Implied Volatility Sentiment: A Tale of Two Tails

REVISION: January 2018

Luiz Félix1
Roman Kräussl2
Philip Stork3

1 APG Asset Management, VU University Amsterdam, The Netherlands
2 Luxembourg School of Finance, University of Luxembourg, Luxemburg
3 VU University Amsterdam; Tinbergen Institute, The Netherlands
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University Rotterdam, the University of Amsterdam and VU University Amsterdam.

Contact: discussionpapers@tinbergen.nl

More TI discussion papers can be downloaded at http://www.tinbergen.nl

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 598 4580

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900
Implied Volatility Sentiment: A Tale of Two Tails*

Luiz Félix
VU University Amsterdam

Roman Kräussl
Luxembourg School of Finance, University of Luxembourg

Philip Stork†
VU University Amsterdam
Tinbergen Institute Amsterdam

January 2018

ABSTRACT

Low probability events are overweighted in the pricing of out-of-the-money index puts and single stock calls. We show that such a behavioral bias is strongly time-varying and is linked to equity market sentiment and higher moments of the risk-neutral density. We find that our implied volatility (IV) sentiment measure, jointly derived from index and single stock options, explains investors’ overweight of tail events well. Our IV-sentiment measure adds value over and above traditional factors in predicting the equity risk premium out-of-sample. When employed as a mean-reversion strategy, our IV-sentiment measure delivers economically significant results, which are more consistent than the ones produced by the conventional sentiment factor. We find that our contrarian investment strategy shows limited exposure to a set of cross-sectional equity factors, including Fama and French’s five factors, the momentum factor and the low-volatility factor, and seems valuable in avoiding momentum crashes.

Keywords: Sentiment, implied volatility, equity-risk premium, reversals, predictability.

JEL classification: G12, G14, G17.

*We thank seminar participants at the APG Asset Management Quant Roundtable, at the Infiniti 2017 Conference in Valencia and at the EEA-ESEM 2017 Conference in Lisbon for their helpful comments. We thank APG Asset Management for financial support and for making available part of the data.

†Philip Stork (corresponding author) is Professor at VU University Amsterdam, FEWEB, School of Finance and Risk Management, de Boelelaan 1105, 1081 HV Amsterdam, The Netherlands. Tel.: + 31 20 59 83651. E-mail address: p.a.stork@vu.nl.
1 Introduction

End-users of out-of-sample (OTM) options tend to overweight small probability events. This behavioral bias, suggested by Tversky’s and Kahneman’s (1992) cumulative prospect theory, is claimed to be present in the pricing of OTM index puts and in OTM single stock calls (Barberis and Huang, 2008; Polkovnichenko and Zhao, 2013). Within the index option market, the typical end-users of OTM puts are institutional investors, who use them to protect their large equity portfolios. Because institutional investors have large portfolios and hold a substantial part of the total market capitalization, OTM index puts are frequently in high demand and, as a result, overvalued. The reason for such richness of OTM puts goes back to the 1987 financial market crash. Bates (1991) and Jackwerth and Rubinstein (1996) argue that the implied distribution of equity market expected returns from index options changed considerably following the 1987 market crash. Their findings demonstrate that, since the crash, a large shift in market participants’ demand for such instruments took place, evidenced by the probabilities implied by options prices. Before the crash, the probability of large negative stock returns was close to the one suggested by a normal distribution. In contrast, just prior to the 1987 crash, the probability of large negative returns implied by option prices rose considerably. Such increased demand for hedging against tail risk events suggested a change in beliefs and attitude towards risk. Investors feared another crash and became more willing to give up upside potential in equities to hedge against the risk of drawdowns via put options. Bates (2003) suggests that even models adjusted for stochastic volatility, stochastic interest rates, and random jumps do not fully explain the high level of OTM puts’ implied volatilities (IV). Accordingly, Garleanu et al. (2009) argue that excessive IV from OTM puts cannot either be explained by option-pricing models that take such institutional investors’ demand pressure into account.

It has been claimed that OTM calls on single stocks are systematically expensive (Barberis and Huang, 2008; Boyer and Vorkink, 2014). The typical end-users of OTM single stock calls are individual investors. Bollen and Whaley (2004) state that changes in the IV structure of single stock options across moneyness are driven by the net purchase of calls by individual investors. The literature provides several explanations for such strong buying pressure of calls by retail investors. For example, Mitton and Vorkink (2007) and Barberis and Huang (2008) propose models in which investors have a clear preference for positive return skewness, or “lottery ticket” type of assets. In consequence of this preference, retail investors overpay for

1 We acknowledge that it is yet unclear whether the overweighting of small probabilities is a behavioral bias (i.e., a bias in beliefs) or caused solely by preferences. Barberis (2013) eloquently discusses how both phenomena are distinctly different and how both (individually or jointly) may potentially explain the existence of overpriced OTM options. In this paper we take a myopic view and use only the first explanation, the existence of a behavioral bias, for ease of exposition.

2 It is important to disentangle the (equity) hedging behavior of institutional investor to their overall trading activity. Studies, such as Frijns et al. (2015), provide strong evidence that institutional investor price stocks rationally, supporting the idea that the argued behavioral bias might be confined to institutional investors’ portfolio insurance decisions.
these leveraged securities, making OTM calls expensive and causing them to yield low forward returns. Cornell (2009) presents a behavioral explanation for the overpricing of single stock calls: because investors are overconfident in their stock-picking skills, they buy calls to get the most “bang for the buck”. A related explanation for the structural overpricing of single stock calls is leverage aversion or leverage constraint: because investors are averse to borrowing (levering) or constrained to do so, they buy instruments with implicit leverage to achieve their return targets.

Beyond this literature that supports the link between institutional and individual investor trading activity and the structural overvaluation of OTM options, we argue that short-term trading dynamics also influence the pricing of OTM options. For instance, Han (2008) provides evidence that the index options IV smirk is steeper when professional investors are bearish. He concludes that the steepness of the IV structure across moneyness relates to investors’ sentiment. In the same line, Amin et al. (2004) argue that investors bid up the prices of put options after increases in stock market volatility and rising risk aversion, whereas such buying pressure wanes following positive momentum in equity markets. Mahani and Potesman (2008) argue that trading in single stock call options around earnings announcements is speculative in nature and dominated by unsophisticated retail investors. Lakonishok et al. (2007) show evidence that long call prices increased substantially during bubble times (1990 and 2000) and that most of the single stock options’ market activity consists of speculative directional call positions. Lemmon and Ni (2011) discuss that the demand for single stock options (dominated by speculative individual investors’ trades) positively relates to sentiment. Lastly, Polkovnichenko and Zhao (2013) suggest that time-variation in overweight of small probabilities derived from index put options might depend on sentiment, whereas Felix et al. (2016) provide evidence that the time-varying overweight of small probabilities from single stock options largely links to sentiment.

The above studies suggest that OTM index puts and single stock calls are systematically overpriced and that the valuation misalignments fluctuate considerably over time, caused by changes in investor sentiment. In this paper, we delve deeper into it and investigate how overweight of small probabilities links to sentiment and forward returns.

The first contribution of our paper is to evaluate the information content of overweighted small probabilities from index puts and single stock calls, as a measure of sentiment. We assess the ability of this measure to predict forward equity returns and, more specifically, equity market reversals, defined as abrupt changes in the market direction. Because we find overweight small probabilities to be strongly linked to IV skews, we hypothesize that reversals may follow not only periods of excessive overweight of tails but also periods of extreme IV skews.

3Reversals in the context of this paper are not to be confused with the, so-called, reversal (cross-sectional) strategy, i.e., a strategy that buys (sells) stocks with low (high) total returns over the past month, as first documented by Lehmann (1990). We focus on the overall equity market, rather than investigating single stocks.

4The literature on IV skew has largely explored the level of volatility skew across stocks and their cross-section of returns. However, insights on the link between the skew and the overall stock market are still incipient. The study by Doran et al. (2007) is one of the few that has tested the power of IV skews as a predictor of aggregate market returns. However, they only analyze the relation between skews and one-day ahead returns (found to be weakly negatively related), and ignore any longer and perhaps more persistent effects. Similarly, several studies have already attempted to recognize the conditionality of forward equity market returns to other volatility-type
One characteristic of the literature that analyzes the informational content of IV skews is that it evaluates index puts’ IV skews and single stock calls’ IV skews completely separated from each other. As such, second contribution is that we are, to the best of our knowledge, the first in the literature to use IV skews jointly extracted from both the index and single stock option market as an indicator for investors’ sentiment. Our sentiment measure, the so-called *IV-sentiment*, is calculated as the IV of OTM index puts minus the IV of OTM single stock calls. We conjecture that our *IV-sentiment* measure is an advance on the understanding investors’ sentiment because it captures the very distinct nature of these markets’ two main categories of end-users: 1) IV from OTM puts captures institutional investors’ willingness to pay for leverage to hedge their downside risk (portfolio insurance), as a measure of bearishness, whereas 2) IV from OTM single stock calls captures levering by individual investors for speculation on the upside (“lottery tickets” buying), as a measure of bullishness. Thus, a high level of *IV-sentiment* indicates bearish sentiment, as IV from index puts outpace the ones from single stock calls. In contrast, low levels of *IV-sentiment* indicate bullishness sentiment, as IV from single stock calls become high relative to the ones from index puts.

We find that our *IV-sentiment* measure predicts equity market reversals better than overweight of small probabilities itself. It also delivers positive risk-adjusted returns more consistently than the common Baker and Wurgler (2007) sentiment factor when evaluated via two trading strategies, a high-frequency and a low-frequency one. In univariate and multivariate predictive regression settings, our *IV-sentiment* measure improves the out-of-sample forecast ability of traditional equity risk-premium models. This result is likely due to the uniqueness of our *IV-sentiment* measure relative to traditional predictive factors, as well as caused by the imposition of some structure into our models (in the form of coefficient constraints). Once these models are constrained, forecast combination approaches largely outperform individual predictors and advanced machine learning techniques in forecasting the equity risk-premium in our data set. Thus, the third contribution of our paper is to complement the literature on out-of-sample forecasting of the equity risk-premium (Welch and Goyal, 2008; Campbell and Thompson, 2008; Rapach et al., 2010) by suggesting a new predictor, the *IV-sentiment* measure. Concurrently, we reiterate earlier findings that constrained linear models remain a powerful tool to forecast equity returns.

A final contribution of our work is to reveal the ability of our *IV-sentiment* measure on improving on time-series momentum, cross-sectional momentum and equity buy-and-hold investment strategies. Our sentiment measure is uncorrelated to these strategies, also at the tails, for instance, when cross-sectional momentum crashes contemporaneously to market rebounds (Kent and Moskowitz, 2016). Consequently, we document an increase in the informational content of such strategies when combined with the *IV-sentiment* strategy, especially for cross-sectional momentum. In line with this outcome, we also report that returns from a *IV-sentiment* of measures: Ang and Liu (2007) for realized variance, Bliss and Panigirtzoglou (2004) for risk-aversion implied by risk-neutral probability distribution function embedded in cross-sections of options, Bollerslev et al. (2009) for variance risk premium, Driessen et al. (2013) for option-implied correlations, Pollet and Wilson (2008) for historical correlations, and Vilkov and Xiao (2013) for the risk-neutral tail loss measure. Most of these studies document a short-term negative relation between risk measures and equity market movements.
sentiment-based strategy are poorly explained by widely used equity risk factors, such as Fama and French’s five-factors, the momentum factor (WML) and the low-volatility factor (BAB). Hence, we propose that active equity managers could benefit from IV-sentiment by using it for Beta-timing.

The remainder of this paper is organized as follows. Section 2 describes the data and the main methods employed in our empirical study. In Section 3, within three sub-sections, we focus on estimating overweight of small probabilities parameters from the index and single stock option markets as well as linking it to the Baker and Wurgler (2007) sentiment factor and other proxies for sentiment. In Section 4 we test how our sentiment proxy based on overweight of small probabilities relates to forward equity returns. Section 5 concludes.

2 Data and Methodology

We use S&P 500 index options’ IV data and single stock weighted average IV data from the largest 100 stocks of the S&P 500 index within our risk-neutral density (RND) estimations. The IV data comes from closing mid-option prices from January 2, 1998 to March 19, 2013 for fixed maturities for five moneyness levels, i.e., 80, 90, 100, 110, and 120, at the three-, six- and twelve-month maturity both for index and single stock options. Eq. (A.1k) in Appendix A shows how weighted average single stock IV are computed. We apply the S&P 500 index weights normalized by the sum of weights of stocks for which IVs across all moneyness levels are available. Following the S&P 500 index methodology and the unavailability of IV information for every stock in all days in our sample, stocks weights in this basket change on a daily basis. The sum of weights is, on average, 58 percent of the total S&P 500 index capitalization and it fluctuates from 46 to 65 percent. Continuously compounded stock market returns are calculated throughout our analysis from the basket of stocks weighted with the same daily-varying loadings used for aggregating the IV data\(^5\). For index options, we use the S&P 500 index prices to calculate continuously compounded stock market returns. Realized index returns and single stock returns are downloaded via Bloomberg.

Overweight of small probabilities is embedded in the cumulative prospect theory (CPT) model by means of the weighting function of the probability of prospects. Within the CPT model, overweight of small probabilities is measured by the probability weighting function parameters \(\delta\) and \(\gamma\) for the left (losses) and right (gains) side of the return distribution, respectively. \(\delta < 1\) and \(\gamma > 1\) imply overweight of small probabilities, whereas \(\delta > 1\) and \(\gamma < 1\) imply underweight of small probabilities, and \(\delta\) and \(\gamma\) equal to 1 means neutral weighting of prospects (see Tversky and Kahneman, 1992).

Our methodology builds on the assumption that investors’ subjective density estimates

\(^5\)We thank Barclays Capital for providing the implied volatility data. Barclays Capital disclosure: “Any analysis that utilizes any data of Barclays, including all opinions and/or hypotheses therein, is solely the opinion of the author and not of Barclays. Barclays has not sponsored, approved or otherwise been involved in the making or preparation of this Report, nor in any analysis or conclusions presented herein. Any use of any data of Barclays used herein is pursuant to a license.”
should correspond, on average\(^6\), to the distribution of realizations (Bliss and Panigirtzoglou, 2004). Thus, estimating CPT probability weighting function parameters \(\delta\) and \(\gamma\) is only feasible if two basic inputs are available: the CPT subjective density function and the distribution of realizations, i.e., the empirical density function (EDF). The methodology applied by us to estimate these two parameters comprises of: 1) estimating the returns’ risk-neutral density from option prices using a modified Figlewski (2010) method; 2) estimating the partial CPT density function using the CPT marginal utility function; 3) “undoing” the effect of the probability weighting function \(w\) to obtain the CPT subjective density function; 4) simulating time-varying empirical return distributions using the Rosenberg and Engle (2002) approach; and 5) minimizing the squared difference of the tail probabilities of the CPT and EDF to obtain daily optimal \(\delta\)’s and \(\gamma\)’s.

Our starting point for obtaining the CPT probability weighting function parameters \(\delta\) and \(\gamma\) is the estimation of RND from IV data. In order to estimate the RND, we first apply the Black-Scholes model to our IV data to obtain options prices \((C)\) for the S&P 500 index. Once our data is normalized, so strikes are expressed in terms of percentage moneyness, the instantaneous price level of the S&P 500 index \((S_0)\) equals 100 for every period for which we would like to obtain implied returns. Contemporaneous dividend yields for the S&P 500 index are used for the calculation of \(P\) as well as the risk-free rate from three-, six- and twelve-month T-bills. Because we have IV data for five levels of moneyness, we implement a modified Figlewski (2010) method for extracting the RND structure. The main advantage of the Figlewski (2010) method over other techniques is that it extracts the body and tails of the distribution separately, thereby allowing for fat tails.

Once the RND is estimated, we must change the measure to translate it into the subjective density function, a real-world probability distribution. This operation is possible via the pricing kernel as follows:

\[
\frac{f_P(S_T)}{f_Q(S_T)} = \Lambda \frac{U'(S_T)}{U'(S_t)} \equiv \varsigma(S_T),
\]

where, \(f_Q(S_T)\) is the RND, \(f_P(S_T)\) is the real-world probability distribution, \(S_T\) is wealth or consumption, \(\varsigma(S_T)\) is the pricing kernel, \(\Lambda\) is the subjective discount factor (the time-preference constant) and \(U(\cdot)\) is the representative investor utility function.

Since CPT-biased investors price options as if the data-generating process has a cumulative distribution \(F_P(S_T) = w(F_P(S_T))\), where \(w\) is the weighing function, its density function becomes \(f_P(S_T) = w'(F_P(S_T)) \cdot f_P(S_T)\) (Dierkes, 2009; Polkovnichenko and Zhao, 2013) and Eq. (1) collapses into Eq. (2):

\[
\frac{w'(F_P(S_T)) \cdot f_P(S_T)}{f_Q(S_T)} = \varsigma(S_T)
\]

\(^6\)This assumption implies that investors are somewhat rational, which is not inconsistent with the CPT-assumption that the representative agent is less than fully rational. The CPT suggests that investors are biased, not that decision makers are utterly irrational to the point that their subjective density forecast should not correspond, on average, to the realized return distribution.
which, re-arranged into Eq. (4) via Eqs. (3a) and (3b), demonstrates that for the CPT to hold, the subjective density function should be consistent with the probability weighted EDF:

\[f_Q(S_T) = w'(F_P(S_T)) \cdot f_P(S_T) \cdot \varsigma(S_T) \]
\[\text{RND: probability weighing EDF: pricing kernel} \]

\[f_Q(S_T) = f_P(S_T) \cdot \varsigma(S_T) \]
\[\text{RND: probability weighted EDF: pricing kernel} \]

\[f_Q(S_T) = \frac{f_Q(S_T)}{\lambda^{U'(S_T)/U'(S)}} \cdot \varsigma(S_T) = \frac{f_Q(S_T)}{\int f_Q(x) dx} \]
\[\text{Subjective density (4)} \]

Following Bliss and Panigirtzoglou (2004), Eq. (4) can be manipulated so that the time-preference constant Λ of the pricing kernel vanishes, producing Eq. (5), which directly relates the probability weighted EDF, the RND, and the marginal utility, \(U'(S_T) \):

\[f_P(S_T) = \frac{f_Q(S_T)}{\int f_Q(x) dx} \]
\[\text{probability weighted EDF: Generic subjective density function} \]

where \(\int f_Q(x) dx \) normalizes the resulting subjective density function to integrate to one. Once the utility function is estimated, Eq. (5) allows us to convert RND into the probability weighted EDF. As the CPT marginal utility function is \(U'(S_T) = u'(S_T) \), and, thus, \(u'(S_T) = \alpha S_T^{\alpha-1} \) for \(S_T \geq 0 \), and \(u'(S_T) = -\lambda \beta (-S_T)^{\beta-1} \) for \(S_T < 0 \), we obtain Eq. (6) and (7):

\[f_P(S_T) = \frac{f_Q(S_T)}{\int f_Q(x) dx} \]
\[\text{probability weighted EDF: for } S_T \geq 0, \text{ and} \]

\[f_P(S_T) = \frac{f_Q(S_T)}{\int f_Q(x) dx} \]
\[\text{probability weighted EDF: for } S_T < 0, \text{ and} \]

Eq. (6) relates to the probabilities weighted EDF (on the LHS), which uses the CPT probability distortion function for weighting, to the subjective density function on the RHS, derived from the CPT value function for gains \((S_T \geq 0) \). We call the RHS the partial CPT density function (PCPT), as it does not embed the probability function. Eq. (7) is the corresponding equation for losses \((S_T < 0) \). As the function \(w(F_P(S_T)) \) is strictly increasing over the domain \([0,1]\), there is a one-to-one relationship between \(w(F_P(S_T)) \) and a unique inverse \(w^{-1}(F_P(S_T)) \). So, the result \(f_P(S_T) = u'(F_P(S_T)) f_P(S_T) \) also implies \(f_P(S_T) f_P(S_T) = f_P(S_T) \). This outcome allows us to directly relate the original EDF to the CPT subjective density function, by “undoing” the effect of the CPT probability distortion functions within the PCPT density function:
Thus, once the relation between the probability weighting function of the EDF and the PCPT density is established, as in Eqs. (6) and (7), one can eliminate the weighting scheme affecting returns by applying the inverse of such weightings to the subjective density function without endangering such equalities, as in Eq. (8).

As the RND is converted into the subjective density function, we must also estimate daily empirical density functions (EDF). We built such time-varying EDFs from an invariant component, the standardized innovation density, and a time-varying part, the lagged conditional variance \(\sigma^2_{t|t-1} \) produced by an EGARCH model (Nelson, 1991). We first define the standardized innovation, being the ratio of empirical returns and their conditional standard deviation \(\ln(S_t/S_{t-1})/\sigma_{t|t-1} \) produced by the EGARCH model. From the set of standardized innovations produced, we can then estimate a density shape, i.e., the standardized innovation density. The advantage of such a density shape versus a parametric one is that it may include the typically observed fat tails and negative skewness, which are not incorporated in simple parametric models, e.g., the normal distribution. This density shape is invariant and it is turned time-varying by multiplication of each standardized innovation by the EGARCH conditional standard deviation at time \(t \), which is specified as follows:

\[
\ln(S_t/S_{t-1}) = \mu + \epsilon_t, \epsilon \sim f(0, \sigma^2_{t|t-1}) \tag{9a}
\]

and

\[
\sigma^2_{t|t-1} = \omega_1 + \alpha \epsilon^2_{t-1} + \beta \sigma^2_{t-1|t-2} + \vartheta \text{Max}[0, -\epsilon_{t-1}]^2, \tag{9b}
\]

where \(\alpha \) captures the sensitivity of the conditional variance to lagged squared innovations \((\epsilon^2_{t-1}) \), \(\beta \) captures the sensitivity of the conditional variance to the conditional variance \((\sigma^2_{t-1|t-2}) \), and \(\vartheta \) allows for the asymmetric impact of lagged returns \((\vartheta \text{Max}[0, -\epsilon_{t-1}]^2) \). The model is estimated using maximum log-likelihood where innovations are assumed to be normally distributed.

Up to now, we produced a one-day horizon EDF for every day in our sample but we still lack time-varying EDFs for the three-, six-, and twelve-month horizons. Thus, we use bootstrapping to draw 1,000 paths towards these desired horizons by randomly selecting single innovations \((\epsilon_{t+1}) \) from the one-day horizon EDFs available for each day in our sample. We note that once the first return is drawn, the conditional variance is updated \((\sigma^2_{t-1|t-2}) \) affecting the subsequent innovation drawings of a path. This sequential exercise continues through time until the desired horizon is reached. To account for drift in the simulated paths, we add the daily drift estimated from the long-term EDF to drawn innovations, so that the one-period simulated returns equal \(\epsilon_{t+1} + \mu \). The density functions produced by the collection of returns implied by the terminal values of every path and their starting points are our three-, six-, and twelve-month EDFs.
These simulated paths contain, respectively, 63, 126, and 252 daily returns. We note that by drawing returns from stylized distributions with fat-tails and excess skewness, our EDFs for the three relevant horizons also embed such features. This estimation method for time-varying EDF is based on Rosenberg and Engle (2002).

Finally, once these three time-varying EDFs are estimated for all days in our sample, we estimate δ and γ for each of these days using Eq. (10) and (11).

$$w^+(\gamma, \delta = \gamma) = \min \sum_{b=1}^{B} W_b (EDF_{prob}^b - CPT_{prob}^b)^2,$$ \hspace{1cm} (10)

$$w^-(\delta, \delta = \gamma) = \min \sum_{b=1}^{B} W_b (EDF_{prob}^b - CPT_{prob}^b)^2,$$ \hspace{1cm} (11)

where EDF_{prob}^b and CPT_{prob}^b are the probability within bin b in the empirical and CPT density functions and W_b are weights given by $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} dx = 1$, the reciprocal of the normalized normal probability distribution (above its median), split in the same total number of bins (B) used for the EDF and CPT. Parameters δ and γ are constrained by an upper bound of 1.75 and a lower bound of -0.25. The weights applied in these optimizations are due to the higher importance of matching probability tails in our analysis than the body of the distributions.

3 Overweight of tails: dynamics and dependencies

3.1 Time-varying CPT parameters

In this section, we evaluate the dynamics of the overweighting of tails within the single stock and index option markets. Descriptive statistics of the CPT’s estimated δ and γ parameters via the methodology presented in Section 2 are provided in Table 1.

[Please insert Table 1 about here]

We report summary statistics of the estimated γ for three-, six- and twelve-month options in Panel A for the right tail from single stock options. The median and mean time-varying γ estimates for three-month options are 0.89 and 0.91, which considerably exceed the parameter value of 0.61 that is indicated by Tversky and Kahneman (1992). This finding suggests that overweight of small probabilities is present within the pricing of short-term single stock call options, but to a much lesser extent than provided by the theory. The results in Panel A also show that γ is highly time-varying and strongly sample dependent. Overweight of small probabilities in the single stock option market is very pronounced from 1998 to 2003 (present at 97 percent of all times), but infrequent from 2003 to 2008 (present at only 35 percent of all times). Our γ-estimates from three-month options range from 0 to 1.75 and the standard deviation of estimates is 0.23. In Panel B, we report summary statistics of the estimated δ from index options for the left tail. For δ estimated from three-month options, the median and mean estimates are both 0.68, implying a probability weighting that roughly matches the one
in the CPT, which calibrates δ at 0.69. The δ-estimates are also time-varying, however, their standard deviation (0.08) is more than three times lower than for the γ-estimates. The range of δ-estimates is also much narrower than for γ, as it is between 0.29 and 1.01. In contrast to the γ-estimates, our δ-estimates reflect a consistent overweight of small probabilities across all sub-samples.

At the six-month maturity, overweight of small probabilities for γ seems even less acute than suggested by the theory and by the three-month options findings. The median and mean γ estimates for this maturity are 0.99 and 0.96, respectively. The distribution of γ is somewhat skewed to the right, i.e., towards a less pronounced overweight of small probabilities, as the median is higher than the mean. The 75th quantile of γ (1.14) suggests an underweighting of probabilities already. For index options with six-month maturity, the estimated δ indicates an even more pronounced overweight of small probabilities (both the mean and median δ equal 0.60) than for three-month options. Overweight of small probabilities is again documented across all samples for δ but not for γ, in which overweight of small probabilities is more frequent than underweight of small probabilities only in the 1998-2003 sample.

The γ estimates for the twelve-month maturity tend even more towards probability underweighting than the six-month ones. The median γ is 1.03, whereas the mean γ is 1.01. Overweight of small probabilities appears in only 41 percent of all times in the overall sample and is roughly nonexistent in the 2003-2008 sample. Differently, the mean and median for the δ estimates from index options are 0.47 and 0.40, respectively, indicating an even stronger(183,722),(965,736)

OTM index puts seem to be structurally expensive from the perspective of overweight of small probabilities, despite the fact that the degree of overvaluation varies in time. Concurrently, OTM single stock options are only occasionally expensive. Our γ estimates indicate an infrequent occurrence of overweight of small probabilities in single stock options, clustered within specific parts of our sample, e.g. during the 1998-2003 period. Our results fit nicely within the seminal literature, for instance with Dierkes (2009), Kliger and Levy (2009), and Polkovnichenko and Zhao (2013), regarding the index option market, and with Felix et al. (2016) regarding the single stock option market.

3.2 Overweight of tails and sentiment

In order to evaluate how time-variation in overweight of small probabilities relates to sentiment, we run regressions between our proxies for overweight of tails, the Baker and Wurgler (2007) sentiment measure and other explanatory control variables. Since we aim to combine overweight of small probabilities parameters from both index options (bearish sentiment) and single stock options (bullish sentiment), we use the Δ - γ, as the explained variable. The Δ - γ captures the overweighting of small probabilities from both index options and single stock, because δ is the CPT tail overweight parameter.
estimated from the single stock market and γ is the equivalent parameter estimated from
the index option market. The explanatory variables in these regressions are (1) the Baker and
Wurgler (2007) sentiment measure7, (2) the percentage of bullish investors minus the percentage
of bearish investors given by the survey of the American Association of Individual Investors
(AAII), (3) a proxy for individual investors’ sentiment (see Han, 2008), and (4) a set of control
variables among the ones tested by Welch and Goyal (2008)8 as potential forecasters of the
equity market. The data frequency used is monthly, as this is the highest frequency in which
the Baker and Wurgler (2007) sentiment factor and the Welch and Goyal (2008) data set are
available. Our regression sample starts in January 1998 and ends in February 20139. The OLS
regression model applied is given as:

$$DGspread[\tau]_t = c + SENT_t + IISENT_t + E12_t + B/M_t + NTIS_t +$$
$$TBL_t + INFL_t + CORPR_t + SVAR_t + CSP_t + \epsilon_t,$$

(12)

where τ is the option horizon, $DGspread$ is the Delta minus Gamma spread, $SENT$ is the Baker
and Wurgler (2007) sentiment measure, $IISENT$ is the AAII individual investor sentiment
measure, $E12$ is the twelve-month moving sum of earnings of the S&P 5000 index, B/M is
the book-to-market ratio, $NTIS$ is the net equity expansion, TBL is the risk-free rate, $INFL$
is the annual INFLation rate, $CORPR$ is the corporate spread, $SVAR$ is the stock variance,
and CSP is the cross-sectional premium. We also run the following univariate models for each
explanatory factor separately to understand their individual relation with the Delta minus
Gamma spread:

$$DGspread[\tau]_t = \alpha_i + \beta_i x_{i,t} + \epsilon_t,$$

(13)

where x represents the 10 explanatory variables specified in Eq. (12), thus $i = 1...10$.

Table 2 Panel A reports the results of Eq. (12), estimated across our three maturities for
the Delta minus Gamma spread. The explanatory power of the multivariate regression is very
high, ranging from 36 to 57 percent. As expected, $SENT$ is positively linked to Delta minus
Gamma spread and statistically significant across the three- and six-month maturities. This
suggests that high sentiment exacerbates overweight of small probabilities measured as Delta minus Gamma spread. However, this relation is negative and not significant at the twelve-month
maturity. The univariate regressions of $SENT$ confirm the positive link between sentiment and
Delta minus Gamma spread at shorter maturities. Once again, this relation is not present at
the twelve-month horizon. The explanatory power of $SENT$ in the univariate setting is also
high for the three- and six-month horizons, with 17 and 32 percent, respectively. This result

7Available at http://people.stern.nyu.edu/jwurgler/.

8The complete set of variables provided by Welch and Goyal (2008) that is employed here is discussed in
Appendix B. In order to avoid multicollinearity in our regression analysis (some variables correlate 80 percent
with each other), we exclude all variables that correlate more than 40 percent with others.

9This sample is only possible because Welch and Goyal (2008) and Baker and Wurgler (2007) have updated
and made available their datasets after publication.
strengthens our hypothesis that overweight of small probabilities increases at higher levels of sentiment and that sentiment seems to have a strong link to probability weighting by investors as priced by index puts and single stock call options. This finding, however, applies to the three- and six-month horizons only since the twelve-month univariate regression has a R^2 of zero.

Table 2 indicates that some signs of control variables change in both the multivariate and univariate regressions. TBL is the only control variable that remains statistically significant and keeps its sign across the multivariate and univariate models. The explanatory power of TBL is 21 percent in the univariate setting, whereas the other independent variable with high explanatory power is book-to-market with 27 percent. B/M is only statistically significant in the three-month maturity of the multivariate regressions. NTIS is negatively and significantly linked to Δ minus Γ spread in the univariate setting as well as in the multivariate regression in the twelve-month maturity. SVAR is negatively and significantly linked to Δ minus Γ spread in the univariate regression but in the multivariate regression this result is not observed. Overall, these empirical findings suggest that fundamentals have a relatively unstable link to the Δ minus Γ spread.

We note that the high stability of the relation between the sentiment factors and the Δ minus Γ spread within the multivariate regressions evidences that sentiment and overweight of small probabilities are strongly connected.

3.3 Overweight of tails, IV skews and higher moments of the RND

In a next step, we assess the relationship between Δ minus Γ spread and higher moments (skewness and kurtosis) of the RND implied by options and IV skew measures. We undertake this analysis for two reasons: 1) to understand to which extent Δ minus Γ spread is connected to other metrics seemingly derived from IV, and 2) to approximate Δ minus Γ spread by an easier-to-obtain measure, given the comprehensive estimation procedures required to compute γ and δ.

We expect the existence of a positive link between the estimated Δ minus Γ spread and IV skew measures, because the presence of fat tails in the RND is a pre-condition for overweight of tail probabilities and a corollary of OTM’s IVs to be rich versus at-the-money (ATM) IVs. Similarly, we observe negative skewness and fat-tails in RNDs only if OTM...
options are expensive versus ATM options and vice-versa\(^{10}\). Consequently, \(\gamma\) and \(\delta\) are likely to be smaller than one (overweight of small probabilities), and \textit{Delta minus Gamma spread} differs from zero if OTM options are expensive versus ATM options, which supports the use of IV skew as another proxy for overweight of tails.

The IV skew measures used at the beginning are the standard measures: 1) IV 90 percent (moneyness) minus ATM, 2) IV 80 percent minus ATM from index options (which captures bearish sentiment), 3) IV 110 percent minus ATM, and 4) IV 120 percent minus ATM from single stock calls (which captures bullish sentiment). However, as overweight of small probabilities is observed from the tails of the two markets jointly via \textit{Delta minus Gamma spread}, and standard IV skew measures only capture information from one market at a time, we suggest a new IV-based measure. Our proposed IV skew sentiment metric, so-called \textit{IV-sentiment}, is a combined measure of the index and single stock options markets. Our \textit{IV-sentiment} measure is specified as follows:

\[
\text{IV sentiment} = \text{OTM index put IV}_{\tau_p} - \text{OTM single stock call IV}_{\tau_c},
\]

where, the subscript \(\tau = 1...3\) indexes the different option-maturities used, \(p\) specifies the moneyness levels 80 and 90 percent from index put options, and \(c\) specifies the moneyness levels 110 and 120 percent from single stock call options. Thus, our sentiment measure is calculated as permutations of IVs from the three-, six- and twelve-month maturities, and four points in the moneyness (80, 90, 110, and 120 percent) level grid, where the absolute distance from the two moneyness levels used per sentiment measure and the ATM level (100 percent moneyness) is kept constant. In other words, the \textit{IV-sentiment} metric produced is restricted to the 80 minus 120 percent and the 90 minus 110 percent measures, hereafter called the \textit{IV-sentiment 90-110} and \textit{IV-sentiment 80-120} measures. From the granular data set across different moneyness levels and maturities, we create six distinct skew-based measures of \textit{IV-sentiment}. Using such a construction, our \textit{IV-sentiment} measure jointly incorporates bearishness sentiment from institutional investors and bullishness sentiment from retail investors, similarly to \textit{Delta minus Gamma spread}.

We assess the isolated relationship between \textit{Delta minus Gamma spread} and higher moments of the RND, (standard) IV skews, and our \textit{IV-sentiment} measures using the univariate models presented by Eqs. (15) to (18). These models are estimated with OLS, where Newey-West standard errors are used for statistical inference. Our daily regression samples start on January 2, 1998 and end on March 19, 2013.

\[
DGspread[\tau] = \alpha_t \left[\frac{K}{S} \right] + IVSent_t \left[\frac{K}{S}; \tau \right],
\]

\[
DGspread[\tau] = \alpha_t + KURT^n_t(\tau),
\]

\(^{10}\)While these relations are widely acknowledged, Jarrow and Rudd (1982) and Longstaff (1995) provide a formal theorem for the link between IV skew and risk-neutral moments, whereas Bakshi et al. (2003) offer a comprehensive empirical test of this proposition for index options.
\[DGspread[\tau] = \alpha_t + SKEW_t^m(\tau), \quad (17) \]

\[DGspread[\tau] = \alpha_t \left[\frac{K}{S} \right] + IVSKEW_t \left[\frac{K}{S}; \tau \right], \quad (18) \]

where \(\frac{K}{S} \) is the moneyness level of the option, \(\tau \) is the option horizon, \(DGspread \) is the Delta minus Gamma spread, \(IVSent \) is our IV-sentiment measure, \(SKEW \) is the RND return skewness implied by options, \(KURT \) is the RND return kurtosis implied by options, and \(IVSKEW \) is the single market IV skew measure, for both index option and single stock option markets. We note that the superscript \(m \) for the variables \(KURT \) and \(SKEW \) aims to distinguish RND kurtosis and skewness obtained from either RND implied by index options (\(m = io \)) or single stock options (\(m = sso \)).

We estimate multivariate models of Delta minus Gamma spread regressed on RND moments, IV skews and IV-sentiment to better understand the relation between these measures jointly and overweight of small probabilities:

\[DGspread[\tau] = \alpha_t \left[\frac{K}{S} \right] + SKEW_t^m(\tau) + KURT_t^m(\tau) + IVSent_t \left[\frac{K}{S}; \tau \right], \quad (19) \]

Table 3 Panel A reports the estimates of Eqs. (15) to (18), when the \(DGspread \) is regressed on RND moments, IV skews and IV-sentiment 90-110 in a univariate setting. The empirical findings indicate that \(IV-sentiment \) is the variable that explains \(DGspread \) the most across all maturities. The explanatory power of \(IV-sentiment \) is not only the highest but it is also the most consistent factor, as its \(R^2 \) ranges from 30 to 46 percent. \(IV-sentiment \) is negatively related to \(DGspread \). Such a negative sign of the \(IV-sentiment \) regressor was expected because the \(DGspread \) rises with higher bullish sentiment, whereas higher \(IV-sentiment \) suggests a more pronounced bearish sentiment. Risk-neutral skewness and kurtosis also strongly explains \(DGspread \) (by roughly 30 percent), though only within the three-month maturity. Skewness and kurtosis explain \(DGspread \) by roughly 10 percent for six-month options, and 7 percent for twelve-month ones. The coefficient signs are in line with our expectations since high levels of RND skewness are associated with high \(DGspread \) (a bullish sentiment signal), while low levels of RND kurtosis (less pronounced fat-tails) are associated with high \(DGspread \). In contrast, standard IV skews explain very little of \(DGspread \) within the three-month maturity, only between 0 and 4 percent. At longer maturities, the IV skews are able to better explain \(DGspread \), however, mostly when the skew measure comes from the single stock options market (between 17 and 21 percent). As a robustness check, we note that the regression results are virtually unchanged by the usage of either \(IV-sentiment \) 90-110 or 80-120 measures. As a first impression, these results imply that \(IV-sentiment \) is strongly connected to \(DGspread \) and to overweight of small probabilities.

\[\text{The regression results reported here use RND kurtosis and skewness from index options (} m = io \text{). The results when RND is extracted from single stock options (} m = sso \text{) are unreported but qualitatively the same as the coefficient signs are equal to the reported ones, and regressions’ explanatory power are roughly in the same range.} \]

14
Panel B shows that when we evaluate the multivariate regressions, we find that IV-sentiment is the most stable regressor with respect to coefficient signs, being negatively linked to DGspread across all regressions, and is always statistically significant. These regressions have high explanatory power (ranging from 41 to 61 percent), especially when considering the daily frequency, thus, potentially containing more noise than lower frequency data. In the multivariate regression we use the IV-sentiment 90-110, while the (unreported) results using IV-sentiment 80-120 are qualitatively the same. Due to likely multicollinearity in this multivariate model, we believe that our univariate models are more insightful than the former.

These findings strongly suggest that DGspread co-moves with our IV-sentiment measure within the three-, six-, and twelve-month maturities. Hence, we feel comfortable to use IV-sentiment to approximate the overweighting of small probabilities, similarly to DGspread.

4 Predicting with overweight of tails

4.1 Predicting returns with DGspread and IV-sentiment

Section 3.1 has documented that the overweighting of small probabilities is strongly time-varying. We hypothesize that it is linked to equity markets reversals. Thus, in the following, we employ regression analysis to test if overweight of small probabilities (proxied by Delta minus Gamma spread) can predict equity market returns. Given the results of Section 3.3, in which our IV-sentiment measure strongly links to the Delta minus Gamma spread, we also run such predictive regressions by using IV-sentiment as the explanatory variable.

In order to test the predictability of these two metrics, we regress values of Delta minus Gamma spread and of our IV-sentiment measure on rolling forward returns with eight different investment horizons: 42, 84, 126, 252, 315, 525, 735, and 945 days, as specified by the Eqs. (20) and (21):

\[
\frac{p_{t+h+1}}{p_{t+1}} = \alpha_h + \beta_h DGspread[\tau]_t + \epsilon_t, \quad (20)
\]

\[
\frac{p_{t+h+1}}{p_{t+1}} = \alpha_h + \beta_h IVSent[\tau]_t + \epsilon_t, \quad (21)
\]

where \(p\) is the equity market price level, \(h\) is the investment horizon, \(\tau\) is the option maturity, \(\alpha\) is the unconditional expected mean of forward returns, and \(\beta\) is the sensitivity of forward returns to DGspread and to IV-sentiment. We estimate Eqs. (20) and (21) via OLS with Newey-West adjustment to the standard deviation of regressors’ coefficients due to the presence of serial correlation in forwards returns. Our regression samples start in January 2, 1998 and end in March 19, 2013.

Table 4 presents the empirical findings of forward returns regressed on Delta minus Gamma spread. The explanatory power of these regressions have single-digit values and rarely exceeds
ten percent. For the three-month horizon, the explanatory power rises steadily up to the two-year horizon (to nine percent), and drops then to four percent for forward returns at the 945-days horizon. We note that *Delta minus Gamma spread* tends to have low explanatory power and is not significant for short-horizons (42- to 126-days) and for higher maturities (twelve-month options). The coefficients of *Delta minus Gamma spread* are always negative for the three- and six-month maturities. This result was expected as it implies that a high (low) *Delta minus Gamma spread*, i.e., a bullish (bearish) sentiment predicts negative (positive) forward returns, i.e., reversals. For the twelve-month maturity, the coefficient signs are unstable, being negative (and statistically significant) for the 252-days horizon, while sometimes positive and insignificant for shorter horizons.

Panel B reports the regression results of Eq. (21), i.e., the outcomes of forward returns regressed on our *IV-sentiment 90-110* measure for three-, six-, and twelve-month maturities. The pattern of R^2 across the different horizons tested is similar across the three option-maturities and analogous to the one observed for *Delta minus Gamma spread* for the same three-month horizon: R^2 rises from four percent to 28 percent when the horizon increases from 42 days (two months) to 525 days (two years), while after the two years horizon, the explanatory power falls slightly for the 735 days (roughly three years) and collapses for the 925 days (3.7 years) horizon. We observe that the explanatory power for the six- and twelve-month option maturity is just slightly lower than for the three-month maturity. Statistical significance of the estimators is often high, across option maturities and return horizons. The coefficients for the *IV-sentiment 90-110* measure are always positive. This is as expected as it means that high (low) IV-sentiment, i.e., bearish (bullish) sentiment, predicts positive (negative) forward returns. The explanatory power, the stability of the coefficient signs, and the statistical significance of the regressors using our *IV-sentiment 90-110* measure clearly dominate the regression results that use *Delta minusGamma spread*. These results strengthen our earlier findings that our *IV-sentiment* measure is a good representation of sentiment, especially concerning the prediction of equity market reversals.

4.2 IV-sentiment pair trading strategy

Our previous results suggest that *IV-sentiment* is more strongly connected to forward returns than *Delta minus Gamma spread* itself. As such, we construct a trading strategy to further test the predictability power of *IV-sentiment*. This strategy consists of a high frequency (daily) trading rule that aims to predict equity market reversals. Our hypothesis is that when the *IV-sentiment* measure is significantly higher (lower) than its normal level, overweight of small probabilities is then extreme and likely to mean-revert in the subsequent periods in tandem with the underlying market. The trading strategy, thus, buys (sells) equities when there is excessive bearishness/panic (excessive bullishness/complacency) indicated by the high (low)

\[\text{Please insert Table 4 about here} \]

*12The regression results for our *IV-sentiment 80-120* measure are qualitatively indifferent from the ones we present for *IV-sentiment 90-110*.*
The strategy is tested via a pair-trading rule among long and short positions in the S&P 500 index and a USD cash return index. For simplicity, such a strategy is implemented as a purely directional strategy where positions are constant in size and IV-sentiment is normalized via a Z-score. The trading rule enters a five percent long equities position when the IV-sentiment is higher than a pre-specified threshold, for example, its historical two standard deviation. The trading rule closes such a position, by entering into a full cash position, when such normalized IV-sentiment measure converges back to its average. Conversely, the rule enters a short equities position when the IV-sentiment is lower than its historical negative two standard deviation threshold and buys back a full cash position when it converges to its average. Five basis points trading cost is charged over the five percent position traded in equities. In order to avoid strategy overfitting, we 1) compute the Z-score using multiple look-back periods, and 2) use multiple threshold levels to configure excessive sentiment

13We also tested a percentile normalization and found results that are qualitatively similar to the use of Z-scores.

14A implied-correlation (or dispersion trading) strategy buys (sells) index options and sells (buys), while delta hedging, to arbitrage price differences in these two volatility markets.

15Strategy return series used are, respectively, the CBOE S&P 500 BuyWrite Index, the CBOE Investable Correlation Index, the S&P 500 index, CBOE put writing index, the CBOE 110-95 collar, the DB G10 FX carry index, the JPMorgan Equity Momentum index and the Credit Suisse Managed Futures index.

16As our IV-sentiment measure requires much less (cross-sectional) IV data than the Delta minus Gamma spread to be calculated, we were able to extend our full sample, which originally ended on March 19, 2013, until December 4, 2015.
three- and six-month maturities, but not for the twelve-month maturity. At the three-month maturity, the average information ratio and dispersion for the IV-sentiment 90-110 strategy are similar to the ones for the VRP strategy. However, for the six- and twelve-month maturities, the VRP strategies dominate the IV-sentiment 90-110 based on the average information ratio, despite larger dispersion for the six-month maturity strategy.

Figure 1 shows that the IC strategies seem to deliver relatively high and consistent information ratios, especially when calculated using the 80 and 90 percent moneyness levels. At the three- and six-month maturities, the performance of IC strategies match the performance of the IV-sentiment 90-110 and VRP strategies. At the twelve-month horizon, the 80 and 90 percent IC strategies are superior to the IV-sentiment 90-110 measure. Overall, the boxplots in Figure 1 suggest that the IV-sentiment 90-110 strategy is robust to changes in parameters but also that its performance is matched by other IV-based strategies. Table 5 Panel A provides the performance analytics for the IV-sentiment 90-110 strategy, as well as for alternative strategies.

We observe that the IV-sentiment 90-110 strategy (using three-month option maturity) delivers returns (20 basis points) and risk-adjusted returns (0.29) that are superior to many of the other strategies compared, such as the S&P 500, the IV skew, the VRP, the IC, the 90-110 collar, the G10 FX carry, and the equity momentum. Thus, the only strategies that deliver equal or higher risk-adjusted returns than our IV-sentiment 90-110 strategy are the time-series momentum and the put writing. The return skewness for our IV-sentiment strategy is positive (0.10) and above the average of the other strategies. A strategy that has surprisingly high skewed returns is the IC (0.43). The drawdown characteristics such as the maximum drawdown, the average recovery time, and the maximum daily drawdown of our IV-sentiment strategy are somewhat similar to the other IV-based strategies.

In the following, we combine our IV-sentiment strategy with a simple buy-and-hold of the S&P 500 index, a cross-sectional equity momentum, and a time-series momentum strategy, on a standalone basis. These combinations are done by weighting returns in a 50/50 percent proportion. Statistics for the strategies are presented in columns (11) and (13) of Panel A of Table 5. We note that the combined strategies improve the information ratios of these three strategies. The information ratio for the S&P 500 rises from 0.14 to 0.29, for the time-series momentum from 0.71 to 0.75 and by a staggering 0.20 points for the cross-sectional momentum strategy, from 0.14 to 0.34. The drawdown and skewness characteristics are also improved, especially for the cross-sectional momentum strategy. We argue that these improvements in the information ratio and downside statistics occur due to the low correlation and low higher moments-/tail-dependencies of our IV-sentiment strategy with these alternative strategies. For instance, Table 5 Panel B indicates that the IV-sentiment strategy is negatively correlated to both equity momentum and time-series momentum, by -0.16 and -0.11, respectively.

Co-skewness and, especially, CCC probabilities of the IV-sentiment strategy with momen-
mum strategies are also very low (see Panel C of Table 5). Since Kent and Moskowitz (2016) document that momentum crashes, in particular cross-sectional momentum, we suggest that the large improvement delivered by *IV-sentiment* to these strategies is likely due to the reduction of their large negative tails.

Moreover, Table 5 Panel B indicates that the *IV-sentiment* strategy is, on average, positively related to other strategies. The highest correlation observed for the *IV-sentiment* strategy is with the IC strategy (0.70), which is an intuitive result given that these are the only two strategies driven jointly by the index option market and the single stock option market. The correlations of our *IV-sentiment* strategy with other IV-based strategies are also relatively high: 0.18 with the VRP and 0.41 with the IV skew 90 percent. The correlation of the *IV-sentiment* with the S&P 500 index is with 0.10, very low. The correlation of the *IV-sentiment* strategy with other strategies that perform poorly in “bad times” is also low, at 0.04 with the put writing, at 0.07 with the G10 FX carry, and at 0.13 with the 90-110 collar strategy. We also note that other strategies can be highly correlated with each other, e.g., with 0.89 between the S&P 500 and the put-writing, whereas negative correlations are mostly observed for momentum strategies. Our findings on correlations among strategies are mostly reiterated by the estimated tail-dependence between them using co-skewness and CCC probabilities reported in Panel C of Table 5.

As a robustness check, we analyze whether our *IV-sentiment* high-frequency trading strategy performs well due to both its legs or whether its merit is concentrated in either the long- or the short-leg. We separate the performance of the two legs of the strategy as if they were two different strategies and we compute individual performance statistics. In order to visualize the results, we produce information ratios’ (IRs) boxplots separately for the three option maturities, which are shown in Figure 2.

As a robustness check, we analyze whether our *IV-sentiment* high-frequency trading strategy performs well due to both its legs or whether its merit is concentrated in either the long- or the short-leg. We separate the performance of the two legs of the strategy as if they were two different strategies and we compute individual performance statistics. In order to visualize the results, we produce information ratios’ (IRs) boxplots separately for the three option maturities, which are shown in Figure 2.

[Please insert Figure 2 about here]

The distribution of IRs for the long positions are shown in the plots at the upper part, while the distribution of IRs for the shorts are shown at the bottom. We note that the dispersion of IRs from the short-leg is much higher than from the long-leg; outliers are much more frequent in the short-leg. We find that the median IRs of long-legs are substantially higher than for short-legs. The IR distributions of the short positions seem slightly skewed to the negative side, whereas for the long positions they seem skewed to the positive side. These results indicate that the merit of our *IV-sentiment* strategy is concentrated in its buy-signal rather than in its sell-signal.

Figure 2 suggests that other IV-based strategies also seem to have their long-legs performing much better than their short-legs. This finding suggests that extreme bearish sentiment signals may be more reliable than extreme bullish sentiment signals. One explanation for this finding is the fact that the IV may be more reactive on the downside, due to the *leverage effect*. In contrast, on the upside, a higher IV led by the bidding of call options might be offset

17The *leverage effect* refers to the typically observed negative correlation between equity returns and its changes of volatility, and was first noted by Black (1976).
by an overall lower IV. Our results are partially in line with the literature on cross-sectional returns and skew measures. Barberis and Huang (2008) suggest that stocks that have a high skew tend to have high subsequent returns, whereas for a call with a high skew this relation is inverse. However, other studies, such as Cremers and Weinbaum (2010), suggest that the relation between returns and volatility skews has the opposite direction. Assuming that there are systematic reasons for OTM implied volatilities across stocks to move in tandem, e.g., market risk, as suggested by Dennis and Mayhew (2002) and Duan and Wei (2009), then the logical consequence from the cross-sectional relation between the implied skew and returns would be that the overall equity market should reverse following times of extremely high skews.

Our results, thus, offer additional findings to the literature that explores the link between variance-measures and forward returns (Ang and Liu, 2007; Bliss and Panigirtzoglou, 2004; Doran et al., 2007; Pollet and Wilson, 2008). Most of these studies recognize a negative and short-term relation between risk measures and returns, where a high variance links to subsequent negative to low returns. In contrast, our findings suggest that a high level of IV skew relates to subsequent positive and high returns. Our finding is mostly in line with Bollerslev et al. (2009), who document that equity market reversals are predicted by the variance risk-premium.

Further, we aimed to compare the trading performance of the Baker and Wurgler (2007) sentiment measure to our high-frequency strategy but this was not possible as the former factor is only available on a monthly or quarterly frequency and was only published until 2010. Thus, in a next step, we compare how trading strategies using our suggested IV-sentiment measure compare to strategies that use the sentiment factor of Baker and Wurgler (2007). We do this by implementing a low-frequency pair trading strategy using both predictors. This pair-trading strategy is identical to the one applied above with the only difference being the rebalancing frequency and the number of observations in the look-back window. We use the following look-backs for the calculation of Z-scores: 1, 3, 6, 9, 12, 18, and 24 months. The IV-sentiment measures used are the IV-sentiment 80-120 and 90-110 factors, available in our three different option maturities. Other back-test features (e.g., trading costs, strategy exit) are the same as for the high-frequency pair-trade strategy. Figure 3 provides our results by a series of boxplots. The empirical findings are displayed in columns for the different option maturities and in rows for the different statistics evaluated: 1) information ratio, 2) return skewness and 3) horizon, proxied by the average drawdown length (in months) observed per strategy.

Our findings suggest that the IRs of the IV-sentiment strategies are much less dispersed than the ones for the sentiment factor by Baker and Wurgler (2007). The median IR for the IV-sentiment 90-110 factor is also higher than for the other two strategies. The IV-sentiment 90-110 factor is the only strategy in which almost all backtests deliver positive IRs, with the exception of a few outliers. This is not the case for the other strategies, as a substantial amount of backtests deliver negative IRs. In line with our earlier results, the IV-sentiment 90-110 factor seems to dominate the IV-sentiment 80-120 factor. The return skewness for
the IV-sentiment 90-110 strategy also dominates the ones for the other two strategies, as all boxplot features (median, one standard deviation, high and low percentile, and outliers) are superior. The IV-sentiment 90-110 factor delivers the lowest median horizon of all strategies. The average horizons estimated for the IV-sentiment 90-110 factor are 12, 13, and 19 months, respectively, for the strategies based on the three-, six- and twelve-month options. The dispersion of strategies’ horizon is, however, higher for the IV-sentiment 90-110 factor than for the Baker and Wurgler (2007) sentiment factor. We can conclude that our IV-sentiment measure seems to outperform a trading strategy based on the sentiment factor by Baker and Wurgler (2007) on several key aspects: IR, return skewness, and trade horizon.

4.3 Out-of-sample equity returns predictive tests

4.3.1 Univariate models and forecast combination

Following our hypothesis that extreme bearishness and bullishness sentiment might be followed by reversals in equity markets, we test here whether our IV-sentiment measure has out-of-sample predictive power in forecasting the equity risk premium, in line with the analysis introduced by Welch and Goyal (2008). We follow the methodology used by Campbell and Thompson (2008) and Rapach et al. (2010), who build on Welch and Goyal (2008). Hence, similarly to these three studies, our predictive OLS regressions are formulated as:

\[r_{t+1} = \alpha_i + \beta_i x_{i,t} + \epsilon_{t+1}, \]

where \(r_{t+1} \) is the monthly excess return of the S&P 500 index over the risk-free interest rate, \(x_t \) is an explanatory variable hypothesized to have predictive power, and \(\epsilon_{t+1} \) is the error term. Our predictive regressions also use the monthly data set provided by Welch and Goyal (2008)\(^{18}\), but the scope of 14 explanatory variables used closely follows Rapach et al. (2010)\(^{19}\).

From the predictive regressions in Eq. (22), we generate out-of-sample forecasts for the next quarter \((t+1)\) by using an expanding window. Following Rapach et al. (2010), the first parameters are estimated using data from 1947:1 until 1964:12, and forecasts are produced from 1965:1 until 2014:12. The estimating window for \(B/M \) starts slightly later than 1947:1, while the number of observations available allows forecasting \(B/M \) to start also at 1965:1. For the IV-sentiment-based regression, the data used for the first parameter estimation starts at 1998:1 and ends at 1999:12 so that out-of-sample forecasting is performed from 2000:1 to 2014:12 only.

Following Campbell and Thompson (2008) and Rapach et al. (2010), restrictions on the regression model specified by Eq. (22) are applied. The first restriction entails a sign restriction on the slope coefficients of Eq. (22) for the 14 Welch and Goyal (2008) variables we employed. The second restriction comprises setting negative forecasts of the equity risk premium to zero.

18Welch and Goyal (2008) monthly data was updated until December 2014 and is available at http://www.hec.unil.ch/agoyal/.

19These variables are: the dividend price ratio, the dividend yield, the earnings-price ratio, the dividend-payout ratio, the book-to-market ratio, the net equity issuance, the Treasury bill rate, the long-term yield, the long-term return, the term spread, the default yield spread, the default return spread, the inflation rate, and the stock variance.
We specify an additional model containing both coefficient and forecast sign restrictions. The original Eq. (22) with no restrictions applied is called the *unrestricted model*, whereas the model with the two restrictions is called the *restricted model*. Once individual forecasts for \(r_{t+1} \) are obtained using the restricted and unrestricted models for every variable, weighted measures of central tendency (mean and median) of the \(N \) forecasts are generated by Eq. (23):

\[
\hat{r}_{c,t+1} = \sum_{i=1}^{N} \omega_{i,t} \hat{r}_{i,t+1},
\]

(23)

where \((\omega_{i,t})_{i=1}^{N}\) are the combining weights available at time \(t \). Our forecast combination method is a more simple and agnostic approach than the one used by Rapach et al. (2010)\(^{20}\). The mean and median combination methods are simply the equal weighed \((\omega_{i,t} = 1/N)\) average and median of the forecasts. Our benchmark forecasting model is the historical average model with the use of an expanding window.

We use the out-of-sample \(R^2 \) statistic method \((R^2_{OS}) \) introduced by Campbell and Thompson (2008) and followed by Rapach et al. (2010) for forecast evaluation. This method compares the performance of a return forecast \(\hat{r}_{t+1} \) and a benchmark or naïve return forecast \(\bar{r}_{t+1} \) with the actual realized return \((r_{t+1}) \). We note that this method can be applied either to the single factor-based forecast models as well as to the combined or multifactor forecast models, both described in the previous section. The \(R^2_{OS} \) statistic is given as:

\[
R^2_{OS} = 1 - \frac{\sum_{k=q_0+1}^{q} (r_{m+k} - \bar{r}_{m+l})^2}{\sum_{k=q_0+1}^{q} (r_{m+k} - \hat{r}_{m+l})^2},
\]

(24)

which evaluates the return forecasts from a predictive model (in the numerator) and the return forecasts from a benchmark or naïve model (in the denominator) by comparing the mean squared prediction errors (MSPE) for both methods. Because the ratio of MSPEs is subtracted from 1 in the \(R^2_{OS} \) statistic, its interpretation becomes: if \(R^2_{OS} > 0 \), then MSPE of \(\hat{r}_{t+1} \) is smaller than for \(\bar{r}_{t+1} \), indicating that the forecasting model outperforms the naïve (benchmark) model, and vice-versa. To better evaluate the out-of-sample performance of of models graphically, we employ the cumulative sum of squared error difference \((CSSED_{OS}) \) statistic given below. The advantage of \(CSSED_{OS} \) over \(R^2_{OS} \) is that it starts at zero and accumulates over time in a homoscedastic manner, whereas \(R^2_{OS} \) typically displays a very high volatility at the start of the (accumulation) period and a lower volatility of the metric as \(t \) increases\(^{21}\).

\(^{20}\)Rapach et al. (2010) classify their combination methods in two classes: the first class uses a mean, median, and trimmed mean approach for forecast combination, and the second class uses a discounted mean square prediction error (DMSPE) methodology. The DMSPE method aims to set combining weights as a function of the historical forecasting performance of the individual models during the out-of-sample period. This method weights more recent forecasts heavier than older ones by the use of one additional parameter. Despite the desirable features of such a second class combination method, we prefer to stick to the first class methods only because they are more transparent and do not require the choice of an additional parameter.

\(^{21}\)The undesirable graphical pattern of \(R^2_{OS} \) is caused by the normalization through \(\sum_{k=q_0+1}^{q} (r_{m+k} - \bar{r}_{m+l})^2 \), which at the start of the sample tends to be very small relative to \(CSSED_{OS} \). Note that \(R^2_{OS} = CSSED_{OS}/\sum_{k=q_0+1}^{q} (r_{m+k} - \bar{r}_{m+l})^2 \).
\[CSSED_{OS} = \sum_{k=q_0+1}^{q} (r_{m+k} - \bar{r}_{m+l})^2 - \sum_{k=q_0+1}^{q} (r_{m+k} - \hat{r}_{m+l})^2. \] (25)

The results from our out-of-sample equity returns predictive tests are reported in Table 6. Panel A reports the findings for the out-of-sample forecasting period between 1965:1 and 2014:12 for all individual variables except our IV-sentiment factor (IVSent), for which forecasts are only available from 2004:1-2014:12, and for the combined forecasts. For individual models, \(R_{OS}^2 \) comes from the restricted model, whereas for the aggregated models, the results are reported for both the restricted and the unrestricted models. The results of the aggregate models are reported in means and medians, reflecting the aggregation method used.

Panel A suggests that performance is not consistent across factors within the longer history of the out-of-sample test. Some factors outperform others by a large amount. Concurrently, the performance of most single factors is quite inconsistent through time, as Figure 4 depicts: the slope and levels of CSSEDOS constantly change from negative to positive and vice-versa for almost all factors. For some of them, CSSEDOS even flips sign at times within the sample. In contrast, the aggregated models deliver better performance across restricted and unrestricted models using either averages or medians for aggregation method. Moreover, the performance of the weakest aggregate model (0.63) is superior to the best individual factor (INFL at 0.48) within the full sample.

Once we evaluate the 2004:1-2014:12 period, when IVSent is used, we observe that the performance across factors remains inconsistent. The performance across individual factors looks less dispersed in this sample than in the full sample, but the overall performance deteriorates. The IVSent factor performs well (ranging from 1.59 to 2.45 depending on the maturity), despite being strongly outperformed by the SVAR factor, while other factors perform extremely poorly (NTIS at -2.63, INFL at -2.58). The combined models that do not include IVSent in their median versions (restricted and unrestricted) underperform the naive forecasting benchmark as their \(R_{OS}^2 \) is negative. Interestingly, when our IVSent factor is added to these models, the performance improves substantially, outperforming the benchmark. We observe the same for models based on the mean: the mean-unconstrained and the mean-constrained models excluding IVSent show a \(R_{OS}^2 \) of 0.25 and 0.40, respectively. When the IVSent factor is added to them, \(R_{OS}^2 \) improves to 0.63 and 0.75, respectively. Therefore, it appears that our IVSent factor seems to impact the combined model in a very distinct way when compared to other factors. \(R_{OS}^2 \) from models that use median forecasts are worse than for models that aggregate forecasts by averaging. Nonetheless, improvements delivered by the inclusion of IVSent and the imposition of model constraints are qualitatively the same across models aggregated by either median or averaging.

We also find that our IVSent is quite uncorrelated to other factors. The correlation coefficient of the IVSent factor that uses three-month options with other individual factors is
most of the times negative or close to zero, and only exceeds 0.5 when evaluated against long-
term yield (LTY)22. Such correlation is higher for the IVSent factor computed using six- and
twelve-month option maturities. These results suggest that the improvements made by our
IVSent factor to the combined models stem partially from diversification benefits rather than
from forecast performance (R^2_{OS}) alone.

4.3.2 “Kitchen sink” and machine learning-based models

Further, we also test a “kitchen sink” model23 as used by Welch and Goyal (2008) and Rapach
et al. (2010) but we extend it beyond the standard linear model toward machine learning
algorithms. Our aim is to test whether more advanced models can fix the exceptionally poor
out-of-sample performance of the multivariate approach to forecast the equity risk premium,
as reported by Welch and Goyal (2008) and Rapach et al. (2010). The models tested by us in
addition to the “kitchen sink” OLS model are: 1) Ridge regression, 2) Principal Component
Regression, 3) Random forest, and 4) Neural Networks24. Our hypothesis for performing this
models’ “horse race” is that machine learning-based models might be able to improve over the
multivariate OLS regression by either 1) reducing its variance and, so, avoiding overfitting, 2)
better modelling potentially non-linearities present in the data, and 3) dampening the effect of
collinearity in the regressors.

Our results from testing a “kitchen sink” OLS model reiterate the ones of Welch and Goyal
(2008) and Rapach et al. (2010) (see Table 6). The model is the worst performing one in R^2_{OS}
terms across all univariate and multivariate models. In contrast, individual machine learning
algorithms using the same set of variables outperform the “kitchen sink” model but do not
consistently outperform the models that combine forecasts from univariate models. The Ridge
regression model seems to be the best performing across all multivariate models as it delivers
high R^2_{OS} in the 1965:1-2014:12 sample and a less negative R^2_{OS} than other models in the 2004:1-
2014:12 sample. Given its linear character, the main advantages of Ridge regression over the
“kitchen sink” is the regularization (shrinkage) applied as well as its adequacy to multicollinear
systems. As the principal component regression also addresses multicollinearity problems and
it performs quite poorly in the 1965:1-2014:12 sample, we conjecture that the main benefit
delivered by the Ridge regression might be the shrinkage, which likely dampens the overfitting
undergone by the “kitchen sink” model. The Random forest model performs poorly, although,
less bad than the “kitchen sink” and the Neural Networks models, suggesting that the structure
imposed by constraint plus forecasting combination seems to add more value to predictions than
being able to capture non-linear relationships. The Neural Networks model performs as bad

22A full correlation matrix among the individual predictive factors tested by Rapach et al. (2010) and IV-
sentiment factors can be provided upon request.

23The “kitchen sink” includes all 14 predictive variables used in our univariate models.

24We tune Ridge regression by using cross-validation with 10 folds. We tune our Random forest model using
a single pass of out-of-bag errors to estimation of the optimal number of predictors sampled for splitting at each
node. We use cross-validation in the estimation of our Neural Networks model to come up with the number of
layers and neurons (among a set of pre-defined structures) only. We do not apply any early-stopping procedure.
A detailed description of these models and tuning procedures is out of scope of this paper. For specifics on
these models, see Hastie et al. (2008)
as the “kitchen sink” model, likely due to overfitting. As we intentionally did not tune the Random forest and the Neural Networks models much, the chance these models are overfitted is high, especially for the Neural Networks model. These two approaches are known by their potential for overfitting if stop-training procedures are not imposed.

Observing the evolution of $CSSED_{OS}$ for the median-based (restricted and unrestricted) combined models in Plot A of Figure 5, we notice that both lines have slopes that are predominantly positive or flat. Positive slopes of the $CSSED_{OS}$ curve indicate that the combined model outperforms the benchmark out-of-sample. These $CSSED_{OS}$ lines match very closely the ones presented by Rapach et al. (2010) up to 2004, when their sample ends. The evolution of R^2_{OS} for our individual factors in Figure 4 is also very similar to Rapach et al. (2010): some $CSSED_{OS}$ curves are positively sloped during certain periods, but often all factors display negatively sloped curves. The R^2_{OS} curves for the IVSent factor is mostly positively sloped but relatively flat from 2004 to 2007, as the last plot in Figure 4 indicates. These results reiterate the primary conclusion of Welch and Goyal (2008), Campbell and Thompson (2008) and Rapach et al. (2010): individual predictors that reliably outperform the historical average in forecasting the equity risk premium are rare but, once these models are sensibly restricted and aggregated in a multi-factor model, their out-of-sample predicting power improves considerably. This conclusion applies also to the inclusion of our IVSent factor within the multi-factor model. Plot B of Figure 5 shows that the $CSSED_{OS}$ curves for the model that includes the IVSent factor are visibly steeper than the ones that do not include it. Further, the findings in Figure 5 indicate that restricted models seem to be superior to unrestricted ones by having either higher or less volatile $CSSED_{OS}$.

[Please insert Figure 5 about here]

However, even if the combined factor models perform much better than the individual predictors do, the red and black lines in Plots A and B of Figure 5 are not always positively sloped, which is in line with Rapach et al. (2010). The R^2_{OS} curve is strongly positively sloped from 1965 to 1975, more moderately positively sloped from 1975 to 1992, negatively sloped from 1992 to 2000, and then slightly positive to flat until 2008, when it sharply drops amid the global financial crisis up to December 2014. The addition of our IVSent factor in the combined model produces the blue and green lines in Plot B of Figure 5. These new curves have an equally flat slope during the 2004 to 2008 period, while both experience a sharp rise since the beginning of 2008. These curves’ profiles suggest that our IVSent factor has considerably improved the out-of-sample performance of the combined model especially in times when the other factors broke down or did not provide an edge versus the historical average predictor. Thus, the inclusion of our IVSent factor seems to revive the conclusion reached by the previous literature, where combined factor models are able to improve compared to individual factor models. At the same time, the recent poor performance of the combined models ex-IVSent underscores that factor identification is still a major challenge for the specification of combined models. Overall, our empirical findings suggest that IV-based factors provide a relevant explanatory variable for the time-variation of equity returns.
4.4 IV-sentiment and equity factors

In this section we test whether the stream of returns produced by the IV-sentiment trading strategy is connected to (cross-sectional) equity factors. Our goal in this analysis is to evaluate whether the IV-sentiment loads heavily on equity factors identified in the literature. Since the IV-sentiment aims to time entry and exit-points into the equity markets, it could potentially also be used by equity managers to time their beta exposure. Nevertheless, if this timing-strategy largely resembles equity factors, it should be less useful to equity portfolio managers.

We perform this analysis using Eqs. (26a) to (26d), as well as univariate models using the individual factor employed in the following models:

\[IV_{Sent_d} = \alpha_d + (Mkt - RF)_d + SMB_d + HML_d + \epsilon_d, \]
(26a)

\[IV_{Sent_d} = \alpha_d + (Mkt - RF)_d + SMB_d + HML_d + WML_d + \epsilon_d, \]
(26b)

\[IV_{Sent_d} = \alpha_d + (Mkt - RF)_d + SMB_d + HML_d + WML_d + RMW_d + CMA_d + \epsilon_d, \]
(26c)

\[IV_{Sent_m} = \alpha_m + (Mkt - RF)_m + SMB_m + HML_m + WML_m + RMW_m + CMA_m + BAB_m + \epsilon_m, \]
(26d)

where, the subscript \(d \) = 1, 2, ..., \(D \) stands for daily returns, whereas the subscript \(m \) = 1, 2, ..., \(M \) stands for monthly returns, both extending from January 2, 1999 to December 8, 2015. The first set of explanatory variables, used in Eq. (26a), are the market (\(Mkt - RF \)), the size (\(SMB \)) and the value (\(HML \)) factors, as proposed by Fama and French (1992). Additionally, the profitability (\(RMW \)) and investment (\(CMA \))\(^{25} \) factor of Fama and French (2015), the momentum factor (\(WML \)) of Carhart (1997) and the low- versus high-beta (\(BAB \)), known as the “Betting Against Beta” factor of Frazzini and Pedersen (2014) are used in Eqs. (26b) to (26d)\(^{26} \). The correlation structure of these factors estimated using our monthly data is reported in the Figure (6) below. In brief, it suggests that some cross-sectional equity factor can be highly positively or negatively correlated with each other but, more importantly, the IV-sentiment strategy seems lowly correlated to all series.

[Please insert Figure 6 about here]

Table (7) reports results of Eqs. (26a) to (26d). At first we observe that the IV-sentiment has very little Beta exposure as the coefficients for the \((Mkt - RF) \) factor are close to zero across its univariate model as well as across all multivariate models. This result matches our expectations as IV-sentiment has, in fact, a time-varying long or short exposure to the equity market. The IV-sentiment strategy also seems to have a large-cap tilt as the coefficient of \(SMB \) is often statistically significant and small or negative, ranging from -0.107 to 0.147. Again, this is an expected result as the IV-sentiment strategy is implemented in the US large cap universe.

\(^{25}\)The Fama and French factors \(SMB, HML, RMW \) and \(CMA \) stand, respectively, for small minus big (size), high minus low (valuation), robust minus weak (profitability) and conservative minus aggressive (investments).

\(^{26}\)The regressions that include the BAB factor have monthly frequency as this factor is not available in a daily frequency.
i.e., the S&P500 Index. Coefficients for HML are also either low or negative, suggesting a growth tilt. HML is positive in the simpler models, i.e, the univariate regression and in the Fama and French (1992) model, but negative in the more comprehensive models. This finding suggests the presence of multicollinearity in the model, which is likely affecting the estimated coefficient for HML. This effect is likely caused by the addition of the RMW factor, as these factors have a correlation of 0.5 in our sample (see Figure (6)), whereas being reported by the literature to reach 0.8.

Turning to the factors in Eqs. (26b) to (26d) only, we find that IV-sentiment has negative exposure to the cross-sectional momentum factor (WML) consistently across all regressions. At first glance, this result makes sense as IV-sentiment is a mean-reversion strategy. Nevertheless, because the IV-sentiment reflects mean-reversion in the overall equity market, hence in a time-series fashion, rather than cross-sectionally, the expectation of a negative relation between these variables is ambiguous. Moskowitz et al. (2012) report that time-series momentum and cross-sectional momentum in the equity markets are strongly related though27, which suggests that our original assumption that IV-sentiment is negatively correlated to WML holds. Among all factors, WML is almost the only one which the statistical significance holds across all regressions. WML seems also to deliver, with around 2 percent, high explanatory power relative to the other factors used. This strong and robust negative link between IV-sentiment and WML reiterates our earlier suggestion that these two risk factors seem to complement each other. And, by doing so, IV-sentiment might be able to mitigate some momentum crashes.

Moreover, the exposure of IV-sentiment to the profitability factor (RMW) is small and always negative, despite the fact that the coefficients are not statistically significant in the two multivariate models applied, only in the univariate regression. IV-sentiment is positively exposed to the investment factor (CMA) as its coefficients are significant across all regressions. We interpret that this positive relation with IV-sentiment relates to a higher frequency of reversals in periods when firm investments are low (likely during recessions or in the late economic cycle), which coincides with conservative firms outperforming aggressive ones. Besides, IV-sentiment loads negatively on the BAB factor, despite being only statistically significant in the univariate regression. This connection is argued to be linked to the profitability factor (RMW) by Fama and French (2016), which may help explain why both regressors are not statistically significant in the multivariate model, whereas they are strongly significant in the univariate regressions. In line with this suggestion, the estimated correlation between these two factors in our sample is 0.59 (see Figure (6)).

Last but not least, none of our regression models explains the variability IV-sentiment much as R^2 from Eq. (26d) is with 13 percent, at best, always low. This finding indicates that the IV-sentiment strategy is quite distinct from factors typically used by portfolio managers for single name equity management. Hence, as the IV-sentiment strategy embeds a timing approach for

27Moskowitz et al. (2012) report that the coefficient of time-series momentum on cross-sectional momentum equals to 0.57 with a t-stat of 15.52 in a univariate model.
4.5 Behavioral versus risk-sharing phenomena

Another perspective of equity market dynamics provided by IV-based factors that are jointly extracted from single stock and index options, is the implied correlation ($\bar{\rho}$). It is approximated by Eq. (27), which is derived in Appendix A.1:

$$\bar{\rho} \approx \frac{\sigma_I^2}{(\sum_{i=1}^{n} w_i \sigma_i)^2}, \quad (27)$$

where σ_I^2 is the variance of index options, σ_i is the volatility of $i = 1...n$ stocks in the index, and w_i is the stocks' weight in the index. The implied correlation measures the level of the average correlation between stocks that are constituents of an index. The IV of index options, i.e., (σ_I^2), can be matched by the one of single stock options, weighted by its constituents’ loadings in the index, i.e., $(\sum_{i=1}^{n} w_i \sigma_i)^2$. Thus, if IV can be used as a measure of absolute expensiveness of an option, the implied correlation provides a relative valuation measure between the index and single stock options: a high (low) level of implied correlation means that index options are expensive (cheap) relative to single stock options.

Table 8 Panel A presents descriptive statistics of the implied correlations between the index and single stock options’ IV. The means and medians suggest that the implied correlation monotonically decreases with an increase in the moneyness level. The implied correlation means range from 0.30 to 0.65, a somewhat wide range given that these are averaged measures. Such a relative high dispersion of implied correlations is confirmed by their standard deviations, which are around 0.14. The distributions of the implied correlation are mostly negative skewed, as medians are most of the times higher than their means. The most striking result is given by the maximum and minimum implied correlations: the maximum implied correlation observed across all maturities and moneyness levels reported reaches 135 percent. Implied correlations above 100 percent are observed for many options, mostly for puts at the 80 and 90 percent moneyness levels. This finding implies that in order to match the weighted IV of puts on single stocks that are part of the S&P 500 index to the IV of a put on the index (with same levels of moneyness), an average correlation above 100 percent between the single stock put options is required. However, as correlation coefficients are bounded between -100 and $+100$ percent, these levels of implied correlation are indicative of irrational behavior by investors, who bid up index puts to levels that contradict market completeness.

We also find that trading in the opposite direction of such evident irrational investor behavior has been very profitable, as implied correlations higher than 100 percent were very effective as an entry point for contrarian strategies. Across the maturities and moneyness levels where we can observe such biased behavior, a sentiment strategy that buys the equity market when the implied correlation is above 100 percent and sells it when the implied correlation falls back
to 50 percent, yields an average net information ratio of 0.35, with information ratios ranging from 0.27 to 0.52.

The implied correlation means and medians provided by Panel A are far higher than the same measures from realized average pair-correlations between the 50 largest constituents of the S&P 500 index as of February 14, 2014, as provided in Panel B. Such average pair-correlations range from 0.25 to 0.36 when look-back periods of 30, 60, 90, 180, and 720 days are evaluated, which is substantially lower than most average implied correlations posted for the different option maturity and moneyness levels reported in Panel A. In fact, the average realized correlations are often below the 10th percentile of the implied correlation for some options’ maturity and moneyness levels. The 90th percentile of realized correlations often match the average implied correlations reported. The maximum realized correlations are at most 84 percent, using an extremely short look-back of 30 days, much lower than the 135 percent observed for implied correlations. These empirical findings strongly suggest that implied correlations substantially overshoot realized ones. Similarly, the implied correlation reaches sometimes values as low as three percent for some options, especially on the call side (above ATM moneyness). This finding is also low when compared to put options. The minimum historical correlations from OTM puts is 0.18, whereas for call options it is 0.03. The fact that those extremely low values of the implied correlation from calls largely undershoot implied correlations from put options may also suggest less than fully rational pricing on the call side. It indicates that single stock options are expensive relative to index calls, which matches our postulation that individual investors use single stock calls to speculate on the upside.

Despite the strong evidence of irrational behavioral by investors provided by the extreme levels of implied correlation, which indirectly links to the IV skew being at extreme levels at times, we conjecture that such phenomena may also have a risk-bearing explanation. Reversal strategies such as the ones designed by us earn attractive long-term risk-adjusted returns, but are highly dependent on equity markets at the tail (see Table 5, Panel C). Additionally, IV-sentiment-based reversal strategies experience the largest daily drawdowns among all strategies evaluated (see Table 5, Panel A). Thus, their attractive risk-adjusted returns are, partially, compensation for downside risk. Therefore, the risk borne by investors that bet on reversals in equity markets is the risk of poor timing of losses (Campbell and Cochrane, 1999; Harvey and Siddique, 2000) and downside risk (Ang et al., 2006). In brief, betting on equity market reversals is a risky activity.

We note that this rational explanation for excesses in sentiment is also linked to limits-to-arbitrage. The limits-to-arbitrage literature defends that, as investors have finite access to capital (Brunnermeier and Pedersen, 2009) and feedback trading can keep markets irrational for a long period of time (De Long et al., 1990), contrarian strategies aiming to exploit the effect of irrational trading are not without risk. For example, once bearish sentiment seems excessive, the risk of betting on a reversal may be tolerable only to a few investors, because 1) higher volatility drags investors’ risk budget usage closer to its limits, and 2) access to funding is limited. Thus, the ability to “catch a knife falling” in the equity markets is not suitable
for all investors, as it involves high risk. Contrarian strategies are, then, mainly accessible to
investors that have enough capital or funding liquidity. Similar considerations are career risk
(Chan et al., 2002), negative skewness of returns (Harvey and Siddique, 2000), poor timing of
losses (Campbell and Cochrane, 1999; Harvey and Siddique, 2000), and risk aversion of market
makers (Garleanu et al., 2009). One final element in the characterization of reversals as a
compensation for risk is the presence of correlation risk priced in index options (see Driessen
et al., 2009, 2013; Krishnam and Ritchken, 2008; Jackwerth and Vilkov, 2015), which is present
in assets that perform well when market-wide correlations are higher than expected.

5 Conclusion

End-users of OTM options tend to overweight small probability events, i.e., tail events. This
bias is strongly time-varying and present in both OTM index puts and single stock calls, due
to individual and institutional investors trading activity, respectively. Individual investors
typically buy OTM single stock calls (“lottery tickets”) to speculate on the upside of equi-
ties (indicating bullish sentiment), whereas institutional investors typically buy OTM index
puts (portfolio insurance) to protect their large equity holdings (indicating bearish sentiment).
Hence, overweight of small probabilities derived from equity option prices should capture in-
vestors’ sentiment and, thus, potentially predict equity returns.

The parameters that directly capture overweight of small probabilities from option prices
such as the Delta (δ) and Gamma (γ) CPT parameters or the Delta minus Gamma spread
(as designed by us) are difficult to estimate. Because Delta minus Gamma spread is found
to be strongly linked to risk-neutral moments and IV skews, we circumvent these estimation
challenges by proposing a simplified but still informative sentiment proxy: IV-sentiment. The
uniqueness of our IV-sentiment measure is that it is jointly calculated from the IV of OTM
index puts and single stock call options. It aims to capture both bullish and bearish sentiment,
respectively, from individual investors and institutional investors’ trading in options.

We find that our IV-sentiment predicts mean-reversion better than the overweighting of
small probabilities parameter Delta minus Gamma spread. Contrarian-trading strategies using
our IV-sentiment measure produce economically significant risk-adjusted returns. The joint
use of information from the single stock and index option markets seems to be the reason for
the superior forecast ability of our IV-sentiment measure, because factors that use implied
volatility skews from a single market achieve significantly inferior results. The performance of
our IV-sentiment measure seems also more consistent in delivering a positive information ratio
than the Baker and Wurgler (2007) sentiment factor. Moreover, it is more positively skewed,
has a shorter horizon than the standard factor and allows for a daily strategy rebalancing.

Our IV-sentiment factor seems to forecast returns as well as other well-known predictors
of equity returns. Since it is uncorrelated to these predictors of the equity risk-premium, it
significantly improves the quality of predictive models, especially when such frameworks are
constrained, as in the terms of Campbell and Thompson (2008). The structure provided by
these constraints in addition to a simple forecast combination approach seems also to outperform a “kitchen sink” model and a set of machine learning algorithms capable of exploring non-linearities in the data, applying regularization and tackling multicollinearity issues.

Further, the IV-sentiment strategy is little exposed to a set of widely used cross-sectional equity factors, which includes Fama and French’s five-factors, the momentum factor (WML) and the low-volatility factor (BAB). The link between the momentum factor (WML) and IV-sentiment is found to be consistently negative. At the same time, these factors explain very little variability of the IV-sentiment strategy. One implication of these findings it that IV-sentiment could be employed as a Beta-timing tool by active equity managers. Another implication is that (WML) and IV-sentiment seem to largely diversify each other and, thus, prove beneficial for portfolio optimization.

The prediction of reversals seems to be further enhanced when the volatility skews priced by OTM index puts and single stock calls are clearly irrational, e.g., when implied correlations are higher than 100 percent. Timing market reversals using our IV-sentiment measure is, however, not without risk. Reversal strategies, like ours, are exposed to large drawdowns, which likely happen during ‘bad times’. Nevertheless, we find that combining our sentiment strategy with other strategies, such as buy-and-hold the S&P 500 index, time-series momentum and cross-sectional equity momentum can improve their risk-adjusted returns. Cross-sectional momentum is the strategy that benefits the most when combined with our contrarian-sentiment strategy, which is caused by these strategies being negatively correlated with each other and having low tail dependence. This outcome is largely in line with the finding that (WML) and IV-sentiment are strongly negatively correlated and indicate a promising avenue for future research on the mitigation of momentum crashes by our measure.
A Appendix: Methodology

A.1 Weighted average single stock IV and implied correlation approximations

Starting from the portfolio variance formula, Eq. (A.1a), we derive in the following the weighted average single stock IV, Eq. (A.1k), and the implied correlation approximation, Eq. (A.1i), as given in Eq. (27) in the main text:

$$\sigma_i^2 = \sum_{i,j=1}^{n} w_i w_j \rho_{ij} \sigma_i \sigma_j,$$ \hspace{1cm} (A.1a)

where,

$$\rho_{ij}(x) = \begin{cases} \bar{\rho}, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$ \hspace{1cm} (A.1b)

and where σ_i^2 is the equity index option implied variance and i and j are indexes for the constituents of such equity index. Then:

$$\hat{\sigma}_i^2 = \bar{\rho} \sum_{i \neq j}^{n} w_i w_j \rho_{ij} \sigma_i \sigma_j + \sum_{i=1}^{n} w_i^2 \sigma_i^2,$$ \hspace{1cm} (A.1c)

$$= \bar{\rho} \sum_{i,j=1}^{n} w_i w_j \rho_{ij} \sigma_i \sigma_j + (1 - \bar{\rho}) \sum_{i=1}^{n} w_i^2 \sigma_i^2,$$ \hspace{1cm} (A.1d)

$$= \bar{\rho} \left(\sum_{i=1}^{n} w_i \sigma_i \right)^2 + (1 - \bar{\rho}) \sum_{i=1}^{n} w_i^2 \sigma_i^2,$$ \hspace{1cm} (A.1e)

$$= \bar{\rho} \left(\sum_{i=1}^{n} w_i \sigma_i \right)^2 + \sum_{i=1}^{n} w_i^2 \sigma_i^2 - \bar{\rho} \sum_{i=1}^{n} w_i^2 \sigma_i^2,$$ \hspace{1cm} (A.1f)

$$= \bar{\rho} \left(\sum_{i=1}^{n} w_i \sigma_i \right)^2 - n \sum_{i=1}^{n} w_i^2 \sigma_i^2 + \sum_{i=1}^{n} w_i^2 \sigma_i^2,$$ \hspace{1cm} (A.1g)

$$\bar{\rho} \approx \frac{\sigma_i^2 - \sum_{i,j=1}^{n} w_i^2 \sigma_i^2}{(\sum_{i=1}^{n} w_i \sigma_i)^2 - \sum_{i,j=1}^{n} w_i^2 \sigma_i^2}.$$ \hspace{1cm} (A.1h)

As $\sum_{i,j=1}^{n} w_i^2 \sigma_i^2$ is relatively small, we can simplify Eq. (A.1h) into (A.1i), the implied correlation:

$$\hat{\rho} \approx \frac{\sigma_i^2}{(\sum_{i=1}^{n} w_i \sigma_i)^2}.$$ \hspace{1cm} (A.1i)

In order to obtain the weighted average single stock implied volatility, Eq. (A.1k), we then square root both sides of the approximation and re-arrange its terms:
\[\sqrt{\rho} \approx \frac{\sigma_I}{\left(\sum_{i=1}^{n} w_i \sigma_i \right)} \]
(A.1j)

with

\[\sum_{i=1}^{n} w_i \sigma_i \approx \frac{\sigma_I}{\sqrt{\rho}}. \]
(A.1k)

A.2 Conditional co-crash probabilities

We use a bivariate Extreme Value Theory (EVT) method to calculate commonality on historical tail returns for the strategies highlighted in Section 4.2. EVT is well suited to measure contagion risk because it does not assume any specific return distribution. Our approach estimates how likely it is that one stock will experience a crash beyond a specific extreme negative return threshold conditional on another stock crash beyond an equally probable threshold. We refer to Hartmann et al. (2004) who use the conditional co-crash (CCC) probability estimator, which is applied to each pair of stocks in our sample, as follows:

\[\hat{CCC}_{ij} = 2 - \frac{1}{k} \sum_{t=1}^{N} I[V_{it} > x_{i,N-k} \text{ or } V_{jt} > x_{j,N-k}], \]
(A.2)

where the function \(I \) is the crash indicator function, in which \(I = 1 \) in case of a crash, and \(I = 0 \) otherwise, \(V_{it} \) and \(V_{jt} \) are returns for stocks \(i \) and \(j \) at time \(t \); \(x_{i,N-k} \) and \(x_{j,N-k} \) are extreme crash thresholds. The estimation of the CCC-probabilities requires setting \(k \) as the number of observations used in Eq. (A.2).
B Appendix: Equity market control variables and predictors

The complete set and summarized descriptions of variables provided by Welch and Goyal (2008)\(^{28}\) that are used in our study is given as:

1. **Dividend price ratio (log), D/P**: Difference between the log of dividends paid on the S&P 500 index and the log of stock prices (S&P 500 index).
2. **Dividend yield (log), D/Y**: Difference between the log of dividends and the log of lagged stock prices.
4. **Earnings-price ratio (log), E/P**: Difference between the log of earnings on the S&P 500 index and the log of stock prices.
5. **Dividend-payout ratio (log), D/E**: Difference between the log of dividends and the log of earnings.
7. **Book-to-market ratio, B/M**: Ratio of book value to market value for the Dow Jones Industrial Average.
8. **Net equity expansion, NTIS**: Ratio of twelve-month moving sums of net issues by NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks.
11. **Long-term return, LTR**: Return on long-term government bonds.
12. **Term spread, TMS**: Difference between the long-term yield and the Treasury bill rate.
14. **Default return spread, DFR**: Difference between returns of long-term corporate and government bonds.
15. **Cross-sectional premium, CSP**: measures the relative valuation of high- and low-beta stocks.
16. **Inflation, INFL**: Calculated from the CPI (all urban consumers) using \(t − 1\) information due to the publication lag of inflation numbers.

\(^{28}\)Available at http://www.hec.unil.ch/агоyal/.
References

Table 1: Descriptive statistics

This table reports the summary statistics of the estimated cumulative prospect theory (CPT) parameters gamma (γ) from the single stock options market and delta (δ) from the index option market for each day in our sample as well as the optimizations’ residual sum of squares (RSS). The parameters γ and δ define the curvature of the weighting function for gains and losses, respectively, which leads the probability distortion functions to have inverse S-shapes. The γ and δ parameters close to unity lead to weighting functions that are close to unweighted (neutral) probabilities, whereas parameters close to zero indicates large overweight of small probabilities.

Panel A reports the summary statistics of gamma (γ) when we assume a parameter of risk aversion (λ) equal to 2.25 (the standard CPT parametrization). Panel B reports the summary statistics of delta (δ) under the same risk aversion assumption. Column headings $\% \gamma < 1$ and $\% \delta < 1$ report the percentage of observations in which parameters γ and δ are smaller than one, i.e., the proportion of the sample in which overweight of small probabilities is observed. We report this metric for the full sample as well as for three equal-sized splits of our full samples, namely: 98-03, from 1998-01-05 to 2003-01-30; 03-08, from 2003-01-31 to 2008-02-21; and 08-13, from 2008-02-22 to 2013-03-19.

Panel A - Gamma

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Min</th>
<th>25% Q</th>
<th>Median</th>
<th>Mean</th>
<th>75% Q</th>
<th>Max</th>
<th>StDev</th>
<th>$% \gamma < 1$ (98-03)</th>
<th>$% \gamma < 1$ (03-08)</th>
<th>$% \gamma < 1$ (08-13)</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 months</td>
<td>-</td>
<td>0.74</td>
<td>0.91</td>
<td>0.89</td>
<td>1.04</td>
<td>1.75</td>
<td>0.23</td>
<td>64%</td>
<td>97%</td>
<td>35%</td>
<td>0.0209</td>
</tr>
<tr>
<td>6 months</td>
<td>-</td>
<td>0.81</td>
<td>0.99</td>
<td>0.96</td>
<td>1.14</td>
<td>1.75</td>
<td>0.28</td>
<td>52%</td>
<td>92%</td>
<td>18%</td>
<td>0.0170</td>
</tr>
<tr>
<td>12 months</td>
<td>0.04</td>
<td>0.91</td>
<td>1.03</td>
<td>1.01</td>
<td>1.14</td>
<td>1.75</td>
<td>0.22</td>
<td>41%</td>
<td>83%</td>
<td>11%</td>
<td>0.0225</td>
</tr>
</tbody>
</table>

Panel B - Delta

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Min</th>
<th>25% Q</th>
<th>Median</th>
<th>Mean</th>
<th>75% Q</th>
<th>Max</th>
<th>StDev</th>
<th>$% \gamma < 1$ (98-03)</th>
<th>$% \gamma < 1$ (03-08)</th>
<th>$% \gamma < 1$ (08-13)</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 months</td>
<td>0.29</td>
<td>0.64</td>
<td>0.68</td>
<td>0.68</td>
<td>0.72</td>
<td>1.01</td>
<td>0.08</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0.0579</td>
</tr>
<tr>
<td>6 months</td>
<td>0.30</td>
<td>0.54</td>
<td>0.60</td>
<td>0.60</td>
<td>0.65</td>
<td>1.75</td>
<td>0.10</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0.0198</td>
</tr>
<tr>
<td>12 months</td>
<td>-</td>
<td>0.40</td>
<td>0.45</td>
<td>0.47</td>
<td>0.52</td>
<td>1.75</td>
<td>0.10</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0.0169</td>
</tr>
</tbody>
</table>
Table 2: Regression results: *Delta minus Gamma spread*

Panel A reports the regression results for Eq. (12) in a multivariate setting. The dependent variable is \(\Delta \) minus Gamma spread \((\delta - \gamma)\), while as explanatory variables we specify: 1) the Baker and Wurgler (2007) sentiment measure \((SENT)\), 2) the individual investor sentiment \((IISENT)\), and 3) the explanatory variables used by Welch and Goyal (2008), while excluding factors that correlate to each other in excess of 40 percent (see Appendix B for the full list of variables). Panel B reports the regression results for (13), in an univariate setting, in which \(\Delta \) minus Gamma spread is regressed on the same set of explanatory variables. We report Newey-West adjusted standard errors in brackets. Asterisks ***, **, and * indicate significance at the one, five, and ten percent level, respectively.

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Intercept</th>
<th>SENT</th>
<th>IISENT</th>
<th>E12</th>
<th>B/M</th>
<th>NTIS</th>
<th>TBL</th>
<th>INFL</th>
<th>CORP</th>
<th>SVAR</th>
<th>CSP</th>
<th>R²</th>
<th>F-stats</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3m</td>
<td>0.003</td>
<td>0.041</td>
<td>0.041</td>
<td>0.000</td>
<td>-0.364**</td>
<td>0.013</td>
<td>0.038</td>
<td>0.653</td>
<td>0.225</td>
<td>-1.426</td>
<td>-0.125</td>
<td>40%</td>
<td>8.2</td>
<td>-308.1</td>
<td>-274.4</td>
</tr>
<tr>
<td>6m</td>
<td>-0.491***</td>
<td>0.064***</td>
<td>0.096**</td>
<td>-0.003</td>
<td>0.125</td>
<td>0.036***</td>
<td>0.036***</td>
<td>1.853</td>
<td>0.233</td>
<td>3.519***</td>
<td>0.198</td>
<td>57%</td>
<td>19.5</td>
<td>-369.1</td>
<td>-335.4</td>
</tr>
<tr>
<td>12m</td>
<td>-0.490***</td>
<td>-0.024</td>
<td>-0.106**</td>
<td>-0.814</td>
<td>0.163</td>
<td>0.029***</td>
<td>0.029***</td>
<td>2.311</td>
<td>0.044</td>
<td>3.470*</td>
<td>0.261</td>
<td>30%</td>
<td>6.4</td>
<td>-273.2</td>
<td>-201.2</td>
</tr>
</tbody>
</table>
Table 3: Regression results: Delta minus Gamma spread and risk-neutral measures

Panel A reports the regression results for Eqs. (15), (16), (17) and (18) in an univariate setting. The dependent variable for these regressions is Delta minus Gamma spread ($\delta - \gamma$), a proxy for overweight of small probabilities. As explanatory variables we specify the risk-neutral skewness and kurtosis, IV 110-ATM skew (from single stock options), IV 90-ATM skew (from index options), and our IV-sentiment measure in two permutations per maturity: 1) IV-sentiment 90-110, and 2) IV-sentiment 80-120. Our IV-sentiment measure is an IV skew measure that combines information from the index option market and the single stock option market, see Eq. (14). For instance, the IV-sentiment 90-110 measure combines the IV from the 90 percent moneyness level from the index option market and the 110 percent moneyness level from the single stock option market. Panel B reports the regression results for Eq. (19) in a multivariate setting, in which Delta minus Gamma spread is regressed on the same set of explanatory variables. We report Newey-West adjusted standard errors in brackets. Asterisks ***, **, and * indicate significance at the one, five, and ten percent level, respectively.

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3m</th>
<th>6m</th>
<th>12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.019**</td>
<td>-0.219***</td>
<td>-0.436***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.010)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.122***</td>
<td>0.073***</td>
<td>0.054***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.195***</td>
<td>-0.015***</td>
<td>-0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>IV-sentiment 90-110</td>
<td>-1.998***</td>
<td>-2.774***</td>
<td>-2.359***</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.064)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>IV-sentiment 80-120</td>
<td>-1.989***</td>
<td>-2.462***</td>
<td>-1.677***</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td>(0.108)</td>
<td>(0.126)</td>
</tr>
<tr>
<td>R^2</td>
<td>32%</td>
<td>9%</td>
<td>7%</td>
</tr>
<tr>
<td>F-stats</td>
<td>1861.1</td>
<td>408.6</td>
<td>285.7</td>
</tr>
<tr>
<td>AIC</td>
<td>-2001</td>
<td>-13</td>
<td>-944</td>
</tr>
<tr>
<td>BIC</td>
<td>-1989</td>
<td>-1</td>
<td>-931</td>
</tr>
</tbody>
</table>

Panel A - Univariate regressions (continuation)

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3m</th>
<th>6m</th>
<th>12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.197***</td>
<td>-0.141***</td>
<td>-0.322***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.013)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.093***</td>
<td>0.000</td>
<td>-0.032***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.002**</td>
<td>-0.007***</td>
<td>-0.009***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>IV-sentiment 90-110</td>
<td>-1.989***</td>
<td>-2.462***</td>
<td>-1.677***</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td>(0.108)</td>
<td>(0.126)</td>
</tr>
<tr>
<td>IV 110-ATM skew</td>
<td>1.082**</td>
<td>13.681***</td>
<td>16.172***</td>
</tr>
<tr>
<td></td>
<td>(0.435)</td>
<td>(0.717)</td>
<td>(0.711)</td>
</tr>
<tr>
<td>IV 90-ATM skew</td>
<td>-4.941***</td>
<td>-8.300***</td>
<td>-4.997***</td>
</tr>
<tr>
<td></td>
<td>(0.557)</td>
<td>(0.903)</td>
<td>(0.993)</td>
</tr>
<tr>
<td>R^2</td>
<td>0%</td>
<td>17%</td>
<td>21%</td>
</tr>
<tr>
<td>F-stats</td>
<td>10.3</td>
<td>810.0</td>
<td>1065.3</td>
</tr>
<tr>
<td>AIC</td>
<td>-485</td>
<td>-302</td>
<td>-1612</td>
</tr>
<tr>
<td>BIC</td>
<td>-472</td>
<td>-349</td>
<td>-1599</td>
</tr>
</tbody>
</table>

Panel B - Multivariate regressions
Table 4: Regression results: Delta minus gamma spread and IV-sentiment

Panel A reports the regression results for Eq. (20), which regresses the Delta minus gamma spread on eight different horizons for forward equity returns. Panel B reports the regression results for Eq. (21), which regresses the IV-sentiment measure on the same forward equity returns used in Panel A. The explained variables are forward returns for the S&P 500 index measured over the following horizons: 42, 84, 126, 252, 315, 525, 735, and 945 days. We report Newey-West adjusted standard errors in brackets. The asterisks ***, **, and * indicate significance at the one, five, and ten percent level, respectively.

Panel A - Delta minus Gamma spread

<table>
<thead>
<tr>
<th>Horizon</th>
<th>42</th>
<th>84</th>
<th>126</th>
<th>252</th>
<th>315</th>
<th>525</th>
<th>735</th>
<th>945</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.000</td>
<td>-0.004</td>
<td>-0.009***</td>
<td>-0.016***</td>
<td>-0.023***</td>
<td>-0.030***</td>
<td>-0.027***</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.009)</td>
<td></td>
</tr>
<tr>
<td>DGspread/IV-Sent</td>
<td>-0.04***</td>
<td>-0.08***</td>
<td>-0.13***</td>
<td>-0.26***</td>
<td>-0.33***</td>
<td>-0.43***</td>
<td>-0.39***</td>
<td>-0.19***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.015)</td>
<td>(0.018)</td>
<td>(0.022)</td>
<td>(0.024)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>R²</td>
<td>1%</td>
<td>2%</td>
<td>4%</td>
<td>7%</td>
<td>9%</td>
<td>16%</td>
<td>17%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>31.7</td>
<td>81.9</td>
<td>150.1</td>
<td>274.5</td>
<td>347.3</td>
<td>228.5</td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td>F-stats</td>
<td>0.0017</td>
<td>0.0023</td>
<td>0.0030</td>
<td>0.0042</td>
<td>0.0047</td>
<td>0.0061</td>
<td>0.0066</td>
<td>0.0075</td>
</tr>
<tr>
<td>AIC</td>
<td>0.0061</td>
<td>0.0085</td>
<td>0.0108</td>
<td>0.0157</td>
<td>0.0175</td>
<td>0.0232</td>
<td>0.0255</td>
<td>0.0288</td>
</tr>
<tr>
<td>BIC</td>
<td>0.0106</td>
<td>0.0146</td>
<td>0.0184</td>
<td>0.0251</td>
<td>0.0261</td>
<td>0.0337</td>
<td>0.0382</td>
<td>0.0460</td>
</tr>
</tbody>
</table>

Panel B - IV-sentiment 90-110

<table>
<thead>
<tr>
<th>Horizon</th>
<th>42</th>
<th>84</th>
<th>126</th>
<th>252</th>
<th>315</th>
<th>525</th>
<th>735</th>
<th>945</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.000</td>
<td>-0.004</td>
<td>-0.009***</td>
<td>-0.016***</td>
<td>-0.023***</td>
<td>-0.030***</td>
<td>-0.027***</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.009)</td>
<td></td>
</tr>
<tr>
<td>DGspread/IV-Sent</td>
<td>-0.04***</td>
<td>-0.08***</td>
<td>-0.13***</td>
<td>-0.26***</td>
<td>-0.33***</td>
<td>-0.43***</td>
<td>-0.39***</td>
<td>-0.19***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.015)</td>
<td>(0.018)</td>
<td>(0.022)</td>
<td>(0.024)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>R²</td>
<td>1%</td>
<td>2%</td>
<td>4%</td>
<td>7%</td>
<td>9%</td>
<td>16%</td>
<td>17%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>31.7</td>
<td>81.9</td>
<td>150.1</td>
<td>274.5</td>
<td>347.3</td>
<td>228.5</td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td>F-stats</td>
<td>0.0017</td>
<td>0.0023</td>
<td>0.0030</td>
<td>0.0042</td>
<td>0.0047</td>
<td>0.0061</td>
<td>0.0066</td>
<td>0.0075</td>
</tr>
<tr>
<td>AIC</td>
<td>0.0061</td>
<td>0.0085</td>
<td>0.0108</td>
<td>0.0157</td>
<td>0.0175</td>
<td>0.0232</td>
<td>0.0255</td>
<td>0.0288</td>
</tr>
<tr>
<td>BIC</td>
<td>0.0106</td>
<td>0.0146</td>
<td>0.0184</td>
<td>0.0251</td>
<td>0.0261</td>
<td>0.0337</td>
<td>0.0382</td>
<td>0.0460</td>
</tr>
</tbody>
</table>
Panel A reports the results of contrarian pair-trade strategies based on our IV-sentiment 110-95 indicator and on other IV-based strategies such as the IV Skew, the volatility-risk premia (VRP), and other traditional and alternative beta strategies, i.e., buy & hold the S&P500 index, put writing, 110-95 collar, G10 FX carry, cross-sectional equity momentum, and time-series momentum. The IV-based strategies use 252 days as the look-back period and +/- two standard deviations as convergence thresholds. The columns (11) and (12) of Panel A report statistics for strategies that combine the three-month IV-sentiment 90-110 strategy (column (1)) with the buy & hold the S&P 500 index (column (5)) and the time-series momentum strategy (column (10)). Panel B reports the correlation coefficients of daily returns estimated over the period between January 2, 1998 and December 4, 2015, for the same strategies reported in Panel A. Panel C reports the co-skewness and the conditional co-crash (CCC) probabilities of the three-month IV-sentiment 90-110 with the other strategies, which indicate the degree of tail-dependence among them.

Table 5: IV-sentiment based pair-trade strategy

<table>
<thead>
<tr>
<th>Panel A - Back-test results</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-sentiment 90-110</td>
<td>0.20%</td>
<td>0.14%</td>
<td>0.12%</td>
<td>0.17%</td>
<td>0.10%</td>
<td>0.34%</td>
<td>0.14%</td>
<td>0.18%</td>
<td>0.10%</td>
<td>0.51%</td>
<td>0.21%</td>
<td>0.24%</td>
<td>0.53%</td>
</tr>
<tr>
<td>IC</td>
<td>0.71%</td>
</tr>
<tr>
<td>S&P500</td>
<td>0.34%</td>
<td>0.48%</td>
<td>0.20%</td>
<td>0.26%</td>
<td>0.14</td>
<td>0.71</td>
<td>0.29</td>
<td>0.34</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Put writing</td>
<td>0.10</td>
<td>-0.07</td>
<td>-0.01</td>
<td>0.43</td>
<td>-0.18</td>
<td>-0.60</td>
<td>0.01</td>
<td>-0.93</td>
<td>-0.45</td>
<td>-0.37</td>
<td>-0.05</td>
<td>0.09</td>
<td>-0.37</td>
</tr>
<tr>
<td>110-95 collar</td>
<td>-1.7%</td>
<td>-1.6%</td>
<td>-2.9%</td>
<td>-1.7%</td>
<td>-3.0%</td>
<td>-2.5%</td>
<td>-2.9%</td>
<td>-3.2%</td>
<td>-2.9%</td>
<td>-1.4%</td>
<td>-2.4%</td>
<td>-2.2%</td>
<td>-1.1%</td>
</tr>
<tr>
<td>G10 FX carry</td>
<td>-0.43</td>
<td>-0.37</td>
<td>-0.37</td>
<td>0.09</td>
<td>-0.37</td>
<td>0.02</td>
<td>0.13</td>
<td>0.21</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equity Momentum</td>
<td>15.84</td>
<td>24.73</td>
<td>29.02</td>
<td>18.54</td>
<td>8.12</td>
<td>24.13</td>
<td>2.25</td>
<td>12.04</td>
<td>4.23</td>
<td>2.89</td>
<td>7.66</td>
<td>17.53</td>
<td>2.91</td>
</tr>
<tr>
<td>CTA</td>
<td>0.04</td>
<td>0.16</td>
<td>0.42</td>
<td>0.34</td>
<td>1.00</td>
<td>1.00</td>
<td>0.30</td>
<td>0.13</td>
<td>-0.15</td>
<td>-0.15</td>
<td>-0.15</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>Avg recovery time (in years)</td>
<td>0.48</td>
<td>0.06</td>
<td>0.20</td>
<td>0.16</td>
<td>0.32</td>
<td>0.32</td>
<td>0.14</td>
<td>0.21</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max daily drawdown</td>
<td>-0.43</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B - Correlation matrix

<table>
<thead>
<tr>
<th>Panel B - Correlation matrix</th>
<th>IV-sentiment 90-110</th>
<th>IV Skew 3m 90</th>
<th>VRP 3m 90</th>
<th>IC 3m 90</th>
<th>S&P500 3m 90</th>
<th>Put writing 3m 90</th>
<th>110-95 collar 3m 90</th>
<th>G10 FX carry 3m 90</th>
<th>Equity Momentum 3m 90</th>
<th>CTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-sentiment 90-110</td>
<td>1.00</td>
<td>0.41</td>
<td>0.18</td>
<td>0.70</td>
<td>0.10</td>
<td>0.04</td>
<td>0.13</td>
<td>0.07</td>
<td>-0.16</td>
<td>-0.11</td>
</tr>
<tr>
<td>IV Skew 3m 90</td>
<td>0.41</td>
<td>1.00</td>
<td>0.55</td>
<td>0.59</td>
<td>0.18</td>
<td>0.16</td>
<td>0.08</td>
<td>0.16</td>
<td>-0.05</td>
<td>-0.03</td>
</tr>
<tr>
<td>VRP 3m 90</td>
<td>0.18</td>
<td>0.55</td>
<td>1.00</td>
<td>0.51</td>
<td>0.41</td>
<td>0.42</td>
<td>0.18</td>
<td>0.15</td>
<td>-0.13</td>
<td>-0.11</td>
</tr>
<tr>
<td>IC 3m 90</td>
<td>0.70</td>
<td>0.59</td>
<td>0.51</td>
<td>1.00</td>
<td>0.34</td>
<td>0.31</td>
<td>0.24</td>
<td>0.14</td>
<td>-0.21</td>
<td>-0.13</td>
</tr>
<tr>
<td>S&P500 3m 90</td>
<td>0.10</td>
<td>0.18</td>
<td>0.41</td>
<td>0.34</td>
<td>1.00</td>
<td>0.89</td>
<td>0.88</td>
<td>0.28</td>
<td>-0.05</td>
<td>-0.15</td>
</tr>
<tr>
<td>Put writing 3m 90</td>
<td>0.04</td>
<td>0.16</td>
<td>0.42</td>
<td>0.31</td>
<td>0.89</td>
<td>1.00</td>
<td>0.68</td>
<td>0.26</td>
<td>-0.08</td>
<td>-0.16</td>
</tr>
<tr>
<td>110-95 collar 3m 90</td>
<td>0.13</td>
<td>0.08</td>
<td>0.18</td>
<td>0.24</td>
<td>0.88</td>
<td>0.68</td>
<td>1.00</td>
<td>0.23</td>
<td>0.13</td>
<td>-0.05</td>
</tr>
<tr>
<td>G10 FX carry 3m 90</td>
<td>0.07</td>
<td>0.08</td>
<td>0.15</td>
<td>0.14</td>
<td>0.28</td>
<td>0.26</td>
<td>0.23</td>
<td>1.00</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Equity Momentum 3m 90</td>
<td>-0.16</td>
<td>-0.05</td>
<td>-0.13</td>
<td>-0.21</td>
<td>-0.05</td>
<td>-0.08</td>
<td>0.13</td>
<td>0.02</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>CTA</td>
<td>-0.11</td>
<td>-0.03</td>
<td>-0.11</td>
<td>-0.13</td>
<td>-0.15</td>
<td>-0.16</td>
<td>-0.05</td>
<td>-0.05</td>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Panel C - Tail dependence with IV-sentiment

<table>
<thead>
<tr>
<th>Panel C - Tail dependence with IV-sentiment</th>
<th>IV-sentiment 90-110</th>
<th>IV Skew 3m 90</th>
<th>VRP 3m 90</th>
<th>IC 3m 90</th>
<th>S&P500 3m 90</th>
<th>Put writing 3m 90</th>
<th>110-95 collar 3m 90</th>
<th>G10 FX carry 3m 90</th>
<th>Equity Momentum 3m 90</th>
<th>CTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-skewness</td>
<td>1.6E-12</td>
<td>-2.9E-13</td>
<td>1.0E-11</td>
<td>4.6E-12</td>
<td>-6.5E-10</td>
<td>-3.3E-09</td>
<td>9.6E-10</td>
<td>-9.8E-10</td>
<td>5.9E-10</td>
<td>-3.2E-09</td>
</tr>
<tr>
<td>1% cond. crash prob.</td>
<td>100%</td>
<td>51%</td>
<td>36%</td>
<td>77%</td>
<td>23%</td>
<td>21%</td>
<td>19%</td>
<td>9%</td>
<td>19%</td>
<td>2%</td>
</tr>
<tr>
<td>2% cond. crash prob.</td>
<td>100%</td>
<td>46%</td>
<td>37%</td>
<td>76%</td>
<td>32%</td>
<td>26%</td>
<td>26%</td>
<td>13%</td>
<td>15%</td>
<td>2%</td>
</tr>
<tr>
<td>5% cond. crash prob.</td>
<td>100%</td>
<td>44%</td>
<td>37%</td>
<td>78%</td>
<td>29%</td>
<td>32%</td>
<td>26%</td>
<td>17%</td>
<td>18%</td>
<td>7%</td>
</tr>
</tbody>
</table>
Table 6: Out-of-sample equity risk premium

This table reports the results from the predictive regressions of individual factor models and of combined-factor models relative to the historical average naïve (benchmark) model. R^2_{OS} is the Campbell and Thompson (2008) out-of-sample R^2 statistic. If $R^2_{OS} > 0$, then mean squared prediction errors (MSPE) of \bar{r}_{t+1}, i.e., the predictive regression forecast, is smaller than for \bar{r}_{t+1}, i.e., the naïve forecast, indicating that the forecasting model outperforms the latter (benchmark) model. Panel A reports the results for the full out-of-sample period available (1965:1-2014:12) for all variables tested by Rapach et al. (2010). Panel B reports the results for the latest period within the entire out-of-sample history (2004:1-2014:12) and includes the three-month IV-sentiment 90-110 factor (IVSent) in addition to the variables tested by Rapach et al. (2010).

<table>
<thead>
<tr>
<th>Individual predictive regression model forecast</th>
<th>Combination forecasts</th>
<th>Machine learning methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor</td>
<td>R^2_{OS}(%)</td>
<td>Predictor</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Panel A. 1965:1-2014:12 out-of-sample period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/P</td>
<td>-0.30</td>
<td>LTY</td>
</tr>
<tr>
<td>D/Y</td>
<td>-0.11</td>
<td>TMS</td>
</tr>
<tr>
<td>E/P</td>
<td>-0.41</td>
<td>LTR</td>
</tr>
<tr>
<td>D/E</td>
<td>-0.76</td>
<td>DFY</td>
</tr>
<tr>
<td>B/M</td>
<td>-0.88</td>
<td>DFR</td>
</tr>
<tr>
<td>NTIS</td>
<td>-0.83</td>
<td>TBL</td>
</tr>
<tr>
<td>INFL</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>SVAR</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Panel B. 2004:1-2014:12 out-of-sample period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/P</td>
<td>-0.82</td>
<td>LTY</td>
</tr>
<tr>
<td>D/Y</td>
<td>-0.53</td>
<td>TMS</td>
</tr>
<tr>
<td>E/P</td>
<td>-2.13</td>
<td>LTR</td>
</tr>
<tr>
<td>D/E</td>
<td>-2.13</td>
<td>DFY</td>
</tr>
<tr>
<td>B/M</td>
<td>-0.16</td>
<td>DFR</td>
</tr>
<tr>
<td>NTIS</td>
<td>-2.63</td>
<td>TBL</td>
</tr>
<tr>
<td>INFL</td>
<td>-2.58</td>
<td>IVSent3m</td>
</tr>
<tr>
<td>SVAR</td>
<td>4.17</td>
<td>IVSent6m</td>
</tr>
</tbody>
</table>
Table 7: Regression results: IV-sentiment and equity factors

This table reports regression results for Eqs. (26a), (26c) and (26d). The dependent variable is the stream of returns produced by the contrarian strategy based on our IV-sentiment 90-110 indicator, while the explanatory variables are equity (cross-sectional) factors, namely: the market (Mkt-Rf), size (SMB), value (HML), profitability (RMW), investment (CMA), momentum (WML) and low- versus high-beta (BAB). Panel A reports the regression results in a multivariate setting, using three distinct model: 1) the Fama-French three-factor model, 2) the Fama-French three-factor model with the addition of the Carhart (1997) momentum factor, 3) the Fama-French five-factor model with the momentum factor and 4) the latter model with the addition of the BAB (Betting Against Beta) factor suggested by Frazzini and Pedersen (2014). Note that as the BAB factor is only available in monthly frequency, regression that contain such factor use monthly frequency, whereas data used in other regressions has daily frequency. We report standard errors in brackets. Asterisks ***, **, and * indicate significance at the one, five, and ten percent level, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Panel A - Multivariate</th>
<th>Panel B - Univariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Mkt-RF</td>
<td>0.070***</td>
<td>0.073***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>SMB</td>
<td>0.134***</td>
<td>0.147***</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>HML</td>
<td>0.080***</td>
<td>0.086***</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>WML</td>
<td>-0.121***</td>
<td>-0.134***</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>RMW</td>
<td>-0.042</td>
<td>-0.137***</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>CMA</td>
<td>0.244***</td>
<td>0.107***</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>BAB</td>
<td>-0.186</td>
<td>-0.215**</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.098)</td>
</tr>
<tr>
<td>R^2</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>F-stats</td>
<td>36.7</td>
<td>49.2</td>
</tr>
<tr>
<td>AIC</td>
<td>-29715</td>
<td>-29715</td>
</tr>
<tr>
<td>BIC</td>
<td>-29739</td>
<td>-29696</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>47.6</td>
</tr>
<tr>
<td></td>
<td>38.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>104.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>13%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>-29837</td>
<td>-29713</td>
</tr>
<tr>
<td></td>
<td>-29879</td>
<td>-29685</td>
</tr>
<tr>
<td></td>
<td>-430</td>
<td>-29769</td>
</tr>
<tr>
<td></td>
<td>-29698</td>
<td>-29680</td>
</tr>
<tr>
<td></td>
<td>-29678</td>
<td>-29661</td>
</tr>
<tr>
<td></td>
<td>-429</td>
<td>-421</td>
</tr>
</tbody>
</table>
Table 8: Implied and realized correlations

Panel A reports the descriptive statistics for the implied correlations between index options and single stock options for three month options at the 80, 90, ATM (100), 110, and 120 percent moneyness levels, and for six- and twelve-month options at the 80 and 90 percent moneyness levels over the full sample, which extends from January 2, 1998 to March 19, 2013. The implied correlation (\tilde{p}) is approximated by the Eq. (27): $\tilde{p} \approx \frac{\sigma_I^2}{\left(\sum_{i=1}^n w_i \sigma_i\right)^2}$, where σ_I^2 is the implied volatility of an index option and $\sum_{i=1}^n w_i \sigma_i$ is the weighted average single stock implied volatility, as in Eq. (A.1k) of Appendix A. Panel B reports the descriptive statistics for the average pair-correlations for the 50 largest constituents of the S&P500 index calculated over the same sample, which extends from January 2, 1998 to March 19, 2013.

Panel A: Implied correlations

<table>
<thead>
<tr>
<th>Statistics \ Maturity, moneyness</th>
<th>3m 80%</th>
<th>3m 90%</th>
<th>3m ATM</th>
<th>3m 110%</th>
<th>3m 120%</th>
<th>6m 80%</th>
<th>6m 90%</th>
<th>12m 80%</th>
<th>12m 90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.65</td>
<td>0.56</td>
<td>0.45</td>
<td>0.35</td>
<td>0.3</td>
<td>0.64</td>
<td>0.56</td>
<td>0.6</td>
<td>0.54</td>
</tr>
<tr>
<td>Median</td>
<td>0.67</td>
<td>0.57</td>
<td>0.45</td>
<td>0.35</td>
<td>0.3</td>
<td>0.65</td>
<td>0.56</td>
<td>0.61</td>
<td>0.54</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.24</td>
<td>0.18</td>
<td>0.12</td>
<td>0.07</td>
<td>0.03</td>
<td>0.26</td>
<td>0.21</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.35</td>
<td>1.11</td>
<td>0.86</td>
<td>0.72</td>
<td>0.68</td>
<td>1.07</td>
<td>0.95</td>
<td>1.1</td>
<td>1.01</td>
</tr>
<tr>
<td>10th percentile</td>
<td>0.44</td>
<td>0.35</td>
<td>0.27</td>
<td>0.17</td>
<td>0.13</td>
<td>0.41</td>
<td>0.34</td>
<td>0.39</td>
<td>0.34</td>
</tr>
<tr>
<td>90th percentile</td>
<td>0.81</td>
<td>0.73</td>
<td>0.63</td>
<td>0.53</td>
<td>0.49</td>
<td>0.8</td>
<td>0.73</td>
<td>0.77</td>
<td>0.72</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.46</td>
<td>-0.39</td>
<td>-0.29</td>
<td>-0.29</td>
<td>-0.6</td>
<td>-0.38</td>
<td>-0.26</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>Excess Kurtosis</td>
<td>0.6</td>
<td>-0.02</td>
<td>-0.37</td>
<td>-0.38</td>
<td>-0.66</td>
<td>0.09</td>
<td>-0.18</td>
<td>0.03</td>
<td>-0.22</td>
</tr>
</tbody>
</table>

Panel B: Realized correlations

<table>
<thead>
<tr>
<th>Statistics \ Look-back period</th>
<th>30 Days</th>
<th>60 Days</th>
<th>90 Days</th>
<th>180 Days</th>
<th>720 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.3</td>
<td>0.25</td>
<td>0.25</td>
<td>0.26</td>
<td>0.36</td>
</tr>
<tr>
<td>Median</td>
<td>0.27</td>
<td>0.22</td>
<td>0.24</td>
<td>0.25</td>
<td>0.31</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.84</td>
<td>0.69</td>
<td>0.67</td>
<td>0.61</td>
<td>0.74</td>
</tr>
<tr>
<td>10th percentile</td>
<td>0.1</td>
<td>0.05</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>90th percentile</td>
<td>0.54</td>
<td>0.47</td>
<td>0.48</td>
<td>0.52</td>
<td>0.71</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.17</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.2</td>
</tr>
<tr>
<td>Skew</td>
<td>0.66</td>
<td>0.38</td>
<td>0.6</td>
<td>0.37</td>
<td>0.42</td>
</tr>
<tr>
<td>Excess Kurtosis</td>
<td>-0.02</td>
<td>-0.68</td>
<td>-0.21</td>
<td>-0.86</td>
<td>-0.88</td>
</tr>
</tbody>
</table>
Figure 1: Information ratio boxplots for daily IV-based strategies. The boxplots depict the distribution of information ratios (IR) obtained by the IV-based strategies tested, when different look-back periods and outer-thresholds are used per factor-specific strategy. Boxplot A depicts the distribution of IRs when the IV factor used is obtained from three-month options. Panels B and C depict the same information while using the IV factors obtained from six- and twelve-month options, respectively.
Figure 2: Information ratio boxplot for long- and short-leg of IV-based strategies. The boxplots depict the distribution of information ratios (IRs) obtained by the IV-based strategies tested, when different look-back periods and outer-threshold are used per factor-specific strategy. Boxplots on the top row (in green) refer to IRs produced by the long-leg of IV-based strategies, whereas the ones in the second row refer to the short-leg of the same strategies. Boxplot A depicts the distribution of IRs when the IV factor used is obtained from three-month options. Panels B and C depict the same information while using the IV factors obtained from six- and twelve-month options, respectively.
Figure 3: Information ratio, skewness and horizon for monthly IV-based strategies. The boxplots depict the distribution of information ratios (IRs), return skewness, and trade horizon (average drawdown) obtained by the IV-sentiment strategies tested, as well as the Baker and Wurgler (2007) sentiment factor when different look-back periods and outer-threshold are used per strategy. Boxplot A depicts the distribution of these statistics when the IV factor used is obtained from three-month options. Panel B and C depicts the same information but, respectively, when the IV factors used are obtained from six- and twelve-month options. Boxplots of IR, return skewness and trade horizon for the Baker and Wurgler (2007) factor are the same across option horizons but are shown for comparison with the IV-sentiment strategies.
Figure 4: Cumulative Sum of Squared Error Differences of single factor predictive regressions. The lines in every plot depict the out-of-sample Cumulative Sum of Squared Errors Differences ($CSSED_{OS}$) calculated by Eq. (25) for the historical average benchmark-forecasting model minus the cumulative squared prediction errors for the single-factor forecasting models constructed by using 14 out of all the explanatory variables suggested by Welch and Goyal (2008), as well as the $IV_{sentiment 90-110}$ factor with a three-month maturity. Positive values of $CSSED_{OS}$ mean that single-factor forecasting models that employ the Welch and Goyal (2008) factors and IV_{sent} outperform the historical average benchmark-forecasting model.
Figure 5: Cumulative Sum of Squared Error Differences of combined predictive regressions. The black line in Plot A depicts the Cumulative Sum of Squared Error Differences (CSSED) for the historical average benchmark-forecasting model minus the cumulative squared prediction errors for the aggregated predictive regression-forecasting model construct by using 14 Welch and Goyal (2008) explanatory variables in univariate unrestricted models. The green and red lines in Plot A depict the same forecast evaluation statistic, i.e., the CSSED, when such 14 univariate models are restricted as suggested by Campbell and Thompson (2008). The red line represents the CSSED when coefficients are constrained to have the same sign as the priors suggest. Plot B zooms in on the 2003:1-2014:12 period, where the black and red lines are the same as in Plot A, whereas the green and blue lines are the the CSSED when our IV-sentiment factor is added to the multifactor forecasts model for the unrestricted and restricted model, respectively. The forecasting period is 1965:1-2014:12 for all variables except IVSent, for which forecasts are only available from 2004:1-2014:12. Forecast aggregation in both models is done by calculating the mean of the $t+1$ forecast from each individual predictive regression.
Figure 6: Correlation matrix between *IV-sentiment* factor and cross-sectional equity factors. The upper triangular part of the matrix above reports the correlation coefficient between pairs of cross-sectional equity factors and the *IV-sentiment* factor. These equity factors are the market (*Mkt-Rf*) , the size (*SMB*) and the value (*HML*) factors, the profitability (*RMW*) , the investment (*CMA*) , the momentum factor (*WML*) and the “Betting Against Beta” factor (*BAB*). The font size of coefficient reiterates its magnitude, whereas asterisks ***, **, and * indicate significance at the one, five, and ten percent level, respectively. In the diagonal, the histograms of factor returns are depicted. The lower triangular part of the matrix depicts scatter plots of the returns of the multiple pairs of factors.