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Abstract 

The purpose of the paper is to (i) show that univariate GARCH is not a special case of 

multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on 

the off-diagonal elements of the random coefficient autoregressive coefficient matrix, that are not 

consistent with Full BEKK, and (ii) provide the regularity conditions that arise from the 

underlying random coefficient autoregressive process, for which the (quasi-) maximum 

likelihood estimates (QMLE) have valid asymptotic properties under the appropriate parametric 

restrictions. The paper provides a discussion of the stochastic processes that lead to the 

alternative specifications, regularity conditions, and asymptotic properties of the univariate and 

multivariate GARCH models. It is shown that the Full BEKK model, which in empirical practice 

is estimated almost exclusively compared with Diagonal BEKK  (DBEKK), has no underlying 

stochastic process that leads to its specification, regularity conditions, or asymptotic properties, 

as compared with DBEKK. An empirical illustration shows the differences in the QMLE of the 

parameters of the conditional means and conditional variances for the univariate, DBEKK and 

Full BEKK specifications. 

 
Keywords: Random coefficient stochastic process, Off-diagonal parametric restrictions, 

Diagonal BEKK, Full BEKK, Regularity conditions, Asymptotic properties, Conditional 

volatility, Univariate and multivariate models, Fossil fuels and carbon emissions. 

 

JEL: C22, C32, C52, C58. 
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1. Introduction 

 
The most widely estimated univariate and multivariate models of time-varying volatility for 

financial data, as well as any high frequency data that are measured in days, hours and minutes, 

is the conditional volatility model. The underlying stochastic processes that lead to the 

specifications, regularity conditions and asymptotic properties of the most popular univariate 

conditional volatility models, such as GARCH (see Engle (1982) and Bollerslev (1986)) and 

GJR (see Glosten et al. (1993)) are well established in the literature, though McAleer and Hafner 

(2014) have raised caveats regarding the existence of the stochastic process underlying 

exponential GARCH (EGARCH) (see Nelson (1990, 1991)).  

 

However, the same cannot be said about multivariate conditional volatility models, specifically 

Full BEKK (see Baba et al. (1985) and Engle and Kroner (1995)), for which the underlying 

stochastic process that leads to the specification, regularity conditions and asymptotic properties 

have either not been established, or are simply assumed rather than derived. These conditions are 

essential for forecasting and valid statistical analysis of the empirical estimates, which are the 

primary purposes of the models.  

 

The purpose of the paper is to show that the stochastic process underlying univariate GARCH is 

not a special case of that underlying multivariate GARCH, except under parametric restrictions 

on the off-diagonal elements of the random coefficient autoregressive coefficient matrix that are 

not consistent with Full BEKK. The paper provides the regularity conditions that arise from the 

underlying random coefficient autoregressive process, and for which the (quasi-) maximum 

likelihood estimates (QMLE) have valid asymptotic properties under the appropriate parametric 

restrictions. 

 

The Full BEKK model is estimated almost exclusively in empirical practice, to the exclusion of 

Diagonal BEKK (DBEKK), despite the fact that Full BEKK has no underlying stochastic process 

that leads to its specification, regularity conditions, or asymptotic properties, as shown in the 

proposition and four corollaries, as compared with DBEKK.  

 

The plan of the paper is as follows. Section 2 provides a discussion of the stochastic processes, 
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regularity conditions, and asymptotic properties of univariate and multivariate GARCH models. 

Section 3 shows that the Full BEKK model has no underlying stochastic process that leads to its 

specification, regularity conditions, or asymptotic properties, as compared with DBEKK. In 

Section 4, an empirical illustration for the financial returns on spot and futures prices of fossil 

fuels and carbon emissions for the European Union and USA shows the differences that can arise 

in the QMLE of the parameters of the conditional means and conditional variances for the 

univariate, DBEKK and Full BEKK specifications. Section 5 gives some concluding comments. 

 

2. Univariate and Multivariate GARCH Models 

 
2.1 Univariate Conditional Volatility Models 

 
Consider the conditional mean of financial returns for commodity i, in a financial portfolio of m 

assets, as follows: 

 

    𝑦𝑖𝑡 = 𝐸(𝑦𝑖𝑡|𝐼𝑡−1) + 𝜀𝑖𝑡 , 𝑖 = 1, 2, … , 𝑚,   (1) 

     

where the returns, 𝑦𝑖𝑡 = Δ𝑙𝑜𝑔𝑃𝑖𝑡 , represent the log-difference in financial commodity prices, 

𝑃𝑡, 𝐼𝑡−1 is the information set for all financial assets at time t-1, 𝐸(𝑦𝑖𝑡|𝐼𝑡−1) is the conditional 

expectation of returns, and 𝜀𝑖𝑡 is a conditionally heteroskedastic error term.  

 

In order to derive conditional volatility specifications, it is necessary to specify the stochastic 

processes underlying the returns shocks, 𝜀𝑖𝑡. The most popular univariate conditional volatility 

model, GARCH model, is discussed below.  

 

Consider the random coefficient autoregressive process underlying the returns shocks, 𝜀𝑖𝑡 , as 

follows: 

 

    𝜀𝑖𝑡 = 𝜙𝑖𝑡𝜀𝑖𝑡−1+ 𝜂𝑖𝑡 ,  𝑖 = 1, 2, … , 𝑚,   (2) 

       

where 
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𝜙𝑖𝑡~𝑖𝑖𝑑(0, 𝛼𝑖), 𝛼𝑖 ≥ 0, 

𝜂𝑖𝑡~𝑖𝑖𝑑(0, 𝜔𝑖), 𝜔𝑖 ≥ 0, 

𝜂𝑖𝑡 = 𝜀𝑖𝑡/√ℎ𝑖𝑡 is the standardized residual,  

ℎ𝑖𝑡 is the conditional volatility of financial asset i. 

 

Tsay (1987) derived the following conditional volatility of financial asset i as an ARCH process 

(see Engle, 1982): 

 

𝐸(𝜀𝑖𝑡
2 |𝐼𝑡−1) ≡  ℎ𝑖𝑡 =  𝜔𝑖 + 𝛼𝑖𝜀𝑖𝑡−1

2  ,     (3) 

       

where ℎ𝑡 represents conditional volatility, and 𝐼𝑡−1 is the information set available at time t-1. A 

lagged dependent variable, ℎ𝑡−1, is typically added to equation (3) to improve the sample fit: 

 

ℎ𝑖𝑡 ≡ 𝐸(𝜀𝑖𝑡
2 |𝐼𝑡−1) = 𝜔𝑖 + 𝛼𝑖𝜀𝑖𝑡−1

2  + 𝛽𝑖ℎ𝑡−1, 𝛽𝑖 ∈ (−1, 1).    (4) 

 

From the specification of equation (2), it is clear that both 𝜔𝑖 and 𝛼𝑖 should be positive as they 

are the unconditional variances of two different stochastic processes. In equation (4), which is a 

GARCH(1,1) model for commodity i (see Bollerslev, 1986), the stability condition requires that 

𝛽𝑖 ∈ (−1, 1).  

 

The stochastic process can be extended to asymmetric conditional volatility models (see, for 

example, McAleer (2014)), and to give higher-order lags and a larger number of alternative 

commodities, namely up to m-1. However, the symmetric process considered here is sufficient to 

focus the key ideas associated with the purpose of the paper. 

 

As the stochastic process in equation (2) follows a random coefficient autoregressive process, 

under normality (non-normality) of the random errors, the maximum likelihood estimators 

(quasi- maximum likelihood estimators, QMLE) of the parameters will be consistent and 

asymptotically normal. It is worth emphasizing that the regularity conditions include 

invertibility, which is obvious from equation (2), as: 
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𝜀𝑖𝑡 − 𝜙𝑖𝑡𝜀𝑖𝑡−1 =  𝜂𝑖𝑡. 

 

The standardized residuals,  𝜂𝑖𝑡  , can be expressed in terms of the empirical data through 

equations (1) and (2), as 𝜀𝑖𝑡  can be estimated using equation (1), 𝜀𝑖𝑡−1 is the lagged value, which 

has already been estimated, and the random coefficient can be generated under appropriate 

explicit assumptions regarding its underlying stochastic process. In short,  𝜂𝑖𝑡  can be related 

directly to the data, 𝑦𝑖𝑡 , using equations (1) and (2). 

 

Ling and McAleer (2003) and McAleer et al. (2008) provide general proofs of the asymptotic 

properties of univariate and multivariate conditional volatility models based on satisfying the 

regularity conditions in Jeantheau (1998) for consistency, and in Theorem 4.1.3 in Amemiya 

(1985) for asymptotic normality. 

 

2.2 Multivariate Conditional Volatility Models 

 

The multivariate extension of the univariate ARCH and GARCH models is given in Baba et al. 

(1985) and Engle and Kroner (1995). It is useful to define the multivariate extension of the 

relationship between the returns shocks and the standardized residuals, that is, 𝜂𝑖𝑡 = 𝜀𝑖𝑡/√ℎ𝑖𝑡 . 

The multivariate extension of equation (1), namely:  

 

𝑦𝑡 = 𝐸(𝑦𝑡|𝐼𝑡−1) + 𝜀𝑡 ,    (5) 

 

can remain unchanged by assuming that each of the three components in equation (5) is an 

𝑚 × 1 vector, where 𝑚 is the number of financial assets. 

 

The following two definitions are intended to elaborate on the discussion below:  

 

Definition 1: Each marginal of  𝜀𝑖𝑡  should be a univariate counterpart of the multivariate returns 

vector, 𝜀𝑡. 

 

Definition 2: An underlying stochastic process of a univariate returns shock, or multivariate 
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returns shocks, is one that leads to the regularity conditions, likelihood function, and asymptotic 

properties of the resulting quasi- maximum likelihood estimators. 

 

Consider the vector random coefficient autoregressive process of order one, which is the 

multivariate extension of the univariate process given in equation (2):    

 

𝜀𝑡 = 𝛷𝑡𝜀𝑡−1 + 𝜂𝑡,     (6) 

 

where 

𝜀𝑡 and 𝜂𝑡 are 𝑚 × 1 vectors,  

𝛷𝑡 is an 𝑚 × 𝑚 matrix of random coefficients,   

𝛷𝑡~𝑖𝑖𝑑(0, 𝐴), A is positive definite,  

𝜂𝑡~𝑖𝑖𝑑(0, 𝐶), C is an 𝑚 × 𝑚 matrix. 

 

Vectorization of a full matrix A to vec A can have dimension as high as 𝑚2 × 𝑚2, whereas 

vectorization of a symmetric matrix A to vech A can have a smaller dimension of m(m + 1)/2 ×

m(m + 1)/2.  

 

In the case where A is a diagonal matrix, with 𝑎𝑖𝑖 > 0 for all i = 1,…,m and |𝑏𝑗𝑗| < 1 for all j = 

1,…,m, so that A has dimension 𝑚 × 𝑚, McAleer et al. (2008) showed that the multivariate 

extension of GARCH(1,1) from equation (6) is given as the Diagonal BEKK (DBEKK) model, 

namely:  

 

𝑄𝑡 = 𝐶𝐶′ + 𝐴𝜀𝑡−1𝜀𝑡−1
′ 𝐴′ + 𝐵𝑄𝑡−1𝐵′,   (7) 

 

where A and B are both diagonal matrices. The diagonality of the positive definite matrix A is 

essential for matrix multiplication as 𝜀𝑡−1𝜀𝑡−1
′  is an 𝑚 × 𝑚 matrix; otherwise equation (7) could 

not be derived from the vector random coefficient autoregressive process in equation (6). 

 

McAleer et al. (2008) showed that the QMLE of the parameters of the DBEKK model were 

consistent and asymptotically normal, so that standard statistical inference on testing hypotheses 
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is valid (or further details, see Chang et al., 2018). It should be emphasized that the QMLE of the 

parameters in the conditional means, namely equations (1) and (5), and the conditional variances, 

namely equations (4) and (7), will differ as the multivariate models, (5) and (7), respectively, are 

estimated jointly, whereas the univariate models, (1) and (4), respectively, are estimated 

individually. 

 

3. Full BEKK 

 
Consider element i of equation (6), that is: 

 

 

𝜀𝑖𝑡 = ∑ 𝜙𝑖𝑗𝑡𝜀𝑖𝑗𝑡−1+ 𝜂𝑖𝑡
𝑚
𝑗=1  ,  𝑖 = 1, 2, … , 𝑚,     (8) 

 

which is not equivalent to equation (2) unless  𝜙𝑖𝑗𝑡 = 0  ∀ i ≠ j. Such parametric restrictions are 

not consistent with the Full BEKK specification, which assumes 𝜙𝑖𝑗𝑡 ≠ 0 for at least one i ≠ j, 

𝑖, 𝑗 = 1, 2, … , 𝑚.   

 

The stochastic process given in equation (8) is not a random coefficient autoregressive process 

because of the presence of an additional m-1 random coefficients, 𝜙𝑖𝑗𝑡 , i ≠  j. Importantly, 

equation (8) is not invertible as the standardized residual, 𝜂𝑖𝑡, cannot be connected to the data, 

𝑦𝑖𝑡 , as m equations are required, as in equation (6). Consequently, the stochastic process 

underlying univariate ARCH is not a special case of the stochastic process underlying 

multivariate ARCH unless  𝜙𝑖𝑗𝑡 = 0  ∀ i ≠ j.   

 

The same condition holds ∀ i, j = 1,…,m, which leads to the following proposition: 

 

Proposition: The stochastic process underlying univariate ARCH in equation (2) is a special 

case of the stochastic process underlying multivariate ARCH in equation (8) if and only if:    

  

𝜙𝑖𝑗𝑡 = 0  ∀ i ≠ j, 𝑖, 𝑗 = 1, 2, … , 𝑚.  
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Proof: If 𝜙𝑖𝑗𝑡 = 0  ∀ i ≠ j, equation (8) collapses to equation (2), with 𝜙𝑖𝑖𝑡 =  𝜙𝑖𝑡. If 𝜙𝑖𝑗𝑡 ≠ 0 

for at least one i ≠ j, equation (2) is not a special case of equation (8).  

 

A similar condition holds for univariate GARCH and multivariate GARCH. 

 

The Proposition leads to the following corollaries:  

 

Corollary 1: The 𝑚 × 𝑚 matrix of random coefficients, 𝛷𝑡, is a diagonal matrix. 

 

Corollary 2: From Corollary 1, it follows that the 𝑚 × 𝑚 weight matrix of (co-)variances, A, is a 

diagonal matrix, which is not consistent with Full BEKK.  

 

Corollary 3: Corollaries 1 and 2 show that a Full BEKK model, namely where there are no 

restrictions on the off-diagonal elements in 𝛷𝑡 , and hence no restrictions in the off-diagonal 

elements in A, is not possible if univariate ARCH is to be a special case of its multivariate 

counterpart, Full BEKK.  

 

Corollary 4: As there are no underlying regularity conditions for Full BEKK, including 

invertibility, the model cannot be estimated using an appropriate likelihood function. Therefore, 

it is not possible to derive the asymptotic properties of the QMLE of the unknown parameters in 

the Full BEKK soecification.  

 

Corollary 4 is consistent with the proof in McAleer et al. (2008) that the QMLE of Full BEKK 

has no asymptotic properties, whereas the QMLE of Diagonal BEKK can be shown to be 

consistent and asymptotically normal.  

 

For all intents and purposes, the statistical properties of Full BEKK cannot be derived from an 

underlying stochastic process, except by assumption. 

 

It should be emphasized that the QMLE of the parameters in the conditional means and the 

conditional variances for univariate GARCH, DBEKK and Full BEKK will differ as the 
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multivariate models are estimated jointly, whereas the univariate models are estimated 

individually. The QMLE of the parameters of the conditional means and the conditional 

variances of DBEKK and Full BEKK will differ as DBEKK imposes parametric restrictions on 

the off-diagonal terms of the conditional covariance matrix of Full BEKK. 

 

4. An Empirical Illustration for Fossil Fuels and Carbon Emissions 

 

The data for the empirical analysis are given in Chang et al. (2017), who evaluated the financial 

returns on spot and futures prices for fossil fuels and carbon emissions for the European Union 

and USA using the DBEKK and Full BEKK models. The authors did not provide the estimates 

for the univariate GARCH models, or compare the differences in the conditional means and 

conditional variances of the univariate, DBEKK and Full BEKK specifications. The purpose of 

the empirical illustration in this section is to show the differences that can arise in the QMLE of 

the parameters of the conditional means and conditional variances of the univariate, DBEKK and 

Full BEKK specifications. 

 

The carbon emission trading market of the European Union (EU) has daily data only on futures 

prices, whereas only daily spot prices are available for carbon emissions for the USA. Daily data 

for EU carbon emission, crude oil, and coal futures are available from 2 April 2008 to 19 May 

2017, while daily data for US carbon, coal, and oil spot prices are available from 6 January 2016 

to 19 May 2017. The data sources and definitions are given in Table 1, where “fr” denotes 

futures returns, “sr” denotes spot returns, and daily returns are calculated as obtained as the first 

difference in the natural logarithm of the relevant daily price data. 

 

The descriptive statistics for the returns of the six variables are given in Table 2 (for a detailed 

discussion of the data, see Chang et al., 2017). Table 3 presents the ADF test of Dickey and 

Fuller (1979, 1982) and Said and Dickey (1984), the DF-GLS test of Elliott et al. (1996), and the 

KPSS test of Kwiatkowski et al. (1992) to test for unit roots in the individual returns series (see 

Chang et al., 2017).   
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The univariate GARCH estimates for EU carbon, coal and oil futures returns are given in Table 

4. The QMLE of the parameters of the conditional means are standard in that there is not a lot of 

explanatory power. However, the QMLE of the parameters of the conditional variances are 

highly significant, with the short run responses to shocks being around 0.1 or less, and the long 

run responses to shocks lying between 0.996 and 0.997. 

 

The univariate GARCH estimates for US carbon, coal and oil spot returns are given in Table 5. 

The QMLE of the parameters of the conditional means are similar to those in Table 4 in that 

there is not a lot of explanatory power. However, the QMLE of the parameters of the conditional 

variances are highly significant. The short run responses to shocks are surprisingly large for 

carbon at 0.462, while those for coal and oil are more standard at 0.073 and 0.130, respectively. 

Give these estimates, the long run responses to shocks are 0.936, 0.982 and 0.954 for carbon, 

coal and oil, respectively, all of which are considerably lower than their counterparts for EU 

futures returns. 

  

The corresponding estimates for the DBEKK and Full BEKK models for EU carbon, coal and oil 

futures returns are given in Tables 6 and 7, respectively. The QMLE of the conditional means for 

DBEKK and Full BEKK are different from each other, and are also different from their 

univariate counterparts in Table 4. The QMLE of the elements of the weighting matrix A and 

stability matrix B, namely a11, a22, a33, b11, b22 and b33, respectively, are substantially 

different between both DBEKK (especially a22 and b33) and Full BEKK (especially a22, a33 

and b33), and even more so in comparison with their univariate counterparts in Table 4. These 

results provide strong support for the theoretical analysis in Sections 2 and 3. 

 

The corresponding estimates for the DBEKK and Full BEKK models for US carbon, coal and oil 

spot returns are given in Tables 8 and 9, respectively. The QMLE of the conditional means for 

DBEKK and Full BEKK are different from each other, and are also different from their 

univariate counterparts in Table 5. The QMLE of the elements of the weighting matrix A and 

stability matrix B, namely a11, a22, a33, b11, b22 and b33, respectively, are substantially 

different between both DBEKK (especially a22, a33 and b33) and Full BEKK (especially a22, 

a33 and b33), which reflect the findings in Tables 6 and 7, and even more so in comparison with 
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their univariate counterparts in Table 4. These results also strongly support the theoretical 

analysis in Sections 2 and 3. 

 

5. Conclusion 

 

The Full BEKK model in Baba et al. (1985) and Engle and Kroner (1995), who do not derive the 

model from an underlying stochastic process, was presented as equation (6), with A and B given 

as full matrices, with no restrictions on the off-diagonal elements. The Full BEKK model is 

estimated almost exclusively in empirical practice, to the exclusion of Diagonal BEKK, despite 

the fact that Full BEKK has no underlying stochastic process that leads to its specification, 

regularity conditions, or asymptotic properties, as shown in the proposition and four corollaries. 

   

The full BEKK model can be replaced by the triangular or Hadamard (element-by-element 

multiplication) BEKK models, with similar problems of identification and (lack of) existence. 

The full, triangular and Hadamard BEKK models cannot be derived from any known underlying 

stochastic processes that lead to their respective specifications, which means there are no 

regularity conditions (except by assumption) for checking the internal consistency of the 

alternative models, and consequently no valid asymptotic properties of the QMLE of the 

associated parameters (except by assumption).  

 

Moreover, as the number of parameters in a full BEKK model can be as much as 3m(m+1)/2, the 

“curse of dimensionality” will be likely to arise, which means that convergence of the estimation 

algorithm can become problematic and less reliable when there is a large number of parameters 

to be estimated. As a matter of fact, estimation of the full BEKK can be problematic even when 

m is as low as 5 financial assets. Such computational difficulties do not arise for the diagonal 

BEKK model. Convergence of the estimation algorithm is more likely when the number of 

commodities is less than 4, though this is nevertheless problematic in terms of interpretation. 

 

The purpose of the paper was to show that univariate GARCH is not a special case of 

multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on 

a random coefficient autoregressive coefficient matrix that are not consistent with Full BEKK. 
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The paper provided the regularity conditions that arise from the underlying random coefficient 

autoregressive process, and for which the (quasi-) maximum likelihood estimates have valid 

asymptotic properties under the appropriate parametric restrictions, for the univariate and 

multivariate GARCH models.  

 

It was shown that the Full BEKK model has no underlying stochastic process that leads to its 

specification, regularity conditions, or asymptotic properties, as compared with the Diagonal 

BEKK (DBEKK) specification. It would seem that the purported statistical properties of Full 

BEKK exist by assumption. 

 

An empirical illustration for the financial returns on spot and futures prices of fossil fuels and 

carbon emissions for the European Union and USA showed the significant differences that can 

arise in the QMLE of the parameters of the conditional means and conditional variances for the 

univariate, DBEKK and Full BEKK specifications, which gave strong support for the theoretical 

analysis demonstrated in the paper. 
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Table 1  

 

Data Sources and Definitions 

 

Variable 

name 
Definitions Transaction market Description 

𝐄𝐔𝐜𝐚𝐫𝐛𝐨𝐧𝐟𝐫 
EU carbon futures 

return 

ICE-ICE Futures 

Europe Commodities 

ICE EUA Futures Contract 

EUR/MT 

𝐄𝐔𝐜𝐨𝐚𝐥𝐟𝐫 
EU coal futures 

return 

ICE-ICE Futures 

Europe Commodities 

ICE Rotterdam Monthly Coal 

Futures Contract 

USD/MT 

𝐄𝐔𝐨𝐢𝐥𝐟𝐫 EU oil futures return 
ICE-ICE Futures 

Europe Commodities 

Current pipeline export quality 

Brent blend as supplied at 

Sullom Voe 

USD/bbl 

𝐔𝐒𝐜𝐚𝐫𝐛𝐨𝐧𝐬𝐫 
US carbon spot 

return 
over the counter 

United States Carbon Dioxide 

RGGI          Allowance 

USD/Allowance 

𝐔𝐒𝐜𝐨𝐚𝐥𝐬𝐫 US coal spot return over the counter 

Dow Jones US Total Market 

Coal Index 

USD 

𝐔𝐒𝐨𝐢𝐥𝐬𝐫 US oil spot return over the counter 

West Texas Intermediate 

Cushing Crude 

Oil USD/bbl 

Notes: ICE is the Intercontinental Exchange; EUA is the EU allowance; MT is metric ton; RGGI 

(Regional Greenhouse Gas  

Initiative) is a CO2 cap-and-trade emissions trading program comprised of ten New England 

and Mid-Atlantic States that  

will commence in 2009 and aims to reduce emissions from the power sector. RGGI will be the 

first government mandated  

CO2 emissions trading program in USA.
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Table 2  

Descriptive Statistics 

 

2 April 2008 – 19 May 2017 for EU 

6 January 2016 – 19 May 2017 for USA 

 

Variable Mean Median     Max    Min    SD Skewness Kurtosis  Jarque-Bera 

𝐄𝐔𝐜𝐚𝐫𝐛𝐨𝐧𝐟𝐫 -0.078 -0.038 24.561 -42.457 3.349 -0.708 17.624 21434.2 

𝐄𝐔𝐜𝐨𝐚𝐥𝐟𝐫 -0.022  0 17.419 -22.859 1.599 -1.268 44.924 175155.8 

𝐄𝐔𝐨𝐢𝐥𝐟𝐫 -0.026 -0.015 12.707 -10.946 2.246 0.054 6.522 1232.8 

𝐔𝐒𝐜𝐚𝐫𝐛𝐨𝐧𝐬𝐫 -0.248 0 13.937 -36.446 2.986 -5.236 66.269 61346.8 

𝐔𝐒𝐜𝐨𝐚𝐥𝐬𝐫 0.177 0.104 17.458 -14.183 4.041 0.047 5.343 81.99 

𝐔𝐒𝐨𝐢𝐥𝐬𝐫 0.094 0.037 11.621 -8.763 2.712 0.431 4.690 53.69 
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Table 3  

Unit Root Tests 

 

2 April 2008 – 19 May 2017 for EU 

6 January 2016 – 19 May 2017 for USA 

 

Variables ADF DF-GLS KPSS 

𝐄𝐔𝐜𝐚𝐫𝐛𝐨𝐧𝐟𝐫 -37.79* -3.09* 0.05* 

𝐄𝐔𝐜𝐨𝐚𝐥𝐟𝐫 -35.48* -10.34* 0.12* 

𝐄𝐔𝐨𝐢𝐥𝐟𝐫 -51.97* -1.53 0.10* 

 𝐔𝐒𝐜𝐚𝐫𝐛𝐨𝐧𝐬𝐫 -10.64* -1.46 0.06* 

 𝐔𝐒𝐜𝐨𝐚𝐥𝐬𝐫 -19.30* -0.43 0.18* 

 𝐔𝐒𝐨𝐢𝐥𝐬𝐫 -20.96* -0.78 0.07* 

  __________________________________________________________ 

  Notes: * denotes the null hypothesis of a unit root is rejected at 1%. 
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Table 4  

 

Univariate GARCH for EU 𝐂𝐀𝐑𝐁𝐎𝐍𝐟𝐫, 𝐂𝐎𝐀𝐋𝐟𝐫, 𝐎𝐈𝐋𝐟𝐫 

 

2 April 2008 – 19 May 2017 

 

Explained variables CARBONfr 
(1) 

COALfr 
(2) 

OILfr 
(3) 

Constant 
0.032 

(0.050) 

-0.040* 

(0.024) 

0.003 

(0.033) 

1  
0.017 

(0.024) 

0.097*** 

(0.023) 

-0.039* 

(0.021) 

2  
-0.090** 

(0.040) 

0.003 

(0.007) 

0.008 

(0.008) 

3  
-0.055** 

(0.023) 

0.010 

(0.013) 

-0.008 

(0.028) 

 -0.116*** 

(0.037) 

0.009*** 

(0.002) 

0.020*** 

(0.007) 

GARCH  
0.101*** 

(0.015) 

0.016*** 

(0.002) 

0.060*** 

(0.010) 

GARCH  
0.895*** 

(0.016) 

0.980*** 

(0.002) 

0.937*** 

(0.010) 

Log Likelihood -5874.33 -4030.45 -4872.13 

 

Notes: (1) : CARBONfr = ( 1 CARBONfr(−1), 2 COALfr(−1), 3 OILfr(−1)) 

   (2): COALfr = ( 1 COALfr(−1), 2 CARBONfr(−1), 3 OILfr(−1)) 

 (3): OILfr = ( 1 OILfr(−1), 2 CARBONfr(−1), 3 COALfr(−1)) 

 
Standard errors are in parentheses, *** denotes significant at 1%, ** denotes significant at 5%,  

* denotes significant at 10%. 

  






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Table 5  

 

Univariate GARCH for US 𝐂𝐀𝐑𝐁𝐎𝐍𝐬𝐫, 𝐂𝐎𝐀𝐋𝐬𝐫, 𝐎𝐈𝐋𝐬𝐫 

 

6 January 2016 – 19 May 2017 

 

Explained variables CARBONsr 

(4) 
COALsr 

(5) 
OILsr 

(6) 

Constant 
0.049 

(0.096) 

0.029 

(0.174) 

0.074 

(0.116) 

1  
0.100 

(0.100) 

0.020 

(0.058) 

-0.082 

(0.060) 

2  
0.012 

(0.025) 

0.038 

(0.078) 

-0.097* 

(0.056) 

3  
-0.081** 

(0.038) 

-0.238*** 

(0.080) 

0.038 

(0.038) 

 0.729*** 

(0.170) 

0.211 

(0.147) 

0.274* 

(0.147) 

GARCH  
0.462*** 

(0.091) 

0.073** 

(0.030) 

0.130** 

(0.044) 

GARCH  
0.574*** 

(0.052) 

0.909*** 

(0.034) 

0.824*** 

(0.055) 

Log Likelihood -759.38 -952.67 -816.74 

 

Notes: (4) : CARBONsr = ( 1 CARBONsr(−1), 2 COALsr(−1), 3 OILsr(−1)) 

   (5): COALsr = ( 1 COALsr(−1), 2 CARBONsr(−1), 3 OILsr(−1)) 

 (6): OILsr = ( 1 OILsr(−1), 2 CARBONsr(−1), 3 COALsr(−1)) 

 
Standard errors are in parentheses, *** denotes significant at 1%, ** denotes significant at 5%,  

* denotes significant at 10%. 

  
  






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Table 6  

DBEKK for EU Carbon, Coal, and Oil Futures 

2 April 2008 – 19 May 2017 

 

Mean equation CARBONfr COALfr OILfr 

CARBONfr 0.010 

(0.023) 

0.005 

(0.008) 

0.009 

(0.009) 
COALfr -0.078** 

(0.038) 

0.096*** 

(0.023) 

0.073 

(0.023) 
OILfr -0.057** 

(0.024) 

0.009 

(0.014) 

0.002 

(0.027) 

C 0.021 

(0.053) 

-0.034 

(0.024) 

-0.045* 

(0.022) 

 

DBEKK C A B 

CARBONfr 0.379*** 

(0.055) 

0.024** 

(0.010) 

0.128*** 

(0.024) 

0.311*** 

(0.025) 

  0.947*** 

(0.009) 

  

COALfr  0.088*** 

(0.010) 

0.022 

(0.075) 

 0.118*** 

(0.007) 

  0.991*** 

(0.001) 

 

OILfr   0.000 

(0.077) 

  -0.205*** 

(0.013) 

  -0.977*** 

(0.003) 

Notes:   1. A = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

], B = [

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

],  C = [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] 

2. Standard errors are in parentheses, *** denotes significant at 1%, ** denotes significant at 5%,  

* denotes significant at 10%. 
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Table 7  

Full BEKK for EU Carbon, Coal, and Oil Futures 

2 April 2008 – 19 May 2017 

 

Mean equation CARBONfr COALfr OILfr 

CARBONfr 0.023 

(0.02) 

-0.003 

(0.007) 

0.013 

(0.011) 
COALfr -0.082** 

(0.039) 

0.086*** 

(0.023) 

0.005 

(0.031) 
OILfr -0.045* 

(0.023) 

0.016 

(0.015) 

-0.018 

(0.023) 

C 0.031 

(0.053) 

-0.016 

(0.023) 

-0.010 

(0.037) 

 

Full BEKK C A B 

   CARBONfr 
0.435*** 

(0.055) 

-0.067* 

(0.038) 

0.077 

(0.072) 

0.331*** 

(0.023) 

-0.014*** 

(0.004) 

0.007 

(0.006) 

0.936*** 

(0.009) 

0.009 

(0.007) 

-0.005 

(0.010) 

COALfr  0.000 

(0.068) 

0.000 

(0.103) 

0.037 

(0.029) 

-0.086*** 

(0.011) 

0.120*** 

(0.017) 

0.274*** 

(0.036)) 

0.737*** 

(0.015) 

 1.110*** 

(0.023) 

OILfr   -0.000 

(0.101) 

-0.104*** 

(0.026) 

-0.032** 

(0.013) 

-0.168*** 

(0.010) 

-0189*** 

(0.024) 

-0.052*** 

(0.011) 

0.054*** 

(0.015) 

 Notes : As in Table 4. 
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Table 8  

DBEKK for US Carbon, Coal, and Oil Spot 

6 January 2016 – 19 May 2017  

 

Mean equation CARBONsr COALsr OILsr 

CARBONsr 0.122 

(0.106) 

-0.010 

(0.078) 

-0.070 

(0.053) 
COALsr 0.034 

(0.024) 

0.037 

(0.057) 

0.050 

(0.041) 
OILsr -0.097*** 

(0.036) 

-0.235*** 

(0.083) 

-0.103* 

(0.060) 

C 0.085 

(0.090) 

0.048 

(0.170) 

0.010 

(0.122) 

 

   DBEKK C A B 

CARBONsr 0.854*** 

(0.105) 

-0.276 

(0.294) 

0.129 

(0.332) 

0.707*** 

(0.073) 

  0.757*** 

(0.038) 

  

COALsr  0.256 

(0.314) 

0.299* 

(0.154) 

 -0.199*** 

(0.034) 

  0.972*** 

(0.008) 

 

OILsr   0.000 

(1.029) 

  -0.222*** 

(0.0035) 

  -0.964*** 

(0.010) 

Note: As in Table 4. 
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Table 9   

Full BEKK for US Carbon, Coal, and Oil Spot 

6 January 2016 – 19 May 2017  

 

Mean equation CARBONsr COALsr OILsr 

CARBONsr 0.079 

(0.089) 

-0.027 

(0.074) 

-0.105** 

(0.049) 
COALsr -0.006 

(0.028) 

-0.012 

(0.060) 

0.022 

(0.039) 
OILsr -0.048 

(0.038) 

-0.231*** 

(0.087) 

-0.049 

(0.062) 

C 0.043 

(0.089) 

0.139 

(0.166) 

0.010 

(0.118) 

 

Full BEKK C A B 

CARBONsr 0.772*** 

(0.092) 

0.119 

(0.606) 

0.685*** 

(0.178) 

0.632*** 

(0.054) 

-0.023 

(0.089) 

-0.077 

(0.064) 

0.791*** 

(0.025) 

0.004 

(0.112) 

-0.034  

(0.063) 

COALsr  0.000 

(0.528) 

0.000 

(0.715) 

0.002 

(0.033) 

-0.320*** 

(0.058) 

0.036 

(0.041) 

-0.042 

(0.046) 

0.900*** 

(0.056) 

0.578***  

(0.044) 

OILsr   0.000 

(0.721) 

-0.028 

(0.049) 

-0.072 

(0.092) 

-0.252*** 

(0.060) 

0.010 

(0.080) 

-1.267*** 

(0.074) 

0.140* 

(0.082) 

Note: As in Table 4. 
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