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Abstract

A novel dynamic asset-allocation approach is proposed where portfolios as well as
portfolio strategies are updated at every decision period based on their past perfor-
mance. For modeling, a general class of models is specified that combines a dynamic
factor and a vector autoregressive model and includes stochastic volatility, denoted
by FAVAR-SV. It is an extended version of a factor-augmented vector autoregressive
model, Bernanke et al. (2005). Next, a Bayesian strategy combination is introduced
in order to deal with a set of strategies. Our approach extends the mixture of the
experts analysis (Jacobs et al., 1991, Jordan and Jacobs, 1994, Jordan and Xu,
1995, Peng et al., 1996), by allowing the strategic weights to be dependent between
strategies as well as over time and to further allow for strategy incompleteness. Our
approach results in a combination of different portfolio strategies: a model-based and
a residual momentum strategy, see Blitz et al. (2011). The estimation of this model-
ing and strategy approach can be done using an extended and modified version of the
forecast combination methodology of Casarin et al. (2016). In the approach use is
made of an implied state space structure for model and strategy weights. Given the
complexity of the non-linear and non-Gaussian structure a new and efficient filter is
introduced based on the MitISEM approach, see Hoogerheide et al. (2012). Using US
industry portfolios between 1926M7 and 2015M6 as data, our empirical results indi-
cate that time-varying combinations of flexible models in the FAVAR-SV class and
two momentum strategies lead to better return and risk features than very simple
and very complex models. More specifically, the proposed model combinations help
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to improve return features like mean returns and Sharpe ratios while combinations of
two strategies help to reduce risk features like volatility and largest loss. The latter
result indicates that complete densities provide useful information for risk.

1 Introduction

Traditional factor models rely on macro or firm specific factors to explain expected
pay-offs of financial assets, see Fama and French (1992, 1993, 2015). Given several
stylized facts about asset returns, such as a stationary auto-regressive pattern, strong
time-varying cross-section correlations between series, and clusters of volatility com-
mon to all series, more flexible and complex model structures may be better suited
for this purpose. In the literature, several dynamic factor models, with different long
and short-run dynamics for returns, are shown to be useful in capturing such data
properties, see Ng et al. (1992), Quintana et al. (1995), Aguilar and West (2000)
and Han (2006) among several others. In a vector autoregressive model the issue of
stationarity of the time series strongly influences long-run predictability.
In order to capture different stylized facts, we specify several combinations of dynamic
models. These models are components of an extended version of a factor-augmented
vector autoregressive model, see Bernanke et al. (2005) and Stock and Watson (2005),
which includes stochastic volatility and is denoted by FAVAR-SV.
Standard portfolio analysis compares realized returns from different portfolio strate-
gies and assesses the performance. But predicted returns using dynamic models do
not lead directly to a practical policy tool for investors, that is, to a decision which
portfolio strategy to follow. Common practice is instead to compare realized returns
from different portfolio strategies and select the best performing one, see e.g. Aguilar
and West (2000). Alternatively, it is possible to incorporate a specific portfolio strat-
egy in the model, but this typically requires a specific model-based strategy such as
mean-variance optimization, see e.g. Winkler and Barry (1975), and a specific utility
function for the investor, see e.g. Aguilar and West (2000).
In this paper we consider a large set of dynamic models and combinations of models
with different short and long-run dynamics in direct connection with different port-
folio strategies that an investor can follow. The obtained dynamic asset-allocation
can be seen as a mixture of alternative models and alternative portfolio strategies.
Our strategy approach extends the mixture of the experts analysis (Jacobs et al.,
1991, Jordan and Jacobs, 1994, Jordan and Xu, 1995, Peng et al., 1996), by allowing
the strategy weights to be dependent between strategies as well as over time and to
further allow for strategy incompleteness. This, to the best of our knowledge, novel
methodology provides dynamic asset-allocations, where the underlying models, port-
folios as well as portfolio strategies are updated at every decision period.
We present an extension of the density combination scheme in Casarin et al. (2016)
in order to obtain these time-varying model and portfolio strategy combinations.
Using this scheme, we combine alternative models and portfolio strategies in a fully
Bayesian setting, where predictive distributions of each model and strategy outcome
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affects the weights of the strategies and models. In return, the trading strategy, or
the policy recommendation to the investor, includes the uncertainty in the strategy
and model outcome.
The flexible model and strategy combination structure of the density combinations
is estimated using a non-linear and non-Gaussian state space model. This brings a
challenge in terms of the estimation robustness and length of computing time, partic-
ularly in case of a large number of stocks, a large number of models and strategies. In
order to mitigate computing time, we introduce a novel non-linear and non-Gaussian
filter: the MitISEM Filter (M-Filter) that is embedded in the density combination
procedure. The M-Filter is based on the MitISEM procedure recently proposed by
Hoogerheide et al. (2012) and developed in Baştürk et al. (2016). Through a set
of simulation studies, we show that the proposed filter is an improvement in terms
of the approximation capabilities and computing time compared to other non-linear
and non-Gaussian filters such as Bootstrap Particle Filter (PF) and the Auxiliary
Particle Filter (APF).
We investigate the performance of the model and portfolio strategy combination
method and the M-Filter using US industry portfolios between 1926M7 and 2015M6.
Our results show that time-varying combinations of flexible models in the FAVAR-
SV class and two momentum strategies lead to better return and risk features than
very simple and very complex models. More specifically, the proposed model com-
binations help to improve return features like mean returns and Sharpe ratios while
combinations of two strategies help to reduce risk features like volatility and large
loss. The latter result indicates that complete densities provide useful information for
risk. We emphasize that our results are conditional upon our data set, US industrial
portfolios over the period 1926M7 and 2015M6, as well as our model and strategy
set.
The contents of this paper are structured as follows: Section 2 introduces the dy-
namic models used for US industry returns. Section 3 describes the combined model
and portfolio strategies. Section 4 summarizes the density combination scheme and
introduces the MitISEM Filter. The approximation and speed performances proper-
ties of this novel filter in combining models and portfolio strategies is shown through
a set of simulation studies. Section 5 contains the empirical application with 10 US
industrial portfolios. Section 6 concludes.

2 Stylized facts about US industrial portfolios

and dynamic model structures

In this section we summarize stylized facts about the returns of ten US industry
portfolios between 1926M7 and 2015M6 and further key features of dynamic models
that will be used to model these returns. Figure 1(a) presents monthly returns of the
industry portfolios labelled as ‘non-durables’, ‘durables’, ‘manufacturing’, ‘energy’,
‘hi-tech’, ‘telecom’, ‘shops’, ‘health’, ‘utilities’ and the final category ‘others’. The
returns of each industry are constructed by equally weighting all stock returns in the
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Figure 1: Monthly percentage returns, explained variation from principle components and canonical
correlations 10 US industry portfolios. Principle components in Figure 1(b) and correlation calcula-
tions in Figure 1(c) are based on moving windows with 240 monthly observations. We use first 50
observations as the initial sample and calculate expanding windows until observation 240.
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specific industry.1

We present a descriptive analysis of the correlation between series, co-movements
between series, and the change of these over time. In Figure 1(b) the major canon-
ical correlation coefficients between the pairs of series are given. In Figure 1(c) the
percentage of variation in the series explained by the first four principal components
is shown. Principle components and correlation calculations are based on moving
windows with 240 monthly observations.
One may observe, at least, four stylized facts from Figures 1(a)–1(c): a stationary
auto-regressive time-series pattern for all return series, a strong cross-section correla-
tion between returns with a time-varying pattern, thirdly, a clear volatility clustering
that is common to all series, and finally the total variation in the series can be cap-
tured well with one to four principle components but the explained variation, hence
the number of common factors for these series, is time-varying. Given these data
features, we consider different models and combination of models with alternative
short and long-run dynamics and distributions.
All models considered are members of the following general class of models:

yt = βxt + Λft + εt, εt ∼ N(0,Σt),

ft = φ1ft−1 + . . .+ φLft−L + ηt, ηt ∼ N(0,Qt).
(1)

In (1), the dependent variable yt = (y1t, . . . , yNt)
′ is the N × 1 vector of industrial

portfolio returns, where yit denotes the return from industry i at time t and the
time series runs from t = 1, . . . , T . The P × 1 vector of predetermined variables xt
can contain explanatory variables or lagged dependent variables. The K × 1 vector
ft contains unobservable factors with possibly L lags, where φj for j = 1, . . . L is a
K ×K matrix of autoregressive coefficients. Λ is an N ×K matrix of factor load-
ings. Finally, εt is an N × 1 i.i.d. vector of idiosyncratic disturbances distributed
as N(0,Σt) where the time varying variance-covariance matrix may be constant as
a special case and ηt is an K × 1 i.i.d. vector of latent disturbances distributed as
N(0,Qt) where also the time varying variance-covariance matrix may be constant as
a special case.
Different short and long-run dynamic behavior of the model in equation (1) is ob-
tained by specifying different assumptions regarding the predetermined variables xt,
long and short-run lag structure, the idiosyncratic disturbances and the latent dis-
turbances. The most basic factor model assumes β = 0(N×P ), a normal distribution
for the idiosyncratic and latent disturbances with time-invariant variance-covariance
matrices. We denote this model by DFM, and note that several features of the return
data are not well modeled. Another basic model is obtained by letting Λ = 0(N×K)

and defining xt as the lagged dependent variable. This gives the vector-autoregressive
model with a normal distribution for the idiosyncratic disturbances with a time-
invariant variance-covariance matrix, denoted by VAR.
A second subclass of models has a stochastic volatility component. When this is

1The data are retrieved from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french on 24/10/2015.
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specified only in the idiosyncratic disturbances, we denote this with DFM-SV or
VAR-SV. When stochastic volatility components are modeled for the idiosyncratic
and the latent disturbances, we denote the model by DFM-SV2.
The third group of models is the general model with dynamic factors and lagged de-
pendent variables, and further stochastic volatility in the idiosyncratic and latent dis-
turbances. Our general class of models is an extended version of a factor-augmented
VAR model, see Bernanke et al. (2005) and Stock and Watson (2005), which we
denote by FAVAR-SV and FAVAR-SV2. We provide details on the specification of
the models in Appendix A together with their prior specification and Bayesian esti-
mation procedures.
In our empirical analysis, reported in Section 5, we explore the performance of al-
ternative combinations of models and equity momentum strategies in two steps. We
start with the performance of portfolio strategies going from a basic DFM or VAR
model to the more complex FAVAR-SV class. As a central issue, we explore the
behavior of time-varying mixtures of basic as well as flexible model structures in
combination with two momentum strategies. A reason for this is that the stylized
facts of the present section indicate a time-varying pattern in the volatility and cross-
correlations.
We end this section with a remark on identification. The general model in equation
(1) is not identified without further parameter restrictions. This is clearly seen from
the following equality:

ftΛ = ftRR−1Λ,

for any K ×K invertible matrix R, which has K2 free parameters. Hence at least
K2 restrictions are needed for the model to be identified, see Geweke and Zhou
(1996), Lopes and West (2004) and more recently Bai and Peng (2015). We also
make use of the restriction of a diagonal covariance matrix. In all models, we follow
the identification scheme in Lopes and West (2004).

3 Combining portfolio models and strategies

Conditional upon available information on investment opportunities, portfolio anal-
ysis compares realized returns from different strategies and assesses their perfor-
mance. Econometric models, such as those presented in Section 2, can be used
to yield valuable information and result in accurate predictive densities of the de-
pendent variables. Such econometric model forecasts can then serve as input for a
portfolio strategy that the investor wants to consider, but this incorporation is not
straightforward. Modeling portfolio strategies jointly with return distributions typ-
ically requires a strategy such as mean-variance optimization, see e.g. Winkler and
Barry (1975) and/or a specific utility or loss function for the investor, see e.g. Aguilar
and West (2000).
A novel contribution of this paper is to connect portfolio strategy decisions directly
with model comparison and model combination, without the need to specify a loss or
utility function for the investor. Our approach is also different from a conventional
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model combination approach since in our case the main policy decision of an investor,
which is deciding on portfolio weights based on alternative investment strategies and
underlying models, is directly connected to the model combination. The resulting
model and investment strategy combination is a mixture of alternative models and
mixture of alternative portfolio strategies that an investor may want to follow.
Several different portfolio strategies are proposed in the literature. Some of these
strategies, such as the standard momentum strategy, are not based on a model and
are hence hard to incorporate in modeling. Recently, residual momentum strategies
are shown to perform well, see e.g. Blitz et al. (2011). Those strategies are obtained
using the residuals of a specific model. Stocks with unexpected (surprise) returns in
last P periods are shown to perform better than the remaining returns. A residual
momentum strategy in practice sorts the last P residuals from the model, e.g. the
modelMm defined by (1) using specific assumptions, and invests in the stocks which
have high estimated residuals, and goes short in the stocks which have low residuals
over the period P .
We consider two equity momentum strategies based on the fitted return distributions
of industry returns from a specific model. In the first strategy, denoted by Model
Momentum (M.M.), the investor uses the fitted industry returns in the past period
to go long in assets with the highest posterior mean and to go short in assets with
the lowest posterior mean. I.e. the investment decision is based on the model impli-
cation directly. In the second strategy, denoted by Residual Momentum (R.M.), the
investor considers fitted industry returns in the past period for each industry, and
invests in the industries with the highest unexpected returns during this month, and
goes short in stocks with the lowest unexpected returns.
In the empirical applications, we apply several model and portfolio strategy combi-
nations in order to obtain profitable ‘industry momentum portfolios’. The obtained
model and residual momentum strategies are similar to Moskowitz and Grinblatt
(1999), where the investor decides on the portfolio weights given to each industry.
Our approach to form industry portfolios is, however, different from these authors
since we consider a large set of models and model combinations and we use a Bayesian
approach. Our methodology provides a fully Bayesian framework to account for
model uncertainty and strategy uncertainty. From the posterior draws of model
parameters, it is straightforward to construct predictive return densities from each
strategy. These ‘density forecasts’ account for parameter uncertainty in the models
as well as in the strategy choice. We illustrate this point in detail below.

Constructing a model based portfolio strategy: For a given model Mm

for m = 1, . . . ,M , we define a portfolio strategy Ss for s = 1, . . . , S. For N industries,
industry portfolio weights at a portfolio decision time t depends on the strategy and
the underlying model, since all portfolio strategies we consider are model-dependent.
We denote these weights by the N × 1 vector ωt,s,m to indicate that these weights
are strategy and model dependent.
For calculating model and residual momentum strategies, we use a common measure
of the cumulative raw return for the past P observations on the asset to decide on
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the portfolio weights. In the empirical application to monthly data, we set P = 12
as in Jegadeesh and Titman (1993) and Fama and French (1996). For the portfolio
decisions, we skip the most recent observation as in standard momentum literature,
see e.g. Asness et al. (2013). Then the constructed portfolio is held for P months,
after which a new model estimation and portfolio construction is made. We note
that increasing the momentum period and the corresponding portfolio holding pe-
riod mitigates the transaction costs. The realized return of such a portfolio can be
calculated as follows:

rreal
t+P = ι · yt+1:t+P · ωt,s,m, (2)

where ι is a 1×P vector of ones, and yt+1:t+P = (yt+1 . . .yt+P )′ is the P ×N matrix
of realized returns for each stock in the portfolio, after the skip period. In other

words, rreal
t+P is the total return during the holding period.

Different models for returns and different portfolio strategies imply different portfolio
weights, ωt,s,m. The portfolio strategies we consider define portfolio weights, ωt,s,m,
as a deterministic function of the model, investment strategy and past data points,
as explained in detail below.

Model and strategy uncertainty in realized returns: When the portfolio
strategy is explicitly based on a model Mm, we show that model and parameter
uncertainty can be taken into account in a straightforward way in calculating the
realized returns from a strategy.
First, when the portfolio construction is based on a specific model Mm, Bayesian
inference of the model provides posterior distributions of model parameters together
with the weights of the portfolio in (2). Consider a deterministic portfolio strategy
Ss for model Mm, past data points yt−P+1:t and residuals εt−P+1:t:

ωt,s,m = gs(yt−P+1:t, ε
(m)
t−P+1:t), (3)

where εt−P+1:t = (εt−P+1, . . . , εt)
′ are the residuals of the model in (1), ωt,s,m =

(ωt,s,m,1, . . . , ωt,s,m,N )′ are the portfolio weights, and gs(·) is a deterministic function
defined by the portfolio strategy.
In practice, we obtain posterior draws from these residuals via MCMC, hence draws

from the deterministic weights are obtained. Given D posterior draws ε
(m,d)
t−P+1:t for

d = 1, . . . , D, we obtain draws from the weight distribution:

ω
(d)
t,s,m = gs(yt−P+1:t, ε

(m,d)
t−P+1:t). (4)

Using (4), realized returns from a specific model and investment strategy in (2) also
have a posterior distribution. Posterior draws from this distribution are obtained as
follows:

r
real(d)
t+P = ι · yt+1:t+P · ω(d)

t,s,m, (5)

where yt+1:t+P is observed data during the investment period.
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Model and parameter uncertainty in predicted returns: Similar to the
case of realized returns, predicted returns from each model and strategy can also
be calculated using the posterior parameter draws in a straightforward way. These
predicted returns from strategies and models constitute the basis of our Bayesian
model and strategy combination approach. Specifically, our model combination is
based on the one period ahead predictive densities for the ‘skip period’ in portfolio
strategies. This one period ahead predictions of returns can be calculated as follows:

r̃
(d)
t+1 = y

(m,d)
t+1 · ω

(d)
t,s,m, (6)

where y
(m,d)
t+1 is a draw from the 1 step ahead forecasts of returns.

We next summarize how the weight function in (3) is defined in different portfolio
strategies.

3.1 Standard momentum strategy

We first summarize one of the most common portfolio strategies, standard momen-
tum, which constitutes the baselines for our model comparison. We note that this
strategy is not based on a specific model, therefore the distribution of the weights in
(3) and the distribution of the realized returns in (2) have a point mass. In addition,

the is no underlying model to obtain ‘forecast’ of returns, y
(m,d)
t+1 , hence (6) cannot

be calculated for this strategy.
For the standard momentum strategy, at each portfolio decision time tp, past perfor-
mance of the returns are assessed based on the cumulative returns during the past P
periods. We consider such a strategy that invests in the top 10% ‘winner’ stocks and
goes short in the bottom 10% ‘loser’ stocks. Winner and loser stocks are determined
according to the past performances. For portfolio weight of each stock is calculated
as follows:

ωt,s,m,n = ωt,n =


1 if ȳn,t ≥ quant(ȳt, 0.90)
−1 if ȳn,t ≤ quant(ȳt, 0.10)

0 otherwise
, (7)

where ȳn,t =
∑P

p=1 yn,t−p and ȳt = (ȳ1,t, . . . , ȳN,t)
′ is the set of cumulative returns

during the momentum period, yt = (y1,t, . . . ,yN,t)
′ and quant(x, p) denotes the

100× p percent quantile of the elements of vector x. The breakpoints of momentum,
90% and 10%, can be adjusted for different portfolio strategies.

3.2 Model based momentum and residual momentum
strategies

As an alternative to the standard momentum strategy, we propose a model-based
momentum strategy where the past performances of returns are evaluated according
to the fitted distributions of yt, where posterior draws from the fitted distribution
are obtained using MCMC. The momentum strategy in this case is similar to (7),
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with the following distinction: ȳn,t =
∑P

p=1 yn,t−p and ȳt = (ȳ1,t, . . . , ȳN,t)
′ in (7)

are calculated as the posterior means of the fitted return distributions. To our knowl-
edge, such a momentum strategy is not considered in the literature, but it serves as
a natural extension of the standard momentum strategy when alternative underlying
models for returns are taken into account.
In addition, we consider a model-based residual momentum strategy, where the un-
derlying model is one of the factor models in Section 2. These model and strategy
combinations can be seen as an extension of Blitz et al. (2011).
The residual momentum strategy proposed in Blitz et al. (2011) sorts the returns
based on past P residuals from the Fama-French factor model. The stocks with
unexpectedly high past performance (corresponding to high residuals) are given a
positive weight and the stocks with unexpectedly low past performance (correspond-
ing to low residuals) are given a negative weight.
In order to make a link with our models, we explain this strategy for all models of
the form (1). Given model Mm, the weights are computed as follows:

ωt,s,m,n =


1 if ε̄

(m)
n,t ≥ quant(ε̄

(m)
t , 0.90)

−1 if ε̄
(m)
n,t ≤ quant(ε̄

(m)
t , 0.10)

0 otherwise.

(8)

where ε̄
(m)
n,t = 1

P

∑P−1
k=0 ε

(m)
n,t−p is the average of the estimated residual for the last

P periods. In addition, ε̄
(m)
t =

(
ε̄
(m)
1,t , . . . , ε̄

(m)
N,t

)′
, ε

(m)
t =

(
ε
(m)
1,t , . . . , ε

(m)
N,t

)′
and

quant(x, p) denotes the 100× p percent quantile of the elements of vector x.

4 Density combinations and

the MitISEM filter

The proposed dynamic asset-allocation can be seen as a mixture of alternative models
and alternative portfolio strategies with sequential updating. In order to implement
this approach, we make use of the general density combination approach developed in
Billio et al. (2013), Casarin et al. (2015) and recently Casarin et al. (2016). We extend
this approach that is aimed at forecasting to a mixture of forecasting and strategy
combinations. In this section, we start with a brief summary of the existing density
combination approach. Next, in order to improve the computational efficiency of the
procedure, we present a new filter, labelled the MitISEM Filter (M-Filter) that is
used in the combination methodology. Finally, we present details of the model and
portfolio strategy combinations using both density combinations and the M-Filter.

4.1 Density combination

A density combination approach usually consists of a convolution of three classes of
densities: a model combination density, a weight density and a density of the predic-
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tors of many models. Casarin et al. (2016) provide a representation of this approach
as a large finite mixture of convolutions of densities of different models which gen-
eralizes the mixture of experts approach experts analysis from (Jacobs et al., 1991,
Jordan and Jacobs, 1994, Jordan and Xu, 1995, Peng et al., 1996) by allowing the
weights to be dependent over time and between models. For the time-varying weights
a learning mechanism is specified and the approach also allows for incompleteness
of the model set and the set of strategies. We note that for efficient computational
purposes use is made of GPU and parallel computing.
For convenience, we present a brief summary of the combination of densities ap-
proach. The basic idea for one economic variable is as follows. The conditional
predictive probability of an economic variable of interest yt, given a set of K pre-
dicted variables denoted by ỹt = (ỹ1t, . . . , ỹKt)

′, is specified as a discrete mixture
of conditional predictive probabilities of yt given ỹkt, k = 1, . . . ,K coming from K
individual models or experts with weights, denoted by wkt, k = 1, . . . ,K. In terms
of densities one writes:

f(yt|ỹt, IK) =
K∑
k=1

wktf(yt|ỹkt, Ik),

where Ik with k = 1, . . . ,K is the information set of model k and IK is the joint
information set for all models. As a next step one can derive under standard regu-
larity conditions (a Markov process for the weights and conditional independence of
the density of yt given the past information) that the marginal predictive density of
yt has the following discrete/continuous representation:

f(yt|IK) =

K∑
k=1

wkt

∫
R
f(yt|ỹkt, Ik)f(ỹkt|Ik)dỹkt. (9)

In Casarin et al. (2016), it is specified that the weights have a logistic dynamics
described by the additive logistic transform

wkt = exp{xkt}/
K∑
k=1

exp{xkt}

where xit ∈ R is a latent Gaussian process. Here the past predictive performance or
different economic information can be specified. A learning mechanism can also be
added to the weight dynamics.
In order to evaluate this density combination scheme, Casarin et al. (2016) show that
it can we written as a non-linear and non-Gaussian combinational scheme that yields
a forecast density for the observable variables, conditional on the predictors and on
the combination weights. This representation is quite general, but requires the use
of a sequential Monte Carlo algorithm in order to numerically evaluate results.
We define Γt = vec(Wt) as the vector of model weights associated with ỹt and
θ ∈ Θ the parameter vector of the combination model. In addition, we define the
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augmented state vector αt = (Γt,θt) where θt = θ, ∀t. Using these definitions, the
distributional state space form of the forecast model is:

yt ∼ p(yt|αt, ỹt) (measurement density),

αt ∼ p(αt|αt−1,y1:t−1, ỹ1:t−1) (transition density),

α0 ∼ p(α0) (initial density).

(10)

The state predictive and filtering densities conditional on the predictive variables ỹ1:t

are:

p(αt+1|y1:t, ỹ1:t) =

∫
p(αt+1|αt,y1:t, ỹ1:t)

p(αt|y1:t, ỹ1:t)dαt,

p(αt+1|y1:t+1, ỹ1:t+1) =
p(yt+1|αt+1, ỹt+1)p(αt+1|y1:t, ỹ1:t)

p(yt+1|y1:t, ỹ1:t)
,

respectively, which represent the optimal non-linear filter, see Doucet et al. (2001).
The marginal predictive density of the observable variables is then:

p(yt+1|y1:t) =

∫
p(yt+1|y1:t, ỹt+1)p(ỹt+1|y1:t)dỹt+1,

where p(yt+1|y1:t, ỹt+1) is defined as:∫
p(yt+1|αt+1, ỹt+1)p(αt+1|y1:t, ỹ1:t)p(ỹ1:t|y1:t−1)dαt+1dỹ1:t,

and represents the conditional predictive density of the observable given the past
values of the observable and of the predictors.

4.2 Density combinations for mixtures of models and
investment strategies

In the previous section we outlined the general predictive density combination scheme
in Casarin et al. (2016), where model weights are based on the predicted distributions
of observed data yt. Such a combination of predicted model returns, e.g. predicted
returns for each stock in yt, do not lead directly to a practical policy tool for in-
vestors, that is, to a decision about which portfolio strategy to follow.
We propose to combine models but also the investment strategies, where the com-
bination scheme takes into account the predictive distributions of the returns of a
specific model and investment strategy, given in (6). The corresponding combination
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scheme, extending (9), is as follows:

f(rt|IK) =

K∑
k=1

wkt

∫
R
f(rt|r̃kt, Ik)f(r̃kt|Ik)dr̃kt, (11)

where k = 1, ...,K denotes a specific model and investment strategy combination,
(Mm,Ss) in Sections 2 and 3. In addition, r̃kt is a scalar, one period ahead return
forecast from model and investment strategy combination k at time t. Posterior
draws of r̃kt are obtained from the posterior parameter draws and the investment
rule as shown in (6).
Our extension of the combination scheme has a major difference compared to the
standard model combination in (9): Actual return, rt on the left hand side of (11)
is not an observed variable. Instead, the objective of the combination scheme is to
maximize realized return rt. Such an ‘optimal’ rt needs to be defined in order to
assess the predictive power of each model and strategy combination, hence to infer
time-varying weights of these combinations.
We define this ‘optimal return’ or ‘full information return’ in the forecast period
using a ‘skip month’ in the investments. The optimal return rt is defined as the
maximum possible return given the information during the skip month t, under the
constraint that portfolio weights sum up to 0. These returns correspond to a strategy
that goes long in the asset with the highest return in the skip month, and goes short
in the asset with the lowest return in the skip month.
We note the above notation difference between the combination schemes in (9) and
the proposed one in (11), but follow the notation in (9) in the remainder of this
section for a direct comparison of the proposed filtering method with the one in
Casarin et al. (2016).

4.3 The MitISEM filter

The M-Filter is based on the MitISEM procedure recently proposed by Hoogerheide
et al. (2012) and developed in Baştürk et al. (2016). The generic state space model
of equation (10) is given by the following system:

yt = mt(αt, εt),

αt = ht(αt−1,ηt),
(12)

where yt are the observations, αt are the state variables and εt and ηt are mutually
independent errors. The state variables αT = {α1, . . . ,αt} are generally unobserved
and they have to be estimated using the observed data, yT = {y1, . . . ,yt}, condi-
tional on a set of estimated parameters θ̂.
The object of interest it the join conditional distribution defined as:

p(αT |yT , θ̂) =
p(αT ,yT |θ̂)
p(yT |θ̂)

,
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where the p(yT |θ̂) is the likelihood of the state space model.
Conditional on the estimated parameters θ̂ the filtering proceed using the particle
filter as follows:

1) Initialization. Draw the initial particles from the distribution α
(j)
0 ∼ p(α0)

and set the weights W
(j)
0 = 1 for j = 1, . . . ,M .

2) Recursion. For t = 1, . . . , T

a.) Forecasting αt. Draw α̃
(j)
t from the density gt(α̃

(j)
t |α

(j)
t−1, θ̂) and define

the importance weights as:

ω
(j)
t =

p(α̃
(j)
t |α

(j)
t−1, θ̂)

gt(α̃
(j)
t |α

(j)
t−1, θ̂)

.

b.) Forecasting yt. Define the incremental weights:

ω̃
(j)
t = p(yt|α̃(j)

t , θ̂)ω
(j)
t .

3) Updating. Define the normalized weights

W̃
(j)
t =

w̃
(j)
t W

(j)
t−1

1

M

∑M
j=1 w̃

(j)
t W

(j)
t−1

.

An approximation of E[ht(α̃t)|y1:t, θ] is given by:

h̃t,M =
1

M

M∑
j=1

ht(α̃
(j)
t ).

4) Selection. Re-sample the particle via e.g. multinomial resampling.

5) Likelihood Approximation. The approximation of the log likelihood func-
tion is given by:

log p̂(y1:T |θ̂) =

T∑
t=1

log

 1

M

M∑
j=1

w̃
(j)
t W

(j)
t−1

 .

The PF requires the specification of the proposal density gt(α̃
(j)
t |α

(j)
t−1, θ̂), there is

a large literature regarding the choice of this proposal see among others Doucet
et al. (2001), Liu (2001), Kunsch (2005) and Creal (2012). The PF requires also
the resampling step that can introduce additional Monte Carlo variation into the
algorithm and slow down the filtering procedure.
Omitting the estimated parameters θ̂ to simplify notation, the crucial quantity in
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PF recursion is given by:

p(yt|α̃(j)
t )ω

(j)
t (α̃

(j)
t ,α

(j)
t−1) =

p(yt|α̃(j)
t )p(α̃

(j)
t |α

(j)
t−1)

gt(α̃
(j)
t |α

(j)
t−1)

. (13)

Our approach uses MitISEM at each time t to construct the importance density

gt(α̃
(j)
t |α

(j)
t−1) around the target density p(yt|α̃(j)

t )p(α̃
(j)
t |α

(j)
t−1). This has two ad-

vantages: first, as shown in Hoogerheide et al. (2012), the MitISEM proposal is
constructed using mixture of Student t around the candidate. This allows to handle
easily complex posterior densities, e.g. multimodal densities. Second, because the

proposal is constructed at each time point t around the target p(yt|α̃(j)
t )p(α̃

(j)
t |α

(j)
t−1)

that explicit consider the new observation yt there is such phenomenon as particle
depletion and the resampling step is not longer required.
The proposed M-Filter algorithm, fully reported in Appendix B, can be summarized
as follows:

1) Initialization. Draw α̃
(j)
0 ∼ p(α0) for j = 1, . . . ,M .

2) Recursion. For t = 1, . . . , T construct the candidate density g̃t(α̃
(j)
t |α

(j)
t−1)

using the MitISEM procedure that can be summarize as follows:

a.) Initialization: Simulate draws α̃
(j)
t from a ‘naive’ candidate distribution

with density gn(·) (e.g. a Student-t with v degrees of freedom). Using the
target density:

p(yt|α̃(j)
t )p(α̃

(j)
t |α

(j)
t−1),

update the mode and scale of the candidate distribution using the IS
weighted EM algorithm.

b.) Adaptation: Improve the candidate density using the MitISEM proce-
dure, see Appendix B.

3) Draws. Draws α̃
(j)
t from the constructed density g̃t(α̃

(j)
t |α

(j)
t−1) and approxi-

mate E[ht(αt)|y1:T ] by:

αt =
1

M

M∑
j=1

h(α̃
(j)
t ).

4) Likelihood Approximation. The approximation of the log likelihood func-
tion is finally given by:

log p̂(y1:T ) =
T∑
t=1

log

 1

M

M∑
j=1

w̃
(j)
t

 .

where w̃
(j)
t are the weights at time t.

Here we present some Monte Carlo experiments to show the performance of the
MF. In all the examples we are interested in the estimation of the target function
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ht(α
(j)
t ) = αt that is the posterior mean of the latent state. We compare four filters,

the Kalman filter (KF), the Particle Filter (PF), the Auxiliary Particle filter (APF)
and the MF.2 All Monte Carlo experiments presented in this section are based on
I = 100 replications, with T = 100 observations each. For the PF, APF and M-Filter
we use M = 50, 000 particles. In the M-Filter the particles correspond to draws from
the proposal density.
The first model we consider is a standard local level model:

yt = αt + εt εt ∼ N(0, σ2ε),

αt = αt−1 + ηt ηt ∼ N(0, σ2η).
(14)

This linear and Gaussian model is often use as benchmark for comparing filtering
methods. In this case KF provides the sequential state distribution in analytical
form and is the optimal filter. In the simulations reported below, we fix the latent
state variance as σ2η = 0.1 and we define four different levels for the state variance σ2ε ,
corresponding to four levels of the Noise to Signal Ratio (NtS): 0.1, 0.5, 1 and 2.5.
We note that the exact likelihood of the local level model in (14) can be calculated
using the KF. We compare the exact likelihood from KF in this model and compare it
with the remaining non-linear filters to assess the degree of the bias in the non-linear
filters, including the proposed M-Filter.
Table 1 reports the results for the model in equation (14). KF filter is the best filter,
as expected, in terms of the minimum bias and the smallest computing time. The
results of the non-linear filters, however, are in line with those of KF in terms of the
bias measures. The proposed M-Filter performs similarly to the PF and the APF
but has a lower bias in the estimate likelihood especially for smallest NtS ratio of
0.1. In all cases the computing time is lower then the PF and APF.
The second model we consider is the stochastic volatility model (Kim et al., 1998)
given by:

yt = e(αt/2)εt εt ∼ N(0, σ2ε),

αt = µ+ φαt−1 + ηt ηt ∼ N(0, σ2η),
(15)

where ηt and εt are independent and yt is the observed series. Due to the non-linear
structure of the observation equation the analytical form for filtering and predictive
densities do not exist in this model. In the simulations, we fix the autoregressive
parameter φ to 0.90, 0.95, and 0.98, which are in line with the values found in other
studies, see for example Aguilar and West (2000). For each value of φ we consider
four values of σ2η, corresponding to the coefficient of variation (CV) of the volatility

2We note that our proposed filter approach is related to that of Liesenfeld and Richard (2003) and
Richard and Zhang (2007). An important difference is our flexible and robust procedure to choose the
candidate density. We leave a comparison between the two approaches as a topic for future research.
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h = σ̄2 exp(αt) defined as:

CV =
Var(h)

E(h)2
= exp

(
σ2η

1− φ2

)
− 1,

taking the values 0.1, 0.5, 1, and 2.5. We note that a high value of the CV indicates
the relative strength of the volatility process and low values of CV indicate the
volatility is closed to a constant.
Table 2 reports the results for the model in equation (15). In all cases the KF is the
worst filter due to being a linear and Gaussian filter. The M-Filter performs similarly
to the PF and the APF in term of bias and estimation variability. In this model the
computational speed is comparable between the three non-linear filters, namely PF,
APF and M-Filter.
Finally we examine a DFM that is a multivariate model given by:

yt = Λft + εt, εt ∼ N(0,Σ),

ft = φ1ft−1 + ηt, ηt ∼ N(0,Q).
(16)

In this model the KF is the optimal filter as for the model in (14) and we use KF
results as the benchmark case in order to compare the non-linear filters. Table 3
reports the results for the model in equation (16) for 100 Monte Carlo replication,
N = 20 series and 2, 4, 6 and 10 factors. Due to the linear and Gaussian model
structure in (16), KF leads to the best results in terms of the speed and accuracy, but
the non-linear filter results are in line with those of KF. The M-Filter performs better
then the PF and the APF, with substantially lower bias and variance. The M-Filter
also leads to the lowest bias in the estimated likelihood compared to the other non-
linear and non-Gaussian filters. In terms of the computing time, computing time in
all filters increase with the number of factors. In all cases, however, M-Filter requires
a shorter computing time compared to the other non-linear and non-Gaussian filters.
Based on the set of simulation studies, we conclude that the proposed M-Filter has
advantages in terms of reduced bias and computing time compared to the existing
non-linear and non-Gaussian filters, namely PF and APF.

5 Empirical application using US industrial port-

folios, 1926-2015

In this section we apply different dynamic models, investment strategies and combi-
nations of models and strategies to monthly returns from ten US industry portfolios
between 1926M7 and 2015M6. We note that each member of the DFM class is esti-
mated with a different correlation structure, defined through the number of factors
and the number of factor lags. In addition, for all models we construct portfolios
based on two investment strategies, the Model-based Momentum (M.M.) and the
Residual Momentum (R.M.) strategy, presented in Section 3.
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Table 1: Monte Carlo results for I=100 replications of the linear and Gaussian model of equation (14)
with T=100. Kalman Filter (KF), Bootstrap Particle Filter (PF), Auxiliary Particle Filter (APF)
and MitISEM Filter (M-Filter) with 50,000 particles. The table reports Likelihood Bias (LB) with

respect to KF. Absolute deviation defined as Bias = 1/I
∑I

i=1 abs(α̃t,i −αt,i) relative to the KF. The

table also reports the variability defined as V ar = 1/I
∑I

i=1(α̃t,i − αt,i)
2 relative to the KF. The final

column reports the computing time in seconds for the four filters.

NtS 0.1 0.5 Time with NtS
Model LB Bias Var LB Bias Var 0.1 0.5
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.003 0.003
PF -48.93 1.22 1.48 -19.43 1.26 1.62 33.711 35.549
APF -13.87 1.00 1.00 -9.56 1.01 1.02 35.542 37.673
M-Filter -10.40 1.00 1.01 -9.52 1.01 1.02 12.831 12.814

NtS 1 2.5 Time with NtS
Model LB Bias Var LB Bias Var 1 2.5
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.003 0.003
PF -37.85 1.31 1.71 -21.16 1.43 2.04 35.219 34.531
APF -10.43 1.00 1.00 -9.05 1.00 1.00 37.295 35.721
M-Filter -10.18 1.01 1.01 -9.39 1.00 1.01 12.668 12.126

Table 2: Monte Carlo results for I=100 replications of the stochastic volatility model of equation (15)
with T=100. Kalman Filter (KF), Bootstrap Particle Filter (PF), Auxiliary Particle Filter (APF)
and MitISEM Filter (M-Filter) with 50,000 particles. The table the absolute deviation defined as

Bias = 1/I
∑I

i=1 abs(α̃t,i − αt,i) a ratio to the KF. The table also report the variability defined as

V ar = 1/I
∑I

i=1(α̃t,i − αt,i)
2 as a ratio to the KF. The final column reports the computing time in

seconds for the four filters.

CV 0.1 0.5 Time
Model Bias Var Bias Var 0.1 0.5
KF 1.00 1.00 1.00 1.00 0.003 0.003
PF 0.24 0.10 0.31 0.12 13.817 13.989
APF 0.25 0.10 0.31 0.13 14.583 14.666
M-Filter 0.26 0.10 0.31 0.14 14.145 12.670

CV 0.1 0.5 Time
Model Bias Var Bias Var 1 2.5
KF 1.00 1.00 1.00 1.00 0.003 0.003
PF 0.32 0.12 0.29 0.11 13.982 13.876
APF 0.31 0.13 0.29 0.11 14.612 14.704
M-Filter 0.30 0.13 0.28 0.11 13.541 12.963
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Table 3: Monte Carlo results for I=100 replications of the DFM with T=100 and N = 20. Kalman
Filter (KF), Bootstrap Particle Filter (PF), Auxiliary Particle Filter (APF) and MitISEM Filter (M-
Filter) with 50,000 particles. The table reports Likelihood Bias (LB) with respect to KF. Absolute

deviation defined as Bias = 1/I
∑I

i=1 abs(α̃t,i − αt,i) relative to the KF. The table also reports the

variability defined as V ar = 1/I
∑I

i=1(α̃t,i − αt,i)
2 relative to the KF. The final column reports the

computing time in seconds for the four filters in case of 2, 4, 6 and 10 latent factors.

Factors 2 4 Time
Model LB Bias Var LB Bias Var 2 4
KF 0 1 1 0 1 1 0.011 0.012
PF -77.42 1.15 1.33 -145.49 1.15 1.32 708.790 811.730
APF -39.98 1.03 1.05 -164.80 1.05 1.05 836.690 878.128
M-Filter -23.23 1.01 1.02 -23.39 1.00 1.01 106.330 138.178

Factors 6 10 Time
Model LB Bias Var LB Bias Var 6 10
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.020 0.021
PF -193.74 1.16 1.31 -333.33 1.27 1.65 861.100 897.860
APF -309.26 1.07 1.12 -568.18 1.08 1.18 953.720 1011.210
M-Filter -16.97 1.03 1.03 -112.68 1.02 1.03 213.200 402.820

We start to analyze the performance of individual models combined with a partic-
ular strategy on returns and risk, using as indicators: means, volatilities, Sharpe
Ratios and the largest loss during the investment period. In addition, we compare
the results of the proposed models and investment strategies with a baseline stan-
dard momentum strategy as presented in Jegadeesh and Titman (1993), Chan et al.
(1996) and Jegadeesh and Titman (2001).
The central issue that we address is to explore possible time-variation in the perfor-
mance of combinations of models and investment strategies. Here, the time-varying
weights in the combination scheme are used to identify and estimate the effect that
the stylized data features, listed in Section 2, may have on model forecasts and equity
momentum results.
We note that the investment time-line for all model and strategy choices is speci-
fied as follows: Investment decisions are made in July every year, where all models
are estimated at the investment decision times using 240-monthly data windows. A
portfolio is held for 12 months after a skip period of one month, namely August.
All models are re-estimated annually at the investment decision month, July, lead-
ing to 69 moving window estimates. For the two investment strategies, Model and
Residual Momentum, calculations are done using model-based results from the past
12 months, see Jegadeesh and Titman (1993) and Fama and French (1993). We fur-
ther note that a skip month in portfolio calculation is often used to remove market
microstructure effects, see Asness et al. (2013). In this analysis, we use this ‘skip
month’ to calculate predictive performances of models and investment strategies, as
explained in Section 4.
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5.1 Return and risk features from combining individual
model forecasts and investment strategies

In this subsection we report realized return and risk properties of several model and
investment strategies together with those of the standard momentum strategy. For
all models, Bayesian inference is performed with 5000 burn-in and 5000 posterior
draws. We consider eight sets of models, starting from simple structures and leading
to more complex ones, namely: a VAR-N, SV and DFM-N model with normally
distributed disturbances. Next, a DFM model and a VAR model with stochas-
tic volatility components in idiosyncratic disturbances (DFM-SV and VAR-SV) and
a DFM model with stochastic volatility components in idiosyncratic disturbances
and in the factor equation (DFM-SV2). Thirdly, a FAVAR model with stochastic
volatility components in idiosyncratic errors (FAVAR-SV) and a FAVAR model with
stochastic volatility components in idiosyncratic errors and in the factor equation
(FAVAR-SV2).
For each DFM model, we consider 8 different specifications which correspond to
1-4 factors and 1-2 lags for the factor equation, and two investment strategies cor-
responding to model-momentum and residual momentum. In total, we estimate 40
combinations of DFM models, 2 VAR models (VAR and VAR-SV), and an SV-model.
We restrict the dynamics of the VAR-class to the case of one lag. Given 10 data se-
ries, a VAR(1) gives already very flexible dynamic patterns (shown in their implied
moving averages). For each one of these models, we construct portfolios based on
the model-based momentum strategy and a residual momentum strategy. Hence the
combination of model and investment strategy specifications leads to 86 results, sum-
marized in Table 4. We report there means, volatilities, Sharpe Ratios and largest
loss of each model and strategy.
We first focus on the mean returns in Table 4. The results differ substantially over
alternative model and strategy combination. It is seen that the Model Momentum
strategy gives poor results for simple VAR-N and DFM-N models. The complex
model structures, DFM-SV2 and FAVAR-SV2 do not lead to better results or are
worse than the results for the more basic models DFM-SV and FAVAR-SV for both
momentum strategies. That is, the SV2 component leads mostly to over-fitting and
not to better mean returns. A second conclusion is that including the SV component
in the VAR, the DFM and the FAVAR models leads to substantially better results
for both strategies. It is noteworthy that the choice of the number of factors and lags
in the factor models influences results strongly in this case. Further, mean returns
of these model and strategy combinations are equal (FAVAR-SV) or higher than
those of the standard momentum strategy. In summary, there exist clear differences
in the results between the two strategies: more complex model structures are good
in combination with the Model Momentum strategy while using more simple model
structures in combination with the Residual Momentum Strategy already leads to
good results on mean returns. Apparently, using this latter strategy implies a learn-
ing from past errors.
We next compare the volatility of realized returns in Table 4. The differences be-
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Table 4: Returns and risk for 10 industry portfolios. The Table reports the mean, volatility (Vol.),
Sharpe Ratio (S.R.) and the largest loss (L.L.) for realized returns for all models and strategies in
Section 2. The investment strategies are: Model Momentum and Residual Momentum. Standard
momentum strategy has mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2. Bold
values indicate an ‘equal or better’ value compared to standard momentum.

Model Momentum Residual Momentum
(K, L) Mean Vol. S.R. L.L. Mean Vol. S.R. L.L.

VAR-N − 0.02 5.0 0.005 -24.1 0.09 5.8 0.015 -35.0
SV − 0.10 5.1 0.019 -34.7 0.11 5.6 0.019 -26.0

VAR-SV − 0.12 4.5 0.028 -20.2 0.13 5.8 0.021 -37.4

D
F

M
-N

(1,1) -0.04 4.9 -0.009 -20.0 0.13 5.7 0.023 -34.4
(1,2) -0.04 4.9 -0.009 -20.0 0.13 5.7 0.022 -34.4
(2,1) -0.13 5.2 -0.024 -25.4 0.10 5.6 0.017 -34.0
(2,2) -0.11 5.2 -0.020 -24.2 0.10 5.6 0.017 -34.1
(3,1) -0.14 5.4 -0.027 -23.7 0.09 5.5 0.017 -33.7
(3,2) -0.08 5.4 -0.016 -23.3 0.08 5.4 0.015 -33.1
(4,1) -0.07 5.5 -0.013 -26.7 0.10 5.4 0.018 -31.3
(4,2) -0.05 5.5 -0.009 -27.4 0.12 5.4 0.022 -31.1

D
F

M
-S

V

(1,1) 0.04 5.0 0.007 -20.0 0.11 5.8 0.019 -37.1
(1,2) 0.04 5.0 0.008 -20.0 0.10 5.8 0.018 -37.1
(2,1) -0.04 5.2 -0.009 -22.0 0.15 5.7 0.026 -36.3
(2,2) -0.05 5.2 -0.009 -22.0 0.15 5.7 0.027 -36.6
(3,1) 0.00 5.2 0.000 -21.2 0.14 5.4 0.026 -33.0
(3,2) 0.03 5.2 0.005 -20.8 0.16 5.4 0.030 -32.8
(4,1) 0.12 5.4 0.023 -20.8 0.05 5.4 0.009 -31.8
(4,2) 0.12 5.4 0.023 -21.7 0.06 5.4 0.011 -31.1

D
F

M
-S

V
2

(1,1) 0.07 4.6 0.014 -18.2 0.06 5.5 0.010 -37.4
(1,2) 0.07 4.6 0.014 -18.2 0.06 5.5 0.010 -37.4
(2,1) -0.01 4.8 -0.002 -22.8 0.08 5.5 0.015 -37.4
(2,2) -0.02 4.8 -0.003 -22.8 0.09 5.5 0.016 -37.4
(3,1) 0.02 5.0 0.005 -27.1 -0.02 5.5 -0.003 -37.4
(3,2) 0.03 5.0 0.006 -27.1 -0.02 5.5 -0.003 -37.4
(4,1) 0.07 5.7 0.013 -32.3 0.00 5.2 0.000 -37.4
(4,2) 0.07 5.7 0.013 -32.3 0.00 5.2 0.000 -37.4

F
A

V
A

R
-S

V

(1,1) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(1,2) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(2,1) -0.03 4.9 -0.005 -23.1 0.08 5.5 0.015 -37.4
(2,2) -0.03 4.9 -0.006 -23.5 0.09 5.5 0.016 -37.4
(3,1) 0.09 5.0 0.018 -25.3 -0.02 5.5 -0.005 -37.4
(3,2) 0.08 5.0 0.017 -25.7 -0.02 5.5 -0.004 -37.4
(4,1) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4
(4,2) 0.08 5.7 0.015 -32.3 0.02 5.2 0.005 -37.4

F
A

V
A

R
-S

V
2

(1,1) 0.09 4.6 0.019 -18.3 0.06 5.5 0.011 -37.4
(1,2) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(2,1) -0.03 4.9 -0.005 -23.5 0.09 5.5 0.016 -37.4
(2,2) -0.03 4.9 -0.005 -23.8 0.08 5.5 0.015 -37.4
(3,1) 0.08 5.0 0.017 -25.6 -0.03 5.5 -0.005 -37.4
(3,2) 0.08 5.0 0.017 -25.3 -0.02 5.5 -0.004 -37.4
(4,1) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4
(4,2) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4
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tween realized return volatilities between model and strategy combinations are less
pronounced than the differences in mean realized returns. The obtained volatilities
from each model and strategy combination are also close to that of the standard
momentum strategy. An interesting point is the comparison of model based and
residual momentum strategies. Given the same model class, model momentum gen-
erally leads to a lower volatility compared to residual momentum, but this difference
is sensitive for the choice of the number of factors and lags in the factor models.
Since the Sharpe ratios, reported in Table 4, are defined as scaled means and given
that the volatility estimates are rather similar over different model structures and
strategies, the conclusions about the means listed above hold, for almost all models,
also for the Sharpe ratios.
As an indicator of risk, we compare the largest loss from each model and strategy in
Table 4. Simple models and the complex DFM-SV2 and FAVAR-SV2 lead to large
losses or do not improve over the other models. Contrary to the positive results on
the mean returns, it is of interest to observe that a pure SV model has substantial
risk of a loss for the M.M. strategy. A complex model like a FAVAR-SV leads to the
a very low loss. For all models, except SV, the largest loss is substantially lower for
the model momentum strategy compared to residual momentum. Clearly, choice of
momentum strategy matters substantially for risk of returns.
So far we have focused on summarizing posterior measures. An important advan-
tage of Bayesian inference is to obtain complete distributions of the realized returns
from the specific model and investment strategy combination. Figure 2 presents the
percentiles of the realized returns for three selected model and portfolio strategies,
DFM model with K = 1, L = 1 and the model momentum, DFM-SV model with
model momentum (K = 4, L = 1) and DFM-SV model with residual momentum
(K = 3, L = 2). First, 99% intervals of returns are relatively tight for all three
models.3 Second, even the worst-performing model and strategy combination, DFM
with K = 1, L = 1 and model momentum, has very high returns in some peri-
ods. Similarly, the best-performing strategies, DFM-SV, Residual Momentum, with
K = 3, L = 2 and DFM-SV, Model Momentum, K = 4, L = 1 lead to extreme losses
in some periods. Apparently the time-variation in the performances of each model
and strategy combination is important and we investigate that in the next subsec-
tion.
We summarize our conclusions as follows:

• Diversity of results: Results for return and risk are sensitive for model choice
and strategy.

• Return and risk features: Using Model Momentum in combination with very
simple models, like VAR-N and DFM-N that do not fit well, gives poor results.
Complex models, like DFM-SV2 and FAVAR-SV2 that overfit, do not improve
results compared to the models DFM-SV and FAVAR-SV. Residual Momentum
leads to reasonable returns for the simple models, VAR-N, SV and DFM-N.

3This is a general property for all models we consider. We do not present all return intervals due to
space considerations.
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Table 5: Returns and risk from mixtures of three basic models and two investment strategies. The
top panel shows return and risk from a mixture of three models (VAR-N, SV, DFM-N(4,2)) combined
with a mixture of two investment strategies (M.M., R.M.). The bottom panel reports these results for
the mixture of two investment strategies combined with each model separately. Standard momentum
strategy has mean 0.09, volatility 5.7, Sharpe ratio 0.020 and largest loss -26.2. 90% credible intervals
are reported in parentheses.

Model Strategy Mean Vol. S.R. L.L.

Mixture of basic models and two strategies

VAR-N & SV M.M. & R.M. 0.10 3.9 0.025 -23.0
& DFM-N(4,2) (0.01,0.18) (3.6,4.2) (0.002,0.047) (-28.8,-17.5)

Mixture of strategies per model

VAR-N M.M. & R.M. 0.09 4.7 0.019 -32.6
(-0.03,0.20) (4.0.4,5) (-0.007,0.043) (-35.6,-20.9)

SV M.M. & R.M. 0.13 4.3 0.032 -22.2
(-0.02,0.28) (3.9,4.6) (-0.005,0.065) (-29.9,-16.1)

DFM-N(4,2) M.M. & R.M. 0.03 4.3 0.006 -24.4
(-0.12,0.17) (4.0,4.7) (-0.028,0.041) (-31.1,-16.8)

However, it also does not improve the results for the complex DFM-SV2 and
FAVAR-SV2 models compared to their simpler cases. Using Model Momentum
gives reasonable risk results for almost all models. There exists a sensitivity in
the DFM class for the number of factors and lags. SV has poor risk. Using
Residual Momentum gives poor risk results for all models except SV.

These conclusions lead naturally to our main topic of exploring return and risk
features by combining models and strategies and exploring their behavior over time.

5.2 Combining possible mixtures of models and strate-
gies

We report the time-varying performances of different model and strategy combi-
nations in two stages. First, the three basic model structures, VAR-N, SV and
DFM-N(4,2), that constitute together the FAVAR-SV(4,2) class are combined with a
mixture of two strategies. Next, we combine two more flexible model structures than
the basic ones with a mixture of two strategies. Finally, we combine a general flexible
parametric structure with a mixture of two strategies. We make use of the predictive
density combination scheme in Section 2 in order to obtain the time-varying weights
of selected model and investment strategy combinations.

Combining basic model structures and investment strategies

In order to identify the importance of different model structures, we consider a mix-
ture of three basic models: a VAR-N model which takes the stationary time series
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Figure 2: 99% realized return intervals for three selected models. DFM with K = 1 latent factor and
L = 1 lags in Figure 2(a), DFM-SV with K = 3 latent factors and L = 2 lags in Figure 2(b) and
DFM-SV with K = 4 latent factors and L = 1 lags in Figure 2(c).

(a) DFM, Model Momentum, K = 1, L = 1

(b) DFM-SV, Residual Momentum, K = 3, L = 2

(c) DFM-SV, Model Momentum, K = 4, L = 1
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Figure 3: Posterior weights from the six-component mixture of three basic models (VAR-N, SV and
DFM(4,2)) and two strategies (model momentum and residual momentum). The figure presents poste-
rior means of all component weights in Figure 3(a), cumulative weights for each model in Figure 3(b)
and cumulative weights for the two investment strategies in Figure 3(c).
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pattern of the series into account, an SV model which takes the time varying volatility
into account, and a DFM model which captures cross-sectional correlation through
common factors for series. These three models constitute the elements of the most
general model we consider, namely the FAVAR-SV model. Assessing the time-varying
weights of these elements presents evidence on the effect of the time variation in the
stylized facts on model specification. Similar to the earlier section, each model is
combined with two investment strategies, leading to 12 sets of models and invest-
ment strategy combinations. For the DFM model, we consider the general case of 4
factors and 2 lags in the factor equation.
For clarity, we present the specific density combination scheme from (11):

f(rt|IK) =
3∑

m=1

2∑
s=1

wm,s,t

∫
R
f(rt|r̃m,s,t, Ik)f(r̃m,s,t|Ik)dr̃m,s,t, (17)

where m = 1, 2, 3 is the model indicator corresponding to the models VAR-N, SV,
DFM(4,2) and s = 1, 2 is the strategy indicator for model momentum and residual
momentum.
Posterior weights of each model and investment strategy are shown in Figure 3. Fig-
ure 3(a) shows the posterior mean weights for 6 mixture components arising from
three models and two investment strategies. Model and strategy weights show clear
time variation suggesting that autocorrelation, cross-correlation and time varying
volatility patterns are important to incorporate, but the importance of these stylized
facts for predictive return densities changes over time.
Figure 3(b) presents the decomposition of time-varying weights with respect to the
model classes. The weights for all models change over time. In particular, VAR
and DFM models have pronounced time-variation in the weights. Hence volatility
properties and data reduction through common factors are more important in spe-
cific time periods. The autoregressive component captured by the VAR-N model
is particularly important around 1990s and recently after 2008. Figure 3(c) shows
that the investment strategies also have changing weights over time. These changes
are more pronounced than those for the models. Residual momentum strategies are
more important particularly around 1990s and at the beginning of the recent finan-
cial crisis around 2008.
Summarizing features of returns and risk are presented in Table 5. The top panel
summarizes the return and risk measures obtained from model and strategy combina-
tions, specifically from combining three models and two strategy options. The bottom
panel in Table 5 presents the return and risk features when investment strategies are
combined in each model, VAR-N, SV and DFM-SV. Returns from these combination
of strategies are calculated using the normalized weights for two momentum strate-
gies in each model.
Together with the dynamic weight patterns, Table 5 leads to the following conclusions
in terms of the return and risk features. The top panel of Table 5 shows that a mix-
ture of two strategies combined with a mixture of three basic models of the FAVAR
class leads to improved risk features. Volatility of returns together with the largest

26



loss of the combined model is typically lower then those of the individual model and
strategy combinations in the top two panels of Table 4. Such improvement in the
risk features stems from both components of the mixture, namely model as well as
strategy mixture: Strategy mixtures in the bottom panel of Table 5 lead to better
risk features compared to the individual components in Table 4, while model and
strategy mixtures in the top panel of Table 5 lead in most cases to lower variances
compared to the strategy mixtures in the bottom panel of Table 5.
Despite the improvements in risk features, model and strategy mixtures do not give
substantially better mean returns and Sharpe ratios compared to the individual mod-
els and strategies in Table 4 or the mixture of strategies in the bottom panel of
Table 5. One reason is that all model and strategy mixtures lead to relatively wide
posterior densities for returns, as indicated by the 90% credible intervals. This rela-
tively large uncertainty in mean returns is also reflected in the relatively wide credible
intervals for the Sharpe ratios. Similar to mean returns, neither mixture of models
nor mixture of strategies lead to substantially better Sharpe ratios. This is appar-
ently due to the weight of DFM-N(4,2) model. As shown in Figure 3 the weight of
the so-called “bad” model DFM-N(4,2) with model momentum remains substantial
in the combination schemes of strategies. It is somewhat reduced in the mixture of
models and strategies as shown in the top panel.
Thus, a combination of a mixture of two strategies with a mixture of three mod-
els leads to better risk features than for the cases where a mixture of strategies is
combined with individual models and separate strategies are combined with separate
models. This suggests that complete densities of the combined strategies contain
relevant information. Another conclusion is that a “bad” component in a mixture of
models should be a candidate for removal.

Combining a mixture of two flexible models and a mixture of invest-
ment strategies

Given the diversity in results of the mixture of the three basic model components
it may be a good strategy to exclude a “bad” component and explore a smaller
mixture of more flexible models. Here we explore a mixture of a VAR-SV and a
DFM-SV, where for the latter model we consider the case where one uses the density
combination scheme to optimize over the number of factors from 1:4 and number
of lags from 1:2. In Table 6 and Figure 4, we present results of these combinations
of mixtures of model and strategies in order to assess both the effect of reducing
the number of components as well as the time-varying degree of possible dimension
reduction, i.e. the time-varying pattern in the number of factors that explain the 10
series.
Figure 4 shows a similar pattern as Figure 3 in the time-varying behavior of the model
weights. The summarizing features of return and risk, shown in Table 6, indicate
that a combination of a mixture of models and strategies leads to better results
than presented in the top panel of Table 5. The results for the mixture of strategies
per model indicate that for VAR-SV the return features are good but not the risk
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Figure 4: Posterior weights from two flexible models (DFM-SV and VAR-SV) and a mixture of
investment strategies. The figure presents posterior means of model weights. DFM-SV in this figure
denotes the ‘combination’ of DFM-SV models with K = 1, ..., 4 factors, L = 1, 2 lags and the two
strategies. VAR-SV in this figure denotes the ‘combination’ of VAR-SV model and the two strategies.
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Table 6: Returns and risk from a mixture of two flexible models and two investment strategies.
The top panel shows the return and risk from two model combinations (VAR-SV, DFM-SV(1:4, 1:2))
combined with two investment strategies (M.M. R.M.). The bottom panel reports these results for
the mixture of two investment strategies combined with each of the two models separately. Standard
momentum strategy has mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2. Bold
values indicate an ‘equal or better’ value compared to standard momentum. 90% credible intervals are
reported in parentheses.

Model Strategy Mean Vol. S.R. L.L.

Mixture of two flexible models and strategies

VAR-SV M.M. & R.M. 0.15 3.7 0.041 -21.6
& DFM-SV(1:4,1:2) (0.08, 0.22) (3.5, 3.9) (0.021, 0.061) (-26.4, -16.4)

Mixture of strategies per model

VAR-SV M.M. & R.M. 0.23 4.5 0.051 -37.2
(0.11, 0.35) (4.2, 4.9) (0.024, 0.080) (-37.3, -36.8)

DFM-SV(1:4,1:2) M.M. & R.M. 0.06 3.4 0.018 -14.4
(0.00, 0.12) (3.2, 3.5) (0.000, 0.036) (-20.1, -11.0)
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Table 7: Returns and risk from a combination of a very flexible parametric model and two investment
strategies. The top panel shows the returns and risk from the very flexible model (FAVAR-SV(1:4,
1:2)) and a mixture of two investment strategies (M.M. R.M.). The bottom panel reports these results
for the mixture of two investment strategies combined with each model separately. Standard momentum
strategy has mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2. Bold values indicate
an ‘equal or better’ value compared to standard momentum. 90% credible intervals are reported in
parentheses.

Model Strategy Mean Vol. S.R. L.L.

Mixture of basic models and two strategies

FAVAR-SV(1:4, 1:2) M.M. & R.M. 0.18 4.5 0.039 -34.8
(0.14, 0.22) (4.5, 4.6) (0.031, 0.048) (-35.0, -34.6)

Mixture of strategies per model

FAVAR-SV(1, 1) M.M. & R.M. 0.11 4.5 0.024 -33.8
(0.02, 0.19) (4.4, 4.6) (0.004, 0.042) (-34.0, -33.1)

FAVAR-SV(1, 2) M.M. & R.M. 0.11 4.5 0.023 -34.2
(0.02, 0.19) (4.4, 4.6) (0.004, 0.042) (-34.4, -33.6)

FAVAR-SV(2, 1) M.M. & R.M. 0.14 5.1 0.027 -37.1
(0.05, 0.22) (5.0, 5.2) (0.010, 0.043) (-37.2, -36.9)

FAVAR-SV(2, 2) M.M. & R.M. 0.14 5.1 0.027 -37.1
(0.05, 0.22) (5.0, 5.2) (0.010, 0.044) (-37.2, -36.8)

FAVAR-SV(3, 1) M.M. & R.M. 0.15 4.7 0.033 -34.1
(0.07, 0.25) (4.5, 4.9) (0.014, 0.054) (-34.3, -34)

FAVAR-SV(3, 2) M.M. & R.M. 0.14 4.7 0.031 -34.4
(0.05, 0.25) (4.6, 4.9) (0.011, 0.052) (-34.5, -34.2)

FAVAR-SV(4, 1) M.M. & R.M. 0.11 5.1 0.022 -31.3
(0.02, 0.20) (5.0, 5.2) (0.004, 0.040) (-31.8, -31.1)

FAVAR-SV(4, 2) M.M. & R.M. 0.12 5.1 0.023 -31.5
(0.03, 0.21) (5.0, 5.2) (0.005, 0.040) (-32.4, -31.3)

features while for the case of the model DFM-SV(1:4, 1:2) the opposite holds. If an
investor is interested in the joint good behavior of return and risk than averaging is
beneficial.

Combining a very flexible parametric model and a mixture of invest-
ment strategies

We finally explore the return and risk features of a flexible parametric structure,
specified as a FAVAR-SV models averaged over 4 factors and 2 lags, combined with
two investment strategies, leading to 16 predictive densities. The specific combination
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Figure 5: Posterior weights from DECO combination of 16 FAVAR-SV model and strategy combi-
nations: all model weights, cumulative weights of each strategy and cumulative weights of number of
factors in the model. The figure presents posterior means of all component weights in Figure 5(a),
cumulative weights for different number of factors in Figure 5(b) and cumulative weights for the two
investment strategies in Figure 5(c).
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scheme in this case, in relation to the general equation (11), is as follows:

f(rkt|IK) =

4∑
m=1

2∑
l=1

2∑
s=1

wm,l,s,t

∫
R
f(rt|r̃m,l,s,t, Ik)f(r̃m,l,s,t|Ik)dr̃m,l,s,t, (18)

where all combined models are member of that FAVAR-SV class and m = 1, . . . , 4
is the number of factors, l = 1, 2 is the number of AR components in each factor,
s = 1, 2 is the strategy indicator for model momentum and residual momentum and
the rest of the parameters are defined as in equation (9).
Figure 5(a) shows that the weights of different FAVAR-SV models and combined
strategies change substantially over time. A single one of the considered model spec-
ifications or investment strategies do not seem to be suitable for these data.
The cumulative weights per number of factors, calculated from the posterior means,
are presented in Figure 5(b). These weights also change over time indicating time
variation in the number of factors and hence in the amount of data reduction. Par-
ticularly in the recent period models and strategy combinations with a single factor
have higher weights than in earlier periods. This finding is in line with the relatively
low canonical correlations between returns at the end of the sample as compared to
the beginning of the sample, shown in Figure 1(b).
Time variation in the investment strategies is shown in Figure 5(c). Weights of the
two investment strategies change drastically over time. Model based momentum ap-
pears to be important until the 1990s while residual momentum is important in later
periods.
We next report the risk and return properties from the combination of the FAVAR-
SV models and the two investment strategies in Table 7. The top panel shows the
returns and risk from the very flexible model (FAVAR-SV(1:4, 1:2)) and a mixture of
two investment strategies (M.M. R.M.). The bottom panel reports these results for
the mixture of two investment strategies for each model separately. Results for each
model and each strategy were presented in Table 4. By comparing the results from
Table 4 with the bottom panel of Table 7, it is seen that the mixture of strategies
leads to a positive return and lower risk than for the individual strategies. The top
panel shows that the using our density combination scheme to optimally average over
factors and lags leads to further improvement in return features but not risk.

Broad empirical conclusions

Conditional upon our information set that consists of US industry portfolios between
1926M7 and 2015M6, a set of dynamic models and, further, two equity momentum
strategies, the results of this section lead to the following broad empirical conclusions:

• Flexible model mixtures lead to higher means and Sharpe ratios than mixtures
of basic model structures where one component fits very poorly. Thus, choice of
the model set in the sense of choosing the number of components in a mixture
is important for effective momentum strategies.
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• A mixture of our two strategies leads, in particular, to better risk features. Here
the information of complete densities plays an important role.

• There is no clear optimal result in terms of return and risk features. Alternative
mixtures of models and strategies in different time periods may be effective in
improving returns and risk. The time-varying nature of the results remains
robust over many different alternatives.

6 Conclusions

We presented a dynamic asset-allocation approach which combines alternative mod-
els and momentum strategies that updates the portfolios as well as portfolio strategies
at every decision period. A set of flexible dynamic models with different number of
latent factors, a vector autoregressive and a stochastic volatility component is spec-
ified to capture short and long-run dynamics. Next, this set of models is combined
with a set of portfolio strategies. The density combination scheme in Casarin et al.
(2016) is extended to obtain mixtures of model structures and momentum strategies
at each time period. In addition, a new and efficient non-linear and non-Gaussian
filter is introduced, based on the MitISEM approach, see Hoogerheide et al. (2012),
and it is shown that the proposed filter leads to substantial accuracy and speed gains.
Using US industry portfolios for the period 1926-2015 as data, our results indicate
that time-varying combinations of flexible components of the class of FAVAR-SV
models and two strategies lead to better return and risk features than very simple
and very complex models. More specifically, flexible model combinations help to
improve return features like mean returns and Sharpe ratios while combinations of
two strategies help to reduce risk features like volatility and largest loss. The latter
result indicates that complete densities provide useful information for risk. These
results are obtained given typical data features like stationary return patterns, strong
time-varying cross correlations and stochastic volatilities. The importance of these
data features changes substantially over time for the data studied.
There are several opportunities to extend this line of research. A larger data set of
industrial portfolios, more involved strategies, improved learning and a sub-period
analysis to explore the results in more detail are all topics for further research.
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Appendix A

In this section we describe the different model structures used in Section 2 in relation
to the general model formulation in equation (1).

Linear and Gaussian Dynamic Factor Model (DFM)

The linear and Gaussian DFM is a special case of equation (1) with β = 0 and a
diagonal Σ matrix:

yt = Λft + εt, εt ∼ N(0,Σ),
ft = φ1ft−1 + . . .+ φLft−L + ηt, ηt ∼ N(0,Q), (19)

that is a linear and Gaussian DFM. To estimate this model we assume the following
priors:

1) The diagonal elements of Σ have independent Inverse Gamma (IG) priors:

σ2ε,ii ∼ IG
(vi

2
,
si
2

)
,

where we set vi = 2 and si = 5 for i = 1, . . . , N .

2) The loading parameters has normal priors, Λ ∼ N(µ,C) where µ = 0 and C = I;

3) The prior for the autoregressive parameters Φ = [φ1, . . . , φL] and latent errors
variance Q are diffuse conjugate Normal-Wishart prior:

Φ|Q ∼ N(0,Q⊗ Ω0), Q ∼ iW(Q0,N +K + 2),

where Φ = vec(Φ) is the Φ stacked in a column vector of length L×K2, where
L are the number of lags in the latent factor. As in Bernanke et al. (2005)
we set the prior to express the beliefs that parameters on longer lags are more
likely to be zero, in the spirit of the Minnesota prior.
The diagonal elements of Q0 are set to the residual variances of the corre-
sponding univariate autoregressions, σ̂2η,kk for k = 1, . . . ,K. The Ω0 diagonal

elements are set on k lagged j’th variable in i’th equation equals σ2i /kσ
2
j .

Defining Λi = (λi,1, . . . , λi,k) for i = 1, . . . , N the Gibbs sampling steps are as follows:

1) The full conditional posterior for the elements of Σ reduces to a set of N inde-
pendent inverse-gamma distributions with:

σ2ε,ii ∼ IG

(
v + T

2
,
vs2 + di

2

)
where di =

∑T
t=1(yit − Λifit)(yit − Λifit)

′
, i = 1, . . . ,N.

2) The draws of the loading parameters taking into consideration the restrictions
are given by:
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a) For i = 1, . . . ,K, draw Λi ∼ N(mi,Ci)I(λii > 0) where mi = Ci(C
−1
i µ

i
+

σ−2ii f
′
iyi) and C

−1
i = C−1i + σ−2ii f

′
ifi

b) For i = K+1, . . . , N draw Λi ∼ N(mi,Ci) where mi = Ci(C
−1
i µ

i
+σ−2ii f

′
iyi)

and C
−1
i = C−1i + σ2iif

′
ifi

3) Regarding the Φ and Q we have a standard VAR form that can be estimated
equation by equation, to obtain the following posterior:

a) Draws the Q from the iW(Q̂, T +K+ N + 2) where Q̂ = Q + Γ̂
′
Γ̂ + Φ̂

′
[Ω0 +

(F̂
′

tF̂t)
−1]−1Φ̂ and Γ̂ is the matrix of OLS residuals.

b) Draw the Φ from the conditional normal according to:

Φ ∼ N(vec(Φ̃),Q⊗ Ω̃) (20)

where Φ̃ = Ω̃(f̂
′
t−1f̂t−1)Φ̂ and Ω̃ = (Ω−10 + f̂

′
t−1f̂t−1)

−1

5) Draws the latent states ft using the FF-BS algorithm as described in Carter
and Kohn (1994).

6) Go to step 1.

Linear Dynamic Factor Model with Stochastic Volatility
(DFM-SV)

We obtain the dynamic factor model with stochastic volatility in the idiosyncratic
errors by setting β = 0 in (1) and specifying the error covariances as follows:

yt = Λft + εt, εt ∼ N(0,Σt),
ft = φ1ft−1 + . . .+ φLft−L + ηt, ηt ∼ N(0,Q),

(21)

where we specify the following time varying variance matrix:

Σt =


σ211,t 0 . . . 0

0 σ222,t . . . 0
...

...
. . .

...
0 0 . . . σ2ii,t

 , i = 1, . . . ,N, (22)

then we have the DFM-SV model.We assume that the log volatilities hit = log(σ2ii,t)
follows a stationary and mean reverting process:

ht = µ+ ψht−1 + ζt, ζt ∼ N(0,Γ), ψi ∈ (−1, 1).
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Starting from equation (21) and taking the difference εt = yt − Λft = y∗t , and then
the squares plus an offset constant we get:

y∗∗t = log[(y∗t )
2 + c̄],

y∗∗t = 2ht + et,

ht = µ+ ψht−1 + ξt, ξt ∼ N(0,∆),

(23)

where et = log(εt) is distributed as a χ2(1). This prevent the use of the standard
Kalman filter recursions and simulations algorithms as in Carter and Kohn (1994).
To solve this problem Kim et al. (1998), employ a data augmentation approach,
introduce a new state variable sT = {s1, . . . , st} that allows to rewrite the linear
non-Gaussian state space model in equation (23) as a conditional linear Gaussian
state space form. This is due to the following approximation:

et ≈
7∑
j=1

qjN(τj − 1.2704, ν2j ),

where τj , ν
2
j and qj for j = 1, . . . , 7 are constant specified in Kim et al. (1998). The

draw of the error et implies:

et|st+1 = j ∼ N(τj − 1.2704, ν2j ),

Pr(st+1 = j) = qj ,

and draws from the sequence of states sT can be obtained using:

Pr(st = j|y∗∗t ,ht) ∝ qjfN(y∗∗t |2ht + τj − 1.2704, ν2j ), (24)

where fN(·) denotes the kernel of a normal density and j = 1, . . . , 7, t = 1, . . . , T .
Conditional on sT the model is linear and Gaussian and the algorithm of Carter and
Kohn (1994) can be used. The priors remains as the one described before with the
difference in the SV parameters: µ, ψ and variance of the errors Γ.
We choose priors for µi, ψi, the initial log volatility hi1 and γ−2ii from the normal-
gamma family:[(

µi
ψi

)]
∼ N

[(
mµi
mψi

)
,

(
Vµi 0

0 Vψi

)]
, ψi ∈ (−1, 1),

γ−2ii ∼ G(1/kγ , 1).

Following Pettenuzzo and Ravazzolo (2016), we set kγ = 0.01, mµi = 0, mψi
= 0.95,

Vµi = 10 and Vψi
= 1.0e−06. These prior values imply a strong autocorrelation

structure for the hit. We keep the priors on the remaining parameters as described
in the earlier section.
For this model, the Gibbs sampling scheme is as follows:

1) Initialize f
(0)
t , h

(0)
t , Λ(0),Q(0).
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2) Draws the latent states p(ft|,Λ,Q,Σt,ht) using the FF-BS algorithm described
in Carter and Kohn (1994).

3) Conditional on ht and Λ draw the indicator variable sT for the mixture accord-
ingly to equation (24).

4) Draws the sequence of stochastic volatilities p(ht|Λ, ft, st, µ, ψ) from the condi-
tional linear and Gaussian system using Carter and Kohn (1994).

5) Draws the stochastic volatility variances p(γ2ii|ht, µ, ψ) from the following pos-
terior:

γ2ii ∼ G

[kγ +
∑t−1

t=1(hit+1 − µi − ψihit)2

t

]−1
, t

 .

6) Draw the SV parameters jointly:

µi, ψi ∼ N

([
m̄µi

m̄ψi

,

]
V̄(µi,ψi)

)
× ψi ∈ (−1, 1),

where

V̄(µi,ψi) =

{[
V−1µi 0

0 V−1ψi

]
+ γ−2ii

t−1∑
t=1

[
1
hit

]
[1 hit]

}
and [

m̄µi

m̄ψi

]
= V̄(µi,ψi)

{[
V−1µi 0

0 V−1ψi

] [
mµi
mψi

]
+ γ−2ii

t−1∑
t=1

[
1
hit

]
hit+1

}
.

7) Go to step 2.

Linear Dynamic Factor Model with Two Stochastic Volatil-
ity Components (DFM-SV2)

We obtain the DFM with two stochastic volatility model by assuming β = 0 in
equation 1 and by defining the following time-varying covariance matrices for the
idiosyncratic and latent errors:

yt = Λft + εt, εt ∼ N(0,Σt),
ft = φ1ft−1 + . . .+ φLft−L + ηt, ηt ∼ N(0,Qt),

(25)

with the idiosyncratic errors defined as in equation (22) and latent error variances
given by:

Qt =


η211,t 0 . . . 0

0 η222,t . . . 0
...

...
. . .

...
0 0 . . . η2KK,t

 , i = 1, . . . ,K, (26)
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where log volatilities kit = log(η2ii,t) follows a stationary and mean reverting process:

kt = ω + βkt−1 + ξt, ξt ∼ N(0,Ξ).

The estimation of this model proceeds as before with an added step in the Gibbs
Sampler. This step extract the later variance processes extending the procedure
described before.

Factor Augmented VAR models with Stochastic Volatility
Components (FAVAR-SV, FAVAR-SV2)

Assuming in equation (1) β 6= 0 and a time varying variance-covariance matrix for
the idiosyncratic and latent errors we obtain the following model:

yt = βxt + Λft + εt εt ∼ N(0,Σt),

ft = φ1ft−1 + . . .+ φLft−L + ηt ηt ∼ N(0,Qt). (27)

The FAVAR model extends the state equation by defining xt as the vector of lagged
dependent variables. This leads to a VAR form in particular in the state equation of
(27): (

ft
xt

)
= Φ̃1

(
ft−1
xt−1

)
+ . . .+ Φ̃L

(
ft−L
xt−p

)
+ ε̃t,

see also Stock and Watson (2005). Conditional on the latent states, the estimation
of the VAR parameters β are similar to those of univariate linear regression models,
hence Bayesian inference is standard. The two proposed FAVAR models are defined
by a stochastic volatility component in the idiosyncratic disturbances (FAVAR-SV)
and stochastic volatility components in the idiosyncratic and latent disturbances
(FAVAR-SV). We refer to the earlier sections of this appendix for the inference of
the SV components given the rest of the parameters.

Appendix B

In this section, we present the details of the proposed M-Filter in Section 4. For
a detailed discussion of the general MitISEM procedure, we refer to Hoogerheide
et al. (2012). In the derivations we assume that the sets of estimated parameters θ̂
are known and we omit them for the sake of notation. The M-Filter follows those
recursions:

1) Initialization. Draw α̃
(j)
0 ∼ p(α0) for j = 1, . . . ,M .

2) Recursion. For t = 1, . . . , T construct the candidate density g̃t(α̃
(j)
t |α

(j)
t−1)

using the MitISEM procedure that can be summarize as follows:
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a.) Initialization: Simulate draws α̃
(j)
t from a ‘naive’ candidate distribution

with density gn(·). Using the target density:

p(yt|α̃(j)
t )p(α̃

(j)
t |α

(j)
t−1),

update the mode and scale of the candidate distribution using the IS
weighted EM algorithm.

b.) Adaptation: Estimate the target distribution’s mean and covariance ma-

trix using IS with the draws α̃
(j)
t from a naive distribution gn(·) (e.g. a

Student-t with v degrees of freedom). Use these estimates as the mode

and scale matrix of Student-t adaptive density g̃a(·). Draw a sample α̃
(j)
t

from this adaptive Student-t distribution and compute the IS weights for
this sample.

c.) Apply the IS-weighted EM algorithm given the latest IS weights and
the sample of step b). The output consists of the new candidate density

with H = 1 components g̃H
t (·) with optimized parameters. Draw a new

sample α̃
(j)
t from this candidate and compute corresponding IS weights.

d.) Iterate on the number of mixture components. Given a draw α̃
(j)
t

and the corresponding IS weights:

w̃
(j)
t =

p(yt|α̃(j)
t )p(α̃

(j)
t |α

(j)
t−1)

g̃H
t (α̃

(j)
t |α

(j)
t−1)

from the current mixture of H components construct the additional com-
ponent in the mixture candidate density. This choice ensures that the
new component covers a region of the target density in which the previ-
ous candidate mixture had relatively too little probability mass. Given
the latest IS weights and the drawn sample from the current mixture of H
components (g̃H

t (·)), apply the IS-weighted EM algorithm to optimize each

mixture component parameters. Draw a new sample α̃
(j)
t from the mixture

of H + 1 components (g̃H+1
t (·)) and compute corresponding IS weights.

e.) Assess convergence of the candidate density’s quality by inspect-
ing the IS weights and return to step d) unless the algorithm has con-
verged.

3) Draws. Draws α̃
(j)
t from the constructed density g̃H

t (α̃
(j)
t |α

(j)
t−1) and approxi-

mate E[ht(αt)|y1:T ] by:

αt =
1

M

M∑
j=1

h(α̃
(j)
t ).

4) Likelihood Approximation. The approximation of the log likelihood func-
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tion is given by:

log p̂(y1:T ) =
T∑
t=1

log

 1

M

M∑
j=1

w̃
(j)
t

 .

We finally note that the MitISEM approximation can be robustified as outlined in
Baştürk et al. (2016). Especially in case of a complex model structure and a high
number of variables, leading to highly multi-modal target densities, it is likely that
some components of the MitISEM approximation have very low weights and are not
updated efficiently. In such cases, an additional rejection step in MitISEM to avoid
components with very small mixture weights is shown to improve the accuracy and
the speed of the algorithm.
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