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Abstract

In modern data sets, the number of available variables can greatly
exceed the number of observations. In this paper we show how valid
confidence intervals can be constructed by approximating the inverse co-
variance matrix by a scaled Moore-Penrose pseudoinverse, and using the
lasso to perform a bias correction. In addition, we propose random least
squares, a new regularization technique which yields narrower confidence
intervals with the same theoretical validity. Random least squares esti-
mates the inverse covariance matrix using multiple low-dimensional ran-
dom projections of the data. This is shown to be equivalent to a gener-
alized form of ridge regularization. The methods are illustrated in Monte
Carlo experiments and an empirical example using quarterly data from
the FRED-QD database, where gross domestic product is explained by a
large number of macroeconomic and financial indicators.
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1 Introduction

The increase in available economic indicators has led to a challenging situation
where the number of explanatory variables approaches, and often even exceeds
the number of available observations. This is commonly observed in cross-
sectional datasets on economic growth such as Barro and Lee (1993); Sala-i-
Martin (1997); Fernandez et al. (2001), but also in macroeconomic time series
data with a low measurement frequency as in Stock and Watson (2002) and
McCracken and Ng (2016). Even more extreme examples can be found in recent
studies on the relation between the human genome and life outcomes such as
educational attainment by Rietveld et al. (2013). Standard inference techniques
are hampered by the resulting rank deficiency of the empirical covariance matrix.
New methods are therefore needed to handle this type of high-dimensional data.

This paper deals with the estimation of coefficients and the construction of
corresponding confidence intervals in high-dimensional linear regression models,
where the number of unknown coefficients increases almost exponentially in the
number of observations. There are two key ingredients to our approach: (1)
we approximate the inverse covariance matrix by a diagonally scaled Moore-
Penrose pseudoinverse or a regularized variant, and (2) a bias correction step is
implemented based on the lasso.

We first show how valid confidence intervals can be constructed when using
the Moore-Penrose inverse, which has the benefit of being tuning parameter
free. We then show how regularization of this inverse can reduce the size of the
confidence intervals. We use a novel approach to regularization, where the re-
gressor matrix is repeatedly projected onto a low-dimensional subspace by post-
multiplying with a random matrix with independent standard normal entries.
The estimates of the inverse covariance matrix in the low-dimensional subspaces
are aggregated to yield an estimate of the inverse covariance matrix. We show
that this approach, which we refer to as random least squares, is equivalent to
a type of generalized ridge regularization, and yields valid confidence intervals
when the projection dimension is chosen sufficiently close to the sample size. In
addition, we show that the standard ridge regularized inverse covariance matrix
with an appropriately chosen penalty parameter, also provides valid confidence
intervals.

There are several existing estimators that allow for estimation in high-
dimensional data sets. Among the most well-known methods are the lasso esti-
mator (Tibshirani, 1996), the adaptive lasso estimator (Zou, 2006), the Dantzig
selector (Candes and Tao, 2007), and penalized likelihood methods (Fan et al.,
2004). A comprehensive overview of theoretical results is provided by Bühlmann
and Van De Geer (2011). The construction of standard errors around the re-
sulting estimates has proven to be challenging.

Currently, there are broadly three different approaches to construct confi-
dence intervals in a high-dimensional linear regression model. The first is based
on inference regarding a low-dimensional set of parameters following model selec-
tion or regularization among the high-dimensional set of all available regressors
(Belloni et al., 2013, 2010; Chernozhukov et al., 2015). The two-stage proce-
dure consists of, for instance, a lasso type estimator as first stage, and ordinary
least squares estimation on the maintained variables in the second stage. These
post-model selection estimators provide confidence intervals for coefficients cor-
responding to the regressors which are included in the low-dimensional model,
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but do not yield an uncertainty measure for the remaining coefficients.
The second approach, related to the approach we take in this paper, provides

confidence intervals for all estimated coefficients. These estimators are based
on various ways to construct an approximate inverse for the empirical covari-
ance matrix, in combination with an accurate bias correction. Javanmard and
Montanari (2014) propose an optimization procedure that yields a sufficiently
accurate approximate covariance inverse such that the resulting estimator is ap-
proximately normal and unbiased. Under slightly stricter assumptions van de
Geer et al. (2014) propose an estimator with the same theoretical validity based
on the group-wise lasso, which parallels Zhang and Zhang (2014). The bias
correction is most commonly based on the lasso estimator, but can also be
replaced with a suitable alternative as proposed by Caner and Kock (2014).
Both estimators are computationally intensive, requiring a numerical optimiza-
tion procedure for each of the available regressors. Especially in the large-scale
applications that they are intended for this might be prohibitively slow.

A third approach, recently developed by Lan et al. (2016), estimates confi-
dence intervals for each coefficient separately. Confouding effects are reduced
by identifying a set of regressors which is correlated to the regressor of interest
using partial correlations. Subsequently, the regressor of interest is orthogonal-
ized with respect to this set. Under assumptions required to accurately identify
the set of correlated regressors, Lan et al. (2016) show that this approach yields
correct inference. These assumptions limit the approach to high-dimensional
settings where only a small set of regressors is correlated to the regressor of
interest.

We contribute to the literature in a number of ways. First, we show that
approximating the inverse of the empirical covariance matrix with a diagonally
scaled Moore-Penrose inverse yields an estimator that is approximately normally
distributed. The corresponding confidence intervals of this estimator are valid
under conditions on the regressor matrix which are typical in high-dimensional
analysis (Fan and Lv, 2008), and a sparsity assumption, which bounds the
number of non-zero coefficients. We explicitly allow for non-gaussian regression
errors.

The Moore-Penrose estimator was advocated in Wang and Leng (2015) to
set up a variable screening technique. We extend their results by introducing a
diagonal scaling matrix, which is essential to show that the bias from using an
approximate inverse covariance matrix is suitably small. In combination with an
accurate initial estimator, such as the lasso, the bias vanishes compared to the
noise. This approach substantially simplifies previous ‘desparsification’ methods
developed by Zhang and Zhang (2014); van de Geer et al. (2014); Javanmard and
Montanari (2014), is tuning parameter free, and alleviates strong computational
constraints associated with previous methods.

Second, we show that regularization by random least squares can improve
upon the scaled Moore-Penrose estimator in terms of statistical power. We show
that for a projection dimension close to the number of observations, random
least squares approximates the scaled Moore-Penrose estimator and yields valid
confidence intervals. The width of the confidence intervals of random least
squares can then be shown to be equal to or smaller than the width of the
confidence intervals under the Moore-Penrose inverse.

Third, we show that the results remain valid for a ridge adjusted inverse in-
stead of the Moore-Penrose inverse. A ridge adjusted inverse covariance matrix
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was previously considered by Bühlmann et al. (2013) to construct conservative
p-values, and by Wang and Leng (2015) to enhance variable screening efficiency.
We extend these results to allow for the construction of valid confidence inter-
vals.

The theoretical results are confirmed in a set of Monte Carlo experiments,
in which we vary the specification of the covariance matrix, the amount of spar-
sity, and the signal strength. In line with the theoretical results, we find that
even though the number of regressors is twice the number of observations, the
coverage rates are close to the nominal rate of 95% for all settings under consid-
eration. In general, coefficients that are zero in the data generating process, are
estimated very close to zero. Random least squares and ridge regression incur
a slight downward bias compared to using a Moore-Penrose pseudoinverse, but
yield narrower confidence intervals. For all proposed methods, coverage rates
are much closer to the nominal coverage rate compared with existing alterna-
tives by van de Geer et al. (2014), Javanmard and Montanari (2014) and Lan
et al. (2016).

We apply the methods to the FRED-QD, a quarterly dataset consisting of
254 macroeconomic and financial series of the United States economy, available
from the second quarter of 1987. We analyze the relation between the real
gross domestic product and the other variables provided in this dataset in a
linear regression framework. Although the number of regressors greatly exceeds
the number of observations, our methods have enough power to distinguish
significant effects, from which the largest relate to the productivity and the
number of hours worked in the business sector.

The outline of this paper is as follows. Section 2 sets up the general estima-
tion approach and Section 3 introduces our methods. The theoretical properties
of the Moore-Penrose pseudoinverse, random least squares, and ridge regression
are derived and presented in Section 4. Section 5 illustrates these results through
Monte Carlo simulations and Section 6 applies the methods on the FRED-QD
dataset. Section 7 concludes.

Notation We use the following notation throughout the paper: For any n×1
vector a = (a1, . . . , an)′, the lq-norm is defined as ||a||q := (

∑n
i=1 |ai|q)1/q for

q > 0 and ||a||0 denotes the number of nonzero elements of a. The maximum
norm is written as ||a||∞ = max(|a1|, . . . , |an|). For a p × n matrix A, the lq-
norm is defined as ||A||q := supx {||Ax||q, ||x||q = 1} and the maximum norm
is written as ||A||max = maxi=1,...,n,j=1,...,p |Aij |. The n × n identity matrix is
denoted by In. For the regressor matrix X, we index the rows with the subscript
i = 1, . . . , n and the columns with the subscript j = 1, . . . , p. If U is a p × p
orthogonal matrix, we write U ∈ O(p). When two random variables X and Y

have the same distribution, we denote X
(d)
= Y .

2 High-dimensional regression

Consider the data generating process

y = Xβ + ε, ε ∼ N(0, σ2In), (1)

where y is an n×1 response vector, X an n×p regressor matrix, β = (β1, . . . , βp)
′

a p× 1 vector of unknown regressor coefficients, and ε an n× 1 vector of errors
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which are independent and identically normally distributed with variance σ2.
The empirical covariance matrix is denoted by Σ̂ = 1

nX
′X. The normality of

the errors can be relaxed to independent and identically distributed in the limit
where n→∞.

Approximate inverse and bias correction Define 1
nM as a p× n matrix

for which 1
nMX is close to the p × p identity matrix, in a sense that will be

made precise below. We refer to 1
nM as an approximate inverse for X. Consider

estimators for β of the form

β̂ =
1

n
My

=
1

n
MXβ +

1

n
Mε

= β +

(
1

n
MX − Ip

)
β +

1

n
Mε.

(2)

The second term of (2) represents a bias. When p < n, ordinary least squares
yields unbiased estimates by choosing M = Σ̂−1X ′. When p > n, Σ̂ is singular.
This forces one to consider approximate inverses to construct M . In this case,
the bias will not be identically zero, but will depend on the accuracy of the
approximate inverse.

Suppose we have an accurate initial estimator β̂init, then we can reduce the
bias in (2) by applying the correction

β̂c =
1

n
My −

(
1

n
MX − Ip

)
β̂init

= β +

(
1

n
MX − Ip

)(
β − β̂init

)
+

1

n
Mε.

(3)

The goal of this paper is to introduce choices of M and β̂init such that the
remaining bias is of lower order than the variance.

Required properties We can rescale and rewrite the estimator in (3) as

√
n
(
β̂c − β

)
= Z + ∆, (4)

where

∆ =
√
n

(
1

n
MX − Ip

)(
β − β̂init

)
Z =

1√
n
Mε.

(5)

We propose specifications for the approximate inverse M , for which we show
that Z = Op(1). This implies that in order to obtain an approximately unbiased
estimator, the bias term should satisfy ||∆||∞ = op(1).

The infinity norm ||∆||∞ can be bounded by

||∆||∞ ≤
√
n
∣∣∣∣n−1MX − Ip

∣∣∣∣
max
||β − β̂init||1. (6)
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Using an accurate estimator such as the lasso, Tibshirani (1996), one can achieve

a bound on the l1 norm of ||β − β̂init||1 = Op

(
s0

√
n−1 log p

)
. Here s0 = ||β||0,

the number of non-zero coefficients. As van de Geer et al. (2014) and Javanmard
and Montanari (2014), we take s0 = o(

√
n/ log p). Then, the approximate

inverse M is sufficiently accurate when∣∣∣∣∣∣∣∣ 1nMX − Ip
∣∣∣∣∣∣∣∣

max

= O

(√
log p

n

)
. (7)

Confidence intervals In addition to choosing M such that (7) is satisfied, we
show that under mild conditions, 1√

n
Mε ∼ N(0, σ2MM ′). Then, if a consistent

estimator of the noise level σ2 is available, (1 − α) · 100% confidence intervals
can be constructed asβ̂cj − zα/2

√
σ̂2m′jmj

n
, β̂cj + zα/2

√
σ̂2m′jmj

n

 , (8)

where zα/2 is the α/2 critical value for the standard normal distribution, σ̂2 is
a consistent estimator of σ2, and mj the j-th row of M with j = 1, . . . , p.

3 Methods

This section outlines how to construct confidence intervals in a high-dimensional
linear regression model, where the number of variables greatly exceeds the num-
ber of observations. Results on the theoretical validity of these methods are
deferred to Section 4.

All methods considered in this section are based on an approximate in-
verse for the singular empirical covariance matrix in combination with a bias
correction based on a suitable initial estimator. Section 3.1 proposes for the
approximate inverse the Moore-Penrose pseudoinverse (MPI). This approach
has the benefit of being completely tuning parameter-free. To reduce poten-
tial noise in the Moore-Penrose pseudoinverse, we propose a novel regulariza-
tion method called random least squares (RLS), and a ridge regularized inverse
(RID). Throughout, we take the lasso estimator as the initial estimator used
for bias correction. Section 3.2 discusses how the noise level in the confidence
intervals can be estimated.

3.1 Approximate inverse construction

Equation (7) requires that each element of 1
nMX−Ip has to be sufficiently small

with high probability. As a first step, we ensure that the diagonal terms are
exactly equal to zero by introducing a p × p diagonal matrix D, with diagonal
elements dj , and taking

1

n
M =

1

n
DM̃, dj = n(m̃′jxj)

−1, (9)
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with m̃′j the j-th row of M̃ . It then remains to be shown that the off-diagonal

elements are of order O

(√
log p
n

)
with high probability. Section 4 shows that

this is indeed the case.
We consider three ways of constructing M that are all of the form defined

in (9), with M̃ chosen as: (a) the Moore-Penrose pseudoinverse of X, (b) the
random least squares inverse covariance matrix estimator, or (c) the inverse of
the ridge adjusted empirical covariance matrix.

3.1.1 Moore-Penrose pseudoinverse

An attractive, tuning parameter free choice for M̃ is the Moore-Penrose pseu-
doinverse. When p < n, and the columns of X are independent, then M̃ =
(X ′X)−1X ′. In the high-dimensional setting where p > n, the matrix X has
linearly dependent columns by default. By assumption, the rows of X are lin-
early independent, in which case the pseudoinverse equals X ′(XX ′)−1. The
estimator we consider is therefore

1

n
MMPI =

1

n
DMPIX ′(XX ′)−1, (10)

where the diagonal elements dMPI
j of the diagonal scaling matrix DMPI equal

dMPI
j = n

[
x′j(XX

′)−1xj
]−1

. (11)

The Moore-Penrose pseudoinverse relies on the inverse of XX ′. Almost iron-
ically, the accuracy of this estimator deteriorates when p approaches n from
above.

3.1.2 Random Least Squares

As a novel alternative to the possibly noisy pseudoinverse estimator, we propose
the random least squares (RLS) estimator. This method is based on projecting
the high-dimensional regressor matrix X onto a k < n dimensional subspace by
post-multiplying with a p× k matrix R with independently standard normally
distributed elements,

Rjl ∼ N(0, 1), j = 1, . . . p, l = 1, . . . , k (12)

The idea behind the low-dimensional random projection is the following. Instead
of considering the high-dimensional model in which all p regressors are included,
we consider the low-dimensional model

y = XRγR + u. (13)

Least squares estimation of γR yields

γ̂R = (R′X ′XR)−1R′X ′y, (14)

which is related to the estimator of β based on a single realization of R by
βR = Rγ̂R. Since R is random, relying on a single realization is suboptimal.
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Therefore we average over different realizations of R to arrive at an estimator
of β,

β̂ = ER[Rγ̂R] = ER[R(R′X ′XR)−1R′]X ′y. (15)

In the context of prediction, where one is interested in approximating Xβ, the
accuracy of this estimator was investigated in Maillard and Munos (2009) and
Kabán (2014).

From (15) follows that random least squares uses low-dimensional projections
to obtain an approximate inverse covariance matrix. We therefore take M̃ =
ER[R(R′X ′XR)−1R′]X ′ in (10). After scaling we arrive at

1

n
MRLS =

1

n
DRLSER

[
R(R′X ′XR)−1R′

]
X ′, (16)

with
dRLS
j = n

{
ER[r′j(R

′X ′XR)−1R′]X ′xj
}−1

. (17)

3.1.3 Ridge regression

An alternative regularization method is to implement a ridge adjustment which
overcomes the rank deficiency of the empirical covariance matrix by adding a
scalar multiple of the identity matrix

1

n
MRID =

1

n
DRID(X ′X + γIp)

−1X ′, (18)

where γ denotes the ridge penalty and the elements of the diagonal scaling
matrix DRID equal

dRID
j = n

(
v′jX

′xj
)−1

, (19)

with vj the j-th row of (X ′X + γIp)
−1.

The regularization in (18) can be related to the Moore-Penrose pseudoin-
verse, since we can write

X ′(XX ′)−1 = lim
γ→0

(X ′X + γIp)
−1
X ′. (20)

3.2 Estimation of the noise level

A consistent estimator of the noise level σ2 is crucial to construct valid con-
fidence intervals. Existing methods, such as van de Geer et al. (2014) and
Javanmard and Montanari (2014) rely on the scaled lasso developed by Sun and
Zhang (2012). For this estimator, under a sparsity constraint s0

log p
n = o(1) and

a compatibility condition, it holds that
∣∣ σ̂
σ − 1

∣∣ = oP (1). By Assumption 3 and
Assumption 2 discussed in Section 4.1, these conditions are indeed satisfied.

In the Monte Carlo simulations in Section 5, and in line with findings by
Reid et al. (2016), we find the scaled lasso to be unreliable in many settings.
An alternative is to use

σ̂2
lasso =

1

n− ŝ
ε̂′ε̂, (21)

with ŝ the number of non-zero coefficients retained by the lasso, and ε̂ the n×1
vector of lasso regression errors. Corresponding to the results in Reid et al.
(2016), we find that this leads to more robust estimation of the noise level.
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4 Theoretical results

This section provides the main results of the paper. Proofs for the theorems in
this section are given in Appendix B.

First, Section 4.1 provides the necessary assumptions on the regressor ma-
trix and the coefficient vector. Section 4.2 uses these assumptions to present
the main result of the paper. Theorem 1 states that approximating the high-
dimensional inverse covariance matrix with a scaled Moore-Penrose inverse, or
regularizing with random least squares or ridge regression, results in estimators
which are unbiased and normally distributed. It follows that confidence inter-
vals of coefficient estimates of these estimators can be constructed by standard
procedures.

Section 4.3 shows how we arrive at this result and Section 4.4 shows that the
width of the confidence intervals for random least squares is at most as large as
the width of the confidence intervals under the Moore-Penrose inverse. Section
4.5 generalizes the results for high-dimensional regression models with normally
distributed errors to models with independent and identically distributed errors,
and Section 4.6 concludes with a discussion of the computational complexity of
the proposed methods.

4.1 Assumptions

By allowing for the number of variables to exceed the number of observations,
it is necessary to make some assumptions in addition to standard assump-
tions on the linear regression model. These assumptions are standard in high-
dimensional regression problems, see for example Fan and Lv (2008) and Wang
and Leng (2015).

The first assumptions provides an upper bound on the number of variables
relative to the number of observations.

Assumption 1 The number of variables grows near exponentially with the num-
ber of observations, i.e.

log p

n
= o(1). (22)

Next, we restrict the number of non-zero coefficients ||β||0 = s0. For lasso
consistency, one usually takes s2

0 = o (n/ log p). As noted in van de Geer et al.
(2014) and Javanmard and Montanari (2014), the following, slightly stronger,
assumption is needed when constructing confidence intervals

Assumption 2 The sparsity satisfies s0 = o
( √

n
log p

)
.

The following assumption on the regressors are imposed

Assumption 3 The regressor matrix X can be written as

X = ZΣ1/2 = V SU ′Σ1/2, (23)

where the rows of the n× p matrix Z are generated independently from a spher-
ically symmetric distribution, V is an n× n orthogonal matrix, i.e. V ∈ O(n),
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S is an n× p matrix of singular values, and U ∈ O(p). The eigenvalues of ZZ ′

can be bounded with high probability

P

(
1

p
ZZ ′ > cZ ∪ 1

p
ZZ ′ <

1

cZ

)
≤ e−CZn. (24)

with cZ , CZ positive constants.

Spherical symmetry for example holds when the rows of X follow a multivariate
normal distribution, but also allows for heavier tailed distributions such as the
power exponential distribution and multivariate t distributions (Dasgupta et al.,
2012; Serfling, 2006).

Finally, the eigenvalues of the population covariance matrix are assumed to
be finite and independent of the dimensions n and p.

Assumption 4 The condition number of the population covariance matrix Σ
is bounded by a constant, i.e.

κ =
λmax(Σ)

λmin(Σ)
≤ cκ <∞. (25)

This assumption can be relaxed at the expense of a slower convergence rate.

4.2 Approximate unbiasedness and normality

This section presents the main result of the paper; the unbiasedness and nor-
mality of the estimators discussed in Section 3. For each method, define the
diagonal scaling matrices by the following diagonal elements

dMPI
j = n

[
x′j(XX

′)−1xj
]−1

,

dRLS
j = n

{
ER
[
r′j(R

′X ′XR)−1R′
]
X ′xj

}−1
,

dRID
j = n

(
v′jX

′xj
)−1

,

(26)

where j = {1, . . . , p}, R is a p×k matrix of independent standard normal entries,
and vj the j-th row of (X ′X + γIp)

−1.
Furthermore, set the penalty parameters for respectively random least squares

and the ridge adjusted inverse such that

k = k∗ ≥

(
1− ck

√
log p

n

)
(n− 1),

γ = γ∗ ≤ cγn
√

log p

n
,

(27)

where ck and cγ are positive constants defined in Theorem 4 and 5, respectively.
Now the following theorem holds.

Theorem 1 Suppose Assumption 2 and Assumption 3 hold, and an initial esti-
mator β̂init is available which satisfies the l1 bound ||β̂init−β||21 = Op

(
s2

0 log(p)/n
)
.

Let β̂c = 1
nMy −

(
1
nMX − Ip

)
β̂init, and take M as one of the following

MMPI = DMPIX ′(XX ′)−1,

MRLS = DRLSER
[
R(R′X ′XR)−1R′

]
X ′,

MRID = DRID(X ′X + γ∗Ip)
−1X ′,

(28)
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where the elements of the diagonal matrices D are defined in (26), R is a p×k∗
matrix with independent standard normal entries, and k∗ and γ∗ as in (27).
Then,

√
n(β̂c − β) = Z + ∆

Z =
1√
n
Mε ∼ N

(
0, σ2MM ′

)
∆ = op(1).

From Theorem 1 it follows that we can use the classical procedure to con-
struct confidence intervals, given in (8). The following sections provide details
on how we arrive at Theorem 1 and give explicit probability bounds for ∆ under
different choices of M and D.

4.3 Accuracy of the initial estimator and approximate in-
verses

Initial estimator For the initial estimator we take the standard lasso es-
timator. In Appendix B.1, we prove that under Assumption 3 the following
compatibility condition (Bühlmann and Van De Geer, 2011) holds: when S0 is
the true set of s0 = ||S0||0 non-zero coefficients, then the compatibility condition
is satisfied for this set if

||βS0 ||1 ≤
√
s0||Xβ||2√
nφ0

, (29)

for all β for which ||βSc0 ||1 ≤ 3||βS0 ||1 and φ0 > 0.
The lasso estimator subsequently satisfies the following l1 accuracy bound

(Bühlmann and Van De Geer (2011), corollary 6.2):

Lemma 1 Suppose the compatibility condition holds for S0, and the penalty

parameter is chosen as λ ≥ 4σ
√

t2+2 log p
n , then with probability exceeding 1−α,

where
α = 2 exp(−t2/2) + P (σ̂ < σ), (30)

we have

||β − β̂lasso||1 = Op

(
s0

√
log p

n

)
. (31)

The lasso estimator therefore satisfies the l1 bound required in Theorem 1.

Moore-Penrose pseudoinverse The next theorem ensures that the bias of
the scaled Moore-Penrose pseudoinverse estimator is small with high probability.

Theorem 2 Define dMPI
j as in (26), then we have

P

(∣∣∣∣ 1ndMPI
j x′j(XX

′)−1xl − δjl
∣∣∣∣ > a

√
log p

n

)
= O(p−c̃), (32)

with δjl = 1 if j = l and 0 otherwise, c̃ = a2 cp−1
cp/cε−κ − 2 where a > 0, cε = 1+ε

1−ε

with ε > 0, κ = λmax(Σ)
λmin(Σ) , and cp <

p
n .
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A proof is provided in Appendix B.2. The theorem shows that the Moore-
Penrose pseudoinverse yields a matrix with lower order off-diagonal terms, which
makes it a suitable approximate inverse.

In addition, we need to show that the bias vanishes compared to the variance
of the estimator. The following theorem guarantees that this is indeed the case.

Theorem 3 For i = 1, . . . , p we have

1√
n
dMPI
j x′j(XX

′)−1ε = Op(1). (33)

A proof is presented in Appendix B.3.

Random least squares The key to the behavior of the regularized covariance
matrix in random least squares, is the projection dimension k. The following
theorem suggests a choice of k for which the bias remains small relative to the
variance.

Theorem 4 Define κ̂ = λmax(Λ̂)

λmin 6=0(Λ̂)
. Let

k =

(
1− cκ

√
log p

n

)
(n− 1), (34)

where cκ = cV
c2Zc

2
εκ

with 0 ≤ cV ≤ a
cζ+c2εκ

2 and cζ > a
√

log p
n , cZ from Assump-

tion 3, and cε = 1+ε
1−ε for ε > 0. then

P

(∣∣∣∣ 1ndRLS
j E[r′j(R

′X ′XR)−1R′]X ′xl − δjl
∣∣∣∣ > ã

√
log p

n

)
= O

(
p−c̃
)
, (35)

where ã = a− cV (cζ + c2εκ
2), with cV , cζ and cε constants independent of n and

p, and c̃ as in Theorem 2 with a replaced by ã. Furthermore,

1√
n
dRLS
j E[rj(R

′X ′XR)−1R′]X ′ε = Op(1). (36)

In the proof of Theorem 4 given in Appendix B.4, we show that when k is
sufficiently close to n the regularized inverse approximates the Moore-Penrose
inverse. The results from Section 4.3 can then be used to show that the bias
of the random least squares estimator remains small. Theorem 6 shows that
regularization can be used to increase the power over using the Moore-Penrose
pseudoinverse. Moreover, the proof of Theorem 4 also shows that random least
squares is equivalent to a generalized form of ridge regression, where the penalty
parameter is allowed to be different for each coefficient.

Ridge regularization Because of the relation between the generalized in-
verse and ridge regularized covariance matrices displayed in (20), intuition sug-
gests that for a sufficiently small penalty parameter, the results under a Moore-
Penrose inverse carry over to a ridge adjusted estimator. This is indeed the case
when setting the penalty parameter as defined in Theorem 1.
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Theorem 5 Define γ ≤ cγn
√

log p
n , where cγ = cV cZcελmin(Σ) a positive con-

stant, then

P

(∣∣∣∣ 1ndRID
j (X ′X + γIp)

−1X ′X − δjl
∣∣∣∣ > ã

√
log p

n

)
= O

(
p−c̃
)
, (37)

with ã and c̃ as in Theorem 4. Furthermore,

1√
n
dRID
j (X ′X + γIp)

−1X ′ε = Op(1). (38)

A proof is provided in Appendix B.5.

4.4 Power increase by regularization

One would expect that regularization by random least squares or ridge, yields
smaller confidence intervals compared to using the Moore-Penrose pseudoin-
verse. This is indeed the case if the estimators all use the same diagonal scaling
matrix

Theorem 6 For the choice of k as in Theorem 4, or γ as in Theorem 5, we
have for di = dMPI

i

dj√
n

∣∣∣∣E [r′j(R′X ′XR)−1R′
]
X ′
∣∣∣∣

2
− dj√

n

∣∣∣∣x′j(XX ′)−1
∣∣∣∣

2
≤ 0, (39)

and
dj√
n
||vjX ′||2 −

dj√
n

∣∣∣∣x′j(XX ′)−1
∣∣∣∣

2
≤ 0, (40)

where vj is the j-th row of (X ′X + γIp)
−1

The proof is given in Appendix B.6.
Note that using DMPI for the Moore-Penrose inverse, DRLS for the random

least squares estimator, and DRID for the ridge regularized inverse, yields valid
confidence intervals, but no ordering in terms of power. However, in most
cases we have encountered, the inequality in Theorem 6 is satisfied when using
the diagonal matrix specific to the estimator under consideration. This is also
evident from the Monte Carlo results in Section 5.

4.5 Non-gaussian errors

The result of the previous paragraphs can be generalized to the case where the
errors are independent and identically distributed.

Lemma 2 Let the errors εi ∼ i.i.d(0, σ2), then as n→∞, Theorem 1 holds.

A proof is provided in Appendix B.7 and follows from the application of a central
limit theorem.
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Table 1: Computational complexity comparison

Method Complexity Method Complexity

MPI n · p2 van de Geer et al. (2014) p4

RLS n · p2 Javanmard and Montanari (2014) p4

RID n · p2 Lan et al. (2016) n · p2

4.6 Computational complexity

This section shows that the computational complexity of the proposed methods
is several orders of magnitude in the number of variables lower compared to
existing methods. This greatly extends the applicability of the procedure.

All methods, except Lan et al. (2016), use an initial estimator, which is
provided by the lasso. With r = min {n, p}, this costs O(r3) at a fixed value
of the penalization parameter. For the initial estimator we apply K-fold cross-
validation, and r = n, such that the computational complexity of all methods
is at least O(K ·n3). However, for none of the methods this is the leading order
term.

(Ridge regularized) Moore-Penrose pseudoinverse For the Moore-Penrose
pseudoinverse, the leading order term in the computation complexity is the
matrix multiplication X(XX ′)−1X ′, which has a computational complexity of
O(n · p2). The same holds for the ridge regularized version.

Random least squares estimator For the random least squares estimator,
evaluation of the expectation operator in (15) is made efficient by using the
singular value decomposition of X = V̂ ŜnÛ

′
n. Fast SVD algorithms require

O(n2 · p). Define Λ̂ = Ŝ2
n and the n× k matrix Wn = Λ̂

1
2Rn, where Rn consists

of the first n rows of the p× k matrix R. Then Appendix B.4 shows that

E[R(R′X ′XR)−1R′]X ′X = ÛnE[Wn(W ′nWn)−1W ′n]Û ′n. (41)

The Ahlswede and Winter (2002) theorem can be used to show that n log(n)
draws of Wn(W ′nWn)−1W ′n accurately approximate the expectation by a finite
sum. The computational complexity required for the product is O(n3), so that
we end up with O(n4 · log(n)) to calculate the expectation. The resulting mul-
tiplication ÛnE[Wn(W ′nWn)−1W ′n]Ûn is however of order O(n · p2), which is the
leading term when p� n.

Existing alternatives van de Geer et al. (2014) solve a penalized regression
problem with p − 1 explanatory variables for every column of the empirical
covariance matrix. A fast solver is provided by the lars algorithm of Efron
et al. (2004), which has a complexity of O(p3) for each column. Therefore,
the complexity for obtaining the approximate inverse covariance matrix equals
O(p4) in total. Javanmard and Montanari (2014) state that this is equivalent
to the complexity of their method.

The method by Lan et al. (2016) requires for each regressor a matrix multi-
plication with the remaining regressors. The complexity of this multiplication
is O(n · p). Potentially this multiplication has to be repeated until a set size is
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found for which the stopping rule defined by Lan et al. (2016) is satisfied. This
potentially adds another factor n to the complexity, but we will omit it here.
The above complexity is required to calculate a single coefficient, such that the
total complexity is O(n · p2).

The complexity of the different methods is summarized in Table 1. We
conclude that the methods proposed in this paper are two orders of magnitude
faster in terms of the number of variables compared to the methods of van de
Geer et al. (2014) and Javanmard and Montanari (2014). In addition, they are
equally efficient as the method by Lan et al. (2016).

5 Monte Carlo Experiments

This section examines the finite sample behaviour of the proposed estimators in
a Monte Carlo experiment.

5.1 Monte Carlo set-up

Data generating process The data generating process takes the form

y = Xβ + ε, ε ∼ N(0, σ2In), (42)

where y is a n×1 response vector, X a n×p regressor matrix, and β a p×1 vector
of unknown regressor coefficients. The rows ofX are fixed i.i.d. realizations from
Np(0,Σ). We specify two different covariance matrices:

Equicorrelated: Σjk = 0.8, ∀j 6= k, Σjj = 1 ∀j, (43)

Toeplitz: Σjk = 0.9|j−k|, ∀j, k. (44)

The strength of the individual predictors is considered local-to-zero by set-
ting β =

√
σ2
ε/n · bιs for a fixed constant b. The vector ιs contains s randomly

chosen non-zero elements that are equal to one. We refer to s as the sparsity of
the coefficient vector. We vary the signal strength b and the sparsity s across
different Monte Carlo experiments.

Results are based on 1,000 replications of the data generating process (42).
In each replication the predictors in X and the coefficients in β are generated.
The number of predictors is set equal to p = 200, which is much larger than
the sample size n = 100. The different experiments vary over signal strength
b, sparsity s, and covariance matrix Σ. We report average results for nonzero
coefficients and zero coefficients.

Estimation We estimate the coefficients by the Moore-Penrose pseudoinverse,
random least squares, and ridge estimator. The lasso estimator uses a penalty
term that minimizes the mean squared error under tenfold cross-validation. In
the random least squares estimator we average over N = 1000 realizations of
the regularized covariance matrix with subspace dimension k = 90. We compare
the performance of the random least squares estimator against ridge regression
with a penalty parameter γ = 1 as in Bühlmann et al. (2013).

Moreover, we compare the proposed estimators to other methods for con-
structing confidence intervals in high-dimensional regression for all coefficients.
The method of van de Geer et al. (2014) (GBRD) serves as the first benchmark,
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in which M is constructed by performing lasso for each column in X on the
remaining columns in X. For each lasso estimation the penalty parameter is
selected by tenfold cross-validation. The method of Zhang and Zhang (2014)
boils down to this approach for linear regression problems as in (42). Second,
Javanmard and Montanari (2014) (JM) construct M by solving a convex pro-

gram. We set the tuning parameter µ = 2
√
n−1 log p, which is equal to the

value used in their simulation studies. Both benchmark methods also make use
of a bias correction by an initial estimator, for which we use the lasso estimator.
Finally, we compare the performance against the recently developed Correlated
Predictors Screening (CPS) method by Lan et al. (2016). In this method, for
each regressor xj we find highly correlated regressors from the set of remaining
columns in the regressor matrix. We then orthogonalize both y and xj with re-
spect to this set. Stopping rules for the size of the correlated set and estimation
of the noise level can be found in Lan et al. (2016).

Both for our proposed methods and for JM and GBRD we estimate the noise
level σ2 using an estimator based on the lasso as defined in (21).

Evaluation The coverage rate is calculated as the percentage of cases in which
the value of the coefficient in the data generating process falls inside the 95%
confidence interval. The statistical power is calculated as the percentage of
Monte Carlo replications in which zero is not included in the confidence interval
of nonzero coefficients.

5.2 Simulation Results

5.2.1 Sparsity and signal strength

Table 2 shows the Monte Carlo simulation results for the set of experiments
with an equicorrelated covariance matrix and Table 3 with a Toeplitz covariance
matrix. The tables report the estimated coefficients, standard errors, coverage
rates, and power of the Moore-Penrose pseudoinverse, random least squares, and
ridge regression. Settings vary over the number (s = 3, 15) and signal strength
(b = 2, 5; corresponding to coefficients of size 0.2 and 0.5) of nonzero coefficients.

The proposed methods obtain a coverage rate close to the nominal rate of
95%. The coverage rates are most precise in case of an equicorrelated covariance
matrix in a sparse setting with a weak signal. We observe the largest deviations
from the nominal rate for a Toeplitz covariance matrix in a non-sparse setting
with a strong signal. In general, the quality of the results seem to be higher when
an equicorrelated covariance matrix is used. Both the bias and the standard
errors are smaller, and the coverage rate is very close to the nominal rate.

We find that the ridge regularization results in an increase in power relative
to the Moore-Penrose pseudoinverse estimator, but both estimators are outper-
formed by random least squares in all considered settings. Even in the high-
dimensional settings of Table 2 and 3, where the number of variables is twice as
large as the number of observations, the proposed methods achieve a reasonable
amount of power, varying from 0.10 to 0.40. The highest power is achieved in a
sparse setting with a strong signal strength. In almost all cases, power is larger
in settings with equicorrelated covariance matrix instead of Toeplitz.

We find some downward bias for the nonzero coefficients for the proposed
methods in this paper. The bias decreases in sparsity, which means that nonzero

16



Table 2: Monte Carlo simulation: Equicorrelated Covariance Matrix

s = 3 s = 15

method b coef. SE CR power coef. SE CR power

MPI
2 0.19 0.30 0.95 0.10 0.17 0.29 0.94 0.10
0 0.00 0.30 0.95 0.00 0.29 0.95

RLS
2 0.19 0.28 0.95 0.10 0.17 0.27 0.94 0.11
0 0.00 0.28 0.95 0.00 0.27 0.95

RID
2 0.19 0.29 0.95 0.10 0.17 0.28 0.94 0.11
0 0.00 0.29 0.95 0.00 0.28 0.95

GBRD
2 0.17 0.20 0.94 0.13 0.16 0.20 0.93 0.14
0 0.00 0.20 0.95 0.01 0.20 0.96

JM 2 0.06 0.05 0.15 0.14 0.09 0.05 0.21 0.27
0 0.02 0.05 0.96 0.03 0.05 0.91

CPS 2 0.26 0.23 0.94 0.21 0.68 0.28 0.58 0.70
0 0.10 0.23 0.92 0.52 0.28 0.55

MPI 5 0.47 0.30 0.94 0.35 0.44 0.34 0.94 0.27
0 0.00 0.30 0.95 0.01 0.34 0.96

RLS
5 0.46 0.28 0.93 0.40 0.43 0.31 0.93 0.30
0 0.00 0.28 0.95 0.01 0.31 0.96

RID
5 0.46 0.29 0.93 0.38 0.44 0.33 0.94 0.28
0 0.00 0.29 0.95 0.01 0.33 0.96

GBRD
5 0.43 0.20 0.89 0.53 0.42 0.23 0.87 0.44
0 0.01 0.20 0.96 0.03 0.23 0.96

JM
5 0.22 0.05 0.14 0.64 0.34 0.06 0.25 0.77
0 0.02 0.05 0.95 0.11 0.94 0.70

CPS 5 0.67 0.24 0.89 0.79 1.70 0.47 0.27 0.94
0 0.26 0.25 0.82 1.30 0.50 0.26

Note: this table reports the average over the estimated coefficients (coef.), stan-
dard errors (SE), coverage rates (CR) and statistical power of the Moore-Penrose
pseudoinverse (MPI), random least squares (RLS), ridge regression (RID), and the
methods of van de Geer et al. (2014) (GBRD), Javanmard and Montanari (2014)
(JM) and Lan et al. (2016) (CPS) for different Monte Carlo experiments where the
regressors have an equicorrelated covariance matrix as specified in (43). The cover-
age rate is calculated as the percentage of cases in which the value of the coefficient
in the data generating process falls inside the 95% confidence interval. The statisti-
cal power is calculated as the percentage of Monte Carlo replications in which zero
is not included in the confidence interval of nonzero coefficients. Estimates are av-
eraged over Monte Carlo replications and coefficients with the same signal strength.
Settings vary over the number (s = 3, 15) and signal strength (b = 2, 5) of nonzero
coefficients. The number of observations is n = 100 and the number of regressors
p = 200. The subspace dimension in RLS is set equal to k = 0.9n, we average over
N = 1000 realizations of projection matrices, and the penalty parameter in Ridge
equals γ = 1. Results are based on 1000 Monte Carlo replications.

coefficients are more precisely estimated when there are relatively few of them.
Compared to the other estimators, random least squares seems to estimate
slightly more biased coefficients. For all methods, the coefficients which are set
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Table 3: Monte Carlo simulation: Toeplitz Covariance Matrix

s = 3 s = 15

method b coef. SE CR power coef. SE CR power

MPI
2 0.19 0.35 0.95 0.08 0.17 0.34 0.94 0.09
0 0.00 0.35 0.95 0.00 0.34 0.95

RLS
2 0.19 0.30 0.95 0.09 0.17 0.29 0.94 0.10
0 0.00 0.30 0.95 0.01 0.29 0.95

RID
2 0.19 0.32 0.95 0.09 0.17 0.31 0.94 0.10
0 0.00 0.32 0.95 0.01 0.31 0.95

GBRD
2 0.18 0.21 0.94 0.15 0.15 0.20 0.94 0.13
0 0.01 0.20 0.95 0.02 0.20 0.96

JM 2 0.10 0.05 0.41 0.31 0.10 0.05 0.28 0.32
0 0.01 0.05 0.95 0.03 0.95 0.92

CPS 2 0.19 0.31 0.95 0.10 0.19 0.44 0.95 0.08
0 0.00 0.32 0.95 0.00 0.45 0.95

MPI 5 0.46 0.35 0.94 0.28 0.42 0.34 0.91 0.26
0 0.00 0.35 0.95 0.01 0.66 0.95

RLS
5 0.45 0.30 0.93 0.35 0.42 0.30 0.89 0.33
0 0.00 0.30 0.95 0.01 0.70 0.95

RID
5 0.46 0.32 0.93 0.32 0.42 0.31 0.90 0.30
0 0.00 0.32 0.95 0.01 0.69 0.95

GBRD
5 0.42 0.20 0.86 0.55 0.37 0.20 0.77 0.47
0 0.01 0.20 0.96 0.02 0.80 0.96

JM
5 0.29 0.05 0.25 0.82 0.29 0.05 0.22 0.73
0 0.01 0.05 0.95 0.03 0.95 0.89

CPS 5 0.50 0.37 0.95 0.28 0.48 0.84 0.95 0.09
0 0.00 0.41 0.95 -0.01 0.88 0.95

Note: this table reports the results for different Monte Carlo experiments where the
regressors have a Toeplitz covariance as specified in (44). For additional information,
see the note following Table 2.

to zero in the data generating process are estimated very close to zero.
Random least squares produces the most efficient estimates relative to ridge

regression and Moore-Penrose pseudoinverse regression. Standard errors of the
random least squares estimates are lower than these estimators in all experi-
ments, where ridge is again a more efficient estimator relative to the pseudo-
inverse. Except for the non-sparse setting with a strong signal, standard errors
are larger for a Toeplitz than an equicorrelated covariance matrix.

Compared to the benchmark models, the proposed models are less (down-
ward) biased and obtain coverage rates much closer to the nominal rate. In all
settings under consideration, the methods proposed in this paper produce cov-
erage rates that are closer to the nominal rates than the method of van de Geer
et al. (2014). This can be explained by the large bias of the GBRD estimator
and the remarkably small standard errors. The JM method produces coefficient
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estimates and standard errors that are both close to zero, which results in low
coverage rates for the nonzero coefficients. Javanmard and Montanari (2014)
present better results under the same choice for the tuning parameter. However,
they only run simulation studies for low-dimensional settings, where the number
of variables does not exceed the number of observations. The method developed
by Lan et al. (2016) performs well for Toeplitz designs. We see only a minor
bias in the coefficient estimates, but substantially larger standard errors com-
pared to the methods proposed in this paper when the signal strength and/or
the number of nonzero coefficients increase. For the equicorrelated design the
coverage rates deteriorate and bias increases severely. Clearly this design does
not satisfy the condition that each regressor is only correlated with a small set
of the remaining regressors. This condition turns out to be essential for the
approach to work well.

5.2.2 Varying signal strength

Since many economic processes can be characterized by a small number of large
effects and a large number of small effects on the variable of interest, we now
consider a setting in which the signal strength varies over the nonzero coefficients
in the data generating process. Table 4 shows the Monte Carlo simulation results
for this set of experiments for an equicorrelated and Toeplitz covariance matrix.
The sparsity s equals 15 and we randomly assign b = 10 to three nonzero
coefficients and b = 2 to the 12 remaining nonzero coefficients.

In general, the findings for the proposed methods are similar to the settings
discussed in the previous paragraph. The nonzero coefficients are estimated
with some downward bias, which is larger in the Toeplitz setting relative to the
equicorrelated covariance matrix. Estimates of coefficients that are zero in the
data generating process are again estimated very close to zero. Although there
is a large variation in signal strength, the standard errors are almost the same
for coefficients of different strength and we find the same ranking in efficiency;
random least squares produces the smallest standard errors, followed by the
ridge regularized estimator.

The coverage rates for the zero coefficients are close to the nominal rate.
The coverage rates for coefficients with a weak and moderately strong signal are
slightly too low. The decrease in coverage rates holds especially for the Toeplitz
setting, where standard errors are relatively larger, but also the bias increases
relative to data generated from an equicorrelated covariance matrix.

We find that the power for coefficients with intermediate signal strength
(b = 2) is comparable to settings with a constant signal strength in Table 2
and 3. As expected, the power for the strong signals is much larger, varying
between 0.75 and 0.86. In general, power increases for data generated from an
equicorrelated covariance matrix relative to a Toeplitz.

Compared to the benchmark estimators, the proposed estimators show also
superior performance in the settings with varying signal strength. The distance
between the nominal coverage rate and the coverage rate attained by the meth-
ods GBRD and JM is in any case larger than for MPI, RLS, and RID. For the
Toeplitz design, the coverage rate of CPS is excellent, but the standard errors
are almost two times as large as for the competing methods.
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Table 4: Monte Carlo simulation: Varying signal strength

Equicorrelated Toeplitz

method b coef. SE CR power coef. SE CR power

MPI 10 0.94 0.31 0.93 0.84 0.92 0.34 0.91 0.75
2 0.18 0.31 0.95 0.09 0.17 0.34 0.94 0.09
0 0.00 0.31 0.95 0.01 0.34 0.95

RLS 10 0.93 0.28 0.93 0.89 0.91 0.29 0.89 0.85
2 0.18 0.28 0.95 0.10 0.17 0.29 0.94 0.10
0 0.00 0.28 0.96 0.01 0.29 0.95

RID 10 0.94 0.29 0.93 0.86 0.91 0.31 0.90 0.81
2 0.18 0.29 0.95 0.09 0.17 0.31 0.94 0.09
0 0.00 0.29 0.96 0.01 0.31 0.95

GBRD
10 0.90 0.21 0.85 0.97 0.87 0.20 0.81 0.95
2 0.16 0.21 0.94 0.13 0.15 0.20 0.93 0.13
0 0.02 0.21 0.96 0.02 0.20 0.96

JM
10 0.75 0.05 0.20 0.99 0.77 0.05 0.25 0.99
2 0.11 0.05 0.24 0.34 0.10 0.05 0.26 0.31
0 0.05 0.05 0.84 0.03 0.05 0.92

CPS 10 1.76 0.36 0.43 1.00 0.98 0.65 0.95 0.34
2 1.09 0.40 0.39 0.78 0.19 0.74 0.95 0.06
0 0.93 0.41 0.37 -0.01 0.75 0.95 0.00

Note: this table reports the results for Monte Carlo experiments with an equicorre-
lated and Toeplitz covariance matrix, where the nonzero coefficients of the regressors
have different signal strengths. Three randomly chosen coefficients out of the 15
nonzero coefficients have signal strength b = 10 and the remaining 12 coefficients
b = 2. For additional information, see the note following Table 2.

Estimation of the noise level The validity of confidence intervals depends
on a consistent estimator of the noise level σ2. Figure 1 shows for each setting of
the Monte Carlo experiments a box plot of the estimated σ2 in each replication.
We find that the noise level estimated by scaled lasso can be strongly biased,
especially in settings where the data is generated from a Toeplitz covariance
matrix, where the lasso estimator results in estimates that are always within
one standard deviation from the true value. Therefore, the results in Table 2
and 3 are based on the estimator for the noise level σ2 as defined in (21).

Computational complexity In addition to accuracy, the proposed estima-
tors also reduce the computational costs. Figure 2 shows on a logarithmic scale
for each Monte Carlo experiment the total time spend at constructing the dif-
ferent estimators. The Moore-Penrose pseudoinverse estimator and the ridge
regularized estimator demand very little computation time. Since the random
least squares estimator is constructed from averaging over N = 1000 realiza-
tions of the regularized covariance matrix, this estimator takes considerably
more time. However, even the computational costs of this demanding estimator
is negligible compared to the computation time needed to perform p times a
lasso in GBRD and solve p optimization problems in JM.
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Figure 1: Estimates noise level Monte Carlo experiments
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Note: this figure shows for each Monte Carlo experiment a box plot for the estimates of the
noise level σ2 in each replication. The first panel shows these plots for the estimator based
on lasso, as defined in (21), and the second panel for the estimator based on scaled lasso
as in Sun and Zhang (2012). The red horizontal line indicates the value of σ2 = 1 in the
data generating process. Settings are indicated by (covmat,b,s), where the covariance matrix
covmat varies between equicorrelated (E) and Toeplitz (T), the signal strength (b = 2, 5) and
sparsity (s = 3, 15). For additional information, see the note following Table 2.

In sum, we find that even in small samples with a high dimensional regres-
sor matrix, the three proposed estimators in this paper provide valid confidence
intervals with coverage rates very close to the nominal value of 95%. More-
over, the simulation results seem to confirm the theoretical result that random
least squares improves in efficiency relative to the Moore-Penrose pseudoinverse
estimator. The proposed estimators improve upon existing methods for con-
structing high-dimensional confidence intervals in terms of coverage rate, and
are more robust to different choices of the data generating process. In addition,
they significantly reduce the computational complexity that is required, thereby
making them more suitable for high-dimensional data.

6 Empirical Application

This section applies the proposed estimators to a macroeconomic dataset. We
examine the relation between the real gross domestic product of the U.S. econ-
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Figure 2: Computation time estimators Monte Carlo experiments
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Note: this figure shows on a logarithmic scale the total time spend at constructing the esti-
mators for each method, averaged over all Monte Carlo experiments in Table 2 and 3.

omy and a large number of macroeconomic and financial indicators.

6.1 Data

We use the FRED-QD database consisting of 254 quarterly macroeconomic
and financial series running from the second quarter of 1987 through the third
quarter of 2015. Less variables are available before this time period and be-
cause records of the variables with FRED mnemonic SPCS20RSA, ACOGNOx,
and EXUSEU have a later starting point, we exclude these variables from our
analysis. The data can be grouped in fourteen different categories: national
income and product accounts (1), industrial production (2), employment and
unemployment (3), housing (4), inventories, orders, and sales (5), prices (6),
earnings and productivity (7), interest rates (8), money and credit (9), house-
hold balance sheets (10), exchange rates (11), other (12), stock markets (13)
and non-household balance sheets (14). The data is available from the website
of the Federal Reserve Bank of St. Louis, together with code for transforming
the series to render them stationary and to remove severe outliers. The data
and transformations are described in detail by McCracken and Ng (2016). After
transformation, we find a small number of missing values, which are recursively
replaced by the value in the previous time period of that variable. Finally, we
subtract the mean of each variable and divide the variables by their standard
deviation.

6.2 Estimation

The coefficients β are estimated in the regression equation

y = Zδ +Xβ + ε, ε ∼ N (0, σ2In) (45)

where y equals the real gross domestic product of the U.S. economy (FRED
mnemonic GDPC96), Z includes an intercept along with four lags of the quar-
terly dependent variable y, and X consists of the remaining variables in the
database which are not in the same group as y. Since we are only interested in
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Table 5: Significant effects on Real Gross Domestic Product

MPI RLS RID

gr. variable coef. SE coef. SE coef. SE

2 industrial production 0.087 0.042 0.055 0.028 0.074 0.034
3 employees wholesale trade -0.047 0.022
3 hours worked business 0.752 0.036 0.750 0.025 0.750 0.030
3 hours worked nonfarm 0.152 0.037 0.134 0.025 0.144 0.031
4 housing starts 0.029 0.014
5 retail sales 0.042 0.019 0.037 0.016 0.040 0.018
5 manufacturing inventories 0.038 0.018 0.044 0.022
6 GDP deflator -0.038 0.018 -0.028 0.013 -0.033 0.016
7 productivity nonfarm 0.050 0.023 0.051 0.016 0.051 0.019
7 productivity business 0.776 0.023 0.763 0.016 0.771 0.019
7 labour costs -0.042 0.020 -0.045 0.023
8 rate commercial paper 0.050 0.024 0.051 0.020 0.048 0.021
8 rate Eurodollar deposit 0.069 0.030 0.055 0.021 0.062 0.025
9 real money stock -0.044 0.022 -0.039 0.017 -0.042 0.019
12 consumer sentiment 0.070 0.032 0.055 0.023 0.065 0.028
13 stock price volatility 0.058 0.027 0.043 0.018 0.049 0.022
14 federal debt -0.046 0.022 -0.038 0.017 -0.043 0.020

Note: this table reports the estimated coefficients (coef.) and standard errors (SE) which
are significantly different from zero on a five percent significance level, estimated by the
Moore-Penrose pseudoinverse estimator (MPI), random least squares (RLS), and ridge
regularization (RID). The group numbers (gr.) correspond to the FRED-QD variable
categories. The fred mnemonics and variable descriptions corresponding to the variable
names are given in Appendix D.

the macroeconomic relations in β, we partial out the variables in Z using the
Frisch-Waugh theorem before estimating β. We note that Assumption 3 and
Assumption 4 are now imposed on MZX with MZ the projection matrix or-
thogonal to the columns of Z. The proof for Theorem 1 carries through with n
replaced by n−nz with nz the number of columns of Z. After initialization and
the loss in degrees of freedom by partialling out Z, we are left with a 110× 231
matrix X∗ = MZX which has rank n− nz = 105.

When estimating by random least squares, we choose the subspace dimension
k = 95 and N = 1000 realizations of the regularized covariance matrix. The
penalty parameter in the lasso estimator for the lasso correction corresponds
to the lowest mean squared error over a grid of one hundred values, and the
penalty parameter in ridge regression is set to γ = 1.

6.3 Empirical Results

Table 5 shows the estimated coefficients and standard errors which are signifi-
cantly different from zero on a five percent significance level in the regression of
the economic indicators on the real gross domestic product. In general, random
least squares yields lower standard errors compared to the benchmark methods.
Ridge regression finds 15 out of the 231 coefficients to be significant, which is
slightly higher for random least squares with 17 coefficients. The Moore-Penrose
pseudoinverse regression estimates 13 coefficients to be significant, which cor-
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Figure 3: Confidence Intervals Coefficients Regression GDP
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Note: this figure shows the 95% confidence intervals together with the estimated coefficients in
the regression of the FRED-QD variables on real GDP. Boldfaced coefficients are significantly
different from zero on a five percent significance level. The numbers on the x-axis indicate
the FRED categories associated with the effects.

responds to the theoretical finding that the random least squares and ridge
estimators yield higher statistical power compared to the Moore-Penrose esti-
mator.

We find that employment and productivity have the largest effect on real
gross domestic product. Hours of all persons worked in the business sector
(hours worked business), real output per hour of all persons in the business
sector (productivity business), and hours of all persons worked in the nonfarm
business sector (hours worked nonfarm) have large positive coefficients of re-
spectively 0.750, 0.134, and 0.763 for random least squares. More elaborate
descriptions of the remaining variables can be found in Appendix D. Figure 3
shows that the remaining coefficients are close to zero. We do not find any
significant effect of variables in the categories household balance sheets (10),
and exchange rates (11). Random least squares finds five significant negative
effects on the real gross domestic product; all employees in wholesale trade
(employees wholesale trade), gross domestic product: chain-type price index
(GDP deflator), unit labor cost in the business sector (labour costs), real MZM
(money-zero-maturity) money stock (real money stock), and the total public
debt as percentage of GDP (Federal debt). Ridge regression does not find a
significantly negative effect of all employees in wholesade trade. The negative
effect assigned to the number of employees in wholesale trade found by random
least squares is remarkable, but note that employment also effects GDP posi-
tively via hours worked in the business and nonfarm sector, which makes the
net effect of employment on real GDP positive.
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7 Conclusion

This paper proposes novel methods for constructing confidence intervals in high-
dimensional linear regression models, where the number of unknown coefficients
increases almost exponentially with the number of observations. We approx-
imate the inverse of the singular empirical covariance matrix by a diagonally
scaled Moore-Penrose pseudoinverse. After a bias correction with the lasso
this yields an unbiased, normally distributed estimator. Confidence intervals
can then be constructed using standard procedures. In order to increase effi-
ciency, we consider two regularized variants: random least squares, which relies
on low-dimensional random projections of the data, and ridge regularization.
These estimators are shown to have the same theoretical validity under suitable
choices of the regularization parameters.

Monte Carlo experiments show that, even in small samples with high dimen-
sional regressor matrix, the proposed estimators indeed provide valid confidence
intervals with correct coverage rates. Moreover, the simulation results seem to
confirm that random least squares and ridge improve in efficiency relative to the
Moore-Penrose estimator. The empirical application provides similar findings.
In a high-dimensional regression of macroeconomic and financial indicators on
the real gross domestic product of the United States economy, we find a large
positive effect from variables in the employment and productivity categories. A
small negative effect is found from federal debt.
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A Properties of spherically symmetric matrices

Denote by O(p) the group of p× p orthogonal matrices. We introduce a matrix
Z with rows that are generated from a spherically symmetric distribution, that
is

Z
(d)
= ZT, T ∈ O(p). (46)

Then Z can be decomposed by a singular value decomposition as

Z = V SU ′, (47)

where V ∈ O(n), S is a n×p matrix of singular values and U ∈ O(p). Since Z is
invariant under right multiplication with an orthogonal matrix, U is uniformly
distributed on O(p).

The matrix of singular values S contains at most n non-zero singular values
located on the diagonal of the left n × n block of S. Therefore, an equivalent
expression to (47) is

Z = V SnU
′
n, (48)

where Sn is an n× n matrix with the non-zero singular values on its diagonal,
and Un is a p× n matrix that satisfies

U ′n = [In, On,p−n]U ′. (49)

Since U is uniformly distributed over Op, it follows (Fan and Lv, 2008) that Un
is uniformly distributed over the Stiefel manifold Vn,p defined as

Vn,p =
{
A ∈ Rp×n : A′A = In

}
. (50)

B Proofs

This appendix provides the proofs of the theorems in Section 4. Auxiliary
definitions and lemmas used in these proofs are in Appendix C.

B.1 Proof of the compatibility condition

Note that ||βS0 ||1 ≤
√
s0||βS0

||2, so it suffices to show

||β||22 ≤
β′ 1nX

′Xβ

φ0
. (51)

Using (23), we have

β′
1

n
X ′Xβ = β′Σ1/2 1

n
US′SU ′Σ1/2β

≥ 1

cZ

p

n
v′UnU

′
nv,

(52)

where the last line holds since the non-zero eigenvalues S′S are the same as
the eigenvalues of ZZ ′ which are bounded by Assumption 3. Again by As-
sumption 3, UnU

′
n is a projection matrix that is uniformly distributed over

28



the Grassmannian manifold G(n, p), see Chikuse (2012). For the l2 norm of a
projected vector, strong concentration bounds exists that guarantee

P

(√
p

n
||U ′nv||2 ≥ (1 + ε)||v||2

)
≤ 2e−

1
4 ε

2n,

P

(√
p

n
||U ′nv||2 ≤ (1− ε)||v||2

)
≤ 2e−

1
4 ε

2n.

(53)

Therefore, with high probability

β′
1

n
X ′Xβ ≥ 1

cZ

1− ε
1 + ε

β′Σβ

≥ 1

cZ

1− ε
1 + ε

λmin(Σ)||β||22.
(54)

Choosing φ0 ≤ 1
cZ

1−ε
1+ελmin(Σ) yields the desired result. �

B.2 Proof of Theorem 2

Using Assumption 3 and (48) we have that

X ′(XX ′)−1X = Σ1/2Un(U ′nΣUn)−1U ′nΣ1/2, (55)

By Lemma 3 in Appendix C, we can write

Un = W (W ′W )−1/2, (56)

with the elements of W standard normal and independently distributed. This
implies

X ′(XX ′)−1X = Σ1/2W (W ′ΣW )−1W ′Σ1/2 = HH ′, (57)

where we define H = Σ1/2W (W ′ΣW )−1/2.
We will separately bound the diagonal and off-diagonal elements of HH ′.

The proof extends the approach by Wang and Leng (2015).

Diagonal terms of HH ′ The diagonal elements of HH ′ are themselves not of
particular interest, as we choose the diagonal matrix D such that the diagonal
elements of 1

nMX are all equal to one. However, to bound the off-diagonal
elements, we nevertheless also require a bound on the diagonal elements of HH ′.
We first construct bounds under the assumption that Σ = Ip. In a second step,
we connect the more general case Σ 6= Ip to these bounds.

If Σ = Ip, then each element of H is distributed as

Hij
(d)
=

wij√∑p
j=1 w

2
ij

, (58)

where wij denotes the elements of W .
Define ei the unit column vector with its i-th element equal to 1 and all

others equal to zero, then

e′iHH
′ei

(d)
=

w2
i1 + . . .+ w2

in

w2
i1 + . . . w2

ip

, (59)
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Using now the Bernstein inequality for χ2 random variables in (137) in Appendix
C, we have the following high probability bound

P

(
w2
i1 + . . .+ w2

in

w2
i1 + . . . w2

ip

>
n

p

1 + ε

1− ε

)
≤ exp

(
−ε

2n

8

)
+ exp

(
−ε

2p

8

)
≤ 2 exp

(
−ε

2n

8

)
,

(60)

where the last line holds because p > n. In a similar fashion we establish a
lower bound

P

(
w2
i1 + . . .+ w2

in

w2
i1 + . . . w2

ip

<
n

p

1− ε
1 + ε

)
≤ 2 exp

(
−ε

2n

8

)
, (61)

Using Bonferonni’s inequality this yields

P

(
e′1UnU

′
ne1 > cε

n

p
∪ e′1UnU

′
ne1 <

1

cε

n

p

)
≤ 4 exp

(
−ε

2n

8

)
, (62)

with cε = 1+ε
1−ε > 1.

We will now use these results to establish a bound when Σ 6= I. The diagonal
terms are easily bounded by the l2 norm of H ′, which satisfies

||H ′v||22 = v′HH ′v

= v′Σ
1
2Un(U ′nΣUn)−1U ′nΣ

1
2 v

≤ κv′UnU ′nv,
(63)

where the condition number κ = λmax(Σ)
λmin(Σ) <∞ by Assumption 3. Similarly

v′HH ′v ≥ 1

κ
v′UnU

′
nv (64)

Since Un
(d)
= QUn with Q ∈ O(p), upon choosing Q such that Qv = e1, we

immediately obtain

P

(
e′1HH

′e1 > cεκ
n

p
∪ e′1HH

′e1 <
1

cεκ

n

p

)
≤ 4 exp

(
−ε

2n

8

)
. (65)

Off-diagonal elements The proof for the off-diagonal elements is somewhat
more involved. Because we multiply with the diagonal matrix D, we are inter-

ested in bounding with high probability
|e′iHH

′ej |
e′iHH

′ei
. We proof this for i = 1 and

j = 2, and then apply a union bound over all i and j. We separate three cases:
(a) e′1HHe1 > cεκ

n
p , (b) cεκ

n
p > e′1HH

′e1 >
1
cεκ

n
p , and (c) e′1HHe1 < cεκ

n
p .

Conditioning on these three cases and using the trivial fact that for any proba-
bility P (·) ≤ 1, it follows that

P

(
|e′1HH ′e2|
e′1HH

′e1
> t

)
≤ P

(
e′1HH

′e1 > cεκ
n

p

)
+ P

(
e′1HH

′e1 <
1

cεκ

n

p

)
+

∫ cεκ
n
p

1
cεκ

n
p

P

(
|e′1HH ′e2|
e′1HH

′e1
> t

∣∣∣∣ e′1HH ′e1 = t21

)
P
(
e′1HH

′e1 = t21
)
dt21.

(66)
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Lemma 6 in Appendix C states that

e′1HH
′e2

(d)
= h11h12 |

{
h2

11 = e′1HH
′e1

}
. (67)

In which case

e′1HH
′e2|

{
e′1HH

′e1 = t21
} (d)

= h11h12|
{
h2

11 = t21
}
. (68)

After rewriting this expression using Lemma 5 in Appendix C we have

h1i|
{
h2

11 = t21
} (d)

=

√
1− t21yi√

y2
2 + . . .+ y2

p

for i = 2, . . . , p, (69)

where ỹ = (y2, . . . , yp) ∼ N(0, Σ̃). Now we establish the following upper bound

P

(
|e′1HH ′e2|
e′1HH

′e1
> t

∣∣∣∣h2
11 = t21

)
= P

(
|h11h12|
h2

11

> t

∣∣∣∣h2
11 = t21

)
= P

( √
1− t21|y2|√

y2 + . . .+ yp
> |t1|t

)

= P

(
|y2|√

y2 + . . .+ yp
>

√
t21

1− t21
t

)
.

(70)

Standard bounds on normal and χ2 distributed variables can be applied, and
furthermore using the fact that ỹ has a rank p−n degenerate covariance matrix,
we have

P
(
|y2| > η

√
λmax(Σ)

)
≤ 2e−

η2

2

P
(√

y2
2 + . . .+ y2

p ≤
√
λmin(Σ)

√
p− n(1− η̃)

)
≤ e− 1

2 (p−n)η̃2 .
(71)

Then we know that

P

 |y2|√
y2

2 + . . .+ y2
p

>
η

1− η̃

√
κ

p− n

 ≤ 2e−
η2

2 + e−
1
2 (p−n)η̃2 . (72)

So we can choose

t =

√
1− t21
t21

η

1− η̃

√
κ

p− n
. (73)

In fact any t− < t is sufficient, so that we take t21 = cεκ
n
p ,

t >

√
1

cε

p

p− n
− n

p− n
κ
η√
n
. (74)

Now assume p
n > cp, then√

1

cε

p/n

p/n− 1
− 1

p/n− 1
κ
η√
n
>

√
cp
cε
− κ

cp − 1

η√
n
. (75)
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Choosing

η = a

√
cp − 1

cp/cε − κ
√

log p, (76)

results in

P

(
|e′1HH ′e2|
e′1HH

′e1
> a

√
log p

n

)
≤ 2e

− a22
cp−1

cp/cε−κ
log p

+ e−
1
2 (p−n)η̃2 . (77)

And finally, taking the union bound over all pairs ei, ej we have that for all i, j

P

(
|e′iHH ′ej |
e′iHH

′ei
> a

√
log p

n

)
≤ O

(
p−c̃
)
, (78)

with c̃ = a2

2
cp−1

cp/cε−κ − 2. �

B.3 Proof of Theorem 3

For all the estimators we should have

1√
n
Mε = Op(1). (79)

Building on the proof by Wang and Leng (2015), we denote the individual error
terms of the estimator of βi as

ηi =
di√
n
e′iX

′(XX ′)−1ε

(d)
=

di√
n
||e′iX ′(XX ′)−1||2

σe′iX
′(XX ′)−1u

||e′iX ′(XX ′)−1||2
,

(80)

where u ∼ i.i.d.(0, 1).
We first bound the norm term

di√
n
||e′iX ′(XX ′)−1||2 =

√
n
||e′iX ′(XX ′)−1||2
e′iX

′(XX ′)−1Xei
, (81)

Using standard norm inequalities, we have

||e′iX ′(XX ′)−1||22 = e′iX
′(XX ′)−2Xei

≤ 1

λmin(XX ′)
e′iX

′(XX ′)−1Xei,

||e′iX ′(XX ′)−1||22 ≥
1

λmax(XX ′)
e′iX

′(XX ′)−1Xei.

(82)

The eigenvalues of XX ′ = ZΣZ ′ satisfy

λmax(ZΣZ ′) ≤ λmax(Σ)λmax(ZZ ′),

λmin(ZΣZ ′) ≥ λmin(Σ)λmin(ZZ ′),
(83)
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and are bounded by Assumption 3

P

(
λmax

(
1

p
ZZ ′

)
> cZ

)
≤ e−CZn,

P

(
λmin

(
1

p
ZZ ′

)
<

1

cZ

)
≤ e−CZn.

(84)

Finally, using the previously established bounds in (65)

P

(
e′iX

′(XX ′)−1Xei > cεκ
n

p

)
≤ 2e−

ε2n
8 ,

P

(
e′iX

′(XX ′)−1Xei <
1

cεκ

n

p

)
≤ 2e−

ε2n
8 ,

(85)

it follows that with probability exceeding 1− 4 exp(−ε2n/8)− 2 exp(−CZn) we
have that(

1

λmax(Σ)

n

p

1

cεκ
n
p

)1/2

≤ di√
n
||e′iX ′(XX ′)−1||2 ≤

(
1

λmin(Σ)

n

p

1
1
cεκ

n
p

)1/2

,

(86)
which shows that

di√
n
||e′iX ′(XX ′)−1||2 = O(1). (87)

We now turn to the second term of (80)

σe′iX
′(XX ′)−1u

||e′iX ′(XX ′)−1||2
=

σe′i
1√
n
X ′
(

1
pXX

′
)−1

u∣∣∣∣∣∣∣∣e′i 1√
n
X ′
(

1
pXX

′
)−1

∣∣∣∣∣∣∣∣
2

. (88)

When u ∼ N.i.d(0, 1), it is immediately clear that

1√
n
X ′
(

1

p
XX ′

)−1

u
(d)→ N

[
0, lim
n→∞

1

n
X ′
(

1

p
XX ′

)−2

X

]
, (89)

and hence, as n→∞,

σe′i
1√
n
X ′
(

1
pXX

′
)−1

u∣∣∣∣∣∣∣∣e′i 1√
n
X ′
(

1
pXX

′
)−1

∣∣∣∣∣∣∣∣
2

(d)→ N(0, σ2). (90)

B.4 Proof of Theorem 4

We show that the results for the Moore-Penrose inverse in Theorem 2 and
Theorem 3 also hold for random least squares.

Size of the bias First, we will show that

P

(∣∣∣∣ 1ndRLS
i E[ri(R

′X ′XR)−1R′]X ′xj − δij
∣∣∣∣ > ã

√
log p

n

)
= O

(
p−c
)

(91)
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We first list several properties of the expectation E[R(R′X ′XR)−1R′]X ′X.
Consider the eigenvalue decomposition

1

n
X ′X = Û Λ̂Û ′ (92)

Then we have

E[R(R′X ′XR)−1R′]X ′X = E[R(R′Û Λ̂Û ′R)−1R′]Û Λ̂Û ′

(d)
= ÛE[Φ(Φ′Λ̂Φ)−1Φ′]Λ̂Û ′

(93)

using that for any fixed unitary matrix Û ′R
(d)
= Φ, with Φ again a matrix of

independent standard normal random variables.
Furthermore, Marzetta et al. (2011) show that E[Φ(Φ′Λ̂Φ)−1Φ′]Λ̂ is a diag-

onal matrix. This can proven by noting that a matrix A is diagonal if and only
if for all diagonal unitary matrices Ω, we have that ΩAΩ∗ = A with Ω∗ the
complex conjugate of Ω. Indeed

ΩE[Φ(Φ′Λ̂Φ)−1Φ′]Λ̂Ω∗ = ΩE[Φ(Φ′Λ̂Φ)−1Φ′]Ω∗Λ̂

= ΩE[Φ(Φ′Ω∗ΩΛ̂Ω∗ΩΦ)−1Φ′]Ω∗Λ̂

(d)
= E[Ψ(Ψ′Λ̂Ψ)−1Ψ′]Λ̂

(94)

where Ψ is again a matrix of standard normals, and using as above that ΩΦ
(d)
= Ψ

for any unitary matrix Ω.
Finally, Marzetta et al. (2011) establish the following relationship

E[Ψ(Ψ′Λ̂Ψ)−1Ψ′]Λ̂ = I − V, (95)

where
V = E[(Ξ′Λ̂−1Ξ)−1Ξ′]Λ̂−1 (96)

a diagonal matrix with Ξ is a p × (n − k) matrix with independent standard
normal entries.

Using (95), it follows that

ER[R(R′X ′XR)−1R′]X ′X = Û(I − V )Û ′ (97)

Now, Û Û ′ is the Moore-Penrose pseudoinverse post-multiplied by X, which
is identical to (57), so that we have

Û Û ′ = X ′(XX ′)−1X = HH ′ (98)

Therefore, one expects that if the entries of ÛV Û ′ are sufficiently small com-
pared to Û Û ′, then the results obtained under the Moore-Penrose inverse will
maintain to hold.
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We can use the following string of inequalities

P

(
|û′i(I − V )ûj |
û′i(I − V )ûi

> ζ

)
≤ P

(
|û′i(I − V )ûj |
û′iûi(1− ||V ||2)

> ζ

)
≤ P

(
|û′iûj |
û′iûi

+
|û′iV ûj |
û′iûi

> ζ(1− ||V ||2)

)
≤ P

(
|û′iûj |
û′iûi

+ ||V ||2
||Û ′||22
û′iûi

> ζ(1− ||V ||2)

)

≤ P

(
|û′iûj |
û′iûi

+ ||V ||2
λmax(Û Û ′)

λmin(Û Û ′)
> ζ(1− ||V ||2)

)
(99)

We can bound this by using the high probability eigenvalue bounds established
earlier. Denote by E the event that λmax(Û Û ′) < cεκ

n
p , λmin(Û Û ′) > (cεκ)

−1 n
p ,

then the string of inequalities proceeds as

≤ P
(
|û′iûj |
û′iûi

+ ||V ||2 (cεκ)
2
> ζ(1− ||V ||2)

∣∣∣∣ E)[1− 4 exp

(
−ε

2n

8

)]
+

+ 4 exp

(
−ε

2n

8

)
= P

(
|û′iûj |
û′iûi

> ζ − ||V ||2
[
ζ + (cεκ)

2
])[

1− 4 exp

(
−ε

2n

8

)]
+

+ 4 exp

(
−ε

2n

8

)
(100)

Now choose ζ = a
√

log p
n and define scale free constants cζ > ζ and cV such that

a > cV (cζ + c2εκ
2) > 0, then if we have

||V ||2 = cV

√
log p

n
(101)

Then

P

(
|û′i(I − V )ûj |
û′i(I − V )ûi

> ζ

)
≤ P

(
|û′iûj |
û′iûi

> ã

√
log p

n

)[
1− 4 exp

(
−ε

2n

8

)]
+ 4 exp

(
−ε

2n

8

)
= O

(
p−c̃
)

(102)

with ã = a − cV (cζ + c2εκ
2), and c̃ as in Theorem 2 with a replaced by ã. The

last line of (102) follows directly from Theorem 2.
What remains to be shown is that for a specific choice of k, the elements of

the diagonal matrix V are vi ≤ cV
√

log p
n , and therefore ||V ||2 ≤ cV

√
log p
n .

Denote by λ̂i the i-th diagonal element of the diagonal matrix of empirical
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eigenvalues Λ̂, ξi the i-th column of Ξ, and A−i ≡
∑
j 6=i λ̂

−1
j ξjξ

′
j . It holds that

vi = λ̂−1
i ξ′i(Ξ

′Λ̂−1Ξ)−1ξi

= λ̂−1
i ξ′i

∑
j 6=i

λ̂−1
i ξjξ

′
j + λ̂−1

i ξiξ
′
i

−1

ξi

= λ̂−1
i ξ′i

(
A−i + λ̂−1

i ξiξ
′
i

)−1

ξi

= λ̂−1
i ξ′i

(
A−1
−i −

λ̂−1
i A−1

−i ξiξ
′
iA
−1
−i

1 + λ̂−1
i ξ′iA

−1
−i ξi

)
ξi

=
λ̂−1
i νi

1 + λ̂−1
i νi

,

(103)

where

νi = ξ′iA
−1
−i ξi = ξ′i

(
Ξ−iΛ̂

−1
−iΞ−i

)−1

ξi > 0. (104)

This shows that random least squares performs a generalized type of ridge re-
gression, where the penalty is different for each eigenvalue. Now we can use
Jensen’s inequality and the fact that x/(1 +x) with x > 0 is a concave function
to show that

vi ≤
λ̂−1
i E[νi]

1 + λ̂−1
i E[νi]

≤
κ̂n−k−1

k

1 + κ̂n−k−1
k

, (105)

where κ̂ = λmax(Λ̂)

λmin(Λ̂)
≤ c2Zc2εκ.

If we require vi ≤ cV
√

log p
n , then we need to choose

k =
κ̂

κ̂+
cV
√

log p
n

1−cV
√

log p
n

(n− 1)

≈

(
1− ck

√
log p

n

)
(n− 1),

(106)

where ck = cV
c2Zc

2
εκ

.

Order of the variance term What remains to be shown is that the variance
term satisfies

dRLS
i√
n
eiE

[
R(R′X ′XR)−1R′

]
X ′ = Op(1). (107)

Again we split this as follows

dRLS
i√
n
||eiE

[
R(R′X ′XR)−1R′

]
X ′||2

eiE
[
R(R′X ′XR)−1R′

]
X ′

||eiE [R(R′X ′XR)−1R′]X ′||2
. (108)

Using the results of the previous section allows us to rewrite the (squared) norm
as (

dRLS
i√
n
||eiE

[
R(R′X ′XR)−1R′

]
X ′||2

)2

= n
e′iÛn(I − V )Λ̂−1(I − V )Û ′nei

(e′iÛn(I − V )Û ′nei)
2

,

(109)
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which can be lower and upper bounded as

1

λmax(Λ̂)
n
e′iÛn(I − V )2Û ′nei

(e′iÛn(I − V )Û ′nei)
2
≤ ne

′
iÛn(I − V )Λ̂−1(I − V )Û ′nei

(e′iÛn(I − V )Û ′nei)
2

≤ 1

λmin(Λ̂)
n
e′iÛn(I − V )2Û ′nei

(e′iÛn(I − V )Û ′nei)
2
.

(110)

Under stated assumptions, all eigenvalues are O(p). Also, from (101) we know

that the elements of V satisfy 0 ≤ vi ≤ cV
cζ+c2εκ

2

√
log p
n . Then

O

(
n

p
(1− vmax)2 1

e′iÛnÛ
′
nei

)
≤ ne

′
iÛn(I − V )Λ̂−1(I − V )Û ′nei

(e′iÛn(I − V )Û ′nei)
2

≤ O

(
n

p

1

(1− vmax)2

1

e′iÛnÛ
′
nei

)
.

(111)

Finally, we use (62), such that with high probability we have

c ≤ ne
′
iÛn(I − V )Λ̂−1(I − V )Û ′nei

(e′iÛn(I − V )Û ′nei)
2

≤ c. (112)

Since this norm determines the variance of the estimator, this yields the required
result. �

B.5 Proof of Theorem 5

Order of bias term First, we need to show that

P

(∣∣∣∣ 1ndRI
i e
′
i(X

′X + γIp)
−1X ′Xei − δij

∣∣∣∣ > ã

√
log p

n

)
= O(p−c̃), (113)

with c̃ as in Theorem 4. The proof largely follows the strategy under random
least squares. We first show that (X ′X+γIp)

−1X ′X also satisfies the right-hand
side of (97).

By substituting X = V̂ ŜÛ and defining Λ̂ = Ŝ′Ŝ, we have

(X ′X + γIp)
−1X ′X = (Û Λ̂Û ′ + γIp)

−1Û Λ̂Û ′

=
(
Û
(

Λ̂− γIp
)
Û ′
)−1

Û Λ̂Û ′

= Ûn

(
In − (Λ̂n − γIn)−1γIn

)
Û ′n

= Ûn(I − V )Û ′n,

(114)

where Λ̂n is a diagonal matrix with on the diagonal the nonzero eigenvalues of
X ′X and Un consists of the first n rows of Û . It is clear that V is diagonal
matrix with diagonal elements vi

vi =
γ

λ̂i + γ
. (115)
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Now as before, V should satisfy

||V ||2 = cV

√
log p

n
. (116)

Since V is diagonal

||V ||2 = max
i=1,...,n

γ

λ̂i + γ

=
γ

mini λ̂i + γ

=
γ

n
cZcε

λmin(Σ) + γ
.

(117)

Equating (116) with (117) yields

γ ≤ cγn
√

log p

n
, (118)

where cγ = cV cZcελmin(Σ), which completes the proof. �

Order of the variance What remains to be shown is

dRI
i√
n
e′i(X

′X + γIp)
−1X ′ε = O(1). (119)

This follows from the same argument as made for random least squares.

B.6 Proof of Theorem 6

This follows after some rewriting. Define the diagonal matrixA = E[R(R′Λ̂R)−1R′]Λ̂,
then

||eiÛE[R(R′Λ̂R)−1R′X ′||22 = eiÛAΛ̂−1AÛ ′ei

= eiÛ Λ̂−1/2A2
RLSΛ̂−1/2Û ′ei,

(120)

where A2
RLS is a diagonal matrix with diagonal elements 0 ≤ A2

ii ≤ 1.
Similarly, for the ridge regularized inverse, we have

||ei(X ′X + γIp)
−1X ′||22 = ei(X

′X + γIp)
−1X ′X(X ′X + γIp)

−1ei

= eiÛn(Λ̂ + γIp)
−2Λ̂Û ′nei

= eiÛnΛ̂−1/2A2
RIDΛ̂−1/2Û ′nei,

(121)

with A2
RID is a diagonal matrix with the diagonal elements satisfying 0 ≤ A2

ii ≤
1. For the Moore-Penrose pseudoinverse we have

||eiX ′(XX ′)−1||22 = eiX
′(XX ′)−2Xei

= eiÛ Λ̂−1Û ′ei.
(122)

And since for both RLS and RID A2 is a diagonal matrix with the diagonal
elements satisfying 0 ≤ A2

ii ≤ 1, the claim in Theorem 6 follows. �
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B.7 Proof of Lemma 2

When u ∼ i.i.d(0, 1) and E

{
ut

[(
1
pXX

′
)−1

X

]
t

}
= 0, a central limit theorem

applies ensuring that as n→∞,

1√
n
X ′
(

1

p
XX ′

)−1

u
(d)→ N

[
0, lim
n→∞

1

n
X ′
(

1

p
XX ′

)−2

X

]
, (123)

and hence, as n→∞,

σe′i
1√
n
X ′
(

1
pXX

′
)−1

u∣∣∣∣∣∣∣∣e′i 1√
n
X ′
(

1
pXX

′
)−1

∣∣∣∣∣∣∣∣
2

(d)→ N(0, σ2), (124)

which completes the proof. �

C Auxiliary definitions and lemma’s

Definition 1 (Matrix Angular Gaussian Distribution, Chikuse (1990))
Suppose the entries of a p×n matrix W are standard normal and independently
distributed. Define HΣ1/2Z = Σ1/2W (W ′ΣW )−1/2. Then HW has the density
function

fHW = |Σ|−n/2|H ′WΣ−1HW |−p/2. (125)

This distribution is called the matrix angular Gaussian distribution with para-
mater Σ defined on the Stiefel manifold Vn,p, and denoted as MACG(Σ).

Lemma 3 (Reduction to standard normal random variables) Define W
as a p×n matrix with independent standard normal entries. For any matrix Un
that is distributed uniformly over Vn,p, we have that (Chikuse (2012), p. 29)

Un = W (W ′W )−1/2. (126)

Lemma 4 (Manifold decomposition, Chikuse (2012)) Let H be a p × n
random matrix on the Stiefel manifold Vn,p, which is decomposed as

H = (h1, H2), (127)

where h1 is a p× 1 vector and H2 is a p× n− 1 matrix. Then we can write

h1 = G(H2)T, (128)

where G(H2) is any p × p − n + 1 matrix chosen so that [H2, G(H2)] ∈ O(p),
and T a (p− n+ 1)× 1 vector. As H2 takes values in Vn−1,p, T takes values in
V1,p−n+1 and the relationship is one-to-one.

Lemma 5 (Wang and Leng (2015)) Let H be a p × n random matrix on
the Stiefel manifold Vn,p, which follows the MACG(Σ). After decomposing the
Stiefel manifold H = (G(H2)T,H2), with T a (p−n+1)×1 and H2 a p×(n−1)
matrix, we have

T |H2 ∼ ACG(G(H2)′ΣG(H2)). (129)
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As G(H2)T is simply a linear transformation of T , if we define

Σ̃ = G(H2)G(H2)′ΣG(H2)G(H2)′, (130)

then we also have
h1|H2 ∼ ACG(Σ̃). (131)

This implies that if h1 = (h11, . . . , hp1)′, then

hi1|H2
(d)
=

zi√
z2

1 + . . .+ z2
p

, (132)

where z ∼ N(0, Σ̃).

Lemma 6 (Fan and Lv (2008); Wang and Leng (2015)) Define ei as a
standard basis vector with its i-th entry equal to 1 and all others equal to zero.
Note that

e′1HH
′e2 = e′1HQQ

′H ′e2, Q ∈ O(n). (133)

Now define Q̃ ∈ O(n− 1) and Q =

(
1 01×n−1

0n−1×1 Q̃

)
. Choose Q such that

it rotates H into a frame where e′1H̃ =
[
h̃11, 01×n−1

]
. In terms of the rotated

frame, we have
e′1HH

′e2 = e′1H̃H̃e2 = h̃11h̃12, (134)

implying that

e′1HH
′e2

(d)
= h11h12

∣∣∣∣ {e′1H = h11} . (135)

Denote the first row of H by h′1 = [h11, h
′
12]. Then e′1HH

′e1 = h2
11 + h′2h2 and

thus e′1H = [h11, 01×n−1]↔ e′1HH
′e1 = h2

11. We can then rewrite (135) into

e1HH
′e2

(d)
= h11h12

∣∣∣∣ {e1HHe1 = h2
11

}
. (136)

Lemma 7 (Berstein’s inequality) We will use the following identity on the
sum of independent χ2(1) variables

P

(
1

n

n∑
i=1

χ2
i (1) > 1 + ε

)
≤ exp

(
−ε

2n

8

)
,

P

(
1

n

n∑
i=1

χ2
i (1) < 1− ε

)
≤ exp

(
−ε

2n

8

)
.

(137)
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D Variable Descriptions

Table 6: Variable Descriptions Table 5

variable FRED mnemonic Description

industrial production IPFINAL Industrial Production: Final Products
(Market Group) (Index 2012=100)

employees wholesale trade USWTRADE All Employees: Wholesale Trade (Thou-
sands of Persons)

hours worked business HOABS Business Sector: Hours of All Persons
(Index 2009=100)

hours worked nonfarm HOANBS Nonfarm Business Sector: Hours of All
Persons (Index 2009=100)

housing starts HOUSTS Housing Starts in South Census Region
(Thousand of Units)

retail sales RSAFSx Real Retail and Food Services Sales (Mil-
lions of Chained 2009 Dollars), deflated
by Core PCE

manufacturing inventories NAPMII ISM Manufacturing: Inventories Index
GDP deflator GDPCTPI Gross Domestic Product: Chain-type

Price Index (Index 2009=100)
productivity nonfarm OPHNFB Nonfarm Business Sector: Real Out-

put Per Hour of All Persons (Index
2009=100)

productivity business OPHPBS Business Sector: Real Output Per Hour
of All Persons (Index 2009=100)

labour costs ULCBS Business Sector: Unit Labor Cost (index
2009=100)

rate commercial paper CPF3MTB3Mx 3-Month Commercial Paper Minus 3-
Month Treasury Bill, secondary market
(Percent)

rate Eurodollar deposit MED3TB3Mx 3-Month Eurodollar Deposit Minus 3-
Month Treasury Bill, secondary market
(Percent)

real money stock MZMREALx Real MZM (money of zero maturity)
Money Stock (Billions of 1982-84 Dol-
lars), deflated by CPI

consumer sentiment UMCSENTx University of Michigan: Consumer Senti-
ment (Index 1st Quarter 1966=100)

stock price volatility VXOCLSX CBOE S&P 100 Volatility Index: VXO
Federal debt GFDEGDQ188S Federal Debt: Total Public Debt as Per-

cent of GDP (Percent)

Note: this table reports the variable descriptions and FRED mnemonics corresponding
to the variables in Table 5.

41


	Introduction
	High-dimensional regression
	Methods
	Approximate inverse construction
	Moore-Penrose pseudoinverse
	Random Least Squares
	Ridge regression

	Estimation of the noise level

	Theoretical results
	Assumptions
	Approximate unbiasedness and normality
	Accuracy of the initial estimator and approximate inverses
	Power increase by regularization
	Non-gaussian errors
	Computational complexity

	Monte Carlo Experiments
	Monte Carlo set-up
	Simulation Results
	Sparsity and signal strength
	Varying signal strength


	Empirical Application
	Data
	Estimation
	Empirical Results

	Conclusion
	Properties of spherically symmetric matrices
	Proofs
	Proof of the compatibility condition
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Lemma 2

	Auxiliary definitions and lemma's
	Variable Descriptions

