
TI 2017-065/II
Tinbergen Institute Discussion Paper

The Degree Measure as Utility Function
over Positions in Networks

1

2
Rene (J.R.) van den Brink
Agnieszka Rusinowska

1:
2:

Vrije Universiteit Amsterdam; Tinbergen Institute, The Netherlands
Paris School of Economics -- CNRS, University Paris 1



Tinbergen Institute is the graduate school and research institute in economics of Erasmus University
Rotterdam, the University of Amsterdam and VU University Amsterdam.

Contact: discussionpapers@tinbergen.nl

More TI discussion papers can be downloaded at the Tinbergen Site

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 598 4580

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900

http://www.tinbergen.nl


The degree measure as utility function over positions

in networks
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Abstract. In this paper, we connect the social network theory on centrality measures to the eco-
nomic theory of preferences and utility. Using the fact that networks form a special class of cooper-
ative TU-games, we provide a foundation for the degree measure as a von Neumann-Morgenstern
expected utility function reflecting preferences over being in different positions in different net-
works. The famous degree measure assigns to every position in a weighted network the sum of the
weights of all links with its neighbours. A crucial property of a preference relation over network
positions is neutrality to ordinary risk. If a preference relation over network positions satisfies this
property and some regularity properties, then it must be represented by a utility function that is
a multiple of the degree centrality measure. We show this in three steps. First, we characterize the
degree measure as a centrality measure for weighted networks using four natural axioms. Second,
we relate these network centrality axioms to properties of preference relations over positions in
networks. Third, we show that the expected utility function is equal to a multiple of the degree
measure if and only if it represents a regular preference relation that is neutral to ordinary risk.
Similarly, we characterize a class of affine combinations of the outdegree and indegree measure in
weighted directed networks and deliver its interpretation as a von Neumann-Morgenstern expected
utility function.

JEL Classification: D81, D85, C02

Keywords: Weighted network, network centrality, utility function, degree centrality,
von Neumann-Morgenstern expected utility function, cooperative TU-game, weighted
directed network.

1 Introduction

The study of network centrality originates from the social network literature where differ-
ent types of network centrality are distinguished such as degree, closeness, betweenness,
prestige, etc. Various centrality measures are developed measuring these types of central-
ity. More recently, these centrality measures are applied to economic networks. However,
there is no utility foundation of network centrality. Since economic decision making is
based on preferences of economic decision makers, a utility foundation is fundamental
for the application of network centrality measures in economic models. Our aim is to
provide such a utility foundation for network centrality by considering network centrality
measures as von Neumann-Morgenstern expected utility functions (von Neumann and
Morgenstern (1944)) reflecting preferences over positions in networks. In this way, we can
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evaluate different positions in different networks. Questions that can be addressed in this
context are, for example, does an agent prefer to be the top of a small organization or
a middle manager in a large organization? Notice that centrality only takes the network
into account and not the possible (economic) process that takes place on the network.
In that sense, centrality as utility only refers to an agent’s preference to be in a certain
position in the network. If one wishes to analyze networks with different strengths of in-
teraction or relation between two individuals, then weighted networks where each link has
a nonnegative weight, can appear more suitable. In this paper we consider such weighted
networks.

The present work builds on Roth (1977a) who motivates the Shapley value (Shapley
(1953)) as a von Neumann-Morgenstern expected utility function over being particular
players in different games. He distinguishes between two kinds of risk: ordinary risk and
strategic risk. While ordinary risk involves the uncertainty that arises from lotteries,
strategic risk involves the uncertainty that arises from the interaction of the players in
a game. Roth (1977a) shows that the Shapley value of a game is equal to the utility of
playing the game if and only if the underlying preferences are neutral to both ordinary
and strategic risk. From Deng and Papadimitriou (1994), it follows that networks can be
seen as a special class of cooperative TU-games, specifically networks are those games
where worth is generated only by two-player coalitions.

In the present paper, we apply the method of Roth to give a foundation of social
network centrality measures as expected utility functions. A preference relation that
evaluates different positions in different networks is a binary relation which for any two
network positions (in possibly different networks) states if one of the two positions is
(weakly) preferred over the other. Such a preference relation is represented by a utility
function if this function assigns values to network positions such that one position is
weakly preferred to another if and only if the utility value of the first position is greater
or equal to that of the second position. In that sense, mathematically a utility function
over network positions is equivalent to a network centrality measure. We state several
axioms for preference relations over network positions, and show that a utility function
represents regular preferences neutral to ordinary risk if and only if the utilities assigned
to network positions are a multiple of their degree, i.e. their number of neighbours. In
this way, the degree measure can be seen as a von Neumann-Morgenstern expected utility
function for positions in networks. Neutrality to ordinary risk – the crucial axiom that
characterizes the degree measure as an expected utility function – means that an agent
is indifferent between taking a position in a convex combination of two networks and
playing a lottery over the two networks with the corresponding probabilities.

The degree measure is one of the most natural and famous centrality concepts which
can be seen as an index of the node’s communication ability and assigns to every node
in a network its degree. The degree of a node in a weighted network equals the sum of
the weights of all links formed by the given node, see e.g. Newman (2010). For simple
networks this then boils down to the number of links formed by that node, i.e. the number
of its neighbours. Inspired by some experimental studies, Shaw (1954) presents the degree
centrality as a measure to be used for predicting the behavior of individuals in small
groups, and Nieminen (1974) and van den Brink and Gilles (2000) analyze it from an
axiomatic point of view. Although the degree can be seen as a myopic centrality measure
that only takes account of direct relations, it can also be considered as a farsighted
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centrality measure in the sense that for a simple connected network, the probability
that a random walk will be found at node i in the limit of long time is proportional to
the degree of that node, see e.g. Newman (2010) page 159. Besides these myopic and
farsighted interpretations, we provide a third interpretation to the degree of nodes in a
network as being a von Neumann Morgenstern expected utility function.

The characterization of the degree measure as a von Neumann-Morgenstern expected
utility function follows from an axiomatization of the degree measure as a centrality
measure for weighted networks using the following four axioms. Anonymity imposes that
the labeling of the nodes has no effect on the measure. The isolated node property states
that the value assigned to an isolated node (i.e., a node that has no neighbours) does
not depend on the structure of the rest of the network. Scale invariance says that if a
weighted network is rescaled, i.e., the weights of all its links are multiplied by a common
factor, then the measure is also multiplied by the same factor. Additivity states that if
we add two weighted networks, then the measure of the obtained ‘sum’ network is equal
to the sum of the measures of the two weighted networks.

Besides undirected networks, we extend the results to directed networks and charac-
terize a class of affine combinations of the outdegree (being the sum of the weights of a
node’s outgoing arcs) and indegree measures (being the sum of the weights of a node’s
ingoing arcs) as expected utility function. Directed graphs cannot be represented as TU-
games, but they form a special class of generalized TU-games as introduced in Nowak
and Radzik (1994).

Related literature As already mentioned, we use the approach of Roth (1977a), build-
ing on the utility theory over mixture sets of Herstein and Milnor (1953). Roth (1977a)
develops a preference relation over game positions which permits to compare being differ-
ent players in different games. He extends the preference relation to lotteries over games
and shows that the Shapley value is an expected utility function reflecting preferences
neutral to both ordinary and strategic risk; see also Roth (1977b,c, 1988) for related stud-
ies on this issue. Roth (1977c, 1988) considers how the Shapley-Shubik index (Shapley and
Shubik (1954)) can be uniquely characterized as a risk-neutral expected utility function
defined on the class of simple games. Other attitudes towards risk lead to different utility
functions. This concerns, for instance, the Banzhaf index (Banzhaf (1965)) proposed in
the context of simple games, and extended to TU-games by e.g. Coleman (1971), Dubey
(1975), Dubey and Shapley (1979), and Owen (1975). The Banzhaf index is an extended
utility function reflecting preferences averse to strategic risk and neutral to ordinary risk
(Roth (1977d)). For an overview of Roth’s approach to the Shapley value, see also Pintér
(2014).

This paper is also related to the literature on social networks and centrality; for
some pioneering articles see e.g. Bavelas (1948), Bavelas (1950), Katz (1953), Beauchamp
(1965), Sabidussi (1966), Freeman (1977), Freeman (1979), Bonacich (1972), Bonacich
(1987), for surveys see e.g. Borgatti (2005), Goyal (2007), Jackson (2008), and Newman
(2010). Our research is particularly related to works using the axiomatic approach to cen-
trality measures. This stream of literature focusses mainly on specific centrality measures.
For instance, Garg (2009) characterizes axiomatically the degree, decay and closeness cen-
tralities. Some prestige and eigenvector-related centrality measures are characterized in
Palacios-Huerta and Volij (2004), Slutzki and Volij (2006), Dequiedt and Zenou (2014),
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and Kitti (2016). Bloch et al. (2016) characterize the standard centrality measures within
a unified framework and show that they all are characterized by a common set of axioms.
Although the present paper also uses the axiomatic approach to centrality measures and
characterizes the degree measure, our main aim is to show that this measure can be in-
terpreted as an expected utility function reflecting preferences over positions in weighted
networks.

An issue closely related to centrality is the ranking of nodes which is treated by using
a ranking method. Formally, a ranking method assigns to every (weighted) network a
(complete) preorder on the set of nodes. This preorder is a ranking of the nodes in order
of ‘importance’ or ‘centrality’ in the network. Various ranking methods are characterized
in the literature, in particular, methods based on directed networks, see e.g. Rubinstein
(1980) for the ranking by outdegree on the class of tournaments, see also Henriet (1985)
and Bouyssou (1992) for the ranking by Copeland score (Copeland (1951)), Bouyssou and
Perny (1992), van den Brink and Gilles (2003) for the ranking by outdegree for arbitrary
directed networks, and van den Brink and Gilles (2009) for the outflow ranking method for
weighted directed networks. There exist recent studies that characterize ranking methods
based on evaluations or citations which consider one-sided settings (e.g. Demange (2014))
and ranking methods in two-sided settings (e.g. Demange (2016)). An important differ-
ence between such ranking methods and the topic of this paper is that ranking methods
only compare the positions in one and the same network. This is useful if one wants to
rank, for example, teams in a sports competition, alternatives in a preference relation,
web pages on the internet, etc. Besides such comparisons within one network, a main
goal of the underlying paper is to compare positions in different networks. For example,
we want to know if an agent prefers a ‘central’ position in a small network to a position
in the fringe of a large network. In order to answer these questions we need to be able to
compare positions in different networks.

This paper is organized as follows. In Section 2 we discuss preliminaries on networks
and Herstein and Milnor (1953)’s expected utility theory over mixture sets. In Section
3 we present our main result, characterizing the degree measure as a von Neumann-
Morgenstern expected utility function, using as intermediary results an axiomatization
of the degree measure as a centrality measure, and relating properties of network cen-
trality measures to properties of preference relations over network positions. In Section
4 we consider directed networks. Section 5 contains concluding remarks. The paper ends
with two appendices: Appendix A on networks as cooperative games and Appendix B
containing proofs.

2 Preliminaries

In this section we present basic concepts and notation that will be used in the paper.

Weighted networks A weighted undirected network is a pair (N,ω) consisting of a
finite set of nodes N ⊂ IN that can represent individuals or agents, and a weight function
ω : Lc → R+, where L

c = {{i, j} | i, j ∈ N, i 6= j} denotes the complete undirected
network on N . An element {i, j} ∈ Lc is a subset of N of size two and is called a link .
A link {i, j} represents a certain bilateral relationship between nodes i and j. A weight
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function gives a nonnegative weight ω({i, j}) to every link that can be interpreted as
the ‘importance’ or ‘strength’ of that relationship. By WGN we denote the collection
of all weight functions on N . When there is no confusion, in this paper we refer to a
weighted undirected network simply as a network. A network with ω({i, j}) ∈ {0, 1} for
all {i, j} ∈ Lc, is usually called a simple network. A simple network just describes the
relationships that are present, but says nothing about their intensity. Since N is assumed
to be fixed, we represent a network (N,ω) by the weight function ω.

A centrality measure is a function f : WGN → IRN that assigns a real number to
every node in every network that reflects the ‘centrality’ of the nodes in the network.
The degree of node i ∈ N in network ω is defined as the sum of the weights of all links
containing i, and thus is given by

di(ω) =
∑

j∈N\{i}

ω({i, j}) (1)

The degree measure is the centrality measure that assigns to any node i in any network
ω its degree di(ω).

Let Π(N) be the collection of all permutations π : N → N . For a network ω ∈
WGN and a permutation π ∈ Π(N), the permuted network πω ∈ WGN is given by
πω({π(i), π(j)}) = ω({i, j}) for every {i, j} ∈ Lc.

We denote the set of networks where i ∈ N is an isolated node by

WGN
i = {ω ∈ WGN | ω({i, j}) = 0 for all j ∈ N \ {i}},

and ω0 ∈ WGN denotes the empty network given by ω0({i, j}) = 0 for all i, j ∈ N .
By ωi ∈ WGN , we denote the simple star network with i as center given by

ωi({i, j}) = 1 for all j ∈ N \ {i} and ωi({h, j}) = 0 if i 6∈ {h, j}.

Directed networks A weighted directed network is a pair (N,ω) with N ⊂ IN and a
directed weight function ω : N×N → R+ assigning to every arc (i, j) (i.e., to every ordered
pair of nodes) a nonnegative weight ω(i, j). We only consider weighted directed networks
that satisfy ω(i, i) = 0 for every i ∈ N . We denote the collection of all directed weight
functions on N by WDN . Similarly as for undirected networks, we refer to a weighted
directed network simply as a directed network and represent a weighted directed network
(N,ω) by ω if there is no confusion.

A centrality measure or power measure for directed networks is a function f : WDN →
IRN that assigns a real number to every node in every directed network. The outdegree of
node i in weighted directed network ω is the sum of the weights of i’s outgoing arcs, and
thus is defined by

outi(ω) =
∑

j∈N

ω(i, j) (2)

The indegree of node i in weighted directed network ω is the sum of the weights of its
ingoing arcs, and is given by

ini(ω) =
∑

j∈N

ω(j, i) (3)
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The outdegree-, respectively indegree measure is the centrality measure that assigns
to any node i in any directed network ω its outdegree outi(ω), respectively its indegree
ini(ω).

Note that both measures generalize the degree measure in the sense that, representing
a undirected network by the directed network where every link {i, j} is represented by
two arcs (i, j), (j, i) oriented in opposite direction, yields that both the outdegree as well
as the indegree of a node in the associated directed network, equals its degree in the
undirected network.1 For a directed network ω ∈ WDN and a permutation π ∈ Π(N),
the permuted directed network πω ∈ WDN is given by πω(π(i), π(j)) = ω(i, j) for every
(i, j) ∈ N ×N .

We denote the set of weighted directed networks where i is an isolated node by

WDN
i = {ω ∈ WDN | ω(i, j) = ω(j, i) = 0 for all j ∈ N \ {i}},

and ω0 ∈ WDN denotes the empty directed network given by ω0(i, j) = 0 for all i, j ∈ N .
Furthermore, ωi ∈ WDN is the standard outward oriented star network with i as center
given by ωi(i, j) = 1 for all j ∈ N \ {i}, and ωi(h, j) = 0 otherwise.

Note that we use the same notations ω, ω0 and ωi for both undirected and directed
networks. However, ω({i, j}) and ω(i, j) clarifies whether we consider networks or di-
rected networks. Moreover, the cases of undirected and directed networks are presented
in separate sections, i.e., in Sections 3 and 4, respectively, and therefore it will be clear
from the context if we deal with WGN or WDN .

Expected utility We recapitulate the utility theory on mixture sets of Herstein and Mil-
nor (1953) (for some related works and literature on linear utility representation theorems,
see e.g., Trockel (1989), Trockel (1992), and Neuefeind and Trockel (1995)). Consider a
set M . The lottery between two elements a, b ∈ M where element a occurs with proba-
bilty p ∈ [0, 1] is denoted by [pa; (1 − p)b]. A set M is a mixture set if for any a, b ∈ M

and any p ∈ [0, 1], the lottery [pa; (1 − p)b] also belongs to M . Notice that this implies
that also all loteries over loteries etc. belong to M . It is assumed that for all a, b ∈ M

and p, q ∈ [0, 1], the following standard equalities hold:

[1a; 0b] = a, [pa; (1−p)b] = [(1−p)b; pa], [q[pa; (1−p)b]; (1−q)b] = [pqa; (1−pq)b]. (4)

A preference relation on M is a binary relation � with the interpretation that a � b

means that “a is at least as good as b”.
A function u : M → R is an expected utility function representing the preference

relation � if for all a, b ∈M and p ∈ [0, 1], it holds that

(i) u(a) ≥ u(b) if and only if a � b, and

(ii) u([pa; (1− p)b]) = pu(a) + (1− p)u(b). (5)

We write [a ≻ b] if and only if [a � b and b 6� a], and [a ∼ b] if and only if [a � b and
b � a].

The following axioms guarantee that an expected utility function representing � ex-
ists.
1 Another famous measure for directed networks is the Copeland score (Copeland (1951)) which assigns to every
directed network the outdegree minus the indegree. Although often applied, this is not a generalization of the
degree measure for undirected networks.
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Axiom 1 (Completeness) For any a, b ∈M either a � b or b � a.

Axiom 2 (Transitivity) For any a, b, c ∈ M such that a � b and b � c it holds that
a � c.

Axiom 3 (Continuity) For any a, b, c ∈ M , the sets {p | [pa; (1 − p)b] � c} and {p |
c � [pa; (1− p)b]} are closed.

Axiom 4 (Substitutability) If a, a′ ∈ M and a ∼ a′ then for any b ∈ M , [1
2
a; 1

2
b] ∼

[1
2
a′; 1

2
b].

The expected utility function that represents � is unique up to an affine transforma-
tion. Choose r0, r1 ∈M such that r1 ≻ r0. For any x ∈M , we can write

u(x) =
pab(x)− pab(r0)

pab(r1)− pab(r0)

where a, b ∈M are such that a � x � b and a � r1 ≻ r0 � b, and pab(x) is defined by

x ∼ [pab(x)a; (1− pab(x))b], (6)

i.e. pab(x) is the probability on a in the lottery between a and b such that the agent is
indifferent between this lottery and getting x for sure. Note that the pab are well defined
and u is independent of the choice of a and b. Moreover, r1 and r0 determine the origin
and scale of the utility function: u(r1) = 1 and u(r0) = 0. We assume throughout the
paper that preferences satisfy the axioms stated above.

3 Centrality and utility in undirected networks

We refer to a pair (i, ω) ∈ N ×WGN as a network position. We assume that a preference
relation� is defined on the setN×WGN of network positions. We interpret (i, ω) � (j, ω′)
as “it is at least as good to be in the position of node i in network ω as to be in the
position of node j in network ω′”. Let M be the mixture set generated by all network
positions (i, ω) ∈ N × WGN , so M contains all network positions (i, ω), all lotteries of
network positions, all lotteries over those lotteries, etc. For (i, ω), (j, ω′) ∈ N×WGN and
p ∈ [0, 1], the lottery [p(i, ω); (1− p)(j, ω′)] considers a type of risk with respect to taking
a position in a network. It means that with probability p the agent takes the position
of node i in network ω, and with probability (1 − p) he takes the position of node j in
network ω′. We extend the preference relation over network positions to the mixture set
M . Then an expected utility function for network positions is a function φ : M → IR
assigning a utility value to every mixture of network positions.

Using the fact that networks can be seen as a special class of cooperative TU-games
(see Deng and Papadimitriou (1994)), besides the standard axioms on mixture sets stated
in the preliminaries (Axioms 1 - 4), we apply some of the axioms of Roth (1977a) on this
special class of so-called 2-games.2 (We refer to Appendix A for this game representation
of networks. We will state all axioms and results in terms of network positions.)

The first requires that relabeling the nodes in a network yields a corresponding re-
ordering in the preference relation.

2 Axioms 5 and 7 are exactly the same as formulated by Roth (1977a) but restricted to the class of 2-games.
Axiom 6 is a modification of Roth’s corresponding axiom.
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Axiom 5 For all ω ∈ WGN , i ∈ N and π ∈ Π(N), it holds that (i, ω) ∼ (π(i), πω).

The second axiom compares different network positions, expressing preference with
respect to connectedness. More specifically, an agent (i) weakly prefers any position in
any network above being in the empty network, (ii) is indifferent between being isolated
in any network and being in the empty network, and (iii) strictly prefers to be the center
of the star than being in the empty network.3

Axiom 6 For all i ∈ N , ω ∈ WGN and ω′ ∈ WGN
i , it holds that (i) (i, ω) � (i, ω0), (ii)

(i, ω′) ∼ (i, ω0), and (iii) (i, ωi) ≻ (i, ω0).

This axiom expresses the importance of being connected in the sense that the worst
that can happen is to be isolated. Note that condition (iii) does not imply that it is best
to be the center of a star but, together with part (ii) it implies that it is strictly better to
be the center of a star than to be isolated. This rules out externalities in the sense that
as long as an agent is isolated, it is indifferent with respect to the way the other nodes
are connected. Although from an economic viewpoint there might be reason why such
externalities exist, the goal of this paper is to view centrality measures as utility functions,
and centrality measures in the social network literature usually assign centrality zero to
isolated positions. Concerning part (iii), whatever type of centrality is considered (degree,
connectedness, betweenness etc.), on a fixed set of nodes, it is always more central to be
the center of a star than to be isolated.4

From now on, we refer to preference relations that satisfy Axioms 1 - 6 as regular
preference relations.

To axiomatize the Shapley value for TU-games as a von Neumann-Morgenstern ex-
pected utility function, Roth (1977a) introduces two types of risk neutrality: neutrality
to ordinary risk and neutrality to strategic risk. In this paper, we need to consider only
the first type of risk. For p ∈ [0, 1], consider node i in a convex combination pω+(1−p)ω′

of two networks ω and ω′, i.e. (ω + ω′)({i, j}) = ω({i, j}) + ω′({i, j}) for all i, j ∈ N .
Neutrality to ordinary risk requires that an agent is indifferent between taking a position
in network pω+(1− p)ω′ for sure, and playing a lottery over the networks ω and ω′ with
the corresponding probabilities.

Axiom 7 (Neutrality to ordinary risk) For all ω, ω′ ∈ WGN and i ∈ N , it holds
that (i, pω + (1− p)ω′) ∼ [p(i, ω); (1− p)(i, ω′)].

Next, we state the main result of this section characterizing the class of expected
utility functions that represent a regular preference relation that is neutral to ordinary
risk as those that correspond to a multiple of the degree measure.

3 This axiom is similar to Condition 7 of Roth (1977a) in the sense that (i) the 2-game associated to a network
is the null game if and only if the network is the empty network, (ii) a player is a null player in the associated
2-game if and only if it is isolated in the network, and (iii) whereas Roth (1977a) required that is is strictly
preferred to be a dictator in a simple game (i.e. all coalitions containing player i earn one, and all other
coalitions earn zero) than to be in the null game, here the center of a star is not a dictator but a veto player
in the 2-game where the payoff is generated by all two-player coalitions containing this player.

4 Our results are also valid if this axiom is strengthened by requiring that being the center of the simple star is
strictly better than any other position in any simple network on a fixed set of positions. This is often required
when measuring centrality in the social network literature, see e.g. Gómez et al. (2003).
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Theorem 1 The expected utility function φ represents a regular preference relation that
is neutral to ordinary risk if and only if there exists an α > 0 such that φ(i, ω) = αdi(ω)
for all (i, ω) ∈ N ×WGN , where di(ω) is the degree of node i in network ω, see (1).

This theorem gives the degree measure, which is a well-known centrality measure in
social network theory, an interpretation as a von Neumann-Morgenstern expected utility
function. This can be shown by (i) characterizing (the class of multiples of) the degree
measure as those centrality measures that satisfy four properties of centrality measures
for networks (Proposition 1), and (ii) relating those four network centrality properties to
properties of preference relations over network positions (Lemma 1).

Note that centrality measures f and utility functions φ are mathematically the same
and both assign values to nodes in networks, but their interpretation is different. It is the
purpose of this paper to bring these interpretations together.

Realizing that networks are equivalent to cooperative TU-games where the worth of
any coalition is equal to the sum of the worths of all its subsets of size two, one can
apply any axiomatization of the Shapley value on this class of 2-games, obtaining an
axiomatization of the degree measure as a centrality measure if uniqueness holds on the
subclass. Here we verify axioms similar as Shapley (1953)’s axioms (without efficiency).

First, anonymity means that the labeling of the nodes in a network has no effect on
their centrality.

Property 1 (Anonymity) For every ω ∈ WGN and permutation π ∈ Π(N), it holds
that fi(ω) = fπ(i)(π(ω)).

Second, the isolated node property requires that the centrality of an isolated node
does not depend on the structure of the rest of the network. Centrality measures from
the literature usually satisfy this property.

Property 2 (Isolated node property) For every ω, ω′ ∈ WGN
i , it holds that fi(ω) =

fi(ω
′).

Scale invariance states that if the weights of all links in a network are multiplied by a
common factor, then the centralities of the nodes in that network are multiplied by the
same factor.

Property 3 (Scale invariance) Let ω, ω′ ∈ WGN be such that there exists an α ∈ IR+

with ω′({i, j}) = α · ω({i, j}) for all {i, j} ∈ Lc. Then f(ω′) = αf(ω).

Finally, additivity means that the centralities in the network obtained by adding two
networks is equal to the sum of the centralities of these two networks.

Property 4 (Additivity) For ω, ω′ ∈ WGN it holds that f(ω + ω′) = f(ω) + f(ω′),
where (ω + ω′)({i, j}) = ω({i, j}) + ω′({i, j}) for all {i, j} ∈ Lc.

Since the Shapley value of the 2-game associated to a network assigns to every player
half of its degree (see Deng and Papadimitriou (1994), Theorem 1), we obtain the following
characterization of the (multiples of the) degree measure.
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Proposition 1 A centrality measure f satisfies anonymity, the isolated node property,
scale invariance and additivity if and only if there exists an α ∈ IR such that

fi(ω) = αdi(ω) for all (i, ω) ∈ N ×WGN . (7)

Theorem 1 follows from Proposition 1 by the following lemma which shows how the
four properties for network centrality measures are implied by the regularity Axioms 5 -
6 and neutrality to ordinary risk (Axiom 7) on preferences.

Lemma 1 Consider an expected utility function φ : M → IR for positions in a network
that is determined by a centrality measure f as follows: φ(i, ω) = fi(ω).

(i) If expected utility function φ represents a preference relation � satisfying Axiom 5,
then centrality measure f satisfies anonymity.

(ii) If expected utility function φ represents a preference relation � satisfying Axiom 6,
then centrality measure f satisfies the isolated node property.

(iii) If expected utility function φ represents a preference relation that is neutral to or-
dinary risk (Axiom 7), then for all ω ∈ WGN , i ∈ N and c > 1, it holds that
(i, ω) ∼ [1

c
(i, cω); (1− 1

c
)(i, ω0)].

(iv) If expected utility function φ represents a preference relation � satisfying Axioms
5-6 and is neutral to ordinary risk (Axiom 7), then centrality measure f satisfies scale
invariance and additivity.

This lemma and the main theorem also can be shown similar as Roth (1977a), realizing
that networks form a special class of cooperative TU-games. We will prove a similar result
for directed networks in Appendix B.

Our main result (Theorem 1) is an economic result interpreting such centrality
measures as von Neumann-Morgenstern expected utility functions. Proposition 1 charac-
terizes the (multiples of the) degree measure as a social network centrality measure. To
prove Theorem 1 from Proposition 1, we needed Lemma 1 which is a result that ‘bridges’
social network theory with economic utility theory.

4 Centrality and utility in directed networks

In this section, we extend the utility foundation of centrality measures as done in the pre-
vious section to directed networks, where they are also sometimes called power measures.
Directed networks cannot be represented as a special class of cooperative TU-games. In
order to describe directed networks as cooperative games, we need a game model where
the worth of coalitions depends on the order of the players in the coalition. For example,
the order/arc (1, 2) can have a different worth/weight than the order (2, 1), whereas in a
TU-game/undirected network, the order in coalition {1, 2} = {2, 1} does not matter. We
do this by considering a subclass of generalized characteristic functions as introduced in
Nowak and Radzik (1994) where only orders of length 2 have a nonzero worth. We refer
to Appendix A for a summary of this model, but here we apply the notions directly on
directed networks. However, since the theory of Roth (1977a) is not yet extended to the
class of generalized characteristic functions, we give all proofs for directed networks in
Appendix B.
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In this section we consider the set N × WDN of positions in weighted directed
networks. Similar as in the previous section, we now assume that a preference relation �
is defined on the set N ×WDN with the interpretation (i, ω) � (j, ω′) as “it is at least
as good to be in position i in directed network ω than to be in position j in directed
network ω′”. We extend this preference relation to the mixture set M that also contains
all lotteries [p(i, ω); (1− p)(j, ω′)] with (i, ω), (j, ω′) ∈ N ×WDN and p ∈ [0, 1].

Besides the standard axioms on mixture sets stated in the preliminaries (Axioms
1 - 4) on mixture sets, we use Axioms 5-6-7) of the previous section, but now for directed
networks. Notice that the Axioms 8 - 10 are stated exactly the same as these axioms in
the previous section, except defined on the class of directed networks WDN , and the star
in undirected networks replaced by the outward oriented star in directed networks.

Axiom 8 For all ω ∈ WDN , i ∈ N and π ∈ Π(N), it holds that (i, ω) ∼ (π(i), πω).

Axiom 9 For all i ∈ N , ω ∈ WDN and ω′ ∈ WDN
i , it holds that (i) (i, ω) � (i, ω0), (ii)

(i, ω′) ∼ (i, ω0), and (iii) (i, ωi) ≻ (i, ω0).

Axiom 10 (Neutrality to ordinary risk) For all ω, ω′ ∈ WDN and i ∈ N , it holds
that (i, pω + (1− p)ω′) ∼ [p(i, ω); (1− p)(i, ω′)], where (pω + (1− p)ω′)(i, j) = pω(i, j) +
(1− p)ω′(i, j) for all (i, j) ∈ N ×N .

Similar as in Section 3, we refer to preference relations that satisfy Axioms 8 and
9 as regular preference relations.

It turns out that a utility function for directed network positions that represents
regular preferences that are neutral to ordinary risk must be an affine combination of the
outdegree and indegree measures with positive weight on the outdegree and nonnegative
weight on the indegree measure.

Theorem 2 The utility function φ represents a regular preference relation that is neutral
to ordinary risk if and only if there exist α > 0 and β ≥ 0 such that φ(i, ω) = α ·outi(ω)+
β · ini(ω) for all (i, ω) ∈ N ×WDN .

The class of utility functions/centrality measures characterized in this theorem
contains the outdegree (α = 1, β = 0) and the average of the out- and indegree (α = β =
1
2
). From the various extensions of the Shapley value to generalized TU-games, a multiple

of the outdegree measure is obtained by applying the extension of Nowak and Radzik
(1994), while a multiple of the average of the outdegree and indegree is obtained by
applying the alternative generalization of the Shapley value of Sánchez and Bergantinos
(1997), see Appendix A.

Similar as in the previous section, Theorem 2 can be shown by characterizing the
outdegree measure as a centrality or power measure for directed networks.

Proposition 2 A centrality measure f on WDN satisfies

– Anonymity: For every ω ∈ WDN and permutation π ∈ Π(N), it holds that fi(ω) =
fπ(i)(π(ω));

– Scale invariance: Let ω, ω′ ∈ WDN be such that there exists an α ∈ IR such that
ω′(i, j) = αω(i, j). Then f(ω′) = αf(ω);

11



– Isolated node property: For all ω, ω′ ∈ WDN
i and i ∈ N , it holds that fi(ω) = fi(ω

′);
– Additivity: For ω, ω′ ∈ WDN it holds that f(ω + ω′) = f(ω) + f(ω′),

if and only if there exist α, β ∈ IR such that

fi(ω) = α · outi(ω) + β · ini(ω) for all (i, ω) ∈ N ×WDN . (8)

Similar as Lemma 1, the axioms for centrality measures can be associated to
properties of preference relations.

Lemma 2 Consider a utility function φ : N × WDN → IR for positions in a directed
network that is determined by a centrality measure f as follows: φ(i, ω) = fi(ω).

(i) If expected utility function φ represents a preference relation � satisfying Axiom 8,
then centrality measure f satisfies anonymity.

(ii) If expected utility function φ represents a preference relation � satisfying Axiom 9,
then centrality measure f satisfies the isolated node property.

(iii) If expected utility function φ represents a preference relation that is neutral to or-
dinary risk (Axiom 10), then for all ω ∈ WDN , i ∈ N and c > 1, it holds that
(i, ω) ∼ [1

c
(i, cω); (1− 1

c
)(i, ω0)].

(iv) If expected utility function φ represents a preference relation � satisfying Axioms 8-9
and is neutral to ordinary risk (Axiom 10), then centrality measure f satisfies scale
invariance and additivity.

The proofs of Proposition 2, Lemma 2 and Theorem 2 can be found in Appendix B.
In this section we characterized a class of affine combinations of the outdegree and

indegree measures as von Neumann-Morgenstern expected utility functions for positions
in directed networks with a positive weight on the outdegree and a nonnegative weight
on the indegree. The signs of the weights are determined by Axiom 9. A position in the
‘empty network’ being the worst determines that the weights on out- and indegree are
nonnegative. The centre of the outward oriented star being better than a position in the
‘empty network’ determines the weight on the outdegree to be positive. Adding more
axioms we can refine the weights. For example, additionally requiring that being the
centre of the outward oriented star is strictly better than being the centre of the inward
oriented star5 will determine that α > β, i.e. the weight on the outdegree is greater than
the weight on the indegree.

5 Concluding remarks

The goal of this paper is to give a utility foundation to centrality measures, and in that
way to connect social network theory with economic utility theory. Summarizing,

(i) we showed that an expected utility function φ represents a regular preference relation
that is neutral to ordinary risk if and only if it is a nonnegative multiple of the degree
measure for undirected networks (Theorem 1) / a nonnegative affine combination of
the outdegree and indegree measure with positive weight on the outdegree for directed
networks (Theorem 2);

5 The simple inward oriented star is the directed network given by ωi(j, i) = 1 for all j ∈ N \{i}, and ωi(h, j) = 0
otherwise.
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(ii) we showed that a centrality measure f satisfies anonymity, scale invariance, the iso-
lated node property and additivity if and only if it is a multiple of the degree measure
for undirected networks (Proposition 1) / an affine combination of the outdegree and
indegree measure for directed networks (Proposition 2);

(iii) we related properties of preference relations to properties of centrality measures
(Lemma 1 / Lemma 2).

These three steps summarize the connection that we make between economics and
social networks. Our main results are Theorems 1 and 2 being economic results which
characterize centrality measures as von Neumann-Morgenstern expected utility functions.
Propositions 1 and 2 are social network results which give axiomatic characterizations
of centrality measures. Finally, Lemmas 1 and 2 bridge economics with social networks
by relating properties of economic preference relations to properties of social network
centrality measures.

The approach followed in this paper is of crucial importance, since the interpre-
tation of the degree measure as expected utility function for network positions permits
to compare different positions in networks. Despite its simplicity, the degree measure is
sufficient for measuring involvement or communication ability of an agent in the network.
Moreover, the simplicity of the degree measure is an advantage, since only the local struc-
ture around a node must be known for calculations, for instance, when using social survey
data. Our utility interpretation is also an alternative to the usual interpretation of the
degree as either a myopic centrality measure that only takes account of direct relations,
or as a farsighted centrality measure in the sense that for a simple connected network,
the probability that a random walk will be found at node i in the limit of long time is
proportional to the degree of that node.

We plan a number of follow-up research projects. While in this paper the set of
nodes is assumed to be fixed, we could consider utility functions over nodes in networks of
different size. Another interesting extension would be to analyze processes on a network
and to combine utility of positions in a network with utility generation from processes
on a network. Different centrality measures usually capture complementary aspects of an
agent’s position and ability, and therefore can get different agents as the most central
ones in the network. We intend to relax the assumption of risk neutrality to find utility
foundations of other centrality measures.

We mentioned that the class of all networks can be seen as a subclass of the
class of all TU-games, specifically the class of TU-games where only coalitions of size
two have a nonzero Harsanyi dividend (Harsanyi (1959)). These games are equivalent
to the 2-games or telecommunication games used in van den Nouweland et al. (1996)
to model cooperation among national telephone operators to establish the Terrestrial
Flight Telephone System, and contains the class of queueing games of Maniquet (2003).
An interesting question for future research is if we can obtain utility foundations of
other centrality measures by considering other TU-games that represent a network. For
example, van den Brink and Gilles (2000) consider the game where every coalition of nodes
is assigned the sum of the worths of all links that have at least one player in the coalition.
Obviously, the worth of a singleton equals its degree. Applying the Shapley value to this
game yields the β-measure which is another centrality measure. In our future research
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we would like to apply the approach followed in this paper to obtain utility foundations
of this and other measures.

Another theoretical question that we want to address is how to incorporate exter-
nalities in measuring network centrality. For example, does your utility depend on the
way how agents in other components of the network (i.e. agents with whom you are not
connected, not directly nor indirectly) are linked? According to centrality measures that
can be found in the literature, usually the centrality of a position does not depend on the
structure of other components. For example, isolated nodes usually have zero centrality
irrespective of the rest of the network. But when you have no neighbors, it might still make
a difference whether other agents are linked to each other or not. We plan to incorporate
this type of externality in measuring network centrality, in particular when interpreting
these measures as utility functions. Besides this theoretical research, we plan to do an
experimental study, both testing measures of centrality with and without externalities.

Finally, considering directed networks, there are more possibilities to consider what
is the worst possible position, even when there are no externalities. For example, under the
regularity axioms of this paper, the utility function assigns zero to every isolated node in
any network. For undirected networks this means that being isolated is the worst position
(as reflected by Axiom 6). However, for directed networks, it is not obvious whether it
is worse to be isolated or to be connected but connected only by having ‘superiors’ and
no ‘subordinates’, i.e. having only ingoing arcs. This is reflected by the famous Copeland
score (Copeland (1951)) being the difference between the outdegree and indegree. Which
position is more preferred depends on the application of the network. In some cases it
might be better to be connected, even with only ingoing arcs. But in other cases it might
be better to be isolated and independent than to be connected with only ingoing arcs.
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This research has been initiated when René van den Brink was Visiting Professor at the
Centre d’Economie de la Sorbonne of the University of Paris 1. Agnieszka Rusinowska
acknowledges the support by the National Agency for Research (Agence Nationale de
la Recherche), Project DynaMITE (ANR-13-BSH1-0010-01). Both authors acknowledge
the support by the Labex OSE (ANR-10-LABX-93-01). They thank particularly Stefano
Moretti for pointing out the relation between networks and cooperative TU-games, and
participants of the following conferences, workshops and invited seminars: Workshop on
Cooperative Game Theory in Business Practice (Leipzig, June 2016), SING12 Conference
(Odense, July 2016), NSF Conference on Network Science in Economics (St Louis, April
2017), CTN Conference (Glasgow, May 2017), SAET Conference (Faro, June 2017), PET
Conference (Paris, July 2017), Conference on Game Theory in Stony Brook (July 2017),
invited seminars at University of Bayreuth and University of Paris 1.

Appendix A: Cooperative TU-games

The Shapley value and 2-games A situation in which a finite set of players N ⊂ N

can generate certain payoffs by cooperation can be described by a cooperative game with
transferable utility (or simply a TU-game), being a pair (N, v) where v : 2N → R is a
characteristic function on N satisfying v(∅) = 0. For every coalition S ⊆ N , v(S) ∈ R is
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the worth of coalition S, i.e. the members of coalition S can obtain a total payoff of v(S)
by agreeing to cooperate. Since the set of players/nodes is fixed, we represent a TU-game
(N, v) by its characteristic function v.

A payoff vector for game v on N is an |N |-dimensional vector x ∈ R
N assigning a

payoff xi ∈ R to any player i ∈ N . A (single-valued) solution for TU-games is a function
f that assigns a payoff vector f(v) ∈ R

N to every TU-game v on N . One of the most
famous solutions for TU-games is the Shapley value (Shapley (1953)) given by

Shi(v) =
∑

S⊆N :i∈S

(|S| − 1)!(|N | − |S|)!

|N |!
(v(S)− v(S \ {i})) .

Deng and Papadimitriou (1994) argue that any network can be represented by
a TU-game v where the worth of any two player coalition is the weight of the link,
and the worth of any other coalition equals the sum of the worths of all two player
subcoalitions. In other words, the TU-game vω associated to network ω is given by
vω(S) =

∑

T⊆S,|T |=2 v(T ).
6 As Deng and Papadimitriou (1994) show, the Shapley value

of the associated game vω assigns to every player half of its degree in ω.
In van den Nouweland et al. (1996) and Brown and Housman (1988), these games

are called 2-games , and it is shown that on this class of games the Shapley value coincides
with other TU-game solutions such as the nucleolus (Schmeidler (1969)) and the τ -value
(Tijs (1981)).

Generalized TU-games Nowak and Radzik (1994) introduced the concept of game in
generalized characteristic function form or generalized TU-game where the order in which
a coalition is formed influences the worth that can be generated. For each S ∈ 2N \ {∅},
let Π(S) denote the set of all permutations or ordered coalitions of the players in S and,
for notational convenience, Π(∅) = {∅}. We denote Ω(N) = {T ∈ Π(S) | S ⊆ N} as
the set of all ordered coalitions with players in N . A game in generalized characteristic
function form is a pair (N, v) with N being the player set and v : Ω(N) → IR being the
generalized characteristic function satisfying v(∅) = 0.

Given an ordered coalition T ∈ Ω(N), there exists S ⊆ N such that T ∈ Π(S).
We denote by H(T ) = S the set of players in the ordered coalition T , and t = |H(T )|.
For ordered coalition T ∈ Ω(N), let j(T ) ∈ {1, . . . , t} be the position of player j ∈ H(T )
in T . So, for T = (i1, i2, . . . , it) we have ik(T ) = k for all k ∈ {1, . . . , t}. For player
i ∈ N\H(T ), let (T, il), l ∈ {1, . . . , t+1}, be the ordered coalition that is obtained from T

by putting i on the lth position and moving all players on position l or higher one position
backwards. So, i(T, il) = l, j(T, il) = j(T ) for all j ∈ H(T ) with j(T ) ∈ {1, . . . , l−1}, and
j(T, il) = j(T ) + 1 for all j ∈ H(T ) with j(T ) ∈ {l, . . . , t}. Since the set of players/nodes
is fixed, we represent a generalized TU-game (N, v) by its characteristic function v.

A solution for generalized TU-games is a function that assigns to every generalized
TU-game v a vector in IRN . In their seminal paper, Nowak and Radzik (1994) define and
characterize the solution ψNR assigning to every generalized TU-game v the payoffs

ψNR
i (v) =

∑

T∈Ω(N\{i})

(n− t− 1)!

n!
(v(T, it+1)− v(T )), for all i ∈ N,

6 In terms of the so-called Harsanyi dividends (Harsanyi (1959)) this can also be defined as the class of games
where only two-player coalitions have a nonzero dividend being equal to the weight of the corresponding link.
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so a player gets its average marginal contribution to the players that entered before him
over all orders of N . Sánchez and Bergantinos (1997) consider another generalization of
the Shapley value for generalized TU-games given by

ψSB
i (v) =

∑

T∈Ω(N\{i})

(n− t− 1)!

n!(t+ 1)

t+1
∑

l=1

(v(T, il)− v(T )), for all i ∈ N.

which also takes account of the contribution of a player in an ordered coalition where it
is not the last to enter.

Similar as Deng and Papadimitriou (1994) represented undirected networks as a
special class of TU-games, we can represent directed networks as generalized TU-games
where the worth of ordered coalitions is determined by the two player arcs, i.e. assign
to every directed network ω the generalized characteristic function vω given by vω(T ) =
∑

ik,il∈{i1,i2,...,it}, k>l ω(ik, il) where T = (i1, i2, . . . , it). Applying ψ
NR to this game yields

a multiple of the outdegree of ω.7 The solution ψSB applied to vω yields a multiple of
the sum of the outdegree and indegree. Applying the class of solutions containing both
of van den Brink et al. (2014) gives other centrality measures for directed networks.

Appendix B: Proofs of Section 4

In this appendix, we give the proofs of Section 4. Proofs of Section 3 follow in a similar
way, but also follow from modifying the results in Roth (1977a).

Proof of Proposition 2

It is straightforward to verify that centrality/power measures as given by (8) satisfy the
four properties. To show uniqueness, suppose that centrality measure f satisfies the four
properties, and consider ω ∈ WDN .
First, consider the empty network ω0 and any network ω ∈ WDN . Additivity implies that
fi(ω+ω

0) = fi(ω)+fi(ω
0). Since ω+ω0 = ω, this implies that fi(ω) = fi(ω)+fi(ω

0), and
thus fi(ω

0) = 0 for all i ∈ N . By the isolated node property, fi(ω) = 0 for all ω ∈ WDN
i

where i is isolated.
Next, take a pair i, j ∈ N , i 6= j, and define WDN

ij = {ω ∈ WDN | ω(i, j) 6= 0 and
ω(h, g) = 0 for all (h, g) 6= (i, j)}, being the class of networks where only arc (i, j) has a
nonzero weight.
By scale invariance, there exist α, β ∈ IR such that fi(ω) = α·ω(i, j) and fj(ω) = β ·ω(i, j)
for any ω ∈ WDN

ij .

Now take any (h, g) ∈ N ×N, h 6= g, (h, g) 6= (i, j), and ω′ ∈ WDN
hg. By anonymity and

the class WDN
ij discussed above, we have fh(ω

′) = α · ω′(h, g) and fg(ω
′) = β · ω′(h, g).

Finally, consider any ω ∈ WGN . For every i, j ∈ N , i 6= j, define ωij(i, j) = ω(i, j) and
ωij(h, g) = 0 for all (h, g) 6= (i, j). Then additivity implies that for all i ∈ N , fi(ω) =
∑

h,g∈N

h 6=g
fi(ω

hg) =
∑

j∈N\{i} (fi(ω
ij) + fi(ω

ji)) =
∑

j∈N\{i} (α · ω(i, j) + β · ω(j, i)) =

α
∑

j∈N\{i} ω(i, j) + β
∑

j∈N\{i} ω(j, i) = α · outi(ω) + β · ini(ω).
⊓⊔

7 Notice that the game vω could also be defined by taking the sum over all ordered pairs ik, il ∈ {i1, i2, . . . , it}
with k < l, but then the solution of Nowak and Radzik (1994) will give the indegree of ω.
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Proof of Lemma 2

(i) This follows immediately from Axiom 8.
(ii) If expected utility function φ represents a preference relation � satisfying Axiom

9, then for every ω, ω′ ∈ WDN
i , we have (i, ω) ∼ (i, ω′), and thus fi(ω) = φ(i, ω) =

φ(i, ω′) = fi(ω
′).

(iii) Consider ω ∈ WDN and c > 1. Suppose that � satisfies neutrality to ordinary risk.
Taking p = 1

c
, ω′ = ω0 and considering the network cω, neutrality to ordinary risk

implies that

(

i,

(

1

c
cω + (1−

1

c
)ω0

))

∼

[

1

c
(i, cω); (1−

1

c
)(i, ω0)

]

which is equivalent to

(i, ω) ∼

[

1

c
(i, cω); (1−

1

c
)(i, ω0)

]

.

(iv) To show scale invariance, note that from Herstein and Milnor (1953) (see prelimi-
naries) it follows that there exist r0, r1 ∈M with r1 ≻ r0 such that an expected utility
function φ over the positions in a weighted network ω can be written as

φ(i, ω) =
pab(i, ω)− pab(r0)

pab(r1)− pab(r0)
(9)

for some a, b ∈M with a � (i, ω) � b and a � r1 ≻ r0 � b with probabilities pab(i, ω)
defined such that (i, ω) ∼ [pab(i, ω)a; (1− pab(i, ω))b]. By Axiom 9, we can take b = r0
and thus pab(r0) = 0 for all a ∈M . We distinguish the following two cases.
Case 1: Suppose that (i, cω) � r1.

8

Take a = (i, cω) and b = r0 = (i, ω0). Then by (9), φ(i, cω) = pab(i,cω)
pab(r1)

= pab(a)
pab(r1)

= 1
pab(r1)

.

By part (iii) of the lemma, we have (i, ω) ∼ [1
c
(i, cω); (1− 1

c
)(i, ω0)], so pab(i, ω) =

1
c
.

But then fi(ω) = φ(i, ω) = pab(i,ω)
pab(r1)

= 1
c
· 1

pab(r1)
= 1

c
φ(i, cω) = 1

c
fi(cω). So, scale

invariance is satisfied in this case.

Case 2: Suppose that r1 � (i, cω).
Take a = r1 and b = r0 = (i, ω0). Then pab(r1) = 1, and so φ(i, cω) = pab(i, cω). By
part (iii) of the lemma, we have (i, ω) ∼ [1

c
(i, cω); (1− 1

c
)(i, ω0)] ∼ [1

c
[pab(i, cω)a; (1−

pab(i, cω))b]; (1 −
1
c
)(i, ω0)] = [1

c
pab(i, cω)a; 1 −

1
c
pab(i, cω)b], so pab(i, ω) =

1
c
pab(i, cω).

Then, by (9), we have φ(i, ω) = pab(i, ω) = 1
c
pab(i, cω), and thus fi(ω) = φ(i, ω) =

1
c
pab(i, cω) =

1
c
φ(i, cω) = 1

c
fi(cω). So, scale invariance is also satisfied in this case.

To prove additivity, consider any ω, ω′ ∈ WDN . Note that for every i ∈ N , neutrality
to ordinary risk implies that (i, 1

2
ω + 1

2
ω′) ∼ [1

2
(i, ω); 1

2
(i, ω′)] and thus φ(i, 1

2
ω +

8 Although Roth (1977a) takes specifically that r1 is the unanimity game with player i as only nonnull player,
we do not specify r1. It is sufficient that there exists a network position that is strictly preferred to being in
the empty network, as is guaranteed by Axiom 9 with the center of the outward oriented star network (i, ωi).
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1
2
ω′) = φ([1

2
(i, ω); 1

2
(i, ω′)]) = 1

2
φ(i, ω) + 1

2
φ(i, ω′), where the first equality follows

from neutrality to ordinary risk and the second from (5). But then fi(ω + ω′) =
fi(2(

1
2
ω+ 1

2
ω′)) = 2fi(

1
2
ω+ 1

2
ω′) = 2φ(i, 1

2
ω+ 1

2
ω′) = 2(1

2
φ(i, ω)+ 1

2
φ(i, ω′)) = φ(i, ω)+

φ(i, ω′) = fi(ω) + fi(ω
′), where the second equality follows from scale invariance of f .

So, additivity is satisfied.
⊓⊔

Proof of Theorem 2

To prove the ‘only if’ part, note that it follows from Lemma 2 and Proposition 2 that,
if expected utility function φ represents a regular preference relation that is neutral to
ordinary risk, then φ(i, ω) = α · outi(ω) + β · ini(ω) for some α, β ∈ IR. Then φi(ω

0) = 0
for all i ∈ N . By Axiom 9(iii), it must hold that φ(i, ωi) = α(|N | − 1) > 0 = φ(i, ω0),
and thus α > 0. By Axiom 9(ii), it must hold that φ(j, ωi) = β ≥ 0 = φ(j, ω0) for all
j ∈ N \ {i}, and thus β ≥ 0.
To prove the ‘if’ part, let � be the preference relation based on φ(i, ω) = α · outi(ω) +
β · ini(ω) with α > 0, β ≥ 0, i.e. (i, ω) � (j, ω′) if and only if α · outi(ω) + β · ini(ω) ≥
α · outi(ω

′) + β · ini(ω
′). It is straightforward to check that � satisfies Axiom 8. Axiom 9

follows since (i) α·outi(ω
′)+β ·ini(ω

′) = 0 for all ω′ ∈ WDN
i , (ii) α·outi(ω)+β ·ini(ω) ≥ 0

for all ω ∈ WDN , and (iii) α · outi(ω
i) + β · ini(ω

i) > 0. Finally, to prove neutrality to
ordinary risk, consider ω, ω′ ∈ WDN and i ∈ N . Then, for p ∈ [0, 1] we have φ(i, pω+(1−
p)ω′) = α·outi(pω+(1−p)ω′)+β ·ini(pω+(1−p)ω′) = α·outi(pω)+α·outi((1−p)ω

′)+β ·
ini(pω)+β ·ini((1−p)ω

′) = pα·outi(ω)+(1−p)α·outi(ω
′)+pβ ·ini(ω)+(1−p)β ·ini(ω

′) =
p(α · outi(ω) + β · ini(ω)) + (1− p)(α · outi(ω

′) + β · ini(ω
′)) = pφ(i, ω) + (1− p)φ(i, ω′) =

φ([p(i, ω); (1− p)(i, ω′)]), where the last equality follows from (5). ⊓⊔
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