. We need to check whether Assumption B2 is satisfied. Assumption C1 ensures
that the random variable

inf
x∈I

kxη2t−1
ω + ũ(x, η2t−1; θ)

is equal to zero if and only if ηt−1 = 0, since

inf
x∈I

kxη2t−1
ω + ũ(x, η2t−1; θ)

≥ inf
x∈I

kxη2t−1
ω + g(ηt−1; θ)x

=
kη2t−1

1 + g(ηt−1; θ)
.

9



Assumption C3 therefore implies that kη2t−1/(1 + g(ηt−1; θ)) is nonzero with probability
one. Therefore, the probability that

η2t ≤
kη2t−1

1 + g(ηt−1; θ)
and η2t−1 ≤

kη2t−2
1 + g(ηt−2; θ)

is greater than zero. This follows, since the infima are nonzero, due to the fact that ηt and
ηt−1 can be arbitrarily small with positive probability so in particular, they have positive
probability to be smaller than these upper bounds. �

Theorem 3.2. If Assumption B holds, then there exists a solution ((εt, σ
2
t ))t∈Z to (3.1)

given by

σ2t+1 = lim
m→∞

φ
(m)
t (x, y),

εt+1 =

√
lim
m→∞

φ
(m)
t (x, y)ηt+1.

(3.5)

This solution is stationary ergodic, unique and any partial solution converges to it at any
rate. Moreover, if additionally (ηt)t∈Z is ϕ-mixing with geometric rate, then ((εt, σ

2
t ))t∈Z

is ϕ-mixing with geometric rate.

Proof. We will start by verifying that assumptions A are all satisfied, so that Theorem
2.1 implies that (

lim
m→∞

ψ
(m)
t (x, y)

)
t∈Z

is a SE and unique solution to (3.3) such that all partial solutions converge to it. Assump-
tion A1 is satisfied by Borel-measurability of u. Assumption A2 requires the sequence
((ηt, ηt−1))t∈Z to be SE, which is implied by B1 and Lemma 2.2. Finally, we will show

that (3.4) implies that ψ
(3)
t (x, y) = (ω, ω) for all (x, y) ∈ S and therefore implies Assump-

tion A3. Note that

φ
(2)
t (x, y) = φt(φt−1(x, y), x) = ω + ũ(φt−1(x, y), ηt; θ)1

{
φt−1(x, y)η2t > kxη2t−1

}
,

so that φ
(2)
t (x, y) = ω for all (x, y) ∈ S iff η2t ≤

kxη2t−1

φt−1(x,y)
for all (x, y) ∈ S, which is implied

by

η2t ≤ inf
x∈I

kxη2t−1
ω + ũ(x, η2t−1; θ)

.

The first part of the proof is concluded by noting that

ψ
(3)
t (x, y) = (φ2t (φt−2(x, y), x), φ2t−1(x, y)) = (φ2t (x̃, ỹ), φ2t−1(x, y)).

Next, a unique and SE solution to (3.3) to which all partial solutions converge to
implies the existence of a solution to (3.2) with the same properties, by projecting on the
first coordinate. The found solution is given by

lim
m→∞

φ
(m)
t (x, y),

10



which is a measurable function of (ηt−1, ηt−2, . . .). Therefore εt = σtηt is a measurable
function of (ηt, ηt−1, . . .) and thus (3.5) is a SE solution to (3.1) by Lemma 2.2. Uniqueness
and convergence of partial solutions transfer directly from those properties for (3.2).

Finally, suppose (ηt)t∈Z is ϕ-mixing with geometric rate. Then ((ηt, ηt−1))t∈Z is ϕ-
mixing with geometric rate by Lemma 2.5 and thus(

lim
m→∞

φ
(m)
t (x, y), ηt+1

)
t∈Z

is ϕ-mixing with geometric rate by applying Theorem 2.4 and Lemma 2.5 again. Applying
Lemma 2.5 once more shows that (3.5) is ϕ-mixing with geometric rate. �

3.1 Examples

This section discusses a couple of specifications of the updating function u in model (3.1).
We assume that the sequence (ηt)t∈Z is ϕ-mixing at a geometric rate and satisfies the
distributional conditions of either Assumption C or Assumption D. We then display how
quickly our theory can be applied by checking whether Assumption C1/D1 holds for these
examples.

Example 1 (Säıdi and Zakoian (2006)). First, we consider model (1.1). We repeat it
here for readability.

εt = σtηt,

σ2t = ω + αε2t−11
{
ε2t−1 > kε2t−2

}
,

where α is nonnegative. We have u(εt−1, σ
2
t−1;α) = αε2t−1, which is a measurable and

nonnegative function. Moreover, the function g(ηt;α) = α < ∞, so Assumption C1
respective D1 is immediately satisfied. Therefore there exists a strictly stationary and
ϕ-mixing at geometric rate solution to which all partial solutions converge almost surely.
Säıdi and Zakoian (2006) assume that (ηt)t∈Z is iid. They then add the assumptions
that ηt is absolutely continuous with respect to the Lebesque measure on R and ηt has a
strictly positive probability density function. Note that this assumption is stronger than
our Assumption D3. Finally, Säıdi and Zakoian (2006) assume that Eηt = 0 and Eη2t = 1,
while we don’t have any moment conditions at all.

Example 2 (Asymmetric news impact curve). Second, we consider a model that
allows the update function to be asymmetric in εt−1 rather than using the quadratic
update ε2t−1 considered above. In particular, we follow Engle and Ng (1993) in using the
asymmetric news impact curve u(εt−1, σ

2
t−1) = α(εt−1 + δσt−1)

2 and obtain the following
model

εt = σtηt,

σ2t = ω + α(εt−1 + δσt−1)
2
1
{
ε2t−1 > kε2t−2

}
,

where α is nonnegative and δ ∈ R. Notice how for δ < 0, negative returns εt have
greater impact on future volatility σ2t+1 than positive returns of the same magnitude, thus
capturing the empirical regularity known as the leverage effect. In this example we have
ũ(x, ηt;α) = αx(ηt+δ)

2 and thus g(ηt;α) = α(ηt+δ)
2 <∞. Therefore, Assumption C1/D1

is satisfied again and thus there exists a strictly stationary and ϕ-mixing at geometric rate
solution to which all partial solutions converge almost surely.

11



Example 3 (Robust volatility update). Finally, we consider a robust nonlinear ARCH
model by adopting an update function that is bounded in εt−1 rather than quadratic. In
particular, we study a model which embodies the news impact curve of the student-t score
volatility model introduced in Creal et al. (2011, 2013) and the beta-t EGARCH model
proposed by Harvey (2013),

εt = σtηt, ηt ∼ t(λ)

σ2t = ω + α
ε2t−1

1 + λ−1ε2t−1
1
{
ε2t−1 > kε2t−2

}
,

where α and λ are nonnegative. Notice that the innovations ηt are allowed to be fat
tailed. In particular, they belong to the family of student’s-t distributed random variables
with λ degrees of freedom. The updating function of this model becomes more robust
(with a lower upper bound) as λ→ 0 so that the innovations ηt become fatter tailed and
outliers become more frequent. In contrast, as we approach the Gaussian case by letting
λ → ∞, then the updating function reverts back to that of the nonlinear ARCH model

considered in Säıdi and Zakoian (2006). We now have ũ(x, ηt;α, λ) = α
xη2t

1+xη2t /λ
≤ αλ, thus

g(ηt;α, λ) ≤ αλ/ω < ∞ and Assumption C1/D1 is satisfied again. Hence, there exists a
strictly stationary and ϕ-mixing at geometric rate solution to which all partial solutions
converge almost surely.

4 Moments

Moment conditions for model (3.1) can be obtained by showing that the moments of the
backward iterates have a converging subsequence. To state our result we define

h(η; θ) = lim sup
x→∞

ũ(x, η; θ)

x
.

Theorem 4.1. Let Assumption D hold. Let p ≥ 1 and Θ̃ ⊆ Θ be such that E|ηt|2p < ∞
and E g(ηt; θ)

p <∞ and

E
(
h(ηt; θ)h(ηt−1; θ)1

{
η2t >

kη2t−1
h(ηt−1; θ)

})p
< 1(4.1)

for all θ ∈ Θ̃. Then the unique solution to (3.5) has finite absolute 2p’th moment, that is
E|εt|2p <∞ and Eσ2pt <∞.

Theorem 4.1 is a generalisation of Theorem 3.3 in Säıdi and Zakoian (2006), their
assumption to ensure moments in model (1.1) follows as a specific case from our result.
The expectation in condition (4.1) can be hard to calculate, because of the indicator
function.

Corollary 4.2. Condition (4.1) is implied by

Eh(ηt; θ)
p < 1.(4.2)

Proof. This follows directly from Assumption D2 and the fact that the indicator function
is bounded by one. �
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Condition (4.2) is much easier to calculate, but sacrifices flexibility by ignoring the
indicator function. Säıdi and Zakoian (2006) show that (4.1) delivers more flexible bounds
for model (1.1) than (4.2) when ηt ∼ N(0, 1). We will discuss the examples of Section 3.1
to illustrate how both conditions can be useful.

Proof of Theorem 4.1. By Assumption D2 we have E|εt|2p = E|ηt|2pEσ2pt , so we
only have to show Eσ2pt <∞. We know by theorem 3.2 that

σ2t = lim
m→∞

φ
(m)
t (x, y),

so by continuity of the norm and Fatou’s lemma we have Eσ2pt <∞ if

lim inf
m→∞

E
∣∣∣φ(m)
t (x, y)

∣∣∣p <∞.(4.3)

We will prove inequality (4.3). To ease notation we will write φmt = φ
(m)
t (x, y) and suppress

the dependence of the functions g and h on θ. We have

φmt = ω + ũ
(
φm−1t−1 , ηt−1

)
1
{
φm−1t−1 η

2
t−1 > kφm−2t−2 η

2
t−2
}

≤ ω + g(ηt−1)φ
m−1
t−1

≤ ω + g(ηt−1)(ω + g(ηt−2)φ
m−2
t−2 )

Let n ∈ N be any integer. We separate the problem into three scenarios. Suppose φm−1t−1 ≤
n, then φmt is bounded by

ω + g(ηt−1)n.(4.4)

If φm−2t−2 ≤ n, then φmt is bounded by

ω + g(ηt−1)(ω + g(ηt−2)n).(4.5)

Finally, suppose φm−1t−1 , φ
m−2
t−2 ≥ n. Define

hn(η) = sup
x≥n

ũ(x, η; θ)

x
.

Then, for n ≥ ω, we have hn(η) ≤ g(η) and thus

φmt ≤ ω + hn(ηt−1)φ
m−1
t−1 1

{
η2t−1 >

kφm−2t−2 η
2
t−2

ω + ũ
(
φm−2t−2 , ηt−2

)}

≤ (1 + g(ηt−1))ω + hn(ηt−1)hn(ηt−2)φ
m−2
t−2 1

{
η2t−1 >

kη2t−2
ω/n+ hn(ηt−2)

}
.(4.6)

It follows that φmt is bounded by the sum of (4.4)-(4.6) and therefore by independence of
φm−2t−2 with ηt−1 and ηt−2 we get by Minkowski’s inequality that

[E (φmt )p]
1
p ≤ C(n) + [Efn(ηt−1, ηt−2)

p]
1
p

[
E
(
φm−2t−2

)p] 1
p
,
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where C(n) is a finite constant depending on n and

fn(ηt−1, ηt−2) = hn(ηt−1)hn(ηt−2)1

{
η2t−1 >

kη2t−2
ω/n+ hn(ηt−2)

}
.

A sufficient condition for (4.3) is to find an appropriate n ∈ N such that Efn(ηt−1, ηt−2)
p <

1. This happens for any choice of n that is large enough, as implied by (4.1) and the
dominated convergence theorem, because fn(ηt−1, ηt−2) is bounded by g(ηt−1)g(ηt−2) for
large enough n and as n→∞ it converges pointwise to

h(ηt−1)h(ηt−2)1

{
η2t−1 >

kη2t−2
h(ηt−2)

}
.

�

Example 1 (Säıdi and Zakoian (2006) continued). Using Theorem 4.1 we can follow
the approach of Säıdi and Zakoian (2006) and find the same conditions for model (1.1)
that ensure E|εt|2p < ∞ and Eσ2pt < ∞. We need µ2p := E|ηt|2p < ∞ and note that it
implies Eg(ηt;α)p = αpµ2p <∞. In this example condition (4.1) boils down to

E
(
α2η2t η

2
t−11

{
η2t >

k

α

})p
< 1.(4.7)

Using Hölder’s and Markov’s inequalities we get for any m ∈ N that the expectation in
(4.7) is bounded by

α2pµ2pE
(
η2t

{
η2t >

k

α

})p
≤ α2pµ2pµ

1/m
2pm P

(
η2mt >

(
k

α

)m)m−1
m

≤ α2pµ2pµ
1/m
2pmµ

(m−1)/m
2m

(α
k

)m−1
Therefore a sufficient condition for (4.1) is

α < max
m∈N

(
km−1

µ2pµ
1/m
2pmµ

(m−1)/m
2m

)1/(2p+m−1)

.

Example 2 (Asymmetric news impact curve continued). The model with leverage
effects requires again µ2p <∞, which implies Eg(ηt;α)p = αpE(ηt + δ)2p ≤ 22p−1αp(µ2p +
|δ|2p) < ∞. This model provides an example where the expectation in (4.1) is hard to
calculate. The condition here leads to

E
(
α2(ηt + δ)2(ηt−1 + δ)21

{
η2t >

kη2t−1
α(ηt−1 + δ)2

})p
< 1,

but we cannot easily use the Markov inequality to bound the indicator function, since this
would lead to moments of the reciprocal of ηt. Instead we use (4.2) and get the sufficient

condition α <
[
E(ηt + δ)2p

]−1/p
to obtain E|εt|2p <∞ and Eσ2pt <∞.

Example 3 (Robust volatility update continued). The robust model has a bounded
updating function for the volatility, so therefore we immediately know that µ2p <∞ is the

only condition we need E|εt|2p <∞ and Eσ2pt <∞. This result also follows from Theorem
4.1, since g(η;α, λ) ≤ αλ and h(η;α, λ) = 0 for all η ∈ R.
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5 Conclusion

This paper has taken the model introduced in Säıdi and Zakoian (2006) as a starting
point to introduce a new set of sufficient assumptions that guarantee the existence of a
stationary and ϕ-mixing solution in a general setting. These assumptions follow from a
SRE approach and are generally stated for random functions on separable Banach spaces.
The key assumption is Assumption A3, which describes that the random functions have a
positive probability to be constant, that is, the outcome is independent of the argument.
Note that this can be generalised from being constant to being a random map, as long as
the outcome is independent of the argument. Therefore Assumption A3 can be relaxed
to: there exists an M ∈ N and an event A ∈ EM such that (ηt, ηt−1, . . . , ηt−M+1) ∈ A with
positive probability and

(ηt, ηt−1, . . . , ηt−M+1) ∈ A ⇒ φ
(M)
t (x) = φ

(M)
t (y) ∀x, y ∈ S.

We have refrained from doing this, since it was unnecessary for our setting and makes the
proofs less readable. Nevertheless, this could be explored in further research.

The main advantages of our results are that they are generally stated and don’t re-
quire much from the distribution of the underlying process (ηt)t∈Z. We illustrate these
advantages in Section 3 by introducing a general nonlinear ARCH model that contains
model (1.1). We derive sufficient conditions for stationarity and ϕ-mixing in two different
scenarios. In the first scenario (Assumption C) we assume that the sequence (ηt)t∈Z is SE
and in the second (Assumption D) we assume that (ηt)t∈Z is iid. Säıdi and Zakoian (2006)
derive stability conditions for a specific case of model (3.1) and assume from the start that
(ηt)t∈Z is iid. In that scenario we have highlighted in Example 1 that our conditions are
less strict.
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