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Abstract 
This paper shows that Hausman-McFadden and related tests for the multinomial logit model are  
not informative about failure of IIA, but only about specification error in the deterministic part of 
the utilities attached to choice alternatives. It is shown that the multinomial logit cannot be 
distinguished from any more general additive random utility model when a full set of alternative 
specific constants is present. Estimation of such more general models only addresses 
specification error in the deterministic parts of the utilities and is not informative about the true 
specification of the random terms of the utilities.  
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1 Introduction 
A vast literature in industrial organization, marketing, transportation and other fields estimates 
discrete choice models that generalize the multinomial logit model (MNL) by allowing for 
correlation between the random parts of the utilities. Examples include Small's (1987) ordered 
alternatives model, Goldberg's (1995) nested logit model with multiple layers, Bresnahan, Stern, 
& Trajtenberg's (1997) Product Differentiation GEV model with overlapping nests. The main 
reason for using these models is the restrictive independence of irrelevant alternatives (IIA) 
property of MNL. Generalizations like the nested, cross-nested or mixed logit models1 all avoid 
this property to some extend and are therefore regarded as being superior in that they reflect 
reality better than the MNL does. However, in this paper I show that these models are only 
superior to MNL in the sense that they give a better approximation to an MNL that has a full set 
of alternative-specific constants for each type of actor. The difference between the chosen 
specification of the random parts of the utilities and that of the MNL is only statistically 
significant because it helps to address omitted variable bias in the deterministic parts of the 
utilities, but it is not informative about the true specification of the random parts. 
 This conclusion is reached through examination of the specification tests for the MNL that 
were developed by Hausman & McFadden (1984) with the intention to examine the validity of 
IIA. I show that these tests lose all their power if an MNL with a full set of alternative-specific 
constants is estimated. Since these constants absorb all elements of the deterministic parts of the 
utilities, failure to pass the test indicates specification error in the deterministic parts of the 
utilities. However, the tests tell us nothing about the specification of the random parts of the 
utilities. 
 The likelihood function of a nested logit model becomes flat in the parameters that 
embody a deviation from MNL once the alternative-specific constants are introduced. This 
conclusion generalizes to any generalized extreme value (GEV) model and to mixed logit 
models. If different types of actors can be distinguished, these conclusions continue to hold if 
alternative specific constants are used for each type of actor. In other words, once we have 
eliminated specification error in the deterministic parts of the utilities by absorbing it in the 
alternative-specific constants, there is nothing left in the data to inform us about the true 
specification of the random parts. 
 The implication is that generalizations of MNL that are superior in terms of the likelihood 
only appear to be so because they offer a closer approximation to the saturated MNL with a full 
set of alternative specific constants. However, such models do not tell us anything about the true 
specification of the random parts of the utilities that is in the data. This means that a large set of 
studies that have claimed to find violations of IIA and superior substitution patterns due to 
correlations between random parts of the utilities for various alternatives have not done so on 
solid empirical grounds. 

The paper unfolds as follows. In the next section the background of the analysis is 
sketched. In section 3 the introduction of alternative-specific constants in MNL will be discussed. 
Sections 4 and 5 consider the tests proposed by Hausman & McFadden (1984) when these 
constants are introduced. Since they absorb all elements of the deterministic utilities, applying the 
tests in this context implies restricting  them to the random, or idiosyncratic, parts of the utilities 
that determine the validity or violation of IIA. Section 6 discusses other possible specification 
tests of MNL. Section 7 considers heterogeneity of the actors. Section 8 concludes.   
 

                                                 
1 See McFadden (1978), Abbe, Bierlaire, & Toledo (2007), McFadden & Train (2000), respectively. 
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2 Background 
The MNL is still the most popular discrete choice model in economic research. The constituting 
property of this model is IIA (Luce, 1959), which is also generally regarded as its main weakness. 
The best known aspect of IIA is the ‘red bus – blue bus’ problem, according to which the 
introduction of a duplicate of an existing choice alternative – that does not essentially change the 
choice menu – can have substantial impact on all choice probabilities (Debreu, 1960). Perhaps 
even more important is the fact that, with identical actors, a change in attractiveness of one 
alternative implies substitution behavior towards or from the other alternatives that is determined 
in a mechanical way by the choice probabilities. 

McFadden (1974) famously developed an economic interpretation of the MNL that is 
based on the maximization of random utility. In this approach the utility attached to the 
alternatives is the sum of a deterministic part and a random part. The latter reflects idiosyncratic 
preferences unknown to the researcher. He showed that the logit model results if and only if these 
random parts are independent and identically distributed (iid) extreme value type I (EV I) 
distributed. The red bus – blue bus paradox arises from the fact that the deterministic parts of the 
utilities of the original alternative and its duplicate are identical, while the random parts are 
independent draws from the EV I distribution. The two types of buses would only really be 
duplicates if their random parts would also be identical for each consumer. 

The restrictiveness of the IIA property – and therefore of the MNL – is ultimately an 
empirical question. In some situations it may be reasonable, in others not. This suggests the 
development of tests for its validity in actual situations. McFadden (1978) showed that the 
coefficients of the logit model can be recovered from estimating the model on choices that are 
restricted to a subset of the alternatives, provided that the model is correctly specified. This hints 
at a specification test of the MNL that is very suggestive of being a direct test of the IIA property. 
Hausman & McFadden (1984) further explored this issue in two directions. One is by elaborating 
the estimation on a subset of alternatives as a Hausman (1978) specification test. 

McFadden (1978) generalized the MNL framework to situations in which the 
idiosyncratic utilities can be correlated. This generalized extreme value (GEV) framework 
encompasses a wide class of models in which the idiosyncratic utilities of subsets of alternatives 
can be correlated. The nested logit is the best known member of it and it has the MNL model as a 
special case that occurs when the parameters for the ‘inclusive value’ of the nests are equal to 1. 
Estimating a nested logit model can therefore be regarded as doing a specification test for the 
MNL and this is the second direction in which Hausman & McFadden (1984) explored the 
possibilities to test for IIA. 

More recent work using MNL has emphasized the potential importance of unobserved (by 
the researcher) characteristics of the choice alternatives. Berry, Levinsohn, & Pakes (1995) (BLP) 
in particular have emphasized that neglecting such omitted variables is associated with an 
‘overfitting’ problem. Moreover, explicitly taking into account their possible presence clarifies an 
important endogeneity problem that may severely bias the coefficient for the prices associated 
with the alternatives. To address these issues, they introduce alternative-specific constants (ascs) 
in the logit model that absorb the impact of all – observed as well as unobserved – characteristics 
for the average agent. In a second estimation stage, the ascs can be decomposed using linear 
regression methods. The error term includes the impact of the unobserved  characteristics. 

It may be conjectured that the neglect of unobserved characteristics of alternatives also 
has an impact on tests for IIA. The unobserved characteristics are included in models following 
BLP as a separate error term that takes on the same value for all agents. No distributional 
assumptions are made for this term. It is conceptually clearly distinguished from the idiosyncratic 
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error terms that are considered to be independent draws from the extreme value type I distribution 
for all agents. However, ignoring the possible presence of unobserved characteristics means that 
the unobserved characteristics are not separated from the random parts of the utilities. This will 
result in a composite error term that may be correlated among the agents. Moreover, if two 
alternatives have similar unobserved characteristics the composite error terms will be correlated 
across the alternatives even if the idiosyncratic utilities satisfy the assumptions of MNL. This 
suggests that the specification tests of Hausman & McFadden (1984) concern the joint hypothesis 
of IIA and the absence of unobserved characteristics unless one properly controls for the latter. In 
this paper I will show that if one does so, the tests do not have any power for detecting a possible 
violation of IIA. To make this point as clearly as possible, I consider a population of agents 
whose deterministic parts of the utilities attached to a given choice alternative are identical. That 
is, the agents only differ in the random parts of their preferences. These idiosyncratic utilities 
may or may not obey the assumptions of the MNL and we will consider whether estimating the 
MNL on subsets or estimating a nested logit model will, in this situation, give us information 
about the validity of the assumption that IIA is present. 

The recent literature has downplayed the role of IIA and emphasized that, provided  
enough heterogeneity of choice behavior is permitted by the model, the empirical substitution 
patterns are determined by the estimated coefficients, rather than by the model specification. Be 
that as it may, there is another reason why testing for IIA is important. McFadden (1984) argues 
that the MNL functional form is not restrictive if one allows the ‘utilities’ of the alternatives to 
depend on the characteristics of all alternatives: The universal or ‘mother’ logit can approach any 
discrete choice model as close as desired. It is thus the exclusion of the characteristics of the 
other alternatives that gives the IIA property its bite. If this property is absent, we cannot interpret 
the estimated ascs as reflecting the values of the deterministic parts of the utilities of the 
associated alternatives. Instead, they can be functions of all the deterministic utilities and hence 
of the characteristics of all alternatives. The exclusion of the characteristics of all other 
alternatives is the cornerstone of BLP’s identification strategy as it motivates the choice of their 
instruments for the price. The validity of this strategy thus depends on that of the IIA property. 
 
3 The setting 
We consider a population of actors ݄ ൌ  with additive random utility functions that have to ܪ…1
choose among ܰ alternatives indexed ݊ ൌ 1…ܰ. The utility attached to alternative ݊ is: 
௡௛ݑ ൌ ௡ݒ ൅ ,௡௛ߝ ݊ ൌ 1…ܰ; ݄ ൌ  (1)        ܪ…1
In this equation ݒ௡ is the deterministic part of the utility, which is equal for all actors, and ߝ௡௛ is 
the random or idiosyncratic part that differs among actors. The logit model results from utility 
maximizing behavior if these random parts are iid EV I distributed. McFadden (1974) derives the 
choice probabilities as: 

௡ߨ ൌ
௘ೡ೙

∑ ௘ೡ೘ಿ
೘సభ

           (2) 

That is, IIA results if this assumption is valid and not if the random parts of the utilities are 
distributed differently. Testing IIA thus means testing the validity of the assumption that the 
idiosyncratic parts of the utilities are iid EV I distributed. 

The deterministic part of utility is often specified as a linear function of explanatory 
variables ଵܺ …ܺ௞ …ܺ௄.	At least since the publication of BLP it has been realized that such a 
specification may suffer from omitted variables. To take these into account, one may write: 
௡ݒ ൌ ∑ ௞ܺ௞௡ߚ

௄
௞ୀଵ ൅ ݊			,௡ߦ ൌ 1…ܰ.        (3) 
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where ߦ௡ denotes the impact of characteristics of the choice alternative that are not observed by 
the researcher. Since the ߦ௡’s are unobserved they cannot be taken into account directly. 
However, on the basis of (2), one can estimate the  ݒ௡’s, that absorb the ߦ௡’s, as ascs that are 
determined up to an additive term by the observed choice probabilities. The coefficients ߚ in (3) 
may be recovered in a second estimation step, using the estimated ascs as dependent variables. In 
this second stage the ߦ௡’s function as error terms. 

The earlier, pre-BLP, literature does not take into account the possibility of unobserved 
characteristics in the deterministic part of utility and may therefore be interpreted as referring to a 
model in which the impact of such characteristics is included in the error term:  
௡௛ݑ ൌ ሺ∑ ௞ܺ௞௡ߚ

௄
௞ୀଵ ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥ

௩ᇱ೙

൅ ሺߦ௡ ൅ ௡௛ሻᇣᇧᇧᇤᇧᇧᇥߝ
ఌᇱ೙
೓

         (4) 

The presence of a nonzero ߦ௡ introduces correlation between the error terms ߝ′௡௛. Since ߦ௡ is 
equal for all individuals the ߝ′௡௛’s become correlated among the individuals for a given ݊. If the 
unobserved variables are correlated between the alternatives (for instance, because the same 
characteristic is present in a number of choice alternatives), there will be correlation between the 
 ௡௛’s for different ݊’s as well. Introduction of ascs as proposed by BLP thus allows one to make a′ߝ
distinction between the impact of unobserved characteristics that are included in the  ߦ௡’s and 
that of the idiosyncratic terms ߝ௡௛. Without ascs the specification tests refer to the hypothesis that  
௡௛′ߝ ൌ ሺߦ௡ ൅ ,௡௛ሻߝ ݊ ൌ 1…ܰ, ݄ ൌ  is iid EV I distributed, which is equal to the joint ܪ…1
hypothesis that  ߦ௡ ൌ 0 and ߝ௡௛ is iid EV I. With ascs, the test refers only to the latter hypothesis. 
Since the IIA property is present when the latter hypothesis holds true, and does not depend on 
the validity of the first, testing for this property when including alternative-specific constants is 
the preferred procedure. In the next sections we will therefore consider how the IIA-tests perform 
in this context.     
   
4 Estimating MNL on subsets 
Hausman & McFadden (1984) consider estimation of a logit model with an arbitrary number ܰ 
of choice alternatives. They work with logit model (2) in which the deterministic parts of the 
utilities are linear functions of ܭ explanatory variables ଵܺ …ܺ௞ …ܺ௄: 
௡ݒ ൌ ∑ ௞ܺ௞௡ߚ

௄
௞ୀଵ ,			݊ ൌ 1…ܰ.         (5) 

Note the absence of the ߦ௡’s in this equation. McFadden (1978) shows that consistent estimates 
of the parameters ߚ can be obtained from a fixed or random sample of the full choice set. It is 
somewhat intuitive that this property is related to IIA, which requires that the ratio of two choice 
probabilities does not depend on the presence of other alternatives. Following this line of thought, 
McFadden, Train, & Tye (1977) proposed a diagnostic test for IIA based on this property. 
Hausman & McFadden (1984) developed this methodology further by linking it to Hausman's 
(1978) specification test.2,3 

The test works by comparing the estimates of  ߚ that result from using all observations 
with the estimates that result when a subset of observations – only those referring to a subset of 
the choice alternatives - is used. If they are not significantly different, the model passes the test 
and it is concluded that IIA holds.4 

                                                 
2 See also Small & Hsiao (1985). 
3 Very recently Hahn, Hausman, & Lustig (2017) provided an extension of the test to mixed logit models.  
4 It may be the case that some parameters are relevant only for alternatives that are not included in the second 
estimation. The test refers only to the subset of parameters that are included in both estimations. 
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The intuitive argument discussed above notwithstanding, it is surprising that one could be 
able to test the presence of IIA by removing some of the choice alternatives from data about 
choice behavior that refers to a situation in which they are all available.5 This makes one wonder 
how exactly the test works. 

To see that the test does indeed not only refer to IIA, consider the case in which the 
deterministic part of the utilities attached to the alternatives is not correctly specified. More 
specifically, assume that there is an omitted variable that only affects the utilities of a subset of 
the alternatives. If this subset coincides with the subset that is chosen for testing IIA, and the 
omitted variable is correlated  with the variables that are included in the model, it is clearly 
possible that the Hausman-McFadden test rejects IIA, while this property may in fact be valid in 
the correctly specified model. In this example the Hausman-McFadden test rightly rejects the 
chosen specification, but because of the misspecification of the deterministic part of the utility 
function, not because of a failure of IIA. 

BLP have emphasized that omitted variables in the logit model will give rise to an 
“embarrassing” over-fitting problem: if the model were correctly specified differences between 
the observed choice probabilities and those predicted by the model can only be due to sampling 
error, while in reality the differences are often much larger than can be explained by this source 
(p. 850). Estimation of ascs solves this issue because it makes the predicted choice frequencies 
identically equal to the observed ones.  

  However, with a homogeneous population the estimates of the ascs are the same, 
whether they are estimated on the whole set of observations or on a subsample with choices 
referring to a subset of alternatives only. The reason is the one-to-one correspondence between 
the estimated ascs and the choice frequencies that is present in this case. 

To see this, assume we have ܨ observations of choices among alternatives 1…ܰ. The 
model we estimate is: 

௡ߨ ൌ
௘ೌೞ೎೙

∑ ௘ೌೞ೎೘ಿ
೘సభ

, ݊ ൌ 1…ܰ.        (6) 

Let A denote the subset of alternatives used in the estimation. The loglikelihood is: 
஺ܮ ൌ ∑ ௡݂ሺܽܿݏ௡ െ lnሺ∑ ݁௔௦௖೘௠∈஺ ሻሻ௡∈஺         (7) 
where ௡݂ is the number of observations choosing alternative ݊. Maximization w.r.t.  ܽܿݏ௡ gives: 

௡݂ ൌ
௘ೌೞ೎೙

∑ ௘ೌೞ೎೘೘∈ಲ
 ஺           (8)ܨ

with  ܨ஺ ൌ ∑ ௡݂௡∈஺ . 
For the maximum likelihood estimates of the ܽܿݏ’s of two alternatives, ݊ ad ݉, it must then be 
true that: 
௡ܿݏܽ െ ௠ܿݏܽ ൌ ln ௡݂ െ ln ௠݂.        (9) 
Up to an additive constant, the ܽܿݏs are thus determined by the choice frequencies and 
independent of the chosen subset ܣ. The value of the constant is arbitrary. There are therefore no 
differences in the estimates of the ܽܿݏs that can provide information about the validity of IIA, or 
any other aspect of the MNL. 

The fact that this result refers to a population of homogeneous actors serves to emphasize 
that this Hausman-McFadden test is not informative about the (in)validity of IIA. McFadden et 
al. (1981) show that in a population with heterogeneous actors one cannot expect IIA to hold. 
Any test of this property should therefore focus on the behavior of actors that – according to the 
null hypothesis – have identical deterministic parts of their utilities. 

                                                 
5 Allison (2012) relates that this bothered him. 
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When ascs are introduced and the population is homogeneous, the model is in fact 
saturated. The only information that is available is the choice of an alternative and this 
information is fully exploited by the ascs. In this framework there is nothing more to discover 
about the behavior of the agents.6 

The significance of the result just reached can be further clarified by realizing that the 
inclusion of ascs controls for all factors that affect the deterministic utility in a homogeneous  
population. It is similar to the inclusion of ‘fixed effects’ in an OLS or panel data regression. 
What has been shown in this section is that, once omitted variable bias and specification errors 
have been excluded in this way the specification test loses all its power, although IIA can still be 
violated. Hence the first Hausman-McFadden test cannot be regarded as a proper test for IIA. 
 
5 Estimating a nested logit model 
McFadden (1978) presents the class of generalized extreme value (GEV) models in which the 
random parts of the utilities still have marginal distributions that are extreme value type I, but do 
not need to be independent. Relaxing the independence of the random parts implies that the IIA  
property is no longer present. The best known member of the GEV class, apart from the MNL, is 
the nested logit model. In this model each choice alternative is assigned to a group, or nest,7 and 
the random parts of the utilities of alternatives belonging to the same group are allowed to be 
correlated. Conditional on the choice of a nest, choice behavior is still adequately described by an 
MNL and IIA holds. Similarly, the choice between nests can be described by another MNL. The 
parameters of this second MNL reflect the possible deviation from the conventional non-nested 
MNL. See, for instance, Train (2003) for further discussion of the model. 
 The MNL is a special case of the nested logit model in which the parameters of the 
inclusive values of the nests – which reflect the correlation between the random parts of the 
utilities of the alternatives included in the nest – are equal to 1. This suggests the second 
possibility for testing the IIA property that was also explored by Hausman & McFadden (1984): 
estimate a nested logit model and check if the parameters of the inclusive values differ 
significantly from 1. If so, IIA has to be rejected. 
 However, I will now show that in a homogeneous population where the ascs represent the 
deterministic parts of the utilities the likelihood function is flat in the coefficients for the 
inclusive values of the nests. Just as was the case for the test based on estimation on subsets of 
the choice alternatives, the test that uses the nested logit model has no power for detecting a 
violation of IIA in the situation where it has been isolated as the only remaining specification 
issue. 
 Some additional notation is necessary to formally introduce the nested logit. I use 
݇ ൌ  to refer to the nests and ݇ሺ݊ሻ to indicate the nest to which alternative ݊ belongs. The ܭ…1
set of alternatives belonging to nest ݇ is ܤ௞. Finally, the parameters for the inclusive values are 
denoted as ߣ௞. The choice probabilities are: 

௡ߨ ൌ
௘ೡ೙ ഊೖሺ೙ሻ⁄

	ቀ∑ ௘ೡ೘ ഊೖሺ೙ሻ⁄
೘∈ಳೖሺ೙ሻ ቁ

ഊೖሺ೙ሻషభ

∑ ቀ∑ ௘ೡ೘ ഊೖ⁄
೘∈ಳೖ ቁ

ഊೖ಼
ೖసభ

          (10) 

In Appendix A I formulate the likelihood function associated with the model and derive the first 
order conditions for maximizing it with respect to the ascs and the parameters for the inclusive 

                                                 
6 It may be noted that this is the situation in which only aggregate data on choices (market shares) are known. 
Estimation of the BLP model is discussed in section 7.   
7 Groups are allowed to contain just one alternative. 
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values. I show that if the former are equal to zero – as is necessary for a maximum – the latter 
will automatically be also equal to zero. The likelihood function is thus flat in the parameters for 
the inclusive values, once the first order conditions for the ascs are satisfied. The implication of 
this result is that the nested logit model does not have any power for detecting IIA once the 
possibility of omitted variables in the specification of the deterministic parts of the utilities is 
properly taken into account.8 
 
6 Other tests of IIA 

 
6.1 Other GEV models 
It is shown in Appendix B that the result derived for the nested logit generalizes to any GEV 
model. In all these models optimal choice of the ascs implies that the observed choice 
frequencies are equalized to the choice frequencies of the estimated model, and this then implies 
that the likelihood becomes flat with respect to the choice of the parameters of the GEV 
distribution. 
 
6.2 Mixed logit models 
The mixed logit model is sometimes considered to be the extension of the logit model that solves 
essentially all its limitations. In particular, McFadden and Train (2000) have shown that the 
model is able to approximate any discrete choice model. We will now consider the question 
whether the mixed logit model is able to distinguish the MNL from a model in which the actors 
have idiosyncratic utilities that are not iid EV I distributed. To do this, we assume that the utility 
attached to alternative ݊ by actor ݄, ݑ௡௛, equals: 
௡௛ݑ ൌ ௡ܿݏܽ ൅ ௡௛ߴ ൅  ௡௛         (11)ߝ
where  ߝ௡௛ represents the standard MNL iid EV I  error term and ߴ௡௛ is another random variable. It 
is important to note that (11) overcomes the limitations of the iid EV I assumption as the random 
parts of the utilities are now equal to  ሺߴ௡௛ ൅  .௡௛ሻ which are unrestrictedߝ

The common case is that  ߴ௡௛ is further specified as the product of a parameter ߩ௡ to be 
estimated and a random variable ߠ௡  whose distribution is known, for instance a standard normal 
variate. The utility function then becomes: 
௡௛ݑ ൌ ௡ܿݏܽ ൅ ௡௛ߠ௡ߩ ൅  ௡௛          (12)ߝ
Estimation of this model can be regarded as doing a specification test for the MNL: if all ߩ௡’s are 
equal to zero, MNL is correct and IIA holds. If not, IIA has to be rejected. The deviations of the 
idiosyncratic utilities may be related to characteristics of the agents that are unobserved by the 
researcher, or that she is unwilling to use, for instance because she wants to get an idea of the 
total amount of heterogeneity in preferences present in the population before investigating it 
further. The choice probabilities can be written as: 

௡ݎܲ ൌ ׬
௘ೌೞ೎೙శഐ೙ഇ೙

∑ ௘ೌೞ೎೘శഐ೘ഇ೘ಿ
೘సభ

݃ሺࣂሻ݀ࣂࣂ   

                                                 
8 There is a connection between the results of the present and previous sections. To see this consider the sequential 
estimation of a two-level nested logit model. The first step is to estimate logit models for each nest, which is 
identical to estimation of the logit model on the subsets of alternatives defined by the nest. In the previous section it 
was shown that this gives results that are equivalent to those of estimating the complete model. The ‘logsums’ of the 
nest are plugged into the logit model that concerns the choice of the nest. But then this upper level model is identical 
to the nonnested logit model if the logsum coefficients are all equal to one. We know that setting the coefficients at 
this value maximizes the likelihood..    
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       ൌ ׬ ࣂࣂሻ݀ࣂሻ݃ሺࣂ௡ሺߨ           (13) 
In this equation ࣂ denotes the ܰ1ݔ vector with elements ߠ௡, ݃ሺࣂሻ the multidimensional density 
function of these random variables and ߨ௡ሺࣂሻ is shorthand notation for the logit expression in the 
first line. The loglikelihood ݈݈௡ if an observed choice for ݊ is ln  ௡ and the likelihood of theݎܲ
whole set of observations is: 
ܮܮ ൌ ∑ ௡݂ ln ௡௡ݎܲ             (14) 
It is shown in Appendix C that ܮܮ is flat in the parameters ߩ௡, ݊ ൌ 1…ܰ as soon as the first-
order conditions for the alternative-specific constants are satisfied. That is, the mixed logit model 
cannot distinguish between MNL and an additive random utility model in which idiosyncratic 
utilities differ from iid EV I. Put differently, estimating a mixed logit model of the type just 
described does not reveal any information about the presence of heterogeneity in the population 
that is not captured by the standard logit term. 

Note that the random variables ߠ௡ are allowed to be dependent. Moreover, the proof 
generalizes trivially to cases in which there is more than one random coefficient, that is to 
specifications of the form: 
௡௛ߴ ൌ ∑ ௡௞ߠ௡௞ߩ

௛௄
௞ୀଵ .          (15) 

Such formulations are used to allow for general specifications of the ߴ௡௛. See, for instance, 
Chesher & Santos Silva, (2002). If the ߴ௡௛ are jointly normal distributed with an arbitrary 
variance-covariance matrix, (15) might refer to their Choleski decomposition. Fosgerau & Mabit 
(2013) show that (15) can be used to approximate any distribution of the  ߴ௡௜ ’s. This suggests that, 
with alternative specific constants present, the MNL cannot be distinguished from any other 
additive random utility model. That is, we cannot distinguish between an additive random utility 
model that has iid EV I idiosyncratic utilities and a model with any other random distribution of 
the idiosyncratic utilities when asc’s are present. 

The significance of this result becomes clear if it is recalled that the mixed logit model 
considered can be any additive random utility model for a homogeneous population. With a full 
set of asc’s to account for omitted variables, no member of this class can be distinguished from 
MNL. 
   
6.3 Multiple periods 
It is well known that IIA does not only imply strong predictions for the consequences of 
introducing a new alternative in the choice set, but also for substitution behavior following a 
change in the attractiveness of an alternative. Indeed , from (2) it follows easily that: 
డగ೙
డ௩೗

ൌ ሺ݊ܫ ൌ ݈ሻߨ௡ െ  ௟          (16)ߨ௡ߨ

This is a strong prediction that appears to be testable. 
If one is informed about the choice behavior of a given population in two periods, one 

could attempt to do this by estimating the model for both periods, assuming that MNL is valid. 
This gives two sets of alternative-specific constants. One could then study the changes in market 
shares corresponding with these changes. However, this would show a complete correspondence 
between prediction and reality because in both periods the predicted and actual market shares are 
identical. So the changes in the market shares confirm the predictions identically and no 
information about the validity of IIA is obtained. 

If  more information is available, there may be opportunities to test whether actual 
substitution behavior satisfies IIA. One possibility is the presence of prior information about the 
change in the deterministic utilities between the two periods. This may be the case in stated 
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choice experiments. Another is that one has panel data on individual choice behavior. The latter 
would allow a researcher to check if the switching from one alternative to another follows the 
specific pattern implied by MNL. 
 
7 Heterogeneous actors 
In this section I continue the analysis by considering heterogeneous populations. Two types of 
heterogeneity will be considered. I first look at random variation in the valuation of an attribute 
of the alternatives among the consumers. The formulation is the one commonly used in mixed, or 
random coefficient, logit models, although the average value of the parameter is here absorbed in 
the asc. 
Second, I consider heterogeneity among actors linked to their observable characteristics. We are 
interested in what happens if there is no specification error in the deterministic parts of the 
utilities. With a finite number of types of actors we can estimate separate ascs for each type. This 
situation does not essentially change if (some aspects of) heterogeneity is related to continuous 
variables. 
 
7.1 Mixed logit with random differences in the valuation of characteristics  
The model refers to heterogeneity of the actors with respect to their evaluation of a characteristic, 
denoted as ݔ, of the choice alternatives. The heterogeneity is unrelated to actor characteristics and 
therefore captured by a random variable. The deterministic part of the evaluation of ݔ – which is 
common to all actors, say its mean – is absorbed in the alternative-specific constant. The 
deviation from that common evaluation, appears separately in the expression of the utility:  
௡௛ݑ ൌ ௡ܿݏܽ ൅ ௛ߠ௡ݔߩ ൅  ௡௛          (17)ߝ
Note that the random variable ߠ௛ takes on the same value for all choice alternatives. The 
multinomial logit becomes: 

௡ݎܲ ൌ ׬
௘ೌೞ೎೙శഐೣ೙ഇ

∑ ௘ೌೞ೎೘శഐೣ೙ഇಿ
೘సభ

݃ሺߠሻ݀ߠఏ   

       ൌ ׬ ఏߠሻ݀ߠሻ݄ሺߠ௡ሺߨ            (18) 
The notation reflects that we now consider a scalar random variable. It is shown in appendix  that 
the alternative-specific constants and the parameter ߩ are not separately identified. The story is 
basically similar to that of the previous sections: the ܽܿݏ’s make the loglikelihood flat in the 
parameter ߩ. It is easy to check that the proof generalizes to situations in which the heterogeneity 
refers to more than one characteristic. 
 The situation considered here is similar to the one encountered when BLP-type models are 
estimated on aggregate data. Once the ascs have been determined by the contraction mapping so 
that observed and implied market shares are equal, the derivatives of the likelihood function with 
respect to all other parameters are identically equal to zero and other information is needed to 
estimate them.     
 
7.2 Heterogeneity related to observed characteristics 
Let the heterogeneity be indexed by ࢠ, a vector of characteristics. Some components of ࢠ can be 
discrete, others continuous. Each household ݄ is characterized by a value ࢠሺ݄ሻ. We don’t use the 
notation h in this section. We refer to a particular value of ࢠ as a type and denote the density of a 
type as ݂ሺݖሻ. 

The situation in which there is a finite number of types is easiest to handle. All the results 
reached thus far hold for each of the homogeneous subpopulations consisting of a single type. As 
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soon as the first-order conditions for the type-specific ܽܿݏ’s are satisfied, the likelihood function 
becomes flat in the other parameters of interest. Restrictions that refer to the whole population, 
for example that the parameters for inclusive values refer to the same sets of alternatives and 
have equal values for all types, therefore have no ‘bite.’ 

If there is a continuum of types, the situation is basically similar. To analyze the issue, 
assume that ࢠ is scalar. The deterministic part of the utilities attached to the alternatives by type ݖ 
actors are denoted as ݒ௡ሺݖሻ. These utilities are the alternative-specific  constants for actors of this 
type. They can be estimated by local likelihood methods. We can then apply the same logic to 
each type. The choice probabilities for a given type ݖ are: 

ሻݖ௡ሺߨ ൌ
௘ೡ೙ሺ೥ሻ

∑ ௘ೡ೘ሺ೥ሻಿ
೘సభ

, ݊ ൌ 1…ܰ         (19) 

and the expected loglikelhood ܧሺܮܮሻ is: 
ሻܮܮሺܧ ൌ ∑ሻሼݖሺ݂׬ ሻݖ௡ሺݏ݉ ln ሻ௡ݖ௡ሺߨ ሽ݀(20)        ݖ 
where ݉ݏ௡ denotes the expected ‘market share’ of alternative ݊ for type ݖ actors. The local 
likelihood of the ‘asc-model’ (19) estimates the market shares as choice probabilities and the two 
are identical if ascs are used. Therefore the same logic as before applies, once again, for any type 
of actor, and by implication for the continuum of types. 

In practice the data will limit the researcher’s ability to approximate the type-specific 
 s. It is common practice when micro data are available to estimate a single alternative-specificܿݏܽ
constant for each alternative and to deal with heterogeneity related to observed characteristics of 
the actors through a (usually linear) parametric specification. The analysis of the present 
subsection makes clear that if one could estimate type-specific ܽܿݏ’s, no room would be left for 
deviations from MNL like GEV or mixed logit formulations. Just like in the simple cases 
discussed above, it is only because of specification error in the deterministic part of the utilities 
that such deviations from iid EV I random parts of the utilities may appear to be significant. The 
impact of specification error for the average type has been removed through the ܽܿݏs, but type-
specific deviations from the average may still be misspecified if a parametric formulation is used. 
 
8 Conclusion 
This paper has shown that Hausman-McFadden and related tests for the multinomial logit model 
are – contrary to their intention - not informative about failure of IIA, but only about specification 
error in the deterministic part of the utilities attached to choice alternatives. This conclusion is 
reached by investigating what happens if the impact of omitted variables in the deterministic part 
is removed by using a full set of alternative-specific constants in a multinomial logit model. It is 
shown that in this context estimation on subsets of alternatives always results in the same 
estimates as estimation on the full set of alternatives, whereas estimation of a nested logit model 
is impossible because the likelihood function is flat in the parameters that embody a possible 
deviation from multinomial logit. Moreover, introduction of a full set of alternative-specific 
constants is shown to cause non-identification of any GEV-model other than the multinomial 
logit and of mixed logit models that have a random term that is uncorrelated with the 
characteristics of the alternatives. The latter result shows that the multinomial logit cannot be 
distinguished from any other additive random utility model. Finally, it is shown that – with a full 
set of alternative specific constants – coefficients for random variation in the valuation of 
characteristics are also unidentified, while the presence of heterogeneity related to observed 
characteristics of the actors does not change the results. 

In summary, the results derived in this paper show that eliminating specification error 
from the deterministic parts of the utilities through the use of ascs makes the likelihood function 
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flat in parameters that embody any deviation from iid EV I random utilities. Any improvement in 
the likelihood that is due to a switch from MNL to a more general model that relaxes is IIA can 
only address specification error in the deterministic parts of the utilities that results in failure of 
the model to equalize predicted and observed choice frequencies for all types of actors that can be 
distinguished on the basis of observed characteristics. 
 The implication is that an extensive literature that uses maximum likelihood methods to 
estimate more general discrete choice models than MNL in order to avoid IIA and the associated 
restrictive substitution patterns is misdirected. Such models cannot improve on a simple MNL 
with a full set of alternative specific constraints for each type of actors as its only parameters and 
there is no empirical basis for the deviations from IIA and the more general substitution patterns 
suggested by such nested, cross-nested, mixed logit or any other generalization of MNL. 
Moreover, this is also true for probit models and any other type of additive random utility model 
estimated by maximum likelihood. 
 
References 
Abbe, E., Bierlaire, M., & Toledo, T. (2007). Normalization and correlation of cross-nested logit 

models. Transportation Research Part B: Methodological, 41(7), 795–808. 
http://doi.org/10.1016/j.trb.2006.11.006 

Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. 
Econometrica, 63(4), 841–890. 

Bresnahan, T. F., Stern, S., & Trajtenberg, M. (1997). Market segmentation and the sources of 
rents from innovation: Personal computers in the late 1980s. RAND Journal of Economics, 
28(February), S17–S44. http://doi.org/10.2307/3087454 

Chesher, A., & Santos Silva, J. M. C. (2002). Taste variation in discrete choice models. Review of 
Economic Studies, 69(1), 147–168. http://doi.org/10.1111/1467-937X.00201 

Debreu, G. (1960). Review of R.D. Luce “Individual Choice Behavior.” American Economic 
Review, 50, 186–188. 

Fosgerau, M., & Mabit, S. L. (2013). Easy and flexible mixture distributions. Economics Letters, 
120(2), 206–210. http://doi.org/10.1016/j.econlet.2013.03.050 

Goldberg, P. K. (1995). Product differentiation and oligopoly in international markets: The case 
of the U.S. automobile industry. Econometrica, 63(4), 891–951. 
http://doi.org/10.2307/2171803 

Hahn, J., Hausman, J. A., & Lustig, J. (2017)  Specification test on mixed logit model (cemmap 
working paper No. 58/17). 

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6), 1251–1271. 
Hausman, J. A., & McFadden, D. (1984). Specification tests for the multinomial logit model. 

Econometrica. http://doi.org/10.2307/1910997 
Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. New York: Wiley. 
McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Frontiers in 

Econometrics (pp. 105–142). 
McFadden, D. (1978). Modelling the choice of residential location. In A. Karqvist, L. Lundqvist, 

& F. Snickars (Eds.), Spatial Interaction Theory and Planning Models (pp. 75–96). 
Amsterdam: Elsevier. Retrieved from http://cowles.econ.yale.edu/P/cd/d04b/d0477.pdf 

McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied 
Econometrics, 15(November 1998), 447–470. http://doi.org/10.1002/1099-
1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1 

McFadden, D., Train, K. E., & Tye, W. B. (1981). An application of diagnostic tests for the 



12 
 

independence from irrelevant alternatives property of the multinomial logit model. 
Transportation Research Record. 

Small, K. A. (1987). A discrete choice model for ordered alternatives. Econometrica, 55(2), 409–
424. http://doi.org/10.2307/1913243 

Small, K. A., & Hsiao, C. (1985). Multinomial logit specification tests. International Economic 
Reviewc Review, 26(3), 619–627. http://doi.org/10.2307/2526707 

Train, K. E. (2003). Discrete Choice Methods with Simulation. Cambridge University Press. 
Cambridge: CUP. Retrieved from http://ebooks.cambridge.org/ref/id/CBO9780511753930 

 
  



13 
 

Appendix 
A Estimation of the nested logit model with alternative-specific constants 
 
A1 The first order condition for the asc’s and some implications 
The model is (10) and we want to recover the utilities as alternative specific constants. So we In 
substitute ܽܿݏ௡ ൌ  :݊ ௡ and write the loglikelihood ݈݈௡ of a choice for alternativeݒ

 ݈݈௡ ൌ
௔௦௖೙
ఒೖሺ೙ሻ

൅ ൫ߣ௞ሺ௡ሻ െ 1൯ ln ቀ∑ ݁௔௦௖೘ ఒೖሺ೙ሻ⁄
௠∈஻ೖሺ೙ሻ ቁ െ ln൫∑ ൫∑ ݁௔௦௖೘ ఒೖ⁄

௠∈஻ೖ ൯௄
௞ୀଵ ൯ (A1) 

Differentiation with respect to the asc’s gives: 
డ௟௟೙
డ௔௦௖೗

ൌ ሺ݈ܫ ൌ ݊ሻ ଵ

ఒೖሺ೗ሻ
൅ ൫݈ܫ ∈ ௞ሺ௟ሻߣ௞ሺ௡ሻ൯൫ܤ െ 1൯ߨ௟|௞ሺ௟ሻ

ଵ

ఒೖሺ೗ሻ
൅  ௟     (A2)ߨ

where ܫሺ. ሻ is an indicator function that takes on the value 1 if the expression that appears on the . 
is true and 0 otherwise, and ߨ௟|௞ሺ௟ሻ is the probability that alternative ݈ will be chosen conditional 
on the choice for the nest to which it belongs: 

௟|௞ሺ௟ሻߨ ൌ
௘ೌೞ೎೗ ഊೖሺ೗ሻ⁄

∑ ௘ೌೞ೎೘ ഊೖሺ೗ሻ⁄
೘∈ಳೖሺ೗ሻ

          (A3) 

The total loglikelihood ܮܮ is the sum of the individual loglikelihoods over all observations: 
ܮܮ ൌ ∑ ௡݂݈݈௡ே

௡ୀଵ            (A4) 
where ௡݂ denotes the number of observed choices for alternative ݊.  It follows then that: 
డ௅௅

డ௔௦௖೗
ൌ ௟݂

ଵ

ఒೖሺ೗ሻ
൅

ఒೖሺ೗ሻିଵ

ఒೖሺ೗ሻ
௟|௞ሺ௟ሻߨ௞ሺ௟ሻܨ ൅  ௟        (A5)ߨܨ

where ܨ௞ denotes the number of observed choices for alternatives belonging to nest ݇ (i.e. 
௞ܨ ൌ ∑ ௟݂௟∈஻ೖ ) and ܨ is the total number of observations. 
 

Setting 
డ௅௅

డ௔௦௖೗
 equal to zero gives: 

ଵ

ఒೖሺ೗ሻ
൫ ௟݂ െ ௟|௞ሺ௟ሻ൯ߨ௞ܨ ൅ ൫ߨܨ௟ െ ௟|௞ሺ௟ሻ൯ߨ௞ܨ ൌ 0      (A6) 

 If we sum this expression over all alternatives in nest ݇, the first term becomes: 
ଵ

ఒೖሺ೗ሻ
ቀܨ௞ െ ௞ܨ ∑ ௟|௞ሺ௟ሻ௟∈஻೗ሺ೗ሻߨ ቁ         (A7) 

and since the sum of the conditional choice probabilities equals 1, this is equal to zero. We 
conclude therefore that the sum of the second term over all alternatives in nest ݇ must also be 
equal to zero: 
஻ೖߨܨ െ ௞ܨ ൌ 0           (A8) 
where ߨ஻ೖ is the probability that an alternative in nest ݇ will be chosen (i.e. ߨ஻ೖ ൌ ∑ ௟௟∈஻ೖߨ .  
Multiplying both sides of (A8) with ߨ௟|௞ሺ௟ሻ we get: 
௟ߨܨ െ ௟|௞ሺ௟ሻߨ௞ܨ ൌ 0          (A9) 
and substitution of this result in (A6) gives us finally: 
௟݂ െ ௟|௞ሺ௟ሻߨ௞ܨ ൌ 0          (A10) 

  
A2 The first-order condition of the coefficients for the inclusive values 
Differentiation of the likelihood in (A1) with respect to a coefficient for an inclusive value gives: 
డ௟௟೙
డఒ೔

ൌ

ሺ݇ሺ݊ሻܫ								 ൌ ݅ሻ ൬െ
௔௦௖೙
ఒ೔
మ ൰ ൅
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ሺ݇ሺ݊ሻܫ								 ൌ ݅ሻ ቊln൫∑ ݁௔௦௖೘ ఒ೔⁄
௠∈஻೔ ൯ ൅ ሺߣ௜ െ 1ሻ ቆ∑ ௠|௜௠∈஻೔ߨ ൬െ

௔௦௖೙
ఒ೔
మ ൰ቇቋ െ

஻೔ߨ								 ቊln൫∑ ݁௔௦௖೘ ఒ೔⁄
௠∈஻೔ ൯ ൅ ௜ߣ ቆ∑ ௠|௜௠∈஻೔ߨ ൬െ

௔௦௖೙
ఒ೔
మ ൰ቇቋ     (A11) 

 
Summation over all observations gives: 
డ௅௅

డఒ೔
ൌ ∑ ௠݂ ൬െ

௔௦௖೘
ఒ೔
మ ൰௠ఢ஻೔ ൅ ௜ܨ ቊln൫∑ ݁௔௦௖೘ ఒ೔⁄

௠∈஻೔ ൯ ൅ ሺߣ௜ െ 1ሻ ቆ∑ ௠|௜௠∈஻೔ߨ ൬െ
௔௦௖೘
ఒ೔
మ ൰ቇቋ െ

஻೔ߨ	ܨ											 ቊln൫∑ ݁௔௦௖೘ ఒ೔⁄
௠∈஻೔ ൯ ൅ ௜ߣ ቆ∑ ௠|௜௠∈஻೔ߨ ൬െ

௔௦௖೙
ఒ೔
మ ൰ቇቋ     (A12) 

Rearranging terms gives: 
డ௅௅

డఒ೔
ൌ

				∑ ൣ ௠݂ െ ௠|௜൧ߨ௜ܨ ൬െ
௔௦௖೘
ఒ೔
మ ൰௠ఢ஻೔ ൅

௜ܨൣ					 െ ஻೔൧ߨ	ܨ ቊln൫∑ ݁௔௦௖೘ ఒ೔⁄
௠∈஻೔ ൯ ൅ ௜ߣ ቆ∑ ௠|௜௠∈஻೔ߨ ൬െ

௔௦௖೙
ఒ೔
మ ൰ቇቋ   (A13) 

The two expressions in square brackets are equal to 0. For the first one this follows from (A10). 

For the second one from (A8). Hence 
డ௅௅

డఒ೔
 is identically zero once the first order conditions for the 

asc’s are satisfied.   
 
B Estimation of GEV models with alternative-specific constants 
We consider a GEV model where the utilities are specified as alternative-specific constants. GEV 
models are characterized by a generator function ܩሺݕ;  ,ݕ ሻ which is homogeneous of degree 1 inߠ
an ܰ-dimensional vector of arguments and satisfies a number of other properties listed in 
McFadden (1978). The symbol ߠ denotes the parameters of this function. Although we will 
proceed below as if it is a scalar to keep the notation simple, it can be a vector of arbitrary 
dimension. For instance, with a nested logit model the parameters are those of the inclusive 
values. The homogeneity of ܩ implies ܩ ൌ ∑ ௡௡ܩ௡ݕ , where ܩ௡ denotes the first partial derivative 
of ܩ with respect to its ݊-th element. The choice probabilities can be written as: 

௡ߨ ൌ
௘ೌೞ೎೙ீ೙ሺ௘ೌೞ೎,ఏሻ

ீሺ௘ೌೞ೎,ఏሻ
,			݊ ൌ 1…ܰ.        (B1) 

In this equation ݁௔௦௖ is the vector with ݊-th element ݁௔௦௖೙. The log likelihood ݈݈௡ of a choice for 
the ݊-th alternative is: 
݈݈௡ ൌ ௡ܿݏܽ ൅ lnܩ௡ െ ln∑ ݁௔௦௖೘ܩ௠ே

௠ୀଵ         (B2) 
Taking the first derivative with respect to ߠ gives: 
డ௟௟೙
డఏ

ൌ ீ೙ഇ
ீ೙

െ ∑ ௠ߨ
ீ೘ഇ

ீ೘
ே
௠ୀଵ           (B3) 

In this equation ܩ௡ఏ denotes the partial derivative of ܩ௡ with respect to ߠ. Defining the total 
loglikelihood similar as in the previous part of the Appendix, we find: 
డ௅௅

డఏ
ൌ ∑ ሺ ௠݂ െ ௠ሻߨܨ

ீ೘ഇ

ீ೘
ே
௠ୀଵ          (B4)  

where ௠݂ denotes the number of observed choices for alternative ݉ and ܨ the total number of 
observed choices. 
 
Now consider the first derivative of ݈݈௡ with respect to ܽܿݏ௟: 
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డ௟௟೙
డ௔௦௖೗

ൌ ሺ݈ܫ ൌ ݊ሻ ൅ ௘ೌೞ೎೗ீ೙೗
ீ೙

െ ௟ߨ െ ∑ ௠ߨ
௘ೌೞ೎೗ீ೘೗

ீ೘
ே
௠ୀଵ      (B5) 

where   ܩ௡௟ denotes the partial derivative of ܩ௡ with respect to ݁௔௦௖೗. It follows then that: 
డ௅௅

డ௔௦௖೗
ൌ ௟݂ ൅ ∑ ௠݂

௘ೌೞ೎೗ீ೘೗

ீ೘
ே
௠ୀଵ െ ௟ߨܨ െ ܨ ∑ ௠ߨ

௘ೌೞ೎೗ீ೘೗

ீ೘
ே
௠ୀଵ      (B6) 

Now substitute (B1) into the last term and rewrite it as: 

ܨ ∑ ௠ߨ
௘ೌೞ೎೗ீ೘೗

ீ೘
ே
௠ୀଵ ൌ ி௘ೌೞ೎೗

ீ
∑ ݁௔௦௖೘ܩ௠௟
ே
௠ୀଵ        (B7) 

Since ܩ is homogeneous of degree 1, its partial derivatives will be homogeneous of degree 0. 
This implies that the sum on the right-hand side of (B7) will be equal to zero. Hence we can 
simplify (B6) to: 
డ௅௅

డ௔௦௖೗
ൌ ሺ ௟݂ െ ௟ሻߨܨ ൅ ∑ ௠݂

௘ೌೞ೎೗ீ೘೗

ீ೘
ே
௠ୀଵ         (B8) 

This must be equal to zero. This is the case if we set the ascs so that ௟݂ െ ௟ߨܨ ൌ 0. To see that 
this suffices, start by observing that the first term on the right-hand side of (B8) then equals 0. 
This is also true for the second term: if we substitute ௠݂ ൌ  :௠ into it, it can be rewritten asߨܨ

∑ ௠݂
௘ೌೞ೎೗ீ೘೗

ீ೘
ே
௠ୀଵ ൌ ி௘ೌೞ೎೗

ீ
∑ ݁௔௦௖೘ܩ௠௟
ே
௠ୀଵ        (B9) 

The sum on the right-hand side is equal to 0 because the partial derivatives of ܩ are homogeneous 
of degree 0. 

If ௠݂ ൌ ,௟ߨܨ ݈ ൌ 1…ܰ, (B4) implies that 
డ௅௅

డఏ
 will be equal to 0. We thus find the same result as 

for the specific case of the nested logit: if the first-order conditions with respect to the choice of 
the ascs are satisfied, the first-order condition with respect to the choice of any parameter of the 
generator function of the generalized extreme value distribution is also automatically satisfied. 
 
C Estimation of mixed logit models with alternative-specific random terms 
The  model is specified in subsection 4.2. We begin with the computation of the partial 
derivatives of ݈݈௡ ൌ ln  :௟ߩ ௟ andܿݏܽ .௡  w.r.tݎܲ
డ௟௟೙
డ௔௦௖೗

ൌ ଵ

௉௥೙
׬ ሼߨ௡ሺࣂሻܫሺ݊ ൌ ݈ሻ െ ࣂࣂሻ݀ࣂሻሽ݃ሺࣂ௟ሺߨሻࣂ௡ሺߨ   

										ൌ ሺ݊ܫ ൌ ݈ሻ െ ଵ

௉௥೙
׬ ࣂࣂሻ݀ࣂሻ݃ሺࣂ௟ሺߨሻࣂ௡ሺߨ         (C1) 

డ௟௟೙
డఘ೗

ൌ ଵ

௉௥೙
׬ ሼߨ௡ሺࣂሻܫሺ݊ ൌ ݈ሻ െ ࣂࣂሻ݀ࣂ௟݃ሺߠሻሽࣂ௟ሺߨሻࣂ௡ሺߨ   

								ൌ ሺ݊ܫ ൌ ݈ሻ ଵ

௉௥೙
׬ ࣂࣂሻ݀ࣂ௟݃ሺߠሻࣂ௡ሺߨ െ ଵ

௉௥೙
׬ ࣂࣂሻ݀ࣂ௟݃ሺߠሻࣂ௟ሺߨሻࣂ௡ሺߨ     (C2) 

For the likelihood of the whole sample we must have: 

ቀ డ௅௅

డ௔௦௖೗
ൌ 0 ⇒ቁ	 ௟݂ െ ∑ ௙೙

௉௥೙
׬ ௡ࣂࣂሻ݀ࣂሻ݃ሺࣂ௟ሺߨሻࣂ௡ሺߨ ൌ 0      (C3) 

ቀడ௅௅
డఘ೗

ൌ 0 ⇒ቁ	 ௙೗
௉௥೗

׬ ࣂࣂሻ݀ࣂ௟݃ሺߠሻࣂ௟ሺߨ െ ∑ ௙೙
௉௥೙

׬ ௡ࣂࣂሻ݀ࣂሻ݃ሺࣂ௟ሺߨሻࣂ௡ሺߨ ൌ 0   (C4) 

Now choose the alternative-specific constants so that ܲݎ௡ ൌ ௡݂ ⁄ܨ , n=1…N. Substitution in (C3) 
then gives: 

௟݂ െ ܨ ׬ ሺ∑ ሻ௡ࣂ௡ሺߨ ሻߨ௟ሺࣂሻ݃ሺࣂሻ݀ࣂࣂ ൌ 0       (C5) 
which is identically true since ∑ ሻ௡ࣂ௡ሺߨ ൌ 1. Hence this solves (C3). 
Substitution in (C4) gives: 

׬ ࣂࣂሻ݀ࣂ௟݃ሺߠሻࣂ௟ሺߨ െ ׬ ሺ∑ ሻ௡ࣂ௡ሺߨ ሻߨ௟ሺࣂሻ݃ሺࣂሻ݀ࣂࣂ ൌ 0     (C6) 
which is also identically true.  
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Hence setting the alternative-specific constants so that the choice probabilities equal the relative 
frequencies solves the first order conditions for the alternative-specific constants ܽܿݏ௡, ݊ ൌ
1…ܰ,as well as those for the heterogeneity parameters ߩ௡, ݊ ൌ 1…ܰ.  The latter can thus be 
given any desired value.  
 
 
D Estimation of mixed logit models with random variation in attribute valuation 
The model is given by (17). We proceed similarly as in the previous appendix and begin with the 
computation of the partial derivatives of ݈݈௡ ൌ ln  :௟ߩ ௟ andܿݏܽ .௡  w.r.tݎܲ
డ௟௟೙
డ௔௦௖೗

ൌ ଵ

௉௥೙
׬ ሼߨ௡ሺߠሻܫሺ݊ ൌ ݈ሻ െ ࣂߠሻ݀ߠሻሽ݃ሺߠ௟ሺߨሻߠ௡ሺߨ   

										ൌ ሺ݊ܫ ൌ ݈ሻ െ ଵ

௉௥೙
׬ ࣂߠሻ݀ߠሻ݃ሺߠ௟ሺߨሻߠ௡ሺߨ         (D1) 

డ௟௟೙
డఘ

ൌ ଵ

௉௥೙
׬ ሼߨ௡ሺߠሻݔ௡ܫߠሺ݊ ൌ ݈ሻ െ ∑ሻߠ௡ሺߨ ሻ௟ߠ௟ሺߨ ఏߠሻ݀ߠሺ݃ߠ௟ሽݔ   

								ൌ ሺ݊ܫ ൌ ݈ሻ ଵ

௉௥೙
׬ ఏߠሻ݀ߠሺ݃ߠ௡ݔሻߠ௡ሺߨ െ ଵ

௉௥೙
׬ ∑ሻሺߠ௡ሺߨ ௟௟ݔሻߠ௟ሺߨ ሻ݃ߠሺߠሻ݀ߠఏ    (D2) 

For the likelihood of the whole sample we must have:  

ቀ డ௅௅

డ௔௦௖೗
ൌ 0 ⇒ቁ	 ௟݂ െ ∑ ௙೙

௉௥೙
׬ ఏ௡ߠሻ݀ߠሻ݃ሺߠ௟ሺߨሻߠ௡ሺߨ ൌ 0      (D3) 

ቀడ௅௅
డఘ

ൌ 0 ⇒ቁ∑ ቄ ௙೗
௉௥೗
׬ ఏߠሻ݀ߠሺ݃ߠ௟ݔሻߠ௟ሺߨ െ ∑ ௙೙

௉௥೙
׬ ௡ࣂߠሻ݀ߠሺ݃ߠ௡ݔሻߠ௡ሺߨሻߠ௟ሺߨ ቅ௟ 	ൌ 0  (D4) 

Now choose the alternative-specific constants so that ܲݎ௡ ൌ ௡݂ ⁄ܨ , n=1…N. Substitution in (D3) 
then gives: 

௟݂ െ ܨ ׬ ሺ∑ ሻ௡ߠ௡ሺߨ ሻߨ௟ሺߠሻ݃ሺߠሻ݀ߠఏ ൌ 0       (D5) 
which is identically true since ∑ ሻ௡ߠ௡ሺߨ ൌ 1. Hence this solves (D3). 
Substitution in (D4) gives: 

∑ ቄ׬ ఏߠሻ݀ߠሺ݃ߠ௟ݔሻߠ௟ሺߨ െ ∑ ׬ ௡ࣂߠሻ݀ߠሺ݃ߠ௡ݔሻߠ௡ሺߨሻߠ௟ሺߨ ቅ௟ ൌ 0    (D6) 

The left-hand side can be rewritten as: 

∑ ቄ׬ ఏߠሻ݀ߠሺ݃ߠ௟ݔሻߠ௟ሺߨ ቅ െ ∑ ׬ ሺ∑ ሻ௟ߠ௟ሺߨ ሻߨ௡ሺߠሻݔ௡݃ߠሺߠሻ݀ࣂߠ௡௟      (D7) 

Which is identically zero since ∑ ሻ௟ߠ௟ሺߨ ൌ 1. 
 


