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Abstract

Contingent convertible capital (CoCo) is a debt instrument that converts to equity or is written o� if

the issuing bank fails to meet a distress threshold. The conversion increases the issuer’s loss-absorption

capacity, but results in wealth transfers between CoCo holders and shareholders, which in turn gives

rise to risk-shifting incentives to shareholders. Using the framework of call options, we �nd that the

risk-shifting incentives arising from issuing CoCos relative to subordinated debt have two opposite ef-

fects: higher risk increases the probability of CoCo conversion, while lowering the bene�t of the wealth

transfer relative to the same amount of subordinated debt. For writedown CoCos, the risk-shifting in-

centive is always positive, while for equity-converting CoCos, it depends on the dilutive power of the

CoCo. While recent regulation has deemed CoCos suitable for increasing loss absorption capacity, our

results show that some CoCos are potentially riskier than issuing subordinated debt in their place. To

sidestep these consequences, their use by banks must be tempered by increasing capital requirements,

and as such, they should not be treated as true substitutes for equity.
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1 Introduction

This paper aims to show the risk-shifting incentives that arise from letting banks issue contingent convert-

ible capital (CoCo) in order to ful�ll capital requirements set by regulators. CoCos are hybrid instruments

that are issued as debt but convert to equity or written o� if the issuing bank fails to meet a distress thresh-

old. The threshold may be contractual, as when the bank fails to meet a preset equity ratio, or discretionary,

as when regulators deem the bank to be close to the point of nonviability. CoCos are designed this way

in order to relieve the issuer of the burden of raising capital in situations of �nancial distress (Flannery

(2005)). As a result, CoCos have become favored by regulators because of their enhanced loss absorption

capacity relative to subordinated debt.

While CoCo conversion increases the loss absorption capacity of banks, it also potentially changes the

order of seniority. If CoCos are written o�, CoCo holders absorbs the �rst losses, instead of the original

shareholders. This implies that at the moment of conversion, there is a wealth transfer in favor of the

shareholders. If CoCos are converted to equity, CoCo holders absorb the losses together with the existing

shareholders. In this case, the wealth transfer may be in favor of either the CoCo holder or the existing

shareholder, depending on the terms of the conversion. The wealth transfers are de�ned relative to when

the bank has issued subordinated debt in place of the CoCos, and always from the point of view of the

original shareholder. Because of these wealth transfers, the bank may �nd it bene�cial to engage in risk-

shifting by choosing a riskier class of assets.

Our contribution to the literature is to provide a simple theoretical model of risk-shifting in the presence

of CoCos, when the conversion is based on a breach of a preset equity ratio. The simplicity buys us a

complete analytical solution, without much loss of generality. Using a call options framework, we show

that risk-shifting incentives arise from two forces: an increase in the conversion probability of a given

CoCo, and a decrease in the wealth transfer relative to issuing subordinated debt.

We de�ne wealth transfers from the existing (i.e. prior to conversion) shareholders’ point of view

- that is, as the change in residual equity that results from a conversion-induced reduction in leverage.

Within the call options framework, subordinated debt and unconverted CoCos of the same amount are

equivalent because both are senior to equity. In the same way, there is no di�erence between equity and

converted CoCos of the same amount, at least to the extent that the newly created equity value accrues to

the old equity holders. This fact enables us to write the ex ante residual value of a CoCo-issuing bank as
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a weighted average of the respective residual values with subordinated debt, and with additional equity,

with the conversion probability as the weight on the latter, and one minus that probability as the weight

on the former. This approach allowed us to decompose this value as the residual value with subordinated

debt, plus an expected wealth transfer term. The expected wealth transfer is the product of the conversion

probability and the wealth transfer term. Our analysis di�ers from the existing literature in that we pay

explicit attention to that probability of conversion, rather than treating it as a given term.

We apply our framework to the full range of CoCos issued so far: principal writedown (PWD) CoCos,

which are not well-covered in the academic literature but widely issued, and convert-to-equity (CE) CoCos

with dilutive and nondilutive conversion ratios. We show that for equal loss absorption capacity, all PWD

and nondilutive CE CoCos each have substantially worse risk-shifting incentives than requiring additional

equity would lead to. Moreover, we show that all PWD CoCos and nondilutive CE CoCos have worse risk-

shifting incentives compared to the same amount of subordinated debt. This is because the wealth transfer

is always away from the CoCo holders towards the existing shareholders.

But when the CoCos are of the dilutive CE variety, we show that the risk-shifting incentive turns

negative. This is because the wealth transfer itself becomes negative - while shareholders in aggregate

obtain a higher residual equity upon conversion, the old shareholders must share the total residual value

(i.e. old and new claims) with the new shareholders created upon conversion. The sharing of residual

equity, while not strictly skin in the game ex ante, is a credible threat such that the shareholders can be

expected to choose risk levels that make the conversion probability smaller. As a result, the risk level chosen

under dilutive CE CoCos will be lower than the risk level chosen under the same amount of subordinated

debt.

Therefore, the risk-shifting incentives arising from the expected wealth transfers can be viewed as a

wedge that a�ects a bank’s optimal risk choices relative to when the bank has issued subordinated debt in

place of CoCos. While there is no question about the superiority of additional equity over subordinated

debt, the wedge brought about by the risk-shifting incentives matters in determining whether CoCos are

superior to subordinated debt. We �nd that PWD and nondilutive CE CoCos encourage banks to take

riskier choices relative to subordinated debt, while dilutive CE CoCos discourage them. However, as 60%

of the CoCos issued to date are of the PWD kind, it is important to recognize the possibility that CoCos

might contribute to, rather than mitigate the buildup of risk in the banking system.

Recent regulation has encouraged the use of CoCos in order to meet regulatory capital or loss absorp-
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tion capacity requirements. However, regulation neither distinguishes between these two CoCo designs

for the purpose of meeting capital requirements, nor considers the interaction of CoCo issuance with ex-

isting frameworks. We show that even though CoCos and equity provide equal loss absorption capacity

ex post, replacing subordinated debt with CoCos changes the interaction of the regulator and the bank ex

ante, because of the risk-shifting incentive wedge. The regulatory bodies would seem to be well advised to

pay more attention to the risk incentives brought about by the design of CoCos.

The remainder of this paper is structured as follows. Section 2 provides a short primer on CoCos,

including some statistics regarding their issuance. Section 3 discusses the related literature. Sections 4,

5 and 6 present the model and the analysis. Section 7 considers the implications of issuing CoCos in the

context of existing �nancial regulation. Section 8 concludes. The mathematical foundations of this paper

are presented in Appendix A, while the proofs that are not in the text are presented in Appendix B.

2 A Short Primer on CoCos

CoCos are hybrid instruments that are designed to improve the loss absorption capacity of the issuer with-

out involving transfusions from new equity or taxpayer bailouts. These instruments were proposed by

Flannery as early as 2005, but were thrust into the limelight after the �nancial crisis of 2008. Banks gen-

erally issue CoCos, though the insurance sector has already started looking into them as well. CoCos are

issued as debt, but convert when the issuer encounters a trigger event. CoCos can be classi�ed according

to the type of trigger event and design.

There are two type of trigger events: automatic and discretionary. Automatic trigger events occur

when the bank’s equity ratio falls below a preset amount. The calculation may be based on either market

or book values, although all of the issued CoCos have calculations based on book value. Discretionary

trigger events occur when the regulator deems the bank to be near or at the point of nonviability (PONV).

Because of the nature of the trigger event, CoCos have also been known as reverse convertible bonds. To

qualify as part of regulatory capital under Basel III, CoCos must have at least the discretionary trigger.

Because of this, most of the issued CoCos possess both types of triggers.

There are generally two types of CoCos based on design: principal writedown (PWD) CoCos are par-

tially or fully written o� the balance sheet, while convert-to-equity (CE) CoCos are converted to shares at
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a preset price.1 Figure 1 presents the issuance of CoCos by design.

Figure 1: Annual CoCo Issuance of European Banks
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It is notable that PWD CoCo issuances have overtaken CE CoCo issuances since 2012. By the �rst half

of 2016, PWD CoCos amounted to 59% of total European issuances, while 38% were CE CoCos, and 3%

were of an unspeci�ed type. 2 Most of the CoCo issuance is by European and Asian banks. US banks have

not participated in the wave of CoCo issuances because CoCos are treated as equity under US GAAP and

as such, do not have tax bene�ts.

Because of their loss absorption capacity, CoCos have made their way into formal regulation. In June

2011, the Basel Committee on Banking Supervision released the �nal version of Basel III, 3 which addresses

additional measures to ensure the stability of the banking system. One notable change from Basel II4

is the strengthening of the capital base by enforcing stronger requirements for regulatory capital: loss

absorption capacity is now a necessary quality for instruments to be included as part of Additional Tier 1

(going concern) capital and Tier 2 (gone concern) capital. Existing instruments that no longer qualify as
1Under Directive 2013/36/EU of the European Commission, the provisions governing the conversion of CE CoCos must specify

either the rate of conversion and a limit on the permitted amount of conversion, or a range within which the instruments will
convert into Common Equity Tier 1 instruments.

2In January 2011, RaboBank issued 2 billion Euros worth of PWD CoCos which had a cash payout to the CoCo holders in case
of a trigger event. They have been redeemed by Rabobank in July 2016 . In 2016, ING launched a bond that contains an option
allowing it to be transferred to ING’s holding company, because of regulatory uncertainty over loss absorption.

3Basel III: A global regulatory framework for more resilient banks and banking systems
4Basel II: Revised international capital framework
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regulatory capital have been phased out beginning January 2013, and replaced by CoCos. The criteria for

whether a CoCo falls under Additional Tier 1 or Tier 2 depends only on their trigger level: above 5.125%

quali�es as Additional Tier 1, otherwise they qualify as Tier 2. Figure 2 shows the distribution of the

European-issued CoCos by their trigger ratios.

Figure 2: European CoCo Issuances by Trigger Ratios
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While Basel III itself has no legal bite, it was translated into EU law in 2013 by the issuance of Directive

2013/36/EU, also known as the Capital Requirements Regulation and Directive (CRR/CRD-IV). This means

that for EU banks, at most 3.5% of the 8% regulatory capital requirement will be �lled in by CoCos. More-

over, there is no upper bound to the amount of CoCos they can issue. In addition, in November 2015, the

Financial Stability Board (FSB) has released its Total Loss Absorption Capacity (TLAC) Standard for glob-

ally systemic �nancial institutions. The TLAC Standard mandates that for these institutions, minimum loss

absorption capacity must be raised to 16% of risk weighted assets by January 2019, and to 18% by January

2022. The TLAC Standard’s description of the loss absorbing instruments �ts CoCos. With this, one should

see an increase in the CoCo issuances over the next few years.

As CoCos are new and not well-understood, steps have been taken to protect unwitting consumers.

In October 2014, the U.K.’s Financial Conduct Authority has prohibited banks from issuing CoCos to or-

dinary retail investors. Moreover, the market has been shown to be sensitive to potential trigger events.
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In February 2016, the price of CoCos issued by Deutsche Bank fell from fears that the bank would not be

able to meet its coupon payment obligations. However, the prices of other CoCos followed suit, despite the

absence of adverse news regarding their issuers.

3 Related Literature

There is a small but growing body of research on the impact of CoCos on the risk-shifting incentives of

banks. Koziol and Lawrenz (2012) only consider CE CoCos, and argue that risk-shifting incentives always

increase relative to ordinary bonds, as long as the old equity holder gets to keep some shares after conver-

sion. This strong result depends critically on their assumption that the conversion trigger coincides with

the default trigger: If asset values decline enough to trigger default at a particular leverage ratio, replacing

some of the debt by CoCos will leave shareholders better o�: with an equal decline in asset values they are

left with some claims and default is staved o�, while in the straight debt case they would have lost every-

thing. Berg and Kaserer (2014) numerically simulate the value of equity given an exogenously set mixture

of debt and equity converter CoCos for four speci�c conversion ratios as a function of asset return variance.

They argue that risk-shifting rises as wealth transfers from CoCo holders to equity holders increase, and

observe, like Chan and van Wijnbergen (2015), that the price at which conversion takes place has a direct

impact on the magnitude and even sign of these wealth transfers. They also show that several of the exist-

ing CoCos such as those issued by Lloyds and Rabobank have prices that fall with changes in implied asset

volatility, inferring that the market recognizes the risk taken by the banks This �nding points at very clear

risk-taking incentives inherent in the CoCo designs issued by those two banks. Hilscher and Raviv (2014)

argue that risk-taking incentives of banks may be mitigated by choosing the conversion ratio properly. For

a capital structure containing CoCos, they found conversion ratios such that the resulting equity vega5

is equal to zero. This is akin to the suggestion of Calomiris and Herring (2013) on having CoCos which

are su�ciently dilutive. On the other hand, Martynova and Perotti (2015) claim that both CE and PWD

CoCos can mitigate risk-shifting if the trigger level is set properly. In their paper, risk-shifting takes the

form of not exerting su�cient e�ort in monitoring the assets of the bank. However they do not consider

the possibility that the bank’s risk choice a�ects both wealth transfers and the probability of conversion.

Accounting for the latter link is at the core of the analysis presented in this paper.
5Vega is the sensitivity of the option value with respect to the volatility of its underlying assets.
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Chen et al. (2015) endogenize the conversion6 in an asset pricing setup similar to Koziol and Lawrenz

(2012) and like them, only consider equity conversion CoCos. Although they derive closed form solutions,

they use numerical procedures to obtain their results, which necessarily depend on chosen parameter val-

ues. They chose parameter values such that at least some dilution of old shareholders is taking place. As

a consequence, conversion in the cases they analyze always imply a loss to old shareholders. But of the

more than 200 billion Euro face value CoCos issued as of the �rst half of 2016, substantially more than

half are issued on terms that imply a wealth transfer towards equity holders once conversion takes place,

a possibility that plays a substantial role in our paper. In their set up, banks need to continuously roll over

debt. This gives rise to rollover costs whenever the market value of the issued debt is lower than the par

value of the newly issued debt. The possibility of this happening leads to lower risk-shifting by banks,

because higher risk increases rollover costs.

4 Revisiting the Call Options Approach to Residual Equity Valuation

Black and Scholes (1973) and Merton (1974) have noted that the shareholders of a �rm e�ectively hold a

call option on their company’s assets. While it is true that the creditors of the �rm have claim over the

assets to the extent of the outstanding liability, the shareholders can obtain the full claim to the assets upon

paying o� all outstanding liabilities. Therefore, the residual claim held by the shareholders can be thought

of as a call option on the �rm’s asset, with the outstanding liability as the strike price.

For a bank that has issued hybrid instruments such as CoCos, the valuation of its residual equity is

slightly more involved. This is because the change in the hybrid’s "state" necessarily changes the bank’s

capital structure. This implies a corresponding change in the valuation of the residual equity. Therefore,

the valuation of residual equity involving hybrids must take the various "states" into account.

If the probability of conversion was exogenous, valuation is straightforward: the residual equity value

of a CoCo-issuing bank can simply be expressed as a linear combination of the residual equity values before

conversion (when the CoCo is treated as debt) and after conversion (when the CoCo is either written o� or

is converted to equity), with the conversion probability as the weighting factor. However, CoCos convert

whenever the bank encounters either an automatic or a discretionary trigger. The bank’s ability to choose

risk levels a�ects the shape of the return distribution, which in turn a�ects the bank’s ability to meet either
6In their continuous time framework, endogenizing conversion comes down to endogenously determining the timing of con-

version.
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type of trigger. Therefore, we cannot assume that the probability of conversion is exogenous.

By expressing the bank’s residual equity as a call option, and by recognizing that the probability of

CoCo conversion is a�ected by risk levels chosen by the bank, we are able to examine the risk-taking

incentives of a CoCo-issuing bank. Moreover, using the method outlined above, we can examine each type

of CoCo design and determine which of them provides the best and the worst incentives for risk-taking.

4.1 Setup

Issued CoCos have two kinds of trigger: an automatic one which occurs whenever the bank fails to meet

a preset equity ratio, and a discretionary one which occurs whenever the regulator believes the bank has

reached the point of non-viability. In this paper, we focus on the automatic type.

A model with CoCos must have at least three dates because the risk choice, the conversion itself, and

the �nal payo�s happen at distinct dates. However, if one wants to determine the ex ante risk-shifting

incentives induced by a CoCo, it is enough to know the impact of risk on the expected realizations of the

asset value at the time of conversion. Therefore, while we refer to t = 1 and t = 2 events (for the sake of

exposition), our analysis focuses only on the t = 0 actions.

Consider a CoCo-issuing bank. At t = 0, its capital structure is composed of Dd deposits, Ds CoCo, and

E initial equity. We assume that the CoCo does not convert at t = 0. At this stage, the CoCo-issuing bank

is indistinguishable from an ordinary bank with Ds subordinated debt in place of CoCos. We normalize

the amounts such that Dd + Ds + E = 1. We take these amounts as given, because we are interested in

seeing how banks choose risk for a given capital structure. Since banks face capital regulation, the bank is

constrained in choosing its capital structure in the �rst place.

Upon obtaining these funds, the bank invests them in an asset that gives return Rt at t > 0. We assume

that Rt follows a lognormal distribution with parameters
(
µ,σ 2

)
for the corresponding normal distribution

of ln (Rt ). The bank can choose the risk level σ of the assets at t = 0. However, once the bank has chosen

σ , it cannot make changes at any further time. Because we analyze at t = 0, we assume that the bank

only knows and works with expectations about future returns. In particular, the bank works with expected

return R = E0 (R1) = E0 (E1 (R2)). Also, to ensure that we analyze a pure risk e�ect not confounded with

increases in wealth, we structure the increase in risk in such a way that E (Rt ) = R stays unchanged (i.e. a

mean-preserving spread in variance).

The setup described above allows us to write the equity holder’s claim as a call option on the asset
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return, as in Black and Scholes (1973) and Merton (1974). For ease, we assume there is only one share, and

the bank does not issue any new shares aside from those that may arise from CoCo conversion. Denote the

value of the share at t = 0 as e0. Thus, before conversion, the bank’s residual equity may be expressed as

e0 = C [R, Dd + Ds ] (1)

where C [R, D] is a call option7 on an asset with gross return R and strike price D. Henceforth, we use

“liability”, “ leverage”, and “strike price” interchangeably, to refer to a bank’s outstanding liability. In all

subsequent calculations, we use D to refer to a general strike price, but specify the actual level of debt (e.g.

Dd or Dd + Ds ) when appropriate. As the unconverted CoCo is indistinguishable from subordinated debt,

we also refer to the amount e0 as the bank’s residual equity value with subordinated debt.

At t = 1, the asset return realization is observed to be R1. Provided that R1 exceeds the total liability

Dd + Ds , the bank remains solvent, otherwise, the bank is in default. Of course it is possible for the

realization R1 to be low enough to cause default even at t = 1. In that case, the bank is assumed to be

closed down. However, we only consider cases when conversion precedes default. Henceforth, we assume

that the bank’s t = 0 expectation about the t = 1 return is larger than Dd + Ds : E0 (R1) > Dd + Ds .

CoCos convert at t = 1 when R1 is lower than what is consistent with a preset trigger equity ratio τ . At

t = 2 (provided that the bank has survived t = 1 events) when R2 materializes, the creditors of the bank are

paid, and anything left accrues to the residual claimant, which is the equity holder of the bank. We assume

there is no risk of depositor runs (for example because of deposit insurance) in order to focus entirely on

the risk-shifting implications of various CoCo designs. 8

4.2 The Endogenous Conversion Probability

We have shown in the previous subsection that it is straightforward to value residual equity when Ds is

subordinated debt. When CoCos are involved, we need to consider both the change in the value of the

residual equity arising from the change in the outstanding liability, as well as the probability that the CoCo

converts. A number of papers (for instance, Martynova and Perotti (2015)) treat this probability as exoge-

nous. However, since the bank’s choice of risk a�ects the distribution of the asset returns, the probability
7Appendix A contains the mathematical foundations of the call options framework.
8In principle it is also possible to draw conclusions from those risk choices for run probabilities: for such an analysis in a global

games framework, see Chan and van Wijnbergen (2015).
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of CoCo conversion cannot be exogenous. In this section, we de�ne this probability endogenously by using

the concept of distance-to-default and modifying it accordingly.

As the name suggests, distance-to-default is a measure of the closeness of the asset return and the

value of the outstanding liability. For lognormally distributed asset returns R and total face value of debt

D, distance-to-default dd at t = 0 can be written as

dd =
1
σ

[
ln

R

D
+ r −

σ 2

2

]
(2)

where r is the risk-free rate. 9 It is implicit from the use of this measure that the default event occurs when

the equity ratio of the bank is 0. However, with CoCos, the relevant event is not default, but conversion.

For CoCos with automatic conversion, the trigger event is when the bank’s equity ratio falls short of the

trigger level τ > 0. We therefore introduce a measure similar to distance-to-default by incorporating the

trigger level τ , and call it distance-to-conversion dc .10 Formally, automatic conversion occurs whenever

R − D

R
≤ τ ⇔ R (1 − τ ) ≤ D, (3)

allowing us to write the distance-to-conversion dc as

dc =
1
σ

(
ln

R (1 − τ )
D

+ r −
σ 2

2

)
. (4)

With the assumption of lognormally distributed returns, the conversion probability is then simply

pc = Φ (−dc ) (5)

where Φ (·) is the cumulative standard normal distribution. With the conversion probability now well-

de�ned, we are now able to value the equity of a bank that has issued CoCos within our framework, as a

linear combination of values of residual equity with di�ering amounts of outstanding liability.

9The standard form for distance-to-default is dd =
[
ln R

D +
(
r − 1

2σ
2
)
T

]
/

[
σ
√
T

]
, for T periods ahead. Since in our model,

conversion only occurs at t = 1, T takes the value of 1. Moreover, since we are performing the analysis at t = 0, we use the
expected asset return R at t = 0 instead of the actual realization at t = 1 which is R1.

10A similar measure has been introduced by Sy and Chan-Lau (2006), in the context of an early warning system for bank
regulators.
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As dc is a function of both τ and σ , the probability of conversion pc must be as well. We have

∂pc

∂τ
= −ϕ (−dc )

∂dc
∂τ
= ϕ (−dc ) ×

(
1

σ (1 − τ )

)
> 0 (6)

and

∂pc

∂σ
= −ϕ (−dc )

∂dc
∂σ
= ϕ (−dc ) ×

(
1 +

dc
σ

)
> 0 (7)

where ϕ (·) is the standard normal distribution. This leads to the following lemma:

Lemma 1. The conversion probability is increasing in the risk σ taken, as well as in the trigger ratio τ that is

given.

The intuition behind this result lies in the distance-to-conversion expression. dc is a standardized

variable that is a�ected by the trigger ratio τ and the risk level σ . dc falls in τ because ceteris paribus, the

equity ratio of a bank is closer to a higher value of τ than to a lower one. On the other hand, an increase in σ

always decreases the value of a variable that it standardizes. The fall in the distance-to-conversion induced

by both of these factors, combined with the derivative of the cumulative standard normal distribution with

respect to its parameter, deliver this lemma.

From Lemma 1, one can see that the trigger ratio τ and the risk level σ are substitutes to an extent, as

they a�ect the conversion probability in the same direction. If one takes the cross partial derivative of (7)

with respect to τ , one obtains

∂2pc

∂τ ∂σ
=
ϕ (−dc ) (1 − τ )

[
σdc

∂dc
∂σ − 1

]

σ 2 (1 − τ )2
< 0, (8)

which shows that the marginal conversion probability with respect to risk σ falls as the trigger ratio τ rises.

By Young’s theorem, the marginal conversion probability with respect to the trigger ratio τ also falls as the

risk level σ rises. This leads to following corollary:

Corollary 2. The risk level σ and the trigger ratio τ are substitutes in terms of their e�ect on the conversion

probability.

Corollary 2 suggests that if the bank has a target level of the probability of conversion, the bank can

choose lower risk levels if the trigger ratio is high enough. Similarly, if the trigger ratio is low, the bank
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can achieve the target by choosing higher risk levels.

4.3 Residual Equity Valuation With CoCos In The Capital Structure

In this section, we consider the valuation of residual equity when CoCos are in the capital structure. The

two states (pre- and post-conversion) must be considered in the valuation. To this end, we examine how

conversion alters the issuing bank’s residual equity.

There are two types of CoCos that have been issued to date: principal writedown (PWD) CoCos and

convert-to-equity (CE) CoCos. PWD CoCos are written o� by the fraction (1 − φ) ∈ [0, 1] from the issuing

bank’s balance sheet whenever the bank encounters an automatic trigger event. That is, provided that a

bank has the capital structure described in Section 4.1, but with Ds PWD CoCos instead of subordinated

debt, conversion would change the bank’s residual equity from C [R, Dd + Ds ] to C [R, Dd + φDs ], where

φ represents the fraction of the CoCos that are retained on the balance sheet. We henceforth refer to φ as

the retention parameter.

On the other hand, CE CoCos convert to equity at some conversion rate ψ per unit of CoCo when

the issuing bank encounters an automatic trigger event. 11 That is, provided that a bank has the capital

structure described in Section 4.1, but with Ds CE CoCos instead of subordinated debt, conversion would

change the bank’s residual equity from C [R, Dd + Ds ] to 1
1+ψDs

(C [R, Dd ]).

Both the writeo� and the equity conversion features can be accomodated by the expression in (9) to

represent a general CoCo-issuing bank’s residual equity after conversion.

C [R, Dd + φDs ]
1 +ψDs

(9)

PWD CoCos can be represented by settingψ = 0 in (9) and keeping φ ∈ [0, 1]. A PWD that is fully written

o� has φ = 0. Similarly, CE CoCos can be represented by setting φ = 0 in (9) and keeping ψ ∈ [0, ∞). A

full PWD CoCo (φ = 0) is equivalent to a CE CoCo with zero dilution (ψ = 0). At the time of writing, there

does not exist an issued CoCo which has both writedown and equity conversion features.

Denote by ecoco the value of a general CoCo-issuing bank’s residual equity at t = 0. As previously

mentioned, the value of residual equity of a bank with CoCos in the capital structure can be written as

a linear combination of the pre-conversion state and the post-conversion state, with the probability of
11Some papers refer to the conversion price, which is the inverse of the conversion rate. That is, for conversion rate ψ , the

conversion price is 1/ψ .
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conversion pc as the weighting factor. With this, we may write the CoCo-issuing bank’s residual equity as

ecoco = pc
C [R, Dd + φDs ]

1 +ψDs
+ (1 − pc ) C [R, Dd + Ds ]

= C [R, Dd + Ds ] + pc
(
C [R, Dd + φDs ]

1 +ψDs
−C [R, Dd + Ds ]

)
= e0 + p

cW , (10)

where the wealth transfer is

W =
C [R, Dd + φDs ]

1 +ψDs
−C [R, Dd + Ds ] (11)

Thus, the ex ante value of residual equity of a CoCo-issuing bank can be expressed as the value of a bank’s

residual equity if it has issued subordinated debt e0, plus an expected wealth transfer term pcW .

The expected wealth transfer may be positive or negative, depending on the values ofψ and φ. A PWD

CoCo’s expected wealth transfer pcWpwd is

pcWpwd = p
c (C [R, Dd + φDs ] −C [R, Dd + Ds ]) , (12)

which is always positive because the lower implied strike price after conversion (Dd + φDs ) increases the

value of the call option held by the bank’s shareholder. Thus, the di�erence between C [R, Dd + φDs ] −

C [R, Dd + Ds ] is always larger than 0, and increases as φ moves from 1 to 0. Figure 3 illustrates the change

in the wealth transfer from the point of view of the bank shareholder. At Point A in the Figure, when φ = 0,

the wealth transfer from the CoCo holder to the existing shareholder is at its highest value. This is because

nothing is left for the CoCo holder.

Figure 3: Wealth transfers from CoCo holders to equity holders for various levels of φ

0 ϕ

C[R,D]− C[R,D +Ds]

1

A
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On the other hand, a CE CoCo’s expected wealth transfer pcWce is

pcWce = p
c
(
C [R, Dd ]
1 +ψDs

−C [R, Dd + Ds ]
)
, (13)

which may be positive or negative over the the range of ψ , which is R+. Figure 4 illustrates the wealth

transfer, again from the point of view of the original equity holder.

Figure 4: Wealth transfers from CoCo holders to equity holders for various levels ofψ

−C[R,D +Ds]

0

ψ̃

C[R,D]− C[R,D +Ds]

ψ →∞

B

Point B of Figure 4 shows that wealth transfer is highest whenψ = 0. At this value ofψ , the CE CoCo

is equivalent to a full PWD CoCo. However, as ψ → ∞, the CoCo holder completely dilutes the original

shareholder such that the claim of the original shareholder disappears. Hence, the wealth transfer is from

the original shareholder to the CoCo holder. As the wealth transfer term Wce is continuous in ψ , there

exists a value of ψ that sets the wealth transfer of a CE CoCo exactly equal to 0, and it is found by setting

Wce = 0. Call this value ψ̄ . We have that

ψ̄ =
1
Ds

(
C [R, Dd ]

C [R, Dd + Ds ]
− 1

)
. (14)

At ψ̄ , the number of new shares ψ̄Ds valued at the pre-conversion value of C [R, Dd + Ds ] is just equal

to the di�erence in the values of residual equity pre- and post-conversion: C [R, Dd ] − C [R, Dd + Ds ].12

Because a wealth transfer from the CoCo holder to the shareholder is observationally equivalent to the
12Calomiris and Herring (2013) has a similar discussion and the recommendation to use a conversion price closely related to

our de�nition of ψ̄ . Also, this price is critical according to Sundaresan and Wang (2015) if multiple equilibria are to be avoided in
the case of market-based (share price) conversion triggers.
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dilution of the shareholder, we also refer to ψ as the dilution parameter. Any value of ψ < ψ̄ leads to a

wealth transfer from the CoCo holder to the shareholder (nondilutive CoCos). Any value of ψ > ψ̄ leads

to a wealth transfer from the shareholder to the CoCo holder (dilutive CoCos) Only at ψ = ψ̄ is there a

neutral conversion in the sense of not causing any wealth transfers in either direction.

5 The Risk-Shifting Incentives Induced by CoCos

In the previous section, we have shown that PWD CoCos always have positive wealth transfers upon con-

version, but the direction of CE CoCo wealth transfers vary with the dilution parameterψ . To examine the

risk-shifting incentives of each type of CoCo, we take the derivative of the expected wealth transfers with

respect to σ . This is because the expected wealth transfer measures the impact of replacing a given amount

of subordinated debt with an equivalent amount of CoCos. In e�ect, we are looking at the di�erential ef-

fect of CoCos on a bank’s risk-making decisions, with subordinated debt as the benchmark. As previously

mentioned, we assume that changes in σ do not change the expected return R - that is, we assume a mean-

preserving spread in variance, in order to abstract away from wealth e�ects that are not brought about by

changes in σ .

If one uses an exogenous probability of conversion in the expected wealth transfers, then CoCo con-

version necessarily leads to lower risk-shifting. This is because wealth transfers shrink as σ rises, ceteris

paribus. However, we cannot ignore the impact of risk on the conversion probability, as we have shown

in Lemma 1 that the probability of conversion increases in risk. In this section, we �nd conditions for

which the conversion probability e�ect dominates the wealth transfer e�ect. As PWD and CE CoCos have

di�ering mechanisms, we discuss them separately.

5.1 Risk-shifting Incentives for Given CoCo Design

5.1.1 PWD CoCos

The value of residual equity of a bank that has issued a PWD CoCo is

epwd = e0 + p
c (C [R, Dd + φDs ] −C [R, Dd + Ds ]) . (15)
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The di�erential e�ect of using a PWD CoCo in place of the same amount of subordinated debt is given by

the expected wealth transfer term pcWpwd :

pcWpwd = epwd − e0 = p
c (C [R, Dd + φDs ] −C [R, Dd + Ds ]) . (16)

De�ne now the risk-shifting incentive of such a bank as RSIpwd . This term is the derivative of pcWpwd with

respect to σ , as shown in (17).

RSIpwd =
∂pc

∂σ
(C [R, Dd + φDs ] −C [R, Dd + Ds ])︸                                                ︷︷                                                ︸

CFpwd

+pc
∂

∂σ
(C [R, Dd + φDs ] −C [R, Dd + Ds ])︸                                                  ︷︷                                                  ︸

W Fpwd

(17)

Two components of RSIpwd arise from the di�erentiation: the conversion probability factor (CFpwd ) and

the wealth transfer factor (WFpwd ). CFpwd represents the increase in the probability of conversion as risk

increases, holding the wealth transfer constant. On the other hand, WFpwd represents the change in the

wealth transfer as risk increases, holding the conversion probability constant.

Let us �rst consider the conversion probability factor CFpwd , reproduced in (18):

CFpwd =
∂pc

∂σ
(C [R, Dd + φDs ] −C [R, Dd + Ds ]) . (18)

CFpwd has two components, the derivative of the conversion probability with respect to σ , and the wealth

transfer itself. From Lemma 1, we know that ∂pc

∂σ > 0. The sign of CFpwd then depends on the sign of the

wealth transfer: for the case of PWD CoCos, it is always positive. Therefore, an increase in risk raises the

probability of conversion, makes it more likely for the wealth transfer to be obtained. Considering only an

exogenous probability of conversion would ignore the impact arising from CFpwd .

Consider now the wealth transfer factorWFpwd , reproduced below as (19):

WFpwd = p
c ∂

∂σ
(C [R, Dd + φDs ] −C [R, Dd + Ds ]) . (19)

WFpwd represents the impact of the increase in the risk level on the value of the wealth transfer itself,

holding the probability of conversion constant. While the wealth transfer itself is positive, it is decreasing

in the risk taken. The intuition behind this is that a conversion increases a bank’s skin in the game. Prior to

conversion, the bank has less of its own capital. After conversion, the disappearance of 1 − φ of the CoCo
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implies that the bank has more of its own capital, making risk-shifting less attractive than in the previous

case. To see this formally, note that (19) takes the derivative of the di�erence of two call option expressions

with respect to σ . This can be written as the di�erence between the vegas13 of two call options that di�er

only in the strike price. That is,

WFpwd = pc (V [R, Dd + φDs ] −V [R, Dd + Ds ]) (20)

where V [·] is the call option vega. As V [·] is continuously di�erentiable, we may rewrite (20) using the

mean value theorem. Denote by VD the derivative of vega with respect to the strike price D. Then, (20)

may be rewritten as

WFpwd = −pc
(
(1 − φ) Ds VD

[
R, D ′

] )
(21)

where D ′ ∈ [Dd + φDs , Dd + Ds ].

WFpwd is negative given any value of risk and leverage. However, it consists ofVD [·], which is positive

whenever σ 2 > 2
(
ln R

D + r
)
, and goes to zero as σ outpaces d1, where d1 =

1
σ

(
ln R

D + r +
σ 2

2

)
. Let us call

these as the high fragility conditions. The high fragility conditions captures the substitutability of risk and

leverage for banks: given a high leverage ratio D
R , the bank needs a smaller level of risk σ to keep VD [·]

constant, as well as the diminishing marginal returns to risk: a higher level of σ leads to lower values of

VD [·]. The e�ect is more pronounced as σ outpaces d1. When the high fragility conditions are met,WFpwd

goes to zero as well while CFpwd stays positive, such that CFpwd dominatesWFpwd .

Proposition 3. The risk-shifting incentive of a principal writedown CoCo is positive whenever the high

fragility conditions hold.

5.1.2 CE CoCos

Consider now the value of residual equity when a �rm has issued a CE CoCo:

ece = e0 + p
c
(
C [R, Dd ]
1 +ψDs

−C [R, Dd + Ds ]
)
. (22)

13Vega is the sensitivity of the option value with respect to the volatility of its underlying assets, represented by the derivative
of a call option with respect to σ .
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The di�erential e�ect of using a CE CoCo in place of the same amount of subordinated debt is given by the

expected wealth transfer term pcWce :

pcWce = ece − e0 = p
c
(
C [R, Dd ]
1 +ψDs

−C [R, Dd + Ds ]
)
. (23)

De�ne now the risk-shifting incentive of such a bank as RSIce . This term is the derivative of pcWce with

respect to σ , as shown in (24):

RSIce =
∂pc

∂σ

(
C [R, Dd ]
1 +ψDs

−C [R, Dd + Ds ]
)

︸                                        ︷︷                                        ︸
CFce

+pc
(
V [R, Dd ]
1 +ψDs

−V [R, Dd + Ds ]
)

︸                                      ︷︷                                      ︸
W Fce

, (24)

where we have used the vega notation to simplify matters. As with RSIpwd , RSIce also has two components,

the conversion probability factor (CFce ) and the wealth transfer factor (WFce ). However, the expressions for

CE CoCos involve the dilution parameter ψ , which causes changes in the direction of the wealth transfer.

Analyzing the risk-shifting incentives must take the size ofψ into consideration.

To begin, take the derivative of RSIce with respect toψ . We have that

∂RSIce
∂ψ

= −
Ds

(1 +ψDs )
2

(
∂pc

∂σ
C [R, Dd ] + pcV [R, Dd ]

)
, (25)

so the risk-shifting incentives fall as the dilution parameter increases. When ψ = 0, the CE CoCo is

equivalent to a full PWD CoCo. Therefore, the risk-shifting incentives for this type of CE CoCo is positive,

from the results of the previous section. On the other hand, whenψ → ∞, we would have, at the limit,

RSIce (ψ → ∞) =
∂pc

∂σ
(−C [R, Dd + Ds ])︸                        ︷︷                        ︸

CFce

+pc (−V [R, Dd + Ds ])︸                     ︷︷                     ︸
W Fce

. (26)

Conversion then allows the CoCo holder to completely dilute the original shareholder. This causes the

wealth transfer to be negative, leading to a negative CFce term. Similarly, a full dilution leads to a nega-

tiveWFce term because the shareholder compares the marginal risk incentive from having no share after

conversion (0) with the marginal risk incentive from holding a call option value of C [R, Dd + Ds ]. Thus,

RSIce (ψ → ∞) has negative risk-shifting incentives.

The above analysis implies that there is a value of ψ that just makes the CE CoCo deliver zero risk-
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shifting incentives. Since RSIce (ψ = 0) > 0 > RSIce (ψ → ∞),we get by continuity a crossing at zero for a

positive ψ . Call this value ψ̃ . We obtain this value by setting (24) to 0 and solving for ψ . 14 The resulting

expression for ψ̃ is

ψ̃ =
1
Ds

*
,

∂pc

∂σ C [R, Dd ] + pcV [R, Dd ]
∂pc
∂σ C [R, Dd + Ds ] + pcV [R, Dd + Ds ]

− 1+
-
, (27)

which we show to be less than ψ̄ in Appendix B.3. Thus, any ψ ∈ [0, ψ̃ ) will yield a positive risk-shifting

incentive (i.e. worse than in the alternative capital structure with subordinated debt instead of CoCos). Any

ψ ∈ [ψ̃ , ∞) makes the risk-shifting incentives negative, regardless of whether the high fragility conditions

discussed in the previous section are met. This result is stronger than the one obtained for the case of PWD

CoCos, because it holds for a nonlimiting value ofψ .

Corollary 4. For any risk level σ and leverage D , the risk-shifting incentives of a convert-to-equity CoCo is

negative if the dilution parameterψ is larger than ψ̃ , and positive otherwise.

5.2 E�ect of Other Design Features on Risk-shifting Incentives

Thus far, we had considered the risk-shifting incentives brought about by having CoCos in a bank’s capital

structure. These incentives were studied taking design parameters as given. However, certain aspects of

CoCo design may mitigate the risk-shifting incentives. In the previous section, we have shown that the risk-

shifting incentive for a CE CoCo falls when the dilution parameter increases. In this section, we examine

the impact of the retention parameter for a PWD CoCo, and the trigger ratio for both types of CoCo on the

risk-shifting incentives. There are two channels where these operate: the probability of conversion, and

the wealth transfer.

5.2.1 Risk Taking Incentives as a Function of the Retention Parameter φ

We have shown that the risk-shifting incentives for any PWD CoCo (RSIpwd ) are positive when the fragility

condition is met, given the retention parameter φ. But the risk-shifting incentive changes with φ, because

φ a�ects the size of the wealth transferWpwd , even though the probability of conversion is una�ected. We

14The results are consistent with those of Hilscher and Raviv (2014), who �nd the conversion ratio that achieves zero vega.
However, they only consider the wealth transfer and the leverage channels. Our calculations for the conversion ratio also takes
the endogenous probability of conversion into account.
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have

∂RSIpwd

∂φ
= −

∂pc

∂σ
exp (−r ) Φ

(
d∗2

)
Ds︸                          ︷︷                          ︸

∂CFpwd /∂φ

+pcV ∗D
Ds

Dd + φDs︸             ︷︷             ︸
∂W Fpwd /∂φ

, (28)

where the notationsV ∗D and d∗2 refer toVD and d2 evaluated at liabilities Dd +φDs .15 The term ∂CFpwd/∂φ

is always negative: since φ is the fraction of the debt retained, a higher retention rate (smaller writedown)

leads to lower risk-shifting incentives because the actual wealth transfer is also smaller.

Consider now the term ∂WFpwd/∂φ in (28). While this expression is always positive, we show in

Appendix A.4 thatVD tends to zero whenever the high fragility conditions hold, so ∂CFpwd/∂φ dominates

∂WFpwd/∂φ. Thus the higher the writedown fraction, the higher the risk-shifting incentives become.

Corollary 5. When the high fragility conditions hold, the risk-shifting incentive of a principal writedown

CoCo is increasing in the fraction of the CoCo written o� upon conversion.

5.2.2 Impact of τ on the Risk-Shifting Incentives

In this section, we examine the impact of the trigger level τ on the risk-shifting incentives. The results from

this section emanate from Lemma 1, which means the e�ect is solely through the probability of conversion,

not the wealth transfer. To see this, we again use the residual equity of a bank that has issued a general

CoCo, (9), introduced in Section 4.3 and reproduced here as (29):

ecoco = C [R, Dd + Ds ] + pc
*.....
,

C [R, Dd + φDs ]
1 +ψDs

−C [R, Dd + Ds ]︸                                        ︷︷                                        ︸
wealth transf er

+/////
-

. (29)

The trigger level τ does not appear in the wealth transfer component of (29), so we may useW to represent

the wealth transfer without loss of information. As before, the risk-shifting incentive is calculated by taking

the derivative of the expected wealth transfer pcW with respect to σ , as shown in (30).

RSI =
∂pcW

∂σ
=
∂pc

∂σ
W + pc

∂W

∂σ
(30)

15We have that d2 =
1
σ

[
ln R

D + r −
1
2σ

2
]

for strike price D. d2 is the same as distance-to-default measure introduced in Section
4.2.
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Di�erentiating the risk-shifting incentive with respect to τ leads to the following expression:

∂RSI

∂τ
=
∂2pc

∂σ∂τ
W +

∂pc

∂τ

∂W

∂σ
. (31)

Note that the e�ect of τ is solely through the probability of conversion. From Lemma 1, ∂pc

∂τ > 0 while
∂2pc

∂τ ∂σ < 0 follows from Corollary 2. The net e�ect must take the wealth transfers into consideration. For

PWD and nondilutive CE CoCos, the wealth transfer is always positive, while the marginal e�ect of risk

on the wealth transfer is negative. So raising the trigger level τ always reduces the risk-shifting incentives

embedded in those CoCo designs.16 This is a possible way of mitigating the ill e�ects of CoCos that were

designed to favor the original shareholders. As for dilutive CE CoCos, the fact that ∂2pc

∂σ ∂τ < 0 interacts with

the negativity of the wealth transfer, such that the net e�ect is more ambiguous.

Corollary 6. For PWD and nondilutive CE CoCos, the risk-shifting incentive is decreasing in the trigger ratio

τ . For dilutive CE CoCos, the impact of τ depends on the size of the wealth transfer.

This result supports the Basel III requirement of a trigger level of 5.125% or higher for a CoCo to qualify

as Additional Tier 1 capital.

6 The Bank’s Optimization Problem with CoCos

We have shown in the previous section that a bank’s risk-shifting incentives are a�ected by CoCo design.

These incentives are related to, but distinct from a bank’s problem of maximizing the net value of residual

equity. In this section, we show how a bank would choose its risk levels when faced with a constrained

optimization problem. To this end, we introduce expected costs of default, and show how a bank’s risk

decision changes for di�erent roles of Ds : additional equity, subordinated debt, PWD CoCo and CE CoCo.

In the literature, imposing expected costs of default is usually associated with social objective functions,

as in Kashyap and Stein (2004). In our model, it is necessary even for the private objective function. This is

because while the call option function necessarily accounts for the probability of default by construction,

it does not account for the costs associated with default other than the foregone asset returns. Moreover,

without these expected costs, the bank’s maximization problem would remain unbounded for the range of

parameters that we are interested in.
16Martynova and Perotti (2015) also �nd that increasing the trigger level induces the banks to exert more e�ort in order to stave

o� conversion. This is consistent with our result that risk-shifting incentives decline as the trigger level rises.
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The expected default costs we have in mind have two components: the actual costs of bankruptcy, and

the probability of default. The bankruptcy costs may be reputational or legal in nature, and distinct from

social costs such as contagion e�ects on other banks, or taxpayer-funded bailouts. We keep these costs

exogenous to our analysis, as we use a partial equilibrium framework.

The probability of default is a function of both risk σ and leverage D. For analytical convenience we use

the �rst order Taylor approximation of this probability function in σ 2 and in D. The probability of default

is distinct from the probability of conversion, although a su�ciently low draw of R1 at t = 1 would make

both events coincide. The literature on CoCos has paid more attention to probability of default than on the

probability of conversion, perhaps due to the emphasis on the loss-absorption capacity of CoCos. In Chen

et al. (2015) and Hilscher and Raviv (2014), the probability of default is in�uenced by the asset value that

leads to default, which is chosen endogenously by shareholders in their analysis. However, the interaction

of risk choices with the bank’s capital structure is not considered explicitly in these papers.

6.1 A bank’s objective function for given leverage D

Let X represent the bank’s private costs of default, and let pd represent the bank’s probability of default.

As stated above, we let X be given, and we adopt a functional form for pd which is a linear approximation

of the probability of default that is obtained from the Merton model: that is,

pd = Φ (−dd ) , (32)

where dd is the distance-to-default introduced in Section 3. We may write pd as a linear approximation

around values of σ 2 and D away from zero, say σ̄ 2 and D̄. This can be done as we are interested in values

of σ 2 and D for which the high fragility conditions hold:

pd
(
σ 2, D

)
≈ pd

(
σ̄ 2, D̄

)
+
∂pd

∂σ 2

(
σ̄ 2, D̄

)
σ 2 +

∂pd

∂D

(
σ̄ 2, D̄

)
D

=
1
2
σ 2b + cD. (33)

The probability of default in (33) is then obtained by omitting the irrelevant constant term as well as the

higher-order terms, and where b and c are positive constants. Thus, the expected costs of default of a given
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bank is

pd (σ , D)X =
(1
2
σ 2b + cD

)
X , (34)

This parameterization re�ects that a higher risk choice and a higher leverage level make default more likely.

The bank would like to maximize the value of its residual equity (represented by the call option func-

tion), subject to the expected default costs in (34). The objective function takes the following form for

expected return R, given leverage D:

max C [R, D] − pdX = max C [R, D] −
[(1

2
σ 2b + cD

)
X

]
. (35)

The bank maximizes (35) by choosing σ . Similar to Kashyap and Stein (2004), we assume that the bank’s

leverage D cannot be adjusted at the time of choosing σ . Therefore, in the maximization process, the

leverage term D drops out. For a given D, the �rst-order conditions associated with (35) is

V [R, D] |σ ∗ = σ ∗bX , (36)

where the notation V [R, D] |σ ∗ means that the function V [R, D] is evaluated at σ = σ ∗. The objective

function in (35) is concave in σ when σ 2 > 2
(
ln R

D + r
)

. Therefore, for this range of σ , we know that there

exists a σ that solves �rst-order conditions of the form (36). Since we are determining how CoCos would

be e�ective in a crisis, we assume throughout this section and the next that the bank is operating when

σ 2 > 2
(
ln R

D + r
)

holds. The next subsections consider how the banks’ optimal σ changes with the capital

structure.

6.2 Subordinated Debt vs. Equity

Consider �rst the case where the bank’s capital structure has Dd deposits, and Ds +E initial equity at t = 0.

Given this capital structure, the bank essentially holds a call option on the asset return R at a strike price

of Dd , leading to an objective function of the form

maxC [R, Dd ] −
(1
2
σ 2b + cDd

)
X (37)
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and the �rst-order condition

V [R, Dd ] |σ ∗e = σ
∗
ebX , (38)

where σ ∗e represents the optimal risk level under the circumstances.

Consider now the case where the bank’s capital structure at t = 0 consists of Dd deposits, Ds subordi-

nated debt, and E initial equity. Valuation of the bank’s residual equity in this case requires that the strike

price be Dd + Ds , leading to the objective function

max C [R, Dd + Ds ] −
(1
2
σ 2b + c (Dd + Ds )

)
X (39)

and the �rst-order condition

V [R, Dd + Ds ] |σ ∗s = σ
∗
s bX , (40)

where σ ∗s represents the optimal risk level with Dd + Ds leverage.

We show in Appendix A that the vega is decreasing in σ and increasing in D whenever σ 2 > ln
(
R
D + r

)
.

Therefore, since Dd < Dd +Ds , the graph ofV [R, Dd + Ds ] should lie above that ofV [R, Dd ] for any given

σ . Figure 5 illustrates the case:

Figure 5: Optimal Risk Choice of Banks when Ds is Additional Equity/Subordinated Debt

σbX

V [R,Dd +Ds]

V [R,Dd]

σ

Marginal Cost

σ∗
e σ∗

s

Benefit

Figure 5 shows that the vega of a bank with Ds additional equity intersects the marginal cost line σbX

at a smaller value of σ compared to the vega of a bank with Ds subordinated debt. That σ ∗s is higher than

σ ∗e re�ects the higher risk-shifting incentives from issuing Ds subordinated debt relative to issuing the

same amount of additional equity. We may derive it more formally as follows: note that we may rewrite

V [R, Dd + Ds ] |σ ∗s in terms of σ ∗e by using the mean value theorem, resulting in the following �rst-order
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approximation:

V [R, Dd + Ds ] |σ ∗s = V [R, Dd ] |σ ∗e +
(
Vσ |σ

∗
e
) (
σ ∗s − σ

∗
e
)
+ (VD |Dd ) Ds , (41)

where the notationVα |β refers to the derivative ofV [·] with respect to α , with α evaluated at β . By writing

σ ∗s bX as σ ∗ebX +
(
σ ∗s − σ

∗
e
)
bX , we may rewrite (40) as

V [R, Dd ] |σ ∗e +
(
Vσ |σ

∗
e
) (
σ ∗s − σ

∗
e
)
+ (VD |Dd ) Ds = σ

∗
ebX +

(
σ ∗s − σ

∗
e
)
bX . (42)

Subtracting (38) from (42) lets us obtain an expression showing that σ ∗s > σ ∗e .

σ ∗s = σ
∗
e +

(VD |Dd ) Ds

bX − (Vσ |σ
∗
e )
> σ ∗e (43)

AsVσ [·] is always negative whenever σ 2 > 2
(
ln R

D + r
)
, the denominator bX −

(
Vσ |σ

∗
e
)

is always positive

as well.

Proposition 7. The optimal amount of risk that a bank takes with Ds subordinated debt is higher than the

optimal amount of risk if the bank has issued Ds additional equity.

This result is intuitive: as the bank has more skin-in-the-game when it has issued more equity, it would

choose lower risk levels as well.

6.3 Subordinated Debt vs. PWD and CE CoCos

When a bank issues Ds CoCos in place of the same amount of subordinated debt, the bank’s objective

function becomes

max C [R, Dd + Ds ] + pcW −
(1
2
σ 2b + c (Dd + Ds )

)
X (44)

which is similar to (39) but with the expected wealth transfer term pcW . The accompanying �rst order

condition is

V [R, Dd + Ds ] |σ ∗coco + RSI = σ
∗
cocobX , (45)

where RSI is the risk-shifting incentive arising from the expected wealth transfer pcW . If RSI is zero, then

(45) coincides with (40), because the strike price (Dd +Ds ) is the same regardless of whether Ds was issued
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as subordinated debt or as a CoCo. Therefore, the sign and magnitude of RSI determines how much the

bank’s behavior would change relative to the subordinated debt case.

We have shown in Section 5 that PWD CoCos and nondilutive CE CoCos have positive risk-shifting

incentives, while dilutive CE CoCos have negative risk-shifting incentives. Therefore, for PWD CoCos

and nondilutive CE CoCos, V [R, Dd + Ds ] + RSI must lie above that of V [R, Dd + Ds ] for any given σ

provided that σ 2 > 2
(
ln R

D + r
)
. Similarly,V [R, Dd + Ds ]+RSI must lie belowV [R, Dd + Ds ] for dilutive

CE CoCos. Figure 6 illustrates the �rst order conditions associated with Ds CoCos and Ds subordinated

debt, for di�erent RSI values.

Figure 6: Optimal Risk Choice of Banks when Ds is Subordinated Debt/CoCo
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(b) Dilutive CE CoCos
RSI+ and RSI− indicate that the risk shifting incentives are positive and negative, respectively.

As mentioned before, the forms in (44) and (45) accomodate both type of CoCos. We consider each type

separately.

6.3.1 Optimal risk choices with PWD CoCos

To analyze PWD CoCos, we use (45) but use the subscript pwd to be more speci�c. Letting σ ∗pwd denote

the solution to the bank’s maximization problem, we may write the �rst-order condition as

V [R, Dd + Ds ] |σ ∗pwd + RSIpwd = σ
∗
pwdbX . (46)

Since (46) di�ers from (40) only by the risk-shifting incentive RSIpwd , we can attribute the excess of σ ∗pwd

over σ ∗s to the positive risk-shifting incentive brought about by the expected wealth transfer. Formally, we
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have

σ ∗pwd = σ
∗
s +

RSIpwd

bX − (Vσ |σ
∗
s )
> σ ∗s (47)

Proposition 8. The optimal amount of risk that a bank takes with Ds principal writedown CoCos is higher

than the optimal amount of risk if the bank has issued Ds subordinated debt.

It is true that PWD CoCos improve loss absorption after conversion, and therefore meet the criteria

for inclusion in Additional Tier 1 capital. However, as they elicit positive risk-shifting incentives before

conversion, their use may make it more likely that the loss absorption capacity will be necessary in the

future.

6.3.2 Optimal risk choices with CE CoCos

Similarly, to analyze CE CoCos, we use (45) but use the subscript ce to be more speci�c. Letting σ ∗ce denote

the solution to the bank’s maximization problem, we may write the �rst-order condition (up to a �rst-order

approximation) as

V [R, Dd + Ds ] |σ ∗ce + RSIce = σ
∗
cebX . (48)

As with the PWD CoCos, we can express σ ∗ce in terms of σ ∗s in the following manner:

σ ∗ce = σ
∗
s +

RSIce
bX − (Vσ |σ

∗
s )

(49)

The sign of RSIce determines whether σ ∗ce exceeds σ ∗s or not. We have shown in Section 5.1.2 that the

dilution parameter ψ completely determines the sign of RSIce : a ψ < ψ̃ (nondilutive) leads to RSIce > 0,

whileψ > ψ̃ (dilutive) leads to RSIce < 0.

Proposition 9. The optimal amount of risk that a bank takes with Ds nondilutive CE CoCos is higher than

the optimal amount of risk if the bank has issued Ds subordinated debt, but the opposite is true if the bank has

issued the same amount of dilutive CE CoCos.

It is then clear that dilutive CE CoCos induce better risk choices than the same amount of subordinated

debt. As such, their inclusion as Additional Tier 1 capital is an improvement, but as they do not constitute

skin in the game ex ante, they are still di�erent from equity. Nonetheless, the threat of dilution e�ectively

deters risk-shifting.
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6.3.3 Dilutive CE CoCos vs. Equity

Thus far we have proven two sets of results, σ ∗ce < σ ∗s with dilutive CE CoCos, and σ ∗ce > σ ∗s otherwise. But

can we determine how CE CoCos compare with straight equity in terms of risk choice? Post-conversion,

dilutive CoCos and straight equity provide the same loss absorption capacity. But before conversion, it is

the threat of a forthcoming dilution that leads to lower risk choices for dilutive CE CoCos. In contrast,

it is higher skin in the game which leads to lower risk choices before conversion for the same amount

of additional equity. It is worth examining whether there exists a dilution parameter that leads to better

risk-shifting incentives for CE CoCos relative to additional equity.

Recall from (38) that whenDs is equity, the strike price isDd , so the �rst order condition isV [R, Dd ] |σ ∗e =

σ ∗ebX . From (48), for the case whenDs is a convert-to-equity CoCo, the �rst order condition isV [R, Dd + Ds ] |σ ∗ce+

RSIce = σ
∗
cebX .

If we decompose V [R, Dd + Ds ] |σ ∗ce in terms of σe and V [R, Dd ], we can rewrite the �rst order con-

dition of a CE CoCo as

V [R, Dd ] |σ ∗ce +Vσ (σ
∗
ce − σ

∗
e ) + (VD |Dd ) Ds + RSIce =

(
σ ∗ce − σ

∗
e
)
b + σ ∗eb

σ ∗ce = σ ∗e +
(VD |Dd ) Ds + RSIce

bX − (Vσ |σ
∗
e )

(50)

Thus, any ψ that sets (VD |Dd ) Ds + RSIce ≥ 0 makes the risk-shifting incentive of Ds CE CoCo smaller

than or equal to the risk-shifting incentive for Ds additional equity, for equal loss absorption capacity after

conversion. In particular, it is

ψ ≥ ψeq =
1
Ds

*.
,

pcV [R, Dd ] + ∂pc

∂σ C [R, Dd ]

pcV [R, Dd + Ds ] +
∂pc
∂σ C [R, Dd + Ds ] −

( Rϕ (d1)
D

) (
d1
σ

)
Ds

− 1+/
-
. (51)

Note thatψeq resembles ψ̃ in (27). However,ψeq > ψ̃ because

∂pc

∂σ
C [R, Dd + Ds ] + pcV [R, Dd + Ds ] >

∂pc

∂σ
C [R, Dd + Ds ] + pcV [R, Dd + Ds ] −

R

D

d1

σ
ϕ (d1) Ds

whenever σ 2 > 2
(
ln R

D + r
)
. Also, ψeq > ψ̄ because at ψ̄ , RSIce = 0 and since RSIce is decreasing in ψ , it

must be thatψeq > ψ̄ .

This means that if the conversion ratio ψ of CE CoCos are superdilutive (i.e. when ψ ∈ [ψeq , ∞)),
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they are better than straight equity in terms of risk-shifting incentives. Figure 7 illustrates the relationship

between the risk-shifting line for equity and for CE CoCos with varying dilution parameters.

Figure 7: Optimal risk choices for additional equity/superdilutive CE CoCos
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The following proposition holds:

Proposition 10. forψ ∈
[
0, ψ̃

]
, we have σ ∗e < σ

∗
s < σ

∗
ce For ψ ∈

[
ψ̃ , ψeq

]
we have σ ∗e < σ ∗ce < σ ∗s < σ ∗pwd .

Finally, forψ ∈
[
ψeq , ∞

]
, we get a strong result: σ ∗ce < σ ∗e < σ ∗s < σ ∗pwd

So when the CoCo is superdilutive (i.e. ψ > ψeq ), Ds CE CoCos provide lower risk-shifting incentive

compared to straight equity, for equal loss absorption capacity. And even when they are not superdilu-

tive but still provide at least a zero wealth transfer to the old shareholder, they still perform better than

either subordinated debt or PWD CoCos, in that they provide less risk-shifting incentives for the same loss

absorption capacity as subordinated debt would. But if the CoCos are not dilutive at all, they are worse

than subordinated debt in that they provide even worse risk-shifting incentives for equal loss absorption

capacity. In that case they clearly should not be part of Additional Tier 1 capital.

6.3.4 Interaction of τ with probability of default

In the previous sections, we have already seen that an increase in τ reduces the distance-to-conversion,

thereby increasing the conversion probability. However, it does not play a role in the probability of default.

To see this, consider again the �rst order condition for a general CoCo, as in (45) relative to the one for
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subordinated debt, as in (40). This results in the following optimal risk choice:

σ ∗coco = σ
∗
s +

RSI

bX − (Vσ |σ
∗
s )
> σ ∗s (52)

τ only plays a role in RSI . Therefore, taking the derivative of σ ∗coco with respect to τ is equivalent to looking

at the sign of RSI ’s derivative with respect to τ :

∂σ ∗coco
∂τ

=
1

bX − (Vσ |σ
∗
s )

∂RSI

∂τ
. (53)

We already know from Corollary 6 that ∂RSI
∂τ < 0 for PWD and nondilutive CE CoCos, while the sign is

ambiguous for dilutive CE CoCos. Therefore, holding everything else constant, an increase in the trigger

ratio causes a decrease in the risk taking incentives of a bank that has issued either PWD or nondilutive

CE CoCos.

Corollary 11. Taking the probability of default into consideration, a bank that has issued PWD or nondilutive

CE CoCos will lower its risk-taking in response to a higher trigger ratio.

7 Interaction of CoCos with pre-existing �nancial regulation

The goal of banking regulation is to protect the system from default externalities, and by extension, prevent

the use of taxpayer money for bailout purposes. We consider the capital requirement aspect of banking

regulation in this section. 17 There are two sides to capital requirements: a target probability of default, and

the capital requirement itself. When the regulator sets a target probability of default, she does so taking the

bank’s leverage as an input, among other factors. The bank must choose a risk level which is compatible

with its leverage, and complies with the target probability of default at the same time. When the regulator

sets capital requirements, she forces the bank to change its capital structure in such a way that the bank’s

skin in the game increases. This increase leads to less risky behavior by banks. Both actions discourage

banks from making risk choices that may adversely a�ect the �nancial system.

Recent regulatory changes pushed CoCos to the frontline. From Basel III, CoCos now form part of Ad-

ditional Tier 1 and Tier 2 capital for bank. This means that CoCos will comprise at most 3.5% out of the 8.0%

minimum total capital required based on risk-weighted assets. Moreover, in November 2015, the Financial
17See VanHoose (2007) for a very informative survey on bank behavior and capital regulation.
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Stability Board has mandated that an additional 8% of capital requirements (based on risk-weighted assets)

be �lled in by CoCos for globally systemic �nancial institutions. These regulations imply that CoCos will

form a substantial portion of a bank’s balance sheet in the near future, replacing subordinated debt to a

large extent. However, as we have seen in the previous section, the replacement of subordinated debt with

CoCos have implications on a bank’s risk choices because of the expected wealth transfers.

In this section, we examine how replacing subordinated debt with CoCos a�ects bank risk choices, given

that the regulator has imposed both capital requirements and a target probability of default. 18 In order

to do this, we build on the bank’s maximization problem from the previous section. We have previously

mentioned that the bank’s expected costs of default are a function of both risk σ and leverage D, as in

(34). This implies that for a target probability of default pd , there is a tradeo� between risk and leverage.

Because the regulator is assured that the bank will comply with its mandates, we can model the situation as

a Stackelberg game: the regulator sets the target probability level knowing the bank’s objective function,

letting the bank react to the requirements.

7.1 Setup

The expected costs of default were de�ned in (34), where the probability of default was

pd =
1
2
σ 2b + cD. (54)

The regulator sets a target level of this probability to be a constant equal to pd , similar to what is set out

under Basel II and III. 19 From (54), there is a tradeo� between risk σ and leverage D for a constant pd . For

a bank to comply with pd , any increase in σ must be compensated by a decrease in D and vice versa. By

totally di�erentiating (54) and setting it to 0, we obtain the following negative slope:

0 = σbX dσ + c dD

dσ

dD

������pd
= −

c

σbX
. (55)

18The regulator’s imposition of a target probability of default is a simple way of capturing bank-regulator interactions in the
context of capital requirements, as in Nicole M. Boyson and Stulz (2014). This target may be derived from the regulator wanting
to impose socially optimal risk levels, rather than privately optimal ones, as in Kashyap and Stein (2004).

19The internal ratings-based approach set forth in Basel II and III links capital requirements to the credit losses (and the proba-
bility that these losses occur) that regulators are willing to accept. This probability can be construed as the probability of default
of a bank.
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The downward sloping line labeledpd in Figure 8 illustrates the tradeo� between risk and leverage that this

choice of a given default probability implies. Given pd , a bank may choose higher σ if leverage D is lower.

A higher (lower) target default probability corresponds to an upward (downward) shift in the downward

sloping line in Figure 8.

Figure 8: Bank’s risk curve against regulator’s chosen probability of default
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We turn now to the bank’s reaction function. In Section 6.1, we have shown that there is a positive

relationship between a bank’s leverage and choice of risk levels, because the bank’s risk-shifting incentives

increase with leverage. We can draw a reaction curve (RC) that shows the bank’s best risk choice as leverage

changes. RC can be interpreted as the reaction of the Stackelberg follower. As a benchmark, we �rst derive

the bank’s RC for a given leverage D . By totally di�erentiating the bank’s �rst-order condition in (36), we

obtain the condition that the bank must obey if it wants to maximize the value of its residual equity:

0 = VD [R, D] dD + (Vσ [R, D] − bX ) dσ

dσ

dD

������RC
=

VD [R, D]
bX −Vσ [R, D]

, (56)

which is positive. RC is also illustrated in Figure 8. The representation is very much simpli�ed: we draw

the curves as linear, but it is only the slopes of the curves that are important.

The regulator can also set capital requirements (leverage) D in addition to pd , which when combined

with the bank’s reaction curve, forces a bank to choose a particular level of σ . At issue then is how the

Stackelberg leader (regulator) picks the right point o� that curve by imposing capital requirements or

equivalently in our set up, the maximum amount of leverage D. To a regulator, there is a tradeo� between

risk and leverage. Imposing a maximum leverage D3 will allow the regulator to accept leverage of at most
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σ2, if the target is pd . However, to a bank, risk and leverage reinforce each other, as re�ected in the slope

of the reaction curve. Therefore, it will choose a low level of risk, say σ3, meaning that the bank takes too

little risk relative to that which is considered optimal by the regulator, as Point 3 lies on pd < pd . Similarly,

if the regulator imposes a maximum leverage D2, the optimal risk from her viewpoint is σ3. The bank’s

reaction curve implies that it will choose σ2, which is now too much risk compared to what the regulator

deems optimal, as Point 2 lies on pd < pd . Only if the regulator imposes leverage D1 will the bank choose

a risk level σ1 that is compatible with the pd speci�ed by the regulator, at the intersection of the pd and

RC lines: Point 1 is the equilibrium solution to the Stackelberg game between the regulator and the bank.

This example shows that the regulator must keep a bank’s reaction curve in mind when setting capital

requirements.

7.2 Replacing subordinated debt with CoCos

While a bank is always able to meet a leverage requirement with both deposits Dd and subordinated debt

Ds , the regulator can only force a bank to choose her desired risk level when Ds cannot be bailed in, written

down, or converted to equity. This is because the ability to eliminate all or part of Ds changes a bank’s

reaction curve, meriting further attention. Consider now what happens when, possibly in response to the

recent change in capital standards, subordinated debt is replaced by CoCos. In Section 6.2, we have shown

that CoCos have risk-shifting incentives which di�er from subordinated debt, because of the expected

wealth transfers. Therefore, a CoCo-issuing bank’s �rst order condition for a given debt D should take the

risk-shifting incentives into account, as in (57):

V [R, D] + RSI = σbX . (57)

This means that replacing subordinated debt by CoCos necessarily alters the reaction curve of a bank,

because of the additional RSI term, which involves both σ and D as well. If we totally di�erentiate RSI

with respect to both parameters, we obtain

0 =
∂RSI

∂σ
dσ +

∂RSI

∂D
dD

dσ

dD
= −

∂RSI
∂D
∂RSI
∂σ

. (58)
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For a CoCo with positive RSI (such as PWD and nondilutive CE CoCos), (58) is positive, because the risk-

shifting incentive is increasing in leverage (less skin in the game implies higher gambling incentives) and

decreasing in risk (diminishing marginal returns). Of course, for a CoCo with negative RSI (dilutive CE

CoCos), (58) is negative.

Consider �rst PWD and nondilutive CE CoCos. Let RC ′ denote the reaction curve drawn using (57).

Since the risk-shifting incentive is positive, the reaction curve RC ′ must lie above that of RC . Figure 9

represents the change simply as an upward twist in the slope.

Figure 9: Upward twist in the risk curve due to replacing subordinated debt by risk-inducing CoCos
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So suppose that the regulator has chosen the probability of default pd and has imposed leverage D1 on

the banks, i.e. Point 1 in Figure 9, as in the benchmark case. Then, suppose for the sake of increasing loss

absorption capacity, Ds subordinated debt is completely replaced with either a PWD or a nondilutive CE

CoCo. This change causes the reaction curve to twist up from RC to RC ′. As the bank did not change its

leverage ratio, it still has D1 leverage, but because of the potential wealth transfer brought about by the

change from subordinated debt to equity, the risk incentives are higher: the bank’s position is now at Point

2, where leverage is at D1 but risk choice is at σ2 > σ1. What should the regulator do in this situation?

At Point 2, the risk level σ2 and leverage D1 combination implies a probability of default which is higher

than pd . To get back at pd for risk level σ2, she should impose higher capital requirements (lower leverage)

D2, as indicated in Figure 9 . But raising capital requirements by an additional D1 − D2 in turn leads to a

lower risk choice of σ3, which now implies a probability of default below pd , and so on. The new set of

equilibrium values is at Point 4, with a higher risk choice than at Point 1 but a correspondingly larger loss

absorption capacity because of the associated higher capital requirement.
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Proposition 12. When PWD and nondilutive CE CoCos are used by banks in their capital structure in place

of subordinated debt, regulators should increase capital requirements if they want banks to choose risk levels

that are consistent with the regulators’ own preference.

So given that subordinated debt only quali�es as Tier 2 capital under Basel III, it is arguable that PWD

CoCos should not have been included as Additional Tier 1 equity regardless of the trigger level, because

PWD CoCos lead to higher risk-shifting incentives. As conversion of a writedown CoCo wipes out a junior

creditor, it allows the shareholder/manager to jump the seniority ladder. Therefore, they will not act in a

safer manner even when compared with the case where these instruments are subordinated debt instead.

Much of the CoCos issued between 2013 to 2015 have done just that, replace expiring subordinated debt.20

The situation is better when dilutive CE CoCos are considered, because the movement of the expected

wealth transfer is away from the shareholder to the CoCo holder. Relative to subordinated debt, the same

amount of CoCos have an additional term, RSI . The RSI for CE CoCos fall as the dilution parameter ψ

increases, and are negative for ψ < ψ̃ . Therefore, combining (57) and (58) for a negative value of RSI , the

RC twists downwards to some RC ′′ instead of upwards. Figure 10 shows this other case.

Figure 10: Downward shift of the risk curve due to replacing subordinated debt by dilutive CoCos
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As with the other case, suppose that the regulator has chosen the probability of default pd and has

imposed leverage D1 on the banks, i.e. Point 1 in Figure 10, as in the benchmark case. Then, suppose for

the sake of increasing loss absorption capacity, Ds subordinated debt is completely replaced with a dilutive

CoCo. This change causes the reaction curve to twist down from RC to RC ′′. The fall in the reaction curve

for a given leverage D1 actually causes the bank’s risk choice to fall from σ1 to σ2, in contrast to if the
20Thompson, C. (2013, Dec. 17). Big rise in subordinated debt issuance by EU banks. Financial Times. Retrieved from

https://www.ft.com/content/ca18e0f4-6732-11e3-a5f9-00144feabdc0
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reaction curve twists upwards. To reach Point 4 in Figure 10, the regulator actually has to lower capital

requirements to induce banks to take the optimal level of risk given RC ′′ and pd , which is σ4. Seen this

way, dilutive CoCos are a legitimate component of Additional Tier 1 capital, because they induce banks to

choose lower risk levels for a given leverage D.

Proposition 13. When dilutive CE CoCos are used by banks in their capital structure in place of subordinated

debt, regulators may decrease capital requirements if they want banks to choose risk levels that are consistent

with their own preference.

8 Conclusion

CoCos have become popular among banks since the emergence of Basel III and the Total Loss Absorption

Capacity (TLAC) Standard by the Financial Stability Board. The reason is that CoCo conversion enhances

loss absorption capacity by reducing the bank’s leverage. However, an unintended consequence of this

feature is that a wealth transfer occurs between the CoCo holders and the original shareholders when the

conversion takes place. The wealth transfers may encourage the issuing bank to make conversion more

likely. In this paper, we have looked at the implications of these wealth transfers on the issuing bank’s

risk-shifting incentives, relative to the same amount of subordinated debt.

By writing the issuing bank’s residual equity as a linear combination of the pre-and post-conversion

states, with the probability of conversion as the weighting factor, we were able to express the residual

equity as one of a bank that has issued subordinated debt, plus an expected wealth transfer. The expected

wealth transfer is the product of the wealth transfer and the conversion probability. While the literature

has paid attention to the wealth transfer, it has largely taken the conversion probability as exogenous. We

have endogenized this probability, as we recognize that this is in�uenced by a bank’s risk choices.

The expected wealth transfer is a�ected by risk in two con�icting ways. First, higher risk levels increase

the probability of conversion, which increases the expected wealth transfer. E�ectively, this allows the

shareholder to make conversion more likely. Second, the gains from the wealth transfer decrease as risk

increases. In short there is a diminishing marginal gain in wealth transfers as risk increases, as the bank’s

skin in the game rises upon conversion. Unfortunately, the positive �rst e�ect dominates the negative

second e�ect when initial risk levels or leverage ratios are su�ciently high, which are the circumstances

that should give regulators cause for concern.
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We have shown that the strength of the risk-shifting incentives is strongly in�uenced by CoCo design.

As PWD CoCos and nondilutive CE CoCos always transfer wealth to equity holders upon conversion,

the risk-shi�ting incentive is positive. On the other hand, dilutive CE CoCos transfer wealth from equity

holders to CoCo holders. The threat of dilution results in negative risk-shifting incentives relative to sub-

ordinated debt. The risk-shifting incentives act as a wedge in a bank’s optimization problem, such that the

optimal risk choice is di�erent from that under the same amount of subordinated debt. For PWD CoCos

and nondilutive CE CoCos, the risk choices are higher than under the same amount of subordinated debt,

while for dilutive CE CoCos, it is lower.

These results naturally lead to further questions concerning capital requirements. A corollary of our

results is that the interaction between capital requirements and asset-side portfolio risk must be carefully

considered whenever amendments are made to existing policies. If CoCos are to continue to play an im-

portant role in the capital structure of banks, the level of capital requirements should also depend on how

they are met. In that vein we have shown that some of the disadvantages of nondilutive CoCos can be

o�set by raising the bar higher: if inappropriate CoCo design increases risk taking incentives, that e�ect

can be counteracted by requiring more skin in the game, i.e. by setting the requirement ratios higher than

they are set for the case of pure equity or su�ciently dilutive CoCos.

These results are important in setting regulations. Basel III and the TLAC Standard were written with

the focus on increasing loss absorption capacity of the �nancial system. To a substantial extent, this loss

absorption capacity is being �lled by CoCos, in particular for meeting TLAC requirements. But to achieve

a more robust �nancial system, it is not enough to only consider loss absorption capacity. We must also

consider regulation that prevents banks from choosing excessively risky actions in the �rst place, as the

designers of Basel II fully realized when introducing risk weights. Capital regulation is meant to force

banks to put more skin in the game in order to reduce risk-shifting incentives, and not just to increase loss

absorption capacity for given risk levels. While CoCos are hybrids of debt and equity, it doesn’t always

mean that the risk levels they induce will be between those induced by debt and equity. As we have shown,

not all CoCos are created equal - some have higher risk-shifting incentives than others. At the very least, the

type of CoCo that is allowed to �ll in Additional Tier 1 capital requirements should be restricted to equity

converters, and among those only CE CoCos which are su�ciently dilutive. In this way, one minimizes the

chance that the loss absorption capacity has to be used in the �rst place.
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Appendix

A Mathematical foundations: the call option function and its deriva-

tives

Denote a call option with strike price D and expected return R asC [R, D]. The full expression forC [R, D]

is

C [R, D] = exp (−r ) [R exp (r ) Φ (d1) − DΦ (d2)]

= RΦ (d1) − exp (−r ) DΦ (d2)

where r is the risk-free rate, Φ (·) is the cumulative density function of the standard normal distribution,

d1 =
1
σ

[
ln R

D + r +
1
2σ

2
]

and d2 =
1
σ

[
ln R

D + r −
1
2σ

2
]
. We use the following �rst and second-order partial

derivatives of C [R, D] in the paper.

A.1 Vega

Vega is the sensitivity of the option value with respect to the volatility of its underlying assets. It is calcu-

lated by taking the derivative of the call option with respect to volatility σ :

V [R, D] =
∂C [R, D]
∂σ

= Rϕ (d1) > 0

where ϕ (·) is the probability density function of the standard normal distribution.

A.2 CD : The derivative of the call option with respect to the strike price D

CD =
∂C [R, D]
∂D

= − exp (−r ) Φ (d2) < 0

A.3 Vσ : The second-order derivative of C [R, D] with respect to σ

The second-order derivative of C [R, D] with respect to σ is the �rst-order derivative of vega with respect

to σ . We refer to this shorthand as Vσ in the text.

Vσ =
∂2C [R, D]
∂σ 2 =

∂V [R, D]
∂σ

= Rϕ ′ (d1)
∂d1

∂σ
= −Rϕ (d1) d1

(
1 −

d1

σ

)
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which is negative for values of σ 2 > 2
(
ln R

D + r
)
.

A.4 VD : The cross-order partial derivative of C [R, D] with respect to σ and D

The cross-order partial derivative of C [R, D] with respect to σ and D is also the �rst-order derivative of

vega with respect to the strike price D. We refer to this shorthand as VD in the main text.

VD =
∂2C [R, D]
∂σ∂D

=
∂V [R, D]
∂D

= Rϕ ′ (d1)
∂d1

∂D
= −Rϕ (d1) d1

(
−

1
σD

)
=

R

D
ϕ (d1)

d1

σ
> 0

Note that VD can be written in terms of Vσ as follows:

VD = −
Vσ

D (σ − d1)

which is positive whenever σ 2 > 2
(
ln R

D + r
)
, precisely the same condition that keep Vσ < 0. Moreover,

VD → 0 as the gap between σ and d1 widens: as σ increases,VD shrinks to 0. For a given σ ,VD goes to zero

as D rises. We refer to σ 2 > 2
(
ln R

D + r
)

and the widening of the gap between σ and d1 as high fragility

conditions: σ 2 > 2
(
ln R

D + r
)

is necessary but not su�cient.

B Proof for various results in the paper

B.1 Proof that ∂
2pc

∂τ ∂σ < 0

∂2pc

∂τ ∂σ
=

∂

∂σ

(
∂pc

∂τ

)
=

σ (1 − τ ) ϕ (−dc ) dc
(
∂dc
∂σ

)
− ϕ (−dc ) (1 − τ )

σ 2 (1 − τ )2

=
ϕ (−dc ) (1 − τ )

[
σdc

∂dc
∂σ − 1

]

σ 2 (1 − τ )2

=
ϕ (−dc ) (1 − τ )

[
−σdc

(
1 + dc

σ

)
− 1

]

σ 2 (1 − τ )2

< 0
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B.2 Proof thatWFpwd → 0

The risk-shifting incentive for a PWD CoCo (17) has two terms: the conversion probability factor CFpwd

and the wealth transfer factorWFpwd . WFpwd can be rewritten as the di�erence between the vegas of two

call options that di�er only in the strike price. Using the de�nition of vega from A.1 and VD from A.4, we

can use the mean value theorem to rewrite this di�erence as follows:

WFpwd = pc (V [R, Dd + φDs ] −V [R, Dd + Ds ])

= −pc
(
(1 − φ) DsVD

[
R, D ′

] )
for some D ′ ∈ [Dd + φDs , Dd + Ds ]. In A.4, we have noted that when the high fragility condition holds,

we have that VD goes to zero, such thatWFpwd goes to zero as well.

B.3 Impact of φ on the risk-shifting incentives of PWD CoCos.

Since C [R, Dd + Ds ] and V [R, Dd + Ds ] are not functions of φ, we may express (28) as

∂RSIpwd

∂φ
=
∂pc

∂σ

∂C [R, Dd + φDs ]
∂φ︸                       ︷︷                       ︸

∂CFpwd /∂φ

+pc
∂V [R, Dd + φDs ]

∂φ︸                     ︷︷                     ︸
∂W Fpwd /∂φ

= −
∂pc

∂σ
exp (−r ) Φ

(
d∗2

)
Ds︸                          ︷︷                          ︸

∂CFpwd /∂φ

+pc
Rϕ

(
d∗1

)
Ds

Dd + φDs

d1

σ︸              ︷︷              ︸
∂W Fpwd /∂φ

= −
∂pc

∂σ
exp (−r ) Φ

(
d∗2

)
Ds︸                          ︷︷                          ︸

∂CFpwd /∂φ

+pcV ∗D
Ds

Dd + φDs︸             ︷︷             ︸
∂W Fpwd /∂φ

Line 2 follows from the fact that φ is a variant of D, enabling us to use the chain rule to link D and φ. A.2

and A.4 describe how to di�erentiate C [·] and V [·] with respect to D. The notations d∗1 and d∗2 indicate

that the functions d1 and d2 were evaluated at strike price Dd + φDs instead of a generic strike price D.
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B.4 Proof that ψ̃ < ψ̄

The equation for RSIce is

RSIce =
∂pc

∂σ

(
C [R, Dd ]
1 +ψDs

−C [R, Dd + Ds ]
)

︸                                        ︷︷                                        ︸
CFce

+pc
(
V [R, Dd ]
1 +ψDs

−V [R, Dd + Ds ]
)

︸                                      ︷︷                                      ︸
W Fce

.

In Section 4.3 we have found that ψ = ψ̄ sets the wealth transfer to 0, implying that CFce = 0, while

WFce remains negative. As CFce andWFce are generally of opposite signs, we need only choose a ψ that

makes CFce positive and exactly o�sets the negative value of WFce . In other words, choose ψ such that

pc
(
V [R, Dd ]

1+ψDs
−V [R, Dd + Ds ]

)
=

∂pc

∂σ

(
C[R, Dd ]

1+ψDs
−C [R, Dd + Ds ]

)
. Let us call this value ψ̃ . We claim that

ψ̃ < ψ̄ . The expression for ψ̄ is

ψ̄ =
1
Ds

(
C [R, Dd ]

C [R, Dd + Ds ]
− 1

)
.

On the other hand, the expression for ψ̃ is

ψ̃ =
1
Ds

*
,

∂pc

∂σ C [R, Dd ] + pcV [R, Dd ]
∂pc
∂σ C [R, Dd + Ds ] + pcV [R, Dd + Ds ]

− 1+
-
=

1
DS

*.
,

C [R, Dd ]
(
∂pc

∂σ + pc
V [R, Dd ]
C[R, Dd ]

)
C [R, Dd + Ds ]

(
∂pc
∂σ + pc

V [R, Dd+Ds ]
C[R, Dd+Ds ]

) − 1+/
-
.

ψ̄ = ψ̃ if and only if V [R, Dd ]
C[R, Dd ] =

V [R, Dd+Ds ]
C[R, Dd+Ds ] . However, we can write V [R, Dd+Ds ]

C[R, Dd+Ds ] as follows:

V [R, Dd + Ds ]
C [R, Dd + Ds ]

=
V [R, Dd ] +VDDs

C [R, Dd ] +CDDs
>
V [R, Dd ]
C [R, Dd ]

(59)

where VD and CD are the derivatives of vega and the call option value with respect to the strike price,

respectively. The inequality follows from CD < 0 < VD : the value of a call option falls when the strike

price rises, while the vega of a call option rises when the strike price rises. Therefore we have shown that

ψ̃ < ψ̄ , as claimed.

B.5 Derivation of σ ∗s in terms of σ ∗e

We use the mean value theorem to write V [R, Dd + Ds ] |σ ∗s in terms of V [R, Dd ] |σ ∗e , using Vσ and VD :

V [R, Dd + Ds ] |σ ∗s = V [R, Dd ] |σ ∗e +
(
Vσ |σ

∗
e
) (
σ ∗s − σ

∗
e
)
+ (VD |Dd ) Ds ,
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enabling us to write the �rst order conditions as

V [R, Dd ] |σ ∗e +
(
Vσ |σ

∗
e
) (
σ ∗s − σ

∗
e
)
+ (VD |Dd ) Ds = (σ ∗s − σ

∗
e )bX + σ

∗
ebX . (60)

Subtracting (38) from (60) leads to

σ ∗s = σ
∗
e +

VD |Ds

bX − (Vσ |σ
∗
e )
> σe .

We assume that the default coe�cient bX is large enough such that bX − Vσ > 0. Actually, from A.3,

Vσ < 0 whenever σ 2 > 2
(
ln R

D + r
)

holds, so the assumption that bX > Vσ is always justi�ed, as our

analysis assumes it.

B.6 Derivation of σ ∗
pwd

and σ ∗ce in terms of σ ∗s

We may use the mean value theorem to rewrite (46), the �rst order condition of a PWD CoCo:

V [R, Dd + Ds ] |σ ∗pwd + RSIpwd = V [R, Dd + Ds ] |σ ∗s +
(
Vσ |σ

∗
s
) (
σpwd − σs

)
+ RSIpwd .

If we subtract (42) from it, we obtain

σ ∗pwd = σ
∗
s +

RSIpwd

bX − (Vσ |σ
∗
s )
> σ ∗s .

Similarly, we may use the mean value theorem to write (48), the �rst order condition of a CE CoCo:

V [R, Dd + Ds ] |σ ∗ce + RSIce = V [R, Dd + Ds ] |σ ∗s +
(
Vσ |σ

∗
s
) (
σ ∗ce − σ

∗
s
)
+ RSIpwd

If we subtract (42) from it, we obtain

σ ∗ce = σ
∗
s +

RSIce
bX − (Vσ |σ

∗
s )
> σ ∗s .
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