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Private Road Networks with Uncertain

Demand

February 15, 2017

Abstract

We study the efficiency of private supply of roads under demand uncertainty

and evaluate various regulatory policies. Due to demand uncertainty, ca-

pacity is decided before demand is known but tolls can be adjusted after

demand is known. Policy implications can differ considerably from those

under deterministic demand. For instance, for serial links, the toll in the

second-best zero-profit case is no longer equal to the marginal external con-

gestion cost. In the first-best scenario, the capacity under uncertain demand

is higher than that under deterministic demand of the same expected value,
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though self-financing still holds in expected terms. Regulation by competi-

tive auction cannot replicate the second-best zero-profit result and thus leads

to a lower welfare, whereas without uncertainty various forms of competitive

auctions can attain this second-best optimum. For more complex networks,

when private firms add capacity in turn, contrary to the case without de-

mand uncertainty, some form of auction performs better than others with

demand uncertainty.

Keywords: Traffic Congestion, Road Pricing, Uncertain Demand, Road

Network, Private Supply, Auction

JEL codes: D63, H23, R41, R42

1 Introduction

There has been wide and growing interest in private supply of roads, in ad-

dition to public supply, as a solution to increasing traffic congestion. Various

public-private partnerships and Build-Operate-Transfer projects have been

found around the world, for example in Chile, Colombia, Mexico, China

and United states(Fisher and Babbar (1996)). The often cited reasons are

that governments in many countries have insufficient public funds to finance
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new road projects, and private firms are believed to manage projects more

efficiently. A disadvantage, however, is that private suppliers have market

power and tend to maximize their profits, resulting in a loss of social welfare

compared to optimal pricing. The tradeoffs have been studied by numerous

scholars: starting with a debate between Pigou (1920) and Knight (1924)

considering a simple network, to De Vany, Arthur and Saving (1980) and

de Palma (1992) on competing private toll roads, to de Palma and Lindsey

(2000) on dynamic congestion and private roads, and Wang et al. (2011) on

nonlinear pricing on private roads. Researchers have proposed several reg-

ulatory policies to overcome the disadvantages of private supply of roads.

But they usually overlook a prevailing phenomenon in road construction: ca-

pacity is usually set when future demand is still uncertain and can only be

estimated, even though tolls can be subsequently adjusted according to the

realized demand.

The aim of the present paper is to study, under demand uncertainty, the

impact of private supply of roads in a mixed network, and how to regu-

late this supply. Policy makers and practitioners alike can benefit from a

better understanding of the impact of demand uncertainty on equilibrium

tolls, capacities, profits and consumer surplus. We make the conventional
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assumptions that private firms maximize profit, while the public sector max-

imizes social welfare.1. We study both simple and complex networks. Simple

networks have clear theoretical results, which can form a basis for rules of

thumb in policy making, while complex network are more realistic, but we

depend on simulation to solve equilibria. For simple networks, we distinguish

between parallel links and serial links, and derive analytically the expected

social welfare under various scenarios, which are used as benchmarks to assess

the efficiency of private supply of road capacity. We also examine, in terms

of impacts on social welfare, various competitive auctions to regulate the

market. For more complex networks, we are interested in the development of

private supply of road networks through competition. We run simulations to

compare the equilibrium outcomes of free entry versus entry by regulation.

Our research shows that demand uncertainty adds new complexity to the

economic assessment of private supply of roads. When there exists a free

complementary road and the road provider needs at least zero profit, con-

trary to the case without demand uncertainty, the toll is no longer equal

1The reality is evidently more complex: for example, private firms may be restricted
by several regulatory requirements, while the public sector and travelers may care about
other aspects like pollution, fairness or local economic development. Nevertheless, our
research can aid in establishing the most efficient way of regulating the private firms, while
providing an objective evaluation benchmark of public projects based on the maximum
social welfare attainable.
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to the marginal external congestion cost. An especially relevant finding for

policy makers is that, unlike in the case with deterministic demand, regula-

tion by simple competitive auctions can no longer make the private suppliers

adopt the socially desirable tolls and capacities. In other words, demand un-

certainty makes regulating the private supply of roads more difficult and new

forms of auctions need to be invented. The numerical simulation suggests

that, with the help of competition, entry by regulation still works better than

free entry. In addition, the ”generalized price auction” generates higher ex-

pected social welfare than the ”patronage auction” for the parameter ranges

considered in the simulations.

Our study is mainly related to two strands of literature. The first one

examines the effects of private supply of roads in a mixed network without

demand uncertainty. Following Mohring and Harwitz (1962), Yang and Meng

(2002) show that, if both the toll and the capacity are set optimally for every

link of the network and neutral scale economies prevail, the Pigouvian toll

is optimal and the private road is self-financing, meaning that the collected

tolls cover the capacity costs. Obviously, not all roads are priced optimally

in reality, and free public roads are common. Verhoef (2007) demonstrates

when there is an untolled substitute road in the network, a road supplier who
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is forced to price and invest second-best optimally makes a loss, so a subsidy

from the government is needed to achieve the desired second-best social wel-

fare level. If such a subsidy is ruled out due to political or economic reasons,

Verhoef (2008) derives the highest social welfare under the condition that

the private firm makes at least a zero profit. This is a natural benchmark

to compare the efficiency of various alternative ways of regulating private

supply of roads through competitive auctions or free entry, since competitive

auctions also typically drive profits of the winning bid to zero. The optimal

toll in the second-best zero-profit case is again Pigouvian for both serial and

parallel links. In addition, Verhoef (2008) found that among many possible

regulatory schemes, two competitive auctions, namely the ”patronage auc-

tion” and the ”generalized price auction”, are preferred, in the sense that

they make the private firm choose the socially optimal tolls and capacity un-

der the zero-profit condition. We study these two auctions in the case with

uncertain demand, and find that they do not achieve the socially optimal

goal any more.

The second strand of literature considers a single road with demand un-

certainty. De Vany and Saving (1977), Kraus (1982), D’Ouville and Mc-

Donald (1990) and Arnott et al. (1996) all study different forms of demand
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uncertainty for a single link, and find that in general a larger investment in

capacity is justified, because the optimal capacity with demand uncertainty

is larger than the optimal capacity for a deterministic demand with the same

expected value. Lindsey and de Palma (2014) prove that the cost recovery

theorem holds also with uncertain demand. We confirm that the above in-

tuition for a single road also apply to a public network. To date, however,

models with demand uncertainty have not been applied to examine private

supply of road in a mixed network.

The paper is organized as follows. Section 2 discusses the analytical model

for simple networks. Section 3 shows the simulation results for more complex

networks and section 4 concludes.

2 Analytical Model

In this section, we study small networks with either serial links or parallel

links. This means that we consider the purest types of link interactions (i.e.,

complementarity versus substitutability), and thus can identify the mecha-

nisms that will occur in real life networks in the cleanest possible way. We will

show the basic model setup first, then discuss in detail four regimes for each
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network structure: the first-best case, the second-best case, the second-best

zero-profit case and competitive auctions.

Under demand uncertainty, the assumed timing of the game is as follows:

capacity is decided before the demand state is known, and tolls are decided

after the demand uncertainty is resolved. This setting can represent not only

long-term demand uncertainty due to unpredictable economic booms and

busts, but also predictable seasonal demand fluctuations such as alternating

peak and non-peak hours. The core assumption is that capacities are usually

hard to change and independent of the demand state, but prices can be

adjusted rather quickly and dependent on the demand state. We aim to

model demand uncertainty in a general way. To that end, let pi denote the

probability of state i, N i denote the total traffic flow in state i, and Di(N i)

denote the (decreasing) inverse demand in state i, so we can represent a

variety of uncertainty distributions, and different inverse demand functions.

Our other assumptions are akin to those in standard traffic models with-

out uncertainty. For simplicity, there is a single market with one origin

and one destination, and the users are homogeneous, and risk neutral. The

congestion cost is increasing and homogeneous of degree zero in flow and ca-

pacity. We assume the marginal capacity cost to be a constant, to represent
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neutral scale economies in road construction. The toll, capacity, congestion

cost and marginal capacity cost of demand state i on link j are denoted by

τ i, Kj, c(N
i
j , Kj) and γ respectively.

We discuss four regimes, which are natural benchmarks for evaluating the

efficiency of alternative ways of organizing the private supply of roads. In

the first-best case, the social planner maximizes the expected social welfare,

by setting the capacity and tolls of both links. This is the benchmark and

the efficiency gain of any realistic policy can be valued against the gain of the

first-best case. In the second-best case, the social planner faces a constraint

that there is already a free link in the network, and optimizes over the capac-

ity and toll of the other link. This case is more realistic than the first-best

case, because tolling originally free road is more likely to meet resistance

from the public than tolling new roads. It will typically result in lower social

welfare. In the second-best zero-profit case, the social planner faces an ad-

ditional constraint: the provider earns at least zero profit on the tolled link.

This gives an upper limit for achievable social welfare under private opera-

tions, given that private firms will not operate under a loss, and competition

will drive profits to zero. Finally, we study two competitive auctions as useful

regulatory tools, which are proved to implement the second-best zero-profit
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result in the deterministic case (Verhoef (2007)). In the competitive auc-

tions, the social planner tries to regulate the private firms by a patronage

auction (the concession is awarded to the firm that will realize the highest

level of use of the new road), or a generalized price auction (the concession

is granted to the firm that will offer the lowest generalized price, as the sum

of toll and time costs, of the new road). We will discuss in the remainder of

the section the implications of the four regimes for both serial and parallel

networks.

2.1 Serial Links

We first study, in this section, a network of two serial links, where a traveler

must use both links to get from the origin to the destination. The serial

links are thus perfect complements to each other, so that the total traffic

flow equals the traffic flow on each link, i.e. N i = N i
0 = N i

1.

We will show that uncertain demand generates quite different policy im-

plications from deterministic demand. For first-best and second-best cases,

we show the analytical expressions of the equilibrium tolls directly. For

second-best zero-profit and competing-auction cases, such expressions are

omitted due to their complex forms, and we show instead the Lagrangian
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multipliers for ease of interpretation.

Here is a preview of results: in the first-best case, the capacity is larger

than in the case without demand uncertainty. In the second-best zero-profit

case, the optimal toll is not equal to the marginal external cost of congestion

of both links. And in competitive auctions, neither the patronage auction

nor the generalized price auction can implement the second-best zero-profit

result. The results for the second-best case without a zero-profit constraint

are more similar to those for the deterministic demand, where an expected

profit is gained on the tolled link. We will discuss each case in more detail

in the remainder of this section.

2.1.1 First-Best for Serial Links

The natural benchmark to evaluate the efficiency of private supply of roads

is the first-best case. In the first-best case, the social planner maximizes

the expected social welfare, which is the sum of the expected total consumer

benefit minus the expected congestion cost and capacity cost. The choice

variables of the social planner are capacities, state-dependent traffic flows,

and state-dependent tolls. In addition, the user equilibrium constraint needs

to be satisfied, where the generalized price of an active route, i.e. the sum of
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user congestion cost and toll, in any state is equal to the inverse demand in

that state. So the social planner’s problem can be expressed by the following

Lagrangian2:

max
Kj ,N i,τ i,λi

∑
i

pi· (
∫ N i

0

Di(n)dn−N i· (c(N i, K0) + c(N i, K1))) − γ· (K0 +K1)

+
∑
i

λi· (c(N i, K0) + c(N i, K1) + τ i −Di(N i)) (1)

For this and the following Lagrangians, we will skip the first-order condi-

tions, which are taken w.r.t. the quantities N i, investments Kj, tolls τ i, and

the relevant Lagrangian multipliers. The first order conditions determine

these same variables in the associated equilibrium. All variables, apart from

the capacities and the multiplier for the zero-profit constraint (if relevant),

are state-dependent. The solution is:

τ i = N i· (cN i(N i, K0) + cN i(N i, K1)) (2)

The optimal toll in each state i is equal to the marginal external conges-

2Note that for the first-best case, the Lagrangian function may be more laborious than
strictly needed, as all multipliers will be zero through optimization of the relevant toll
levels (Small and Verhoef 2007). For comparison with second-best schemes later on, we
however use a Lagrangian specification also for the first-best problem.
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tion cost over the full trip in that state. It follows immediately that the two

links are self-financing in expectation (Mohring and Harwitz (1962)). At the

equilibrium, λi = 0, because the toll and traffic flows are already optimal and

relaxing the user equilibrium constraint cannot improve the expected social

welfare any further. For a linear inverse demand function and a BPR conges-

tion function, we show in Appendix I that the optimal equilibrium capacity

is larger than in the case without uncertainty. In other words: both the

expected toll revenue and the total capacity cost are higher with uncertainty

than without, but they are so in equal amounts, so that self-financing still

prevails. The intuition why both are higher is that due to the convexity of

the user cost function, the expected value of the marginal external cost over

all states exceeds the marginal external cost for a deterministic traffic flow

that is equal to the expected traffic flows under uncertainty. This raises the

expected value of the toll, but also the optimal capacity of the road.

2.1.2 Second-Best for Serial Links

To compare the private supply of a new road with the overall first-best case

can be less informative when some untolled roads already exist, and remain

existent in the network. A better benchmark would then be the case where
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the social planner can only design and optimize the capacity and tolls of a

new road. The resulting expected social welfare is generally lower than in

the overall first-best case, because the capacity of the free road is not set

optimally. When the pre-existing initial road is indexed 0 and the new serial

road 1, the Lagrangian becomes:

max
K1,N i,τ i,λi

∑
i

pi· (
∫ N i

0

Di(n)dn−N i· (c(N i, K0) + c(N i, K1))) − γ· (K0 +K1)

+
∑
i

λi· (c(N i, K0) + c(N i, K1) + τ i −Di(N i)) (3)

The solution is:

τ i = N i· (cN i(N i, K0) + cN i(N i, K1)) (4)

The resulting toll in each demand state equals the marginal external

congestion cost of the full trip, and the expected toll revenues naturally

more than compensate the capacity cost of the toll link. In fact, the toll

revenue would be sufficient to cover the cost of supplying both links at the

optimal capacity, because with an unpriced perfectly complementary link,
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the second-best toll becomes equal to what would have been the first-best

tolls for the two links together.

2.1.3 Second-Best Zero-Profit for Serial Links

The second-best zero-profit case is probably an even better benchmark for

competing private firms, because with free entry, and for most types of com-

petitive auctions, profit will be driven down to zero. It is also a good bench-

mark for regulation, because it identifies the most efficient outcome under the

constraint that the toll revenue must cover capacity cost. In addition to the

user equilibrium constraint, we also need to add the zero-profit constraint,

where the expected profit summed over all states is equal to the capacity

costs. The problem thus translates into the following Lagrangian:

max
K1,N i,τ i,λi,λzp

∑
i

pi· (
∫ N i

0

Di(n)dn−N i· (c(N i, K0) + c(N i, K1))) − γ· (K0 +K1)

+
∑
i

λi· (c(N i, K0) + c(N i, K1) + τ i −Di(N i)) + λzp· (
∑
i

pi·N i· τ i − γ·K1)

(5)

Note first λi is state-dependent, but λzp is not. After solving the first order
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conditions, we do not have a closed form solution for the tolls. However the

Lagrangian multiplier for the zero-profit constraint implies that, contrary to

the deterministic case, the optimal toll is not Pigouvian:

λzp =
τ i −N i· (cN i(N i, K0) + cN i(N i, K1))

−τ i −N i· (Di
N i(.) − cN i(N i, K0) − cN i(N i, K1))

(6)

By the usual interpretation of a Lagrangian multiplier, λzp reflects how

much the expected social welfare changes if we allow for a small expected

surplus or deficit. The numerator is the derivative of the social welfare in

state i with respect to the traffic volume in state i. It thus equals the height

of the Harberger triangle that measures the deadweight loss due to inefficient

tolling. The denominator is the derivative of the financial deficit in state i

with respect to the traffic volume in state i. As the traffic volume in state i

increases, the social planner gets more toll payment from the new marginal

traveler but collects less toll from every original traveler.

At the optimum, the toll is set such that λzp will get the same value,

independent of for which state i it it evaluated. The intuition is that at

the optimum, a shift of a dollar revenue between two states should bring

as much benefit in one state as damage in the other. As a result, contrary
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to the deterministic case, the toll cannot be equal to the marginal external

congestion cost. For example, for linear inverse demand function such as

Di(N i) = di0 − d1·N i and two demand states such as dh0 > dl0, the Pigouvian

toll directly implies that
−c

Nh (N
h,K0)

c
Nh (Nh,K0)+d1

<
−c

Nl (N
l,K0)

c
Nl (N l,K0)+d1

, and thus no solution

for λzp. In other words, the social welfare is not maximized with the Pigou-

vian toll, because it can be increased further by decreasing Nh and increasing

N l.

2.1.4 Auctions for Serial Links

When a social planner is not sure about the optimal toll and capacity due to

a lack of information on the congestion cost function or the capacity cost, a

competitive auction may improve the efficiency of private road supply. In a

competitive auction, all sellers have the same marginal capacity cost γ and

full information of the congestion cost function, and they will bid until the

profit is exhausted. It was shown before that in the deterministic case, two

auctions can implement the second best zero profit outcome (Verhoef, 2007).

These are the patronage auction, where firms bid in terms of committing to

achieve the highest traffic flow on the toll road; and the generalized price

auction, where they bid to realize the lowest generalized price. So we will
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now study how theses two auctions perform under uncertain demand.

The patronage auction maximizes the expected traffic flow, and the La-

grangian showing us the competitive zero-profit outcome is:

max
K1,N i,τ i,λi,λzp

∑
i

pi·N i +
∑
i

λi· (c(N i, K0) + c(N i, K1) + τ i −Di(N i))

+ λzp· (
∑
i

pi·N i· τ i − γ·K1) (7)

The toll does not have a closed-form solution, but we can gain insights

into the nature of the toll from the Lagrangian multiplier for the zero-profit

constraint.

λzp =
1

−τ i −N i· (Di
N i(.) − cN i(N i, K0) − cN i(N i, K1))

(8)

λzp reflects how much the expected patronage, the objective in (7), changes

if we allow for a small expected deficit and is the same across states. The

numerator equals the derivative of the traffic volume in state i (directly en-

tering the objective as the patronage) with respect to itself, and is therefore

1 now. The denominator is the derivative of the expected deficit in state i

with respect to the traffic volume in that state, which is the same as in (6).
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By similar reasoning as in the second-best zero-profit case, the toll cannot

be the marginal external congestion cost of the tolled road in general. In

addition, the results are also different from the second-best zero-profit case3.

The generalized price auction minimizes the expected generalized price,

so the Lagrangian is:

min
K1,N i,τ i,λi,λzp

∑
i

pi·Di(N i) +
∑
i

λi(c(N i, K0) + c(N i, K1) + τ i −Di(N i))

+ λzp(
∑
i

pi·N i· τ i − γ·K1) (9)

We now find the following Lagrangian multiplier for the zero-profit con-

straint:

λzp =
Di
N i(.)

−τ i −N i· (Di
N i(.) − cN i(N i, K0) − cN i(N i, K1))

(10)

The numerator now equals the derivative of the expected generalized price

in state i with respect to the traffic volume in state i, and the denominator

is the same as in (6) and (8). For a linear inverse demand function, where

3When Di(N i) = di0 − d1·N i and dh0 > dl0, Pigouvian toll implies that
1

Nh·(d1+c
Nh (Nh,K0))

< 1
N l·(d1+c

Nl (N l,K0))
.
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Di
N i(.) is a constant, the solutions for the two auctions are the same. This is

because, for linear demand function and serial links, the maximum expected

total traffic flow corresponds to the minimum expected generalized price. For

non-linear demands, the outcomes of the auctions will be different.

In sum, the patronage auction and the generalized price auction in gen-

eral cannot replicate the result for the second-best zero-profit case with serial

links if there is demand uncertainty. There are two ways to explain it. Firstly,

the auctions and the second best zero profit case have different expected op-

timization objectives, which is the sum of the optimization objectives in

each state weighted by the probability of that state. Note that the expected

social welfare equals the expected consumer surplus under the zero profit

constraint. For linear inverse demand functions, in each state, the consumer

surplus is quadratic in the traffic flow while the patronage and the gener-

alized price are linear in the traffic flow, so the highest expected consumer

surplus corresponds to neither the highest expected patronage nor the lowest

expected generalized price. Secondly, although the FOCs for τ i, K1, λ
i and

λzp are the same for the two auctions and the second-best zero-profit case,

they cannot determine a unique solution. The solution depends also on the

FOCs for N i, which in general differ across the cases. On the contrary, when
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there is no demand uncertainty, in terms of the optimization objective, max-

imization of the social welfare under the zero profit constraint is equivalent

to maximization of the patronage and minimization of the generalized price.

In terms of the resulting FOCs, the FOCs for τ,K1, λ and λzp determine a

unique combination of the traffic flows, capacity and toll (Wu et al. (2011)

and Verhoef (2007)).

2.2 Parallel Links

In this section, we consider two parallel links, where both roads connect the

same origin and destination and a traveler can use either of them. They are

pure substitutes to each other, so the total traffic flow is the sum of the traffic

flow of both links, i.e. N i = N i
0 +N i

1.

Here is a summary of the key results for parallel links. We show the equi-

librium tolls for first-best and second-best cases, and only the Lagrangian

multipliers for the remaining cases. For second-best zero-profit and competing-

auction cases, the equilibrium toll is omitted due to its complex form, and we

instead use the Lagrangian multipliers for model interpretation. As opposed

to the deterministic case, neither the patronage auction nor the generalized

price auction can implement the second-best zero-profit result when demand
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uncertainty prevails. In the first-best case, the capacity is larger than in the

case without demand uncertainty. Other results are more in line with the

deterministic case. In the second-best case, the social planner expects a loss.

In the second-best zero-profit case, the toll is equal to the marginal external

congestion cost of the toll link, which in general is not true for serial links

under demand uncertainty.

2.2.1 First-Best for Parallel Links

We again first discuss the first-best case, where a social planner can design

the capacities and tolls of the two parallel links to obtain the highest expected

social welfare. The Lagrangian is the following:

max
Kj ,N i

j ,τ
i
j ,λ

i
j

∑
i

pi· (
∫ N i

0+N
i
1

0

Di(n)dn−N i
0· c(N i

0, K0) −N i
1· c(N i

1, K1)) − γ· (K0 +K1)

+
∑
j

∑
i

λij· (c(N i
j , Kj) + τ ij −Di(N i

0 +N i
1)) (11)

The result is:

τ ij = N i
j · cN i

j
(N i

j , Kj) (12)
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The Pigouvian toll is levied on each link in each state, so the externality

of congestion is internalized and the roads are self-financing in expectation.

For linear inverse demand function and BPR congestion function, we show

in Appendix I that also now the optimal capacity is larger than in the case

without uncertainty.

2.2.2 Second-Best for Parallel Links

In the second-best case, now an untolled parallel link already exists. When

the social planner optimizes the capacity and tolls of the new road, the

Lagrangian is:

max
K1,N i

j ,τ
i
1,λ

i
j

∑
i

pi· (
∫ N i

0+N
i
1

0

Di(n)dn−N i
0· c(N i

0, K0) −N i
1· c(N i

1, K1)) − γ· (K0 +K1)

+
∑
i

λi0· (c(N i
0, K0) −Di(N i

0 +N i
1)) +

∑
i

λi1· (c(N i
1, K1) + τ i1 −Di(N i

0 +N i
1))

(13)

The solution is:

τ i1 = N i
1· cN i

1
(N i

1, K1) +N i
0· cN i

0
(N i

0, K0)
Di
N i

1
(N i

0 +N i
1)

cN i
0
(N i

0, K0) −Di
N i

0
(N i

0 +N i
1)

(14)

Similar to the case without uncertainty, the toll in each demand state
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equals the sum of the marginal external congestion cost and a negative net-

work spillover effect. The social planner should expect a loss on the toll road,

because of a downward adjustment of the toll from the Pigouvian toll(Verhoef

(2007)).

2.2.3 Second-Best Zero-Profit for Parallel Links

As just shown, in the second-best case with parallel links, the operator of

the toll road makes a loss. The logic followup question is that: what is the

highest expected social welfare if this road has to be self-financing? This is a

relevant question, because it is a natural benchmark for private supply (with

or without regulation) when there is an untolled alternative parallel road:

we cannot expect the private road to make a loss, so the best we can hope

for is the setting where welfare is maximized under the constraint that the

firm makes (at least) a zero profit. Mathematically, we solve the following
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Lagrangian problem:

max
K1,N i

j ,τ
i
1,λ

i
j ,λ

zp

∑
i

pi· (
∫ N i

0+N
i
1

0

Di(n)dn−N i
0· c(N i

0, K0) −N i
1· c(N i

1, K1)) − γ· (K0 +K1)

+
∑
i

λi0· (c(N i
0, K0) −Di(N i

0 +N i
1)) +

∑
i

λi1· (c(N i
1, K1) + τ i1 −Di(N i

0 +N i
1))

+ λzp· (
∑
i

pi· τ i1·N i
1 − γ·K1) (15)

After simplification, we can show that the equilibrium toll is Pigouvian

through solving the Lagrangian multiplier:

λzp =

τ i1 −N i
1· cN i

1
(.) −N i

0· cN i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)

−τ i1 −N i
1· (Di

N i
1
(.) +Di

N i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)
− cN i

1
(.))

(16)

The numerator of λzp is the derivative of the social welfare in state i with

respect to the traffic flow in state i on the toll road.4 It equals the sum of the

height of the Harberger triangle of both links, where that of untold link is

weighted to reflect the substitution between equilibrium use of the two links.

The denominator is the derivative of the deficit in state i with respect to the

traffic flow in state i on the toll link. As the traffic volume on the toll link

4If N i
1 increases by a small amount ∆, N i

0 will decrease by
Di

Ni
1
(.)

c
Ni

0
(.)−Di

Ni
0

(.)
∆, because on

the untolled road, user cost must equal inverse demand.
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increases, the road provider gets more toll payment from the new traveler on

the tolled road but collects less toll from every original traveler due to the

diversion of traffic to the untolled link.

In contrast to what we found for the serial links, the Pigouvian toll,

i.e. τ i = N i
1· cN i

1
(N i

1, K1), guarantees that λzp =
N i

0

N i
1

is the same across

states. Note that this result is for a general from of inverse demand function

and demand uncertainty. If the social planner allows an expected deficit on

the tolled road, the positive λzp shows that the expected social welfare will

increase. This is because, the Pigouvian toll on the toll road does not account

for the congestion spill-over on the untolled road like in the second-best case.

Lowering the toll below the Pigouvian level raises welfare. Such increase in

welfare is larger when there are more travelers on the untolled road and less

travelers on the toll road. In the extreme case of zero traffic flow on the

untolled road, the effect is zero because we already achieve the highest social

welfare by optimum tolling.

2.2.4 Auctions for Parallel Links

Without demand uncertainty, the patronage auction and the generalized

price auction prove to replicate the second-best zero-profit outcome also for
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parallel links (Verhoef 2007). We show in this subsection that this is no

longer true with demand uncertainty. For policy makers thinking of how to

regulate the private firms, more sophisticated mechanisms are needed.

Patronage Auction for Parallel Links To find the outcome for the

patronage auction, we set up the Lagrangian that maximizes the expected

flow on the tolled link subject to a zero-profit constraint:

max
K1,N i

j ,τ
i
1,λ

i
j ,λ

zp

∑
i

pi·N i
1 +

∑
i

λi0· (c(N i
0, K0) −Di(N i

0 +N i
1))

+
∑
i

λi1· (c(N i
1, K1) + τ i1 −Di(N i

0 +N i
1)) + λzp· (

∑
i

pi· τ i1·N i
1 − γ·K1)

(17)

The FOCs for τ i1, K1, λ
i
j and λzp, which specify the investment rule, the

Wardropian user equilibrium conditions and the zero profit constraint, are

the same as those of the second-best zero-profit case. However, unlike in the

case without uncertainty Wu et al. (2011), they cannot determine a unique

solution, because demand uncertainty brings in more choice variables now.

The Lagrangian multiplier for the zero-profit constraint shows that the toll,

which has no closed-form solution, is not the same as in the second-best
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zero-profit case:

λzp =
1

−τ i1 −N i
1· (Di

N i
1
(.) +Di

N i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)
− cN i

1
(.))

(18)

The numerator of λzp is the derivative of the traffic volume on the tolled

road in state i with respect to itself, thus its value is again 1. The denomi-

nator is the same as in the second-best zero-profit case in (16). Contrary to

the case without demand uncertainty, the resulting toll cannot be equal to

the marginal external congestion cost on the toll road5.

Generalized Price Auction for Parallel Links For the generalized price

auction, a firm minimizes the expected generalized price, such that the toll

road beaks even. The Lagrangian for the problem with parallel links is:

5For a linear inverse demand function Di(N i) = di0−d1N
i and dh0 > dl0, Pigouvian toll

implies 1

Nh
1 ·d1

c
Nh

0
(.)

c
Nh

0
(.)+d1

< 1

N l
1·d1

c
Nl

0
(.)

c
Nl

0
(.)+d1

,
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min
K1,N i
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1,λ

i
j ,λ
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1) +
∑
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+
∑
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∑
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(19)

After some substitutions, λzp can be expressed as follows:

λzp =

Di
N i

1
(.) +Di

N i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)

−τ i1 −N i
1· (Di

N i
1
(.) +Di

N i
0
(.)

Di
Ni
1

(.)

c
Ni
0
(.)−Di

Ni
0

(.)
− cN i

1
(.))

(20)

The numerator is the derivative of the generalized price in state i with

respect to the traffic volume on the tolled road in state i, taking into consid-

eration the induced traffic volume on the untolled link. The denominator is

the same as in the earlier two cases (16) and (18). The tolls again cannot be

Pigouvian6.

In sum, neither the patronage auction nor the generalized price auction

can in general replicate the result of the second-best zero-profit case. The

6For a linear inverse demand function Di(N i) = di0 − d1·N i and dh0 > dl0, Pigouvian
toll implies −1

Nh
1
> −1

N l
1
.
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traffic volumes that maximize the expected social welfare under the appro-

priate constraints neither maximize the expected patronage on the toll road

nor minimize the expected generalized price.

3 Numerical Analysis

The analytical results for the two simple networks show that demand un-

certainty is likely to affect the efficiency of private supply of roads, where

equilibrium with competitive auctions differs from zero-profit second-best

outcomes. For a more general network, which is also more realistic, clear-cut

analytical results are hard to obtain, and we rely on numerical simulations

to gain further insights. Moreover, with the help of simulation, we may not

only examine statically how private roads perform in a given mixed network,

but can also learn dynamically how to regulate private provision of roads

through efficient network formation.

Similar to Verhoef (2008), we assume there are two serial segments a

and b in a network connecting one origin and one destination. The initial

links on the two segments, denoted as a0 and b0 respectively, are untolled,

which represent a pre-existing free public road network. Private firms can

30



add capacities on each segment one at a time, and then charge tolls. For

example, if the first firm adds a link in section a, we denote the new link as

a1. a1 is now parallel to the existing link a0, and serial to the existing link

b0. In this way, we can model both parallel and serial competition and the

development of the network.

The timing of the game is as follows: since construction takes time, at

the beginning of each round, there is uncertainty about the future demand.

Firms compete to add a capacity to one section of the network without

knowing the realized demand. After the demand uncertainty is resolved, the

firms can no longer change their capacities, but they can decide on tolls to

charge on their own links. Then there is again demand uncertainty and a

new round begins. The sequential game continues until there is no profit for

a new entry. Alternatively, the model can describe the situation where after

the opening of a new link, there remains demand variability over the days

with state i occurring on a fraction pi of the relevant (working) days.

For simplicity, we assume that within each round, firms are forward look-

ing and rational, so the capacity decision takes into account the equilibrium

toll setting in the next stage. But between rounds, firms are assumed my-

opic, in the sense that they take every round as being the last, until they are
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surprised by new comers who change the network structure. We make these

assumptions to avoid unsolvable dynamic games, and we think they may also

represent the slow and lump-sum development in infrastructure in real life.

Because it usually takes considerable time for new roads to materialize, a

firm can focus on competing with the existing firms for now and not worry

too much about possible new competitors in the future. But we admit it is a

simplification.7 Another assumption is that when the uncertainty is assumed

to be resolved after completing a investment, there is again uncertain demand

in a new round. The replication of the same type of uncertainty when every

round begins is of course unrealistic, but helpful in our setting that it avoids

making ad hoc assumptions on how uncertainty itself evolves over time. In

addition, this setting can also be applied to cases of peak-load pricing when

the demand fluctuates regularly within a period in which capacity is fixed.

We will discuss the basic benchmarks first, then compare and contrast

two regimes, namely the unregulated free-entry regime and the regulated

entry-by-auction regime. In the free-entry regime, the firm with the highest

expected profit adds a capacity on the most desired section. After the capac-

ity is built, the demand is known and all firms in the network play a Bertrand

7In general, if firms can anticipate new entries, they will set larger capacities to preempt
the entry.
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price setting game, i.e. every firm sets its own toll simultaneously while tak-

ing the tolls of the other road operators as given. In the entry-by-auction

regime, the winner of an auction can add a capacity. Due to the perfect

competition in auctions, any firm that adds a capacity earns zero profit in

expectation. The auction can be on either the expected patronage of the new

road, or the expected generalized price. To be comparable to the determin-

istic case in Verhoef (2008), when demand is known, all existing firms charge

tolls as promised in the auction and stick to these over successive rounds, so

there is no direct toll competition in the entry-by-auction regime.8

The parameters of the numerical simulation is as follows. To be compara-

ble with Verhoef (2008), the inverse demand function is linear and Di(N i) =

δi0−δ1·N i. The demand uncertainty is in the intercept, which is δh0 with prob-

ability ph and δl0 with probability 1−ph. We set δ1 = 0.01167, δh0 = 74.11, δl0 =

49.41, ph = 0.5, which means compared with Verhoef 2008, the reservation

price can go up or down by 20% with equal probability. 9 The congestion cost

function is of the familiar BPR form, i.e. c(N i
j , Kj) = α· tf · (1 + β· (N

i
j

Kj
)x).

The parameter for the value of time, α, is set at 7.5. tf is the free-flow travel

8If Bertrand competition is allowed, tolls have to decrease faster to meet the promised
patronage, and the entry game also stops sooner.

9According to Flyvbjerg et al. (2006), actual traffic deviates from the forecasted ones
by more than 20% for half of roads projects.
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time and is set at 0.25, implying a total trip length of 60 kilometers for a

highway with 120 kilometer/hour speed. β and x take their conventional

values of 0.15 and 4 respectively. The marginal capacity cost is set at 3.5 for

both segments, and represents the hourly capital cost per unit of capacity.

We assume the initial capacities are Ka0 = Kb0 = 1500.

3.1 Benchmark

As a benchmark, Table 1 summarizes the characteristics of the base equilib-

rium, the first-best case, the second-best case and the second-best zero-profit

case. The results we are interested in are: the social welfare(S), relative

efficiency(ω) 10, profit(π), capacity(K), toll(τ), congestion cost(c), gener-

alized price(P ) and traffic volume(N). The superscript h(l) denotes the

high(low) demand state. The subscript a(b) is for section a(b), while 0(1) is

for the initial (newly-added) link. E is for expectation. The results are fully

consistent with the analytical model.

The base equilibrium with the two untolled links is quite congested, and

its expected social welfare is only half the first-best value. Since no toll is

10The relative efficiency is defined as the gain in the expected social welfare in the
regime, divided by the gain achieved when moving from the base equilibrium to the first-
best outcome.
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Table 1: Benchmark Equilibria
Variables Base First-best Second-best Second-best zero-profit

Sh 76513 167573 166325 146383
Sl 43864 59908 58061 60099
E[S] 60189 113741 112193 103241
ω 0 1 0.971 0.804

πha0, π
h
b0 -5250 8685 -5250 -5250

πha1, π
h
b1 - - -7461 3340

πla0, π
l
b0 -5250 -8685 -5250 -5250

πla1, π
l
b1 - - -8625 -3340

E[πa0], E[πb0] -5250 0 -5250 -5250
E[πa1], E[πb1] - - -8043 0
Ka0, Kb0 1500 3644 1500 1500
Ka1, Kb1 - - 2479 1401
τha0, τ

h
b0 0 4.226 0 0

τha1, τ
h
b1 - - 0.350 4.226

τ la0, τ
l
b0 0 1.119 0 0

τ la1, τ
l
b1 - - 0.022 1.119

cha0, c
h
b0 14.230 2.931 3.313 7.157

cha1, c
h
b1 - - 2.963 2.931

cla0, c
l
b0 6.697 2.155 2.131 3.273

cla1, c
l
b1 - - 2.110 2.155

Dh = P h 28.459 14.315 6.626 14.315
Dl = P l 13.395 6.546 4.263 6.546
Nh
a0, N

h
b0 3862 5074 2256 3123

Nh
a1, N

h
b1 - - 3477 1951

Nh 3862 5074 5733 5074
N l
a0, N

l
b0 3052 3639 1466 2240

N l
a1, N

l
b1 - - 2369 1399

N l 3052 3639 3835 3639
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charged, the government expects a loss on the two initial links. In both

states, congestion cost is much higher than that of the first-best case, so

there is a large room for improvement from the base equilibrium.

In the first-best case, the capacity more than doubles from the base case

and the congestion costs in both states decrease. The expected profit is

zero, because the profit in the high state and the loss in the low state cancel

out. Compared with the deterministic case discussed in Verhoef (2008), the

first-best capacity is larger under uncertainty.

The second-best case can achieve 97.1% of the increase in the expected

social welfare from the base equilibrium to the first-best case. However, this

generates a considerable loss for the two newly-added parallel link in either

realized demand state, because the capacity expansion is too large for the

toll revenues to cover the cost.

As predicted by the theoretical result for the parallel links, the second-

best zero-profit case has the same toll and generalized price as in the first-best

case in both demand states. It can achieve 80.4% of the increase in social

welfare.

3.2 Entry Game
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Table 2: Free Entry
Round Investing Firm Ka Kb E(S) ω E(π) Dh = ph Dl = pl

0 1500 1500 60189 0 - - -
1 I 1862 1500 66436 0.117 1145 26.678 12.364
2 I 1862 1960 77972 0.332 1837 23.606 10.761
3 II 2176 1960 82920 0.432 721 22.043 9.953
4 II 2176 2283 88639 0.531 759 20.231 9.049
5 III 2426 2283 91887 0.592 380 19.073 8.511
6 III 2426 2518 94892 0.648 321 17.963 8.017
7 IV 2607 2518 96824 0.684 172 17.194 7.689
8 IV 2607 2677 98448 0.714 128 16.523 7.412

Free Entry In the free entry regime, the firm with the highest expected

profit sets a capacity on the segment of his choice. Then demand uncertainty

is resolved and firms set tolls simultaneously. We allow both old and new

firms to add capacity, so the double marginalization problem is mitigated,

in the sense that one may expect firms to be active on both serial segments,

and competition between such firms on parallel segments to drive down tolls.

Table 2 shows the network developments for free entry. We assume with-

out loss of generality that capacity is first added on section a. In equilibrium,

the firm that has added capacity on section a will, in the next round, add

capacity on section b. Then a new firm adds capacity on section a, then

section b, and so on. This pattern emerges because (1) the same firm can

better coordinate the tolls on both sections, so it is the same firm rather
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than a new one which will invest on a serial segment in the even round; (2)

when the capacity on one section is expanded, it is more profitable to add

capacity on the complementary section. In addition, the capacity addition

in section b is always larger than that in section a in the previous round,

because of increased demand due to capacity expansion on the other link. A

new firm always adds capacity in section a in the next round because if an

old firm does so, it will end up competing with its own capacities in section a.

After eights rounds of capacity building, the total capacity on both section

are above that of the first-best case in the numerical example, reflecting that

competition will cause over-investment in capacity in the end. The expected

profit of the entrant decreases as more firms join the network, and so does the

expected profit of the incumbent firms. The generalized price in each state

falls over time due to increased competition, but it remains higher than the

second-best zero-profit case’s level owing to the market power of the firms.

The expected social welfare is 98433 after eight rounds, and it can achieve

71.4% improvement in social welfare from the base equilibrium to the first-

best case. The qualitative patterns match those described in Verhoef(2008)

for deterministic demand.
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Table 3: Entry by Patronage Auction
Round Investing Firm Ka Kb E(S) ω Dh = ph Dl = pl

0 1500 1500 60189 0 - -
1 I 2275 1500 69744 0.178 25.315 11.311
2 I 2275 2764 96109 0.671 17.419 6.802
3 II 2886 2764 101567 0.773 15.501 6.006
4 II 2886 3154 102353 0.787 14.946 5.753
5 III 2930 3154 102503 0.790 14.870 5.725
6 III 2930 3159 102503 0.790 14.865 5.723
7 IV 2930 3159 102503 0.790 14.864 5.723
8 IV 2930 3159 102503 0.790 14.864 5.723

Entry by Patronage Auction In the entry by patronage auction regime,

the firm which offers the highest expected traffic flow on the new link is

allowed to add the link. Every time a new firm enters, it makes zero expected

profit due to the competitive nature of the auction. Afterwards, it keeps the

toll scheme (conditional on the realized demand) unchanged. It may not

collect enough tolls to cover the capacity cost if later too many firms enter

with low tolls.

The key characteristics of the resulting equilibrium are shown in Table 3.

After four rounds already, the expected social welfare is higher than that after

eight rounds in the free entry regime. Capacity addition is rapid initially,

and after five rounds the capacity addition is negligible, which means a stable

network is more or less formed. The relative efficiency, ω = 0.790, is much
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Table 4: Entry by Generalized Price Auction
Round Investing Firm Ka Kb E(S) ω Dh = ph Dl = pl

0 1500 1500 60189 0 - -
1 I 2277 1500 69818 0.180 25.223 11.382
2 I 2277 2767 96906 0.687 16.802 7.174
3 II 2888 2767 102517 0.790 14.793 6.447
4 II 2888 2916 103137 0.802 14.502 6.346
5 III 2907 2916 103203 0.803 14.468 6.335
6 III 2907 2918 103210 0.803 14.464 6.334
7 IV 2908 2918 103211 0.803 14.464 6.333
8 IV 2908 2918 103211 0.803 14.464 6.333

higher than that of the free entry regime and close to that of the second-best

zero-profit case (0.804). Judging from these criteria, the entry by patronage

auction performs well.

Entry by Generalized-Price Auction In the entry by generalized-price

auction regime, the firm which offers the lowest expected generalized price

can add the link. Afterwards it keeps the toll scheme (conditional on the

realized demand) unchanged. As shown in Table 4, the characteristics of the

equilibrium are similar to those in the entry by patronage auction regime.

The expected social welfare is even higher and ω = 80.3%. Both auctions

achieve a high ω after only five rounds, so regulation by auction is a big

improvement, and a faster road to efficiency, compared to the free entry

regime.
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3.3 Sensitivity Analysis

The numerical simulation seems to suggest that entry by either auction per-

forms better than free entry. In addition, entry by the generalized price

auction seems to generate higher efficiency than the patronage auction when

demand is uncertain. In this section we test the sensitivity of such results

with respect to the degree of uncertainty and the price elasticity of demand.

In the numerical simulation, the inverse demand function is represented

by Di(N i) = δi0 − δ1·N i and the degree of uncertainty is represented by a,

where δh0 = (1 + a)· δ0 for the high demand state and δl0 = (1 − a)· δ0 for

the low demand state. a = 0 means demand is completely certain, and as a

increases, demand becomes more uncertain. a = 0.2 is used in the numerical

simulation in the previous section. Figure 1 shows the relative efficiency of the

three regimes after five rounds of entry corresponding with different degrees

of demand uncertainty. For 0 ≤ a ≤ 0.35, the two auctions clearly perform

better than free entry, because capacity addition is quicker with auctions.

The efficiencies of the two auctions are similar, which is consistent with the

case without demand uncertainty. As the degree of uncertainty increases,

the relative efficiency of all three regulatory regimes increases. The main

reason is that when the degree of uncertainty increases, the optimal capacity
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Figure 1: Sensitivity Analysis: Degree of Uncertainty

in the first-best case increases, so the social welfare of the base equilibrium

decreases.

To study the robustness of the results with respect to demand elasticity,

we vary the demand elasticity by changing the intercept and slope of the

inverse demand function, keeping the base equilibrium unchanged. In other

words, we change the value of b, where the new intercept is δ̄i0 = δi0 + b· δ1·N i

and the new slope is δ̄1 = (1 + b)· δ1. For the simulation in the previous

section, we set b = 0 and the resulting demand elasticity is 0.50. Figure 2

shows the relative efficiency of the three regimes after five rounds of entry

corresponding with different demand elasticity. When b changes from −0.5

to 0.5, the demand elasticity changes from −1.01 to −0.34. For the param-

eter range in the simulation, it seems that the two auctions generate similar
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Figure 2: Sensitivity Analysis: Demand Elasticity

social welfare, with the generalized price auction performing only slightly

better. They both perform much better than free entry, due to quick ca-

pacity addition. As the demand elasticity increases (i.e. becomes closer to

zero reflecting less elastic demand), due to larger capacity adjustment under

the first-best case and the auctions, the expected social welfare of the three

cases increases less significantly than that of the base equilibrium and the

free-entry case. As a result, the relative efficiency of the auctions decreases

and that of the free-entry case increases.

4 Concluding Remarks

This paper investigates how demand uncertainty influences the efficiency of

private supply of roads in a mixed network. We compare different bench-
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marks and evaluate the efficiency of regulatory policies for both simple static

networks and more complex dynamic ones.

We find that demand uncertainty indeed brings new challenges for policy

makers. For simple networks, taking into consideration of demand uncer-

tainty, the optimal capacity for the first-best case is larger than its determin-

istic counterpart. In the second-best zero-profit case, the toll for serial links

are no longer Pigouvian. The patronage and the generalized price auction

can no longer achieve the second-best zero-profit result. For more complex

networks with dynamic new link formation, if the firms with the highest

expected profit can add capacity in turn, there is usually over-investment.

When we control the process by the patronage auction or the generalized

price auction, the expected social welfare increases much quicker and reaches

a steady state rather closely after only five rounds. Unlike in the case of de-

terministic demand, the generalized price auction performs better than the

patronage auction with demand uncertainty.

Our findings can be useful for policy makers and practitioners who have

to make decisions about road pricing and capacity investment despite pre-

vailing demand uncertainty. For Pigouvian toll to correct the externality in

many markets such as the transport, telecommunication and energy market,
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caution needs to be exercised because demand uncertainty will render some

policies less effective in mixed networks. In addition, demand uncertainty

may justify ”over-investment” observed in many projects, on the ground that

the benefit of a larger capacity when economy is good on average outweighs

the cost of it when economy is bad. Moreover, market competition itself is

not enough to guarantee fast formation of efficient roads networks. Instead

regulation combined with market competition forces, especially the general-

ized price auction, is proven in theory to be a reliable way of providing good

public service by private firms. It can form the basis for public-private joint

projects in more complex and realistic settings.

In sum, demand uncertainty complicates the evaluation and regulation

of private supply of roads in mixed networks. For future research, we will

consider more general networks, dynamic games of capacity addition, user

heterogeneity and optimal auction design.

Appendix I

We prove first the case of one road, then show how to extend the proof to

two serial and two parallel links.
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Consider the simplest case with only one road. Demand state i happens

with probability pi. Let K,N i, τ i, γ denote the capacity, traffic flow, toll and

unit capacity cost respectively. The congestion cost function is c(N i, K) =

α· tf · (1+β· (N i

K
)x) with x > 0, and the inverse demand function is Di(N i) =

δi0 − δ1·N i. The intercept of the inverse demand function is δi0 for state i.

The social planner solves the following constrained optimization problem:

max
K,τ i,N i

∑
i

pi· (
∫ N i

0

Di(n)dn− c(N i, K)N i) − γ·K

s.t.Di(N i) = c(N i, K) + τ i (21)

At the optimum:

δi0 − δ1·N i − α· tf · (1 + β· (N
i

K
)x· (1 + x)) = 0∑

i

pi·α· tf · β·x· (
N i

K
)1+x − γ = 0

The first equation is an implicit function for N i(K, δi0). Denote the resulting

social surplus in state i as W i(K, δi0) =
∫ N i

0
Di(n)dn− c(N i, K)·N i. We can

prove that the marginal benefit of capacity expansion, i.e.
∂W i(K,δi0)

∂K
is convex
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in δi0, as shown below:

∂
∂W i(K,δi0)

∂K

∂δ0
=

α· tf · β·x(1 + x)·N i1+x

δ1·N i + α· β· tf · (1 + x)·x· (N i

K
)x
> 0

∂2
∂W i(K,δi0)

∂K

∂δ20
=
α· tf · β·x· (N i1+x·x· (1 + x)(δ1·N i + (1 + x)·α· tf · β· (N

i

K
)x))

(δ1·N i + (1 + x)·x·α· tf · β· (N
i

K
)x)3

> 0

(22)

The convexity implies that
∑

i pi
∂W i(K,δi0)

∂K
>

∂W i(K,
∑

i piδ
i
0)

∂K
. In other words,

for any chosen capacity, the expected marginal benefit is higher with demand

uncertainty. So the social planner should choose higher capacity under de-

mand uncertainty.

For two parallel links, the first-best solution is the same as that of a single

link with K = K0 +K1 and N i = N i
0 +N i

1, so the previous result still holds.

For two serial link, the first-best solution is the same as that of a single link

with α doubled, so the reasoning is similar.
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