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Abstract

Empirical estimations suggest heavy-tailed unconditional distributions for inflation, the output gap

and the interest rate. However, standard NK models used in policy analysis imply normal distributions

for these variables. In this study, we propose a model which replicates the above mentioned empirical

features of inflation,the output gap and the interest rate and subsequently investigate the conduct of

monetary policy in this model. The novelty of this study is the introduction of random wage indexation

as a source of multiplicative shocks. The findings of this study include the following: Firstly, the uncondi-

tional distributions of inflation, the output gap and the interest rates exhibit heavy-tailed characteristics.

Secondly, under an indexation to lagged inflation scheme, there exists a positive relationship between

expected inflation and conditional variance of inflation. Finally, it is better to target current inflation

rather than lagged inflation when conducting monetary policy under a Taylor rule.
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1 Introduction

The bulk of literature on wage indexation assumes a constant degree of indexation. While this assumption

might describe the empirical reality during recent periods of low and stable inflation, the degree of wage

indexation has been observed to exhibit a substantial amount of time-variation. For instance, the percentage

of contracts in the US with cost-of-living-adjustment (COLA) clauses has been observed to rise from 31%

in the mid 1960s to 61% in the mid 1970s (see Weiner (1996)). Given that percentage COLA coverage

is a widely accepted proxy for the degree of wage indexation, one can conclude that the degree of wage

indexation is not constant. Furthermore, results from recent studies provide evidence in support of the time

variation in the degree of wage indexation. Analysis by Holland (1986) and Ascari et al. (2011) show that the

degree of wage indexation is positively correlated to inflation uncertainty. Empirical studies documenting

substantial time variation in inflation uncertainty imply a substantial time variation in the degree of wage

indexation.

Even though the assumption of a constant degree of wage indexation may describe the behaviour of wage

indexation only for recent times, the effects of wage indexation under this assumption have nevertheless been

shown to be quite consequential. The seminal study on wage indexation, Gray (1976) examines the effect

of wage indexation on the conduct of monetary policy. Results of this paper show that wage indexation

insulates the real sector of the economy from nominal or monetary shocks, but tends to make the effects of

real shocks worse. Jadresic (1998) also investigates the effects of constant wage indexation. The indexation

rule employed in the aforementioned study differs from that of previous studies in that it assumes an

indexation to lagged inflation scheme. It is shown that indexation to lagged inflation destabilizes output.

It is conceivable that the time variation in the degree of wage indexation adds another dimension to the

implications of wage indexation for macroeconomic stability. The purpose of this study is to theoretically

investigate the additional implications that come with time variation in wage indexation. In particular,

we investigate the macroeconomic consequences of independent and identically distributed (iid) shocks to

the degree of wage indexation. Empirical estimates either imply an autoregressive (AR) process or a near

random walk process for the degree of wage indexation which contrasts with the iid assumption regarding

wage indexation we make in this study. We nevertheless work with iid shocks to wage indexation in order to

obtain preliminary insights into the effects of time variation in the degree of wage indexation. Attey (2015)

estimates time varying degree of wage indexation for 12 OECD countries under the assumption. Figure 1

presents the country specific estimates and their 95% confidence bounds. The estimates reveal three main

properties of the degree of wage indexation.

First, there is a substantial time variation in the degree of wage indexation in all countries. This

observation provides further evidence for the time varying nature of wage indexation. Second, the empirical

estimations do not give a conclusive view on whether the distribution of wage indexation is bounded or not.

The process assumed for the degree of wage indexation implies an unbounded distribution for this variable.

However, it can be seen from Figure 1 that estimates of the degree of wage indexation do not generally stray

much from the unit interval. Thus, one cannot conclusively rule out the possibility of bounded distributions

for wage indexation. Finally, the estimates of the degree of wage indexation can lie outside the unit interval.

For instance, the estimates of the degree of wage indexation were significantly less than 0 for the Netherlands

since the beginning of the 1980s. Also, the estimates show that the degree of wage indexation for Belgium
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were above 1 during the mid 1970s. It is also worth noting that wage moderation was sometimes agreed

upon during periods of stagflation, thus resulting in the negative correlation between lagged inflation and

wage inflation.1 These two observations stand in contrast to conventional wisdom that wage indexation

should be on the unit interval.

Key among the results of this study is that the unconditional distributions of inflation, the output gap and

the interest rates can potentially exhibit heavy-tailed characteristics. This result relies on the assumption

that wage indexation is random and can lie outside the unit interval. Thus it is implied that countries with

full indexation schemes are more likely to have heavy-tailed distributions of variables than countries with the

degree of wage indexation which lies within the unit interval. Also, a Taylor rule targeting current inflation

outperforms a rule that targets past inflation regarding the minimization of the loss function. The analysis

employed in deriving this study’s results assumes that wage indexation is iid uniformly distributed. While

this implies taking a definite stand on the boundedness of the distribution of wage indexation, assuming

otherwise does not qualitatively alter the main results.

Recent empirical studies including Grier and Perry (1996), Chang (2012) and Caporale et al. (2012)

employ the use of various versions of GARCH models to estimate inflation and inflation uncertainty. The

relatively good fit of these models imply that the unconditional distribution of inflation exhibits tails heav-

ier than that of a normal distribution. Furthermore, Fagiolo et al. (2008) concludes that in the majority

of OECD countries, the distribution of output growth exhibits tails heavier than those of the Gaussian

distribution. Contrary to this empirical evidence, the class of new Keynesian models commonly used for

macroeconomic analysis typically imply that inflation and the output gap have normal unconditional dis-

tributions.

This study can be seen as an attempt to theoretically explain the source of the heavy tails in the

aforementioned macroeconomic variables. Other approaches to explaining the presence of heavy tails involve

the assumption of Student-t distributed error terms (see Curdia et al. (2012) and Chib and Ramamurthy

(2011) for example). De Grauwe (2012) criticizes this exogenous approach of introducing the fat tail,

maintaining that it does not shed light on how endogenous clustered volatility can be generated. The

approach in this study involves a multiplicative shock similar to that first espoused by Brainard (1967) and

later adopted by Attey and de Vries (2011). Following the latter study, it is assumed that the random

degree of wage indexation is the source of the multiplicative shocks. The role of these multiplicative shocks

is to amplify extreme realizations of the lag of inflation. This results in tails heavier in the unconditional

distribution of inflation than would be expected under the normal distribution.2 These heavy tails are

passed on to the distribution of the output gap and ithe nterest rate.

The remainder of this study is organized as follows. Section 2 derives the Phillips curve under the

assumption of random degree of wage indexation. Section 3 investigates optimal monetary policy. Section 4

investigates monetary policy under two alternative policy rules. The performances of these policy rules are

subsequently compared to that of optimal monetary policy in the chapter. Finally, Section 5 concludes.

1The so-called Wassenaar Agreement in the Netherlands in 1982 is a widely known example of this case.
2The inflation process derived under random wage indexation exhibits a random AR coefficient.
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Figure 1: Degree of wage indexation in selected OECD countries, Source: Attey (2015)

(a) Austria (b) Belgium (c) Canada

(d) Finland (e) Germany (f) Japan

(g) Netherlands (h) Norway (i) Sweden

(j) UK (k) US

2 Wage indexation and the Phillips curve

The representative firm has a fixed coefficient Ricardian production technology with labour as the sole

input.3 Assuming diminishing marginal returns to labour, the expression for output, Yt, is:

Yt = AtN
α
t 0 < α < 1,

3McCallum and Nelson (1999) argue that modeling variations in capital stock as exogenous is largely consistent with empirical

observation.
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where Nt is the amount of labour employed in production. The logarithmic level of total factor productivity,

At, follows a stationary AR process. The process is given below:

logAt = at = ρaat−1 + εat,

where iid random variable εat, has the following distribution: N(0, σ2
a). Firms maximize profit with respect

to labour inputs. Thus, marginal productivity of labour should be equal to real wages. Let δ0 = logα/(1−α)

and δ1 = 1/(1− α). The following equation gives the labour demand in log values:

nt = δ0 − δ1(wt − pt) + δ1at. (1)

Labour supply in micro-founded models is typically derived from the optimization conditions of the

representative household. Let the labour supply relation be given as follows:

nt = β0 + β1(wt − pt) β1 > 0,

where the parameters β0 and β1 are functions of the parameters governing household preferences. The

market clearing wage implied by the labour supply and labour demand relations is:

w∗t =
δ0 − β0

δ1 + β1
+ pt +

δ1

δ1 + β1
at. (2)

The corresponding market clearing output is obtained by substituting this expression into the labour

demand (or the labour supply) relation and again substituting the resulting expression in the expression for

aggregate output. This gives the log market clearing output (y∗) as:

y∗t = α
β1δ0 + β0δ1

δ1 + β1
+

(
1 + α

δ1β1

δ1 + β1

)
at.

Wage indexation

Fischer (1988) among others argues that informational lags make it impossible to index wages to current

inflation. At a particular point in time, any available information concerning inflation relates to either

inflation forecasts or lagged inflation, and not current inflation. In view of this, we consider an indexation

scheme with indexation to a period’s lagged inflation as follows:

wt = w∗et + xt(πt−1 − π̂), (3)

where wt, w
∗
t , and xt are respectively the nominal wages, market clearing nominal wages and time varying

wage indexation respectively. Inflation is denoted by the variable πt. The superscript e in the model denotes

the expectations of private agents. It is assumed that the inflation target announced by the policy maker

(π̂) effectively captures the expected inflation on which basis wage contracts are set a period in advance.

While this assumption may come across as ad-hoc, the ECB’s constant target of 2% can be cited as evidence

in support of our assumption.

The wage indexation variable xt effectively captures the elasticity of wages to lag of prices. Some of

the country-specific estimates for xt provided in Figure 1 suggest the possibility of overindexation (when

xt > 1). We therefore assume that xt ∼ U(0, κa), where κa > 1, in order to allow for this possibility.
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Wage indexation under a rule given by (3) may even exacerbate the destabilizing effects of monetary

shocks. This runs contrary to the finding in Gray (1976) that wage indexation insulates the economy from

monetary shocks. The reason behind the differing results lies in the way wages are indexed. Gray (1976)

considers an indexation scheme under which wages are indexed to current inflation while we assume that

wages are indexed to lag of inflation. This implies that real wages are flexible most of the time.

Take expectations of the market clearing wage in (2) and substitute the resulting expression into (3).

This gives the following expression for real wages in the presence of wage indexation:

wt − pt =
δ0 − β0

δ1 + β1
+

δ1

δ1 + β1
aet − (pt − pet ) + xt(πt−1 − π̂). (4a)

It is worth to note that (pt − pet ) = (πt − πet ). Following the assumption we earlier on made, expected

inflation is equal to the target inflation, ie πet = π̂. This implies that (4a) can be rewritten as:

wt − pt =
δ0 − β0

δ1 + β1
+

δ1

δ1 + β1
aet − (πt − π̂) + xt(πt−1 − π̂). (4b)

Aggregate supply or the Phillips curve

The aggregate supply is derived by substituting out real wages in (1) with (4b). This gives the log labor

demand as a function of inflation, lagged inflation and productivity. The output is subsequently computed

by noting that yt = αndt +at. Section A.1 gives a more detailed derivation of the aggregate supply equation.

Let λ1t = αδ1xt and λ2 = αδ1 . Further assume that the output gap is defined as the deviation of log

output under wage indexation from the log market clearing output level , ie gt = (yt − y∗t ). The expression

for the AS curve is:

gt = −λ1tπ̃t−1 + λ2π̃t + ut, (5)

where ut = [αδ2
1/(δ1 + β1)]εat. The variable π̃t is the deviation of inflation from target inflation, ie πt − π̂.

The aggregate supply relation on (5) implies a time-varying response of the output gap to lag of inflation.

This is due to the assumption that wages are indexed to lag of inflation. If the degree of wage indexation is

positive (xt > 0), the lag of inflation has a negative effect on the output gap. In other words, indexation just

increases the labour cost thereby decreasing output. A negative indexation resulting from a wage moderation

response to a high inflation implies a positive effect of lag of inflation on output. This suggests that wage

moderation as a response to high level of lagged inflation increases output beyond the level determined by

total factor productivity shocks (ut) and current inflation.

3 Monetary policy

This section derives inflation, the interest rate and the output gap under optimal monetary policy and

two interest rate rate rules. The set-up adopted in solving for optimal monetary policy is similar to that

of Clarke et al. (1999). A major distinction between our model and Clarke et al. (1999) lies in the slope

parameter of the Phillips curve. The Phillips curve in our model has a random slope coefficient as opposed

to the conventional constant slope Phillips curve used in Clarke et al. (1999).
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We earlier on assumed that the the degree of wage indexation is iid random variable distributed as follows:

x ∼ U [0, κa], where κa > 1. While the uniform distribution suggested as the distribution of the degree of

wage indexation might seem adhoc, Attey and de Vries (2013) show that it can be a mixed equilibrium

outcome of wage indexation bargaining under arbitration.

Optimal monetary policy

We now investigate the effect of random wage indexation to lagged inflation. The interest rate is introduced

into the model by incorporating the aggregate demand or the IS curve. The aggregate demand relation is

given as follows:

gt = yt − y∗ = −φ(it − π̃et − r) + vt vt ∼ iid N (0, σv), (6)

where r corresponds to the natural rate of interest which is assumed to be constant and vt is a demand

shock uncorrelated with productivity and the random wage indexation.

In deriving the optimal monetary policy, we make the following assumptions: the policy maker uses

the interest rate (it) as an instrument, all bargaining with regards to wage indexation in the economy are

concluded at the beginning of the current time period, and private agents do not observe the aggregate

wage indexation outcome. For all purposes, the aggregate wage indexation outcome can also be viewed as

a supply shock, uncorrelated to productivity shocks. The use of the interest rate as the instrument requires

the policy maker to observe the supply and demand shocks in order to react before the private sector does.

The expected inflation can be derived from the expressions (5) and (6) to obtain the following

π̃et = − φ

λ2 − φ
(iet − r) +

λ1

λ2 − φ
π̃t−1 λ1 = λe1t. (7)

Alternative forms of the expression (6) can be derived by expressing inflation and the output gap in terms

of the control variable it and state variables (πt−1 and the random shocks), as well as substituting in (7) as

follows:

gt = −φ(it − iet )−
φλ2

λ2 − φ
(iet − r) +

φλ1

λ2 − φ
π̃t−1 + vt (8a)

gt = get − φ(it − iet ) + vt. (8b)

Similarly, analogous expressions can be derived for the aggregate supply relation as follows:

π̃t = − φ

λ2
(it − iet )−

φ

λ2 − φ
(iet − r) + λ3tπ̃t−1 +

1

λ2
(vt − ut) (9a)

π̃t = π̃et −
φ

λ2
(it − iet ) +

ηt
λ2
π̃t−1 +

1

λ2
(vt − ut), (9b)

where λ3t = φλ1/[λ2(λ2 − φ)] + λ1t/λ2 and ηt = λ1t − λ1 .

Optimization problem of the policy maker

It is assumed that the policy maker targets both inflation and the output gap. In particular, they seek to

stabilize both gt and π̃t at 0, albeit without necessarily placing equal weights on both objectives. Let θ be

the weight the policy maker places on inflation stabilization. The loss function of the policy maker is:

Lt = g2
t + θπ̃2

t θ ≥ 0.
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We consider the case of optimal monetary policy under commitment, thus requiring the policy maker

to take into account the effect of its policy on the expectations of agents in the economy. This requires the

presence of another constraint in addition to (8a) and (9a) (or alternatively (8b) and (9b)) as follows:

iet = Et−1it. (10)

The policy maker aims at minimizing all current and future losses stemming from deviations of the output

gap and inflation from their respective targets. Let β be the discount factor and Et−1 be the expectation of

the policy maker. The optimization problem of the policy maker is given as follows:

max
it,iet

Et−1 −
∞∑
t=1

βtLt

s.t. (8a), (9a) and (10). (11)

The constraint (9a) is dynamic in π̃. In stabilizing current inflation and the output gap, one has to

be mindful of the intertemporal effects of one’s actions on the subsequent period’s inflation. Thus, we can

conclude that the optimization problem is a dynamic one with π̃t as the endogenous state variable. The

Bellman formulation of the expression (11) is given as:

V (πt−1) = max
it,iet

Et−1

[
−g2

t − θπ̃2
t + βV (π̃t)

]
s.t. (8a), (9a) and (10). (12)

Following Clarke et al. (1999), we argue that since the problem is of linear-quadratic nature as far as

the endogenous state variable is concerned, and owing to the independence of the exogenous state variables

ut and vt, the value function must also be quadratic. Thus, we conjecture the following value function:

V (π̃t−1) = γ0 + 2γ1π̃t−1 + γ2π̃
2
t−1.

Let the variable Λt−1 be the Lagrangian multiplier associated with the commitment constraint indicated

by (10). We write down the first order conditions associated with the problem as follows:

0 = 2φ[gt + π̃t(θ/λ2)− (γ1 + γ2π̃t)(β/λ2)]− Λt−1

0 = −2φ[get (1− λ2/(λ2 − φ)) + π̃et (θ/λ2 − θ/(λ2 − φ)) + (γ1 + γ2π̃
e
t )(β/λ2 − β/(λ2 − φ))] + Λt−1.

The sum of the last two expressions derives the following expression:

0 = 2φ[(gt − get ) + (π̃t − π̃et )(θ − βγ2)/λ2] + 2φ[λ2g
e
t + (θ − βγ2)π̃et − βγ1]/(λ2 − φ). (13)

Taking expectation of the above expression yields

0 = 2φ[λ2g
e
t + (θ − βγ2)π̃et − βγ1]/(λ2 − φ). (14)

Substitute in the expressions (8b) and (9b) to get an expression in terms of the control variables. The

derived optimal feedback rule after imposing (14) and after simplifying is given below:

0 = [−φ(it − iet ) + vt]

(
1 +

θ − βγ2

λ2
2

)
−
(
θ − βγ2

λ2
2

)
(ut − ηtπ̃t−1). (15)
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For the value function to be concave in π̃, we require that γ2 < 0. Therefore, we know that 1 + (θ −
βγ2)/λ2

2 6= 0. This implies that under optimal control, [−φ(it − iet ) + vt] is a function of ut and ηtπ̃t−1. We

also know that iet − r (and π̃et ) under optimal control must be a function of the endogenous state variable ,

π̃t−1. Thus it follows from (9a) that under optimal policy, we can conjecture the following for the inflation

process:

π̃t = a+ bπ̃t−1 + δηtπ̃t−1 + cut, (16)

where a, b, δ and c are parameters to be determined. For the value function to be concave, and thus, for

the existence of a solution to the maximization problem, it is required that β(b2 + δ2σ2
η) < 1. Appendix A.2

derives the process for equilibrium inflation under optimal control, which is

π̃t = b

(
1 +

ηt
λ1

)
π̃t−1 −

b

λ1
ut, (17)

where

b =
[(λ2

2 + θ) + β(1 + σ2
η/λ

2
1)λ2

1]−
√

[(λ2
2 + θ) + β(1 + σ2

η/λ
2
1)λ2

1]2 − 4β(λ1λ2)2(1 + σ2
η/λ

2
1)

2βλ1λ2(1 + σ2
η/λ

2
1)

. (18)

There are a few points worth noting about the behavior of the value representing the mean persistence

of inflation (b) under optimal monetary policy. First, this parameter is always positive and it is bounded

from above by x̄. This implies that under random wage indexation to lagged inflation, the mean persistence

in equilibrium inflation is at most the mean of the aggregate wage indexation. This maximum occurs when

the weight of inflation stabilization in the policy maker’s loss function is 0 (θ = 0). To see this, define

a = (λ2
2 + θ) and y = β(1 + σ2

η/λ
2
1)λ2

1 thus permitting the mean persistence to be written down as follows:

b =
(a+ y)−

√
(a+ y)2 − 4λ2

2y

4y
κa,

whereby we made the substitution λ2 = 2λ1/κa. Taking all other parameters as given, this function assumes

its extremum value when the derivative with respect to the variable y equals zero (∂b/∂y = 0). The

expression for this derivative is

∂b

∂y
=
−a
√

(a+ y)2 − 4λ2
2y + a(a+ y)− 2λ2

2y

4y
√

(a+ y)2 − 4λ2
2y

κa.

Imposing the first order maximization condition and simplifying the above expression further yields y2λ2
2(λ2

2−
a) = 0. The necessary condition for maximization is therefore satisfied if any combination of the following

expressions holds: λ2 = 0 and a = λ2
2. Reasonable estimates of the output elasticity to labour input in a

Cobb-Douglass production function4 imply that α > 0, thus ruling out the condition λ2 = α/(1− α) = 0.5

The remaining condition for maximization implies θ = 0 at which b is at its maximum irrespective of the

value of the variance of of wage indexation. We now show that the extremum value of b is indeed the

maximum if θ = 0. In order to do this, we show that for θ > 0 the following must hold: ∂b/∂y < 0.

4Our production function can considered as a Cobb-Douglass function with capital normalized to 1.
5Estimates from Christiano and Eichenbaum (1992) give the value of 1−α to be between 0.339 and 0.35 while values widely

used in literature on Real Business Cycle range from 1/3 to 0.4.
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This requires that either any or all of the following expressions must hold: λ2 < 0, y < 0, and λ2
2 < a.

As indicated earlier, all reasonable estimates in earlier studies imply that λ2 > 0. This rules out the first

condition. We know that the second condition is also ruled out since y = β(1 + σ2
η/λ

2
1)λ2

1 > 0. This leaves

us with the condition λ2
2 < a which implies θ > 0.

Second, b is strictly decreasing in θ. This can be seen from the partial derivative of b with respect to θ.

The derivative is

∂b/∂θ = (∂b/∂a)(∂a/∂θ) =

√
(a+ y)2 − 4λ2

2y − (a+ y)

4y
√

(a+ y)2 − 4λ2
2y

< 0.

The average persistence of inflation is therefore smaller when the policy maker attaches more weight to

inflation stabilization in their loss function and it is zero in the extreme case when the policy maker targets

only inflation (ie θ =∞).

Third, there are two cases in which the mean persistence of inflation assumes the highest value: when

the production function exhibits constant marginal returns to labour (α = 1) and when the policy maker

does not put any weight on stabilizing inflation (θ = 0). In the former case, the effects of productivity

and the output gap on inflation are zero, implying that the persistence in inflation is solely determined

by wage indexation. With regards to the latter case, an intuitive explanation can be given as follows: in

the absence of any commitment to inflation stabilization, the expected persistence in equilibrium inflation

is solely determined by how much, on the average, economic agents index to past inflation. Therefore, in

order to disinflate an economy characterized by high persistent inflation, monetary authorities need to be

committed to an inflation stabilization policy. This is in line with the empirical observation that inflation

is less persistent under inflation targeting than under the absence of any form of commitment to stabilizing

inflation.6

Equilibrium inflation under optimal monetary policy

That inflation is a persistent phenomenon is a well known observation. Most new Keynesian models incor-

porate inflation persistence by assuming that prices are indexed to lagged inflation. Jadresic (1998) and

Perez (2003), among others, introduce inflation persistence by indexing wages to lagged inflation. The latter

study concludes that persistence in inflation is higher, the higher the proportion of labour contracts that

include indexation clauses. There is one fundamental difference between our study and the last two studies

cited: wage indexation in our model is a random outcome rather than a given constant. The variance of the

aggregate wage indexation outcome also affects the mean persistence of inflation in the economy. Consider

the expression for expected the equilibrium inflation:

π̃et = bπ̃t−1.

The expression for ∂b/∂y in the preceding section implies that the average persistence of inflation (b) is

a decreasing function of the variance of wage indexation, σ2
x = σ2

η/λ
2
2. In other words, on the average,

past inflation is less important in explaining current inflation the higher the variance of aggregate wage

indexation. The conditional variance of inflation under optimal control can be derived from (17) as follows:

σ2
π =

b2

λ2
1

(σ2
ηπ̃

2
t−1 + σ2

u). (19)

6Literature that report this finding include Gerlach and Tillman (2012) and Kuttner and Posen (2001)
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The expression above reveals that the conditional variance in inflation depends on three variables: the

variance of wage indexation, lagged inflation and the variance of productivity shocks. The effects of lagged

inflation and the variance of productivity shocks are unambiguous: they increase the conditional variance

of inflation. However, no concrete conclusion can be drawn with regards to the effect of the variance of

wage indexation on the conditional variance of inflation under general conditions. Under the rather specific

assumption that the lagged inflation is at its target (ie. π̃t−1 = 0), it can then be concluded that the variance

of wage indexation has a decreasing effect on the variance of inflation. To see this, one must first note that

the higher the variance in wage indexation (captured by the variable σ2
η), the lower the average persistence

in inflation (b), and thus the lower the variance of inflation holding all other variables constant.

Interest rate under optimal monetary policy

The expression (A.21) substituted into (A.22) (both found in Appendix A.2) gives an interest rate rule to

which a policy maker has to adhere when conducting optimal monetary policy. After making the substitution

a = 0 and further simplifications, the interest rate rule under optimal monetary policy is given below:

it = r + bπ̃t−1 +
λ1 − bλ2

λ1φ
(λ1tπ̃t−1 − ut) +

1

φ
vt. (20)

As will be shown later, the expression above is reminiscent of the Taylor rule in that it contains a sort of

reaction function to inflation and the output gap. The expression for inflation under optimal control as

given in (17) and the implied the output gap derived from (5) can be written as follows:

π̃t = (b/λ1)[λ1tπ̃t−1 − ut]

gt = −(1− bλ2/λ1)[λ1tπ̃t−1 − ut].

A substitution of the former of the above two expressions into (20) permits the rendition of the interest rate

rule under optimal monetary policy into a more recognizable form as follows:

it = r + bπ̃t−1 +
λ1 − bλ2

bφ
π̃t +

1

φ
vt. (21)

The last expression indicates a reaction function of the interest rate to lagged inflation and current inflation.

In addition to the variables just mentioned, it also reacts to demand shocks vt as per the assumptions

made when solving the optimal control problem in Appendix A.2. Given reasonable values for the model’s

structural parameters, the coefficients of π̃t−1, π̃t, and vt are all greater than 1. This suggests an aggressive

reaction to deviation of these variables from 0, thus ensuring determinacy of the model under this rule.

Two simple interest rate rules

In what follows in this part, we examine monetary policy under two types of Taylor rules: one that targets

current inflation (hereafter denoted by CTR) and the backward looking Taylor rule (hereafter denoted by

BTR). These rules are given in the following expressions:

it = r + ωcπ̃t (22)

it = r + ωbπ̃t−1. (23)
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The rules considered above are similar to those considered in Gali and Monacelli (2005). Besides, as can be

seen in the preceding paragraphs, the equilibrium output gap (gt) under optimal control is a linear function

inflation thus permitting the interest rate rule to be expressed in terms of shocks and inflation only. In the

case of the BTR, the policy maker reacts to lagged inflation. A motivation for considering this version of

the Taylor rule can be drawn from the same reasoning as to why one should consider wage indexation to

lagged inflation: policy makers may not have information on current shocks during policy formulation and

implementation. The other expressions needed for the analysis are the aggregate demand or the IS curve

and the aggregate supply or the Phillips curve equations. They are repeated here below.

λ2π̃t = λ1tπ̃t−1 + gt − ut

gt = −φ(it − π̃et − r) + vt.

After substituting the Taylor rule (22) into the IS equation, a compact representation of the linear system

is given below as follows:

Ac

(
π̃t

gt

)
= Bc,t

(
π̃t−1

gt−1

)
+ Cc

(
π̃et

get

)
+ Dc

(
ut

vt

)
, (24)

where Ac =

(
λ2 −1

φωc 1

)
; Bc,t =

(
λ1t 0

0 0

)
; Cc =

(
0 0

φ 0

)
and Dc =

(
−1 0

0 1

)
.

Let the vector X be defined as [π̃t gt]
′ and vector εt be defined as [ut vt]

′. The above representation can

further be simplified to get the following

Xt = Fc,tXt−1 + GcEt−1Xt + Hcεt,

where Fc,t = A−1c Bc,t, Gc = A−1c Cc and Hc = A−1c Dc. It is shown in Appendix B that the solution to

the above system of equations is

Xt = Pc,tXt−1 + Hcεt, (25)

where Pc,t = [Fc,t +Gc(I−Gc)−1Fc]. The solution is basically an autoregressive system with time varying

coefficients. Unlike its counterpart in extant literature investigating determinacy under a Taylor rule, the

eigen value criterion for determinacy is not applicable. If the coefficient matrix Pc,t were constant, then

the obvious requirement for such a system to be determinate will be that both eigen values of the matrix

must lie within the unit circle. Given the random nature of the coefficient matrix, the Kesten conditions

are used to verify the existence of a stable asymptotic unconditional distribution of both the output gap

and inflation. Algebraic verification of the Kesten conditions in the case of monetary policy under the two

Taylor rules are rather tedious. We therefore resort to numerical computations using the the MATLAB

programme to verify them.

The solution derived in (25) implies the following expressions for equilibrium inflation and the output

gap under the CTR:

π̃t = [λ1t/∆ + φλ1/(∆
2 − φ∆)]π̃t−1 + [1/∆]vt − [1/∆]ut (26)

gt = [−λ1t(φωc)/∆ + (φλ1λ2)/(∆2 − φ∆)]π̃t−1 + [λ2/∆]vt + [φωc/∆]ut, (27)
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where ∆ = λ2 + φωc. Let Λ = φ(λ1− φωb)/(λ2− φ). A similar derivation procedure in the case of the BTR

permits us to derive the equilibrium process for inflation and the output gap as follows:

π̃t = [λ1t/λ2 + Λ/λ2]π̃t−1 + [1/λ2]vt − [1/λ2]ut (28)

gt = Λπ̃t−1 + vt. (29)

Comparing the equilibrium the output gap under the CTR (27) with its counterpart under the BTR (29)

reveals a difference in the conditional distributions of the output gap under the two rules: while the condi-

tional distribution under the CTR is not normal, that under the BTR is normally distributed if one assumes

a normal distribution for vt.
7 The CTR therefore comes closer to mimicking the optimal monetary policy

as far as conditional distribution of the output gap is concerned. If the Kesten conditions are satisfied, the

unconditional distribution of all variables are heavy tailed under both Taylor rules.

4 Evaluation of alternative policy rules

This section carries out a quantitative analysis of the two policy rules and compares the equilibrium dy-

namics of inflation, the output gap and the interest rate obtained under these rules to those obtained under

optimal monetary policy in the previous section. The loss function used in deriving the optimal monetary

policy in Section 3 reveals a hybrid stabilization policy that targets both inflation and the output gap. In

the new Keynesian literature, a similar welfare function is derived as a second order approximation of the

representative consumer’s utility function.8 In such a case, the relative weight placed on inflation stabiliza-

tion is a function of structural parameters in the new Keynesian model. We restate the objective function

of the policy maker below:

W = −
∞∑
t=0

βtE0

(
g2
t + θπ̃2

t

)
. (30)

In Gali and Monacelli (2005), it is noted that for β → 1, the loss function can be rewritten in terms

of the unconditional variances of the output gap and inflation. The logic behind the expression of (30) in

terms of these variances differs from that of Gali and Monacelli (2005). Assume β → 1 and that the loss

function can be approximated as a sum of instantaneous losses over a finite time horizon. A step by step

approximation of (30) is given below:

W ≈ −E0

T∑
t=0

βt
(
g2
t + θπ̃2

t

)
= −TE0

T∑
t=0

βt
1

T

(
g2
t + θπ̃2

t

)
≈ −T [var(gt) + θvar(πt)],

where T is an arbitrarily large number. Given the ordinal nature of the measurement of the loss of the

policy maker, any monotonic transformation of the last expression should be an adequate measure for the

7To see this, note that Λ is a function of constant parameters. Thus the conditional distribution of gt under the BTR depends

only on the distribution of vt.
8Woodford (2003) contains such derivations
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loss of the policy maker. We therefore express the loss function as follows:

V = −[var(gt) + θvar(πt)]. (31)

The existence of stationary distributions for the output gap and inflation once Kesten conditions are satisfied

guarantees a finite variance. The version of the loss function contained in (31) will be used to rank the rules

and the performance of optimal monetary policy. The calibration in this section is carried out with respect

to the dynamics of the output gap, inflation and the interest rate in the economy of the Euro area.

Recap of the calibrated models

We compare the dynamics of inflation, the output gap and interest rate under the optimal monetary policy

and the two Taylor rules. In order to get a lucid comparison of the distributions, we include a version of the

model under which inflation under optimal policy has a non random persistence (OCW). In other words,

we assume that λ1t = λ1 in the OCW model. Each of the calibrated models can be summarized by the

following three expressions: the aggregate supply or the Phillips curve, the aggregate demand curve and

the interest rate rule. Let ϕ = (λ1 − bλ2)/(bφ). Table 1 gives a summary of the models employed in the

calibrations.

Table 1: Summary of models

Optimal policy

Constant index (OCW) Random index (ORW)


λ2π̃t = gt + λ1π̃t−1 − ut

gt = −φ(it − π̃et − r) + vt

it = r + b̄π̃t−1 + ϕπ̃t + [1/φ]vt


λ2π̃t = gt + λ1tπ̃t−1 − ut

gt = −φ(it − π̃et − r) + vt

it = r + bπ̃t−1 + ϕπ̃t + [1/φ]vt

Taylor rules

Current inflation (CTR) Lagged inflation (BTR)


λ2π̃t = gt + λ1tπ̃t−1 − ut

gt = −φ(it − π̃et − r) + vt

it = r + ωcπ̃t


λ2π̃t = gt + λ1tπ̃t−1 − ut

gt = −φ(it − π̃et − r) + vt

it = r + ωbπ̃t−1

It should be noted that the definition of the coefficient b given in (18) changes under the OCW. Recall

that wage indexation is assumed constant at its mean under the OCW. Thus, the variance of wage indexation

and by implication σ2
η are both 0. The average persistence under the OCW (b̄) and the corresponding value

under the ORW (b) are stated below:
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b̄ =
[(λ2

2 + θ + βλ2
1]−

√
(λ2

2 + θ + βλ2
1)2 − 4β(λ1λ2)2

2βλ1λ2

b =
[(λ2

2 + θ) + β(1 + σ2
η/λ

2
1)λ2

1]−
√

[(λ2
2 + θ) + β(1 + σ2

η/λ
2
1)λ2

1]2 − 4β(λ1λ2)2(1 + σ2
η/λ

2
1)

2βλ1λ2(1 + σ2
η/λ

2
1)

.

Parameter values

The parameter values used in the calibration exercise derive from the following sources: Amisano and

Tristiani (2010), Gali and Monacelli (2005), and our own estimates. There are some cases in which directly

corresponding values of certain parameters in the source literature are not available. In these cases, we

construct values based on a set of related parameters obtained from the literature. The next three paragraphs

give a more detailed explanation on how some parameter values are set for the calibration.

The constant in the labour supply equation (β0) is set to 0. Using a different value does not change our

results in any significant way. Besides, there is no constant term in most micro founded derivation of the

labour supply curve found in literature.9 It is assumed that the policy maker places twice as much weight

on output stabilization as they place on inflation stabilization . Thus, we assume that θ = 0.5. Following

Gali and Monacelli (2005), we set the coefficients of inflation in both Taylor rules at 1.5 (ωc = ωb = 1.5).

The values of the interest rate elasticity of aggregate demand (φ), the standard deviation of the aggregate-

demand shocks (σv), and the wage elasticity of labour supply (β1) are not directly available from the

estimates in Amisano and Tristiani (2010). We express these parameters as functions of available estimates

under some plausible assumptions. Assume a power utility function which is separable in both consumption

and labour (or leisure). A micro founded derivation of the aggregate demand (or the IS curve) implies

that the interest rate elasticity is the inverse of the constant relative risk aversion (CRRA) parameter. We

therefore set φ = 1/γ, where γ is the CRRA estimate from Amisano and Tristiani (2010). Under the same

assumption, it can be shown that the real wage elasticity of labour supply is a function of the labour share

of production (α), the disutility of labour , and the constant relative risk aversion parameter when one

assumes a power utility function. In particular, β1 = 1/(φ+ αγ), where φ captures the disutiltiy of labour

in the model of the study just cited. Finally, we assume that demand shock is the sum of the inflation target

shock and the interest rate shock found in the literature. This permits us to set σv =
√
σ2
π̄ + σ2

i where σ2
π̄,

and σ2
i are respectively the variances of inflation target shocks and the interest rate shocks.

The wage parameter indicating the extent of overindexation (κa) is fixed at 1.5. This value is motivated

by the estimates obtained from Attey (2015) for the case of Belgium. While there are estimates found

in other literature, those estimates are derived under the rather restrictive assumption of a time-invariant

degree of wage indexation. We carry out our own estimations to estimate the parameters α, σa and ρa.

Details concerning the estimation procedure are given in section C of the appendix. Table 2 gives a summary

on the parameters and their corresponding values used in the calibration exercise.

9In these models, labour supply is typically given by the following (wt−pt) = log(MRSt) = log(−(Un))− log(Uc). Assuming

a power utility function then implies that real wages are increasing in labour hours and productivity after imposing equilibrium

conditions. The log of the latter variable is typically assumed to be a stationary AR(1) process around a 0 unconditional mean.
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The existence of a stationary unconditional distribution

We conduct tests on the inflation process presented in (17), (27), and (29) for the existence of heavy-tailed

distributions. We do not need to conduct tests on the processes of the output gap and the interest rate

since they are functions of inflation. Any heavy-tailed property of the unconditional distribution of inflation

is automatically passed on to the other variables The expressions for equilibrium inflation obtained under

optimal monetary policy (17), under the CTR (26), and the BTR (28) imply that inflation can generally be

represented by the following univariate AR(1) process:

Xt = Vt +BtXt−1, (32)

where (Vt, Bt) are iid with absolutely continuous distribution functions. Equation (32) is an AR process with

random coefficient Bt. The Kesten conditions give the general conditions for such a process under which

the unconditional distributions of inflation, the output gap and the interest rate under optimal monetary

policy and the two interest rate rules considered are stationary.

Kesten Conditions: Consider a time varying autoregressive process as in (32) above. If there exists κ > 0

such that the following conditions are satisfied:

• E log |B1| < 0

• E|B1|κ = 1

• E|B1|κ log+ |B1| <∞

• 0 < E|V1|κ <∞

then a stationary distribution exists for the process X irrespective of how this process is initialized and it is

heavy tailed. For an AR(1) univariate process to have a heavy-tailed unconditional distribution, it suffices

that only the second condition is satisfied. In what follows in this section, we investigate the conditions

for the existence stationary distribution of the inflation process under optimal monetary policy and the two

Taylor rules.

Optimal monetary policy

As already mentioned in Section 2 of this chapter, we assume a uniform distribution for the degree of wage

indexation. In particular, we assumed that xt ∼ U(0, κa) where κa > 1. The implied process for inflation

under both the OCW and the ORW are:

π̃t = b̄π̃t−1 − (b̄/λ1)ut (33a)

π̃t = 2bAtπ̃t−1 − (b/λ1)ut, (33b)

where At ∼ U(0, 1).

The inflation process under the OCW is an AR(1) process with a constant coefficient b̄. The existence of

a stationary unconditional distribution hinges on the following assumption: |b̄| < 1. Given the parameters

in Table 2, this condition is satisfied since b̄ = 0.5859.10 Earlier on we assume that the productivity shock

10The computations for the calibration exercise were carried out in MATLAB.

17



term (ut) is normally distributed. This implies that the unconditional distribution of inflation under the

OCW (33a) is normal.

Concerning inflation under the ORW, the first Kesten condition requires that the following holds: b <

e/2. If b is at its maximum (θ = 0), this condition translates to κa <
√
e. The second condition implies

solving for a κ which satisfies (2b)κ = κ + 1. A solution exists for any b ∈ (1/2, e/2). The last two

conditions can easily be verified, given that there exists a κ that satisfies the second condition. For our set

of parameters, b = 0.5551. This implies that the Kesten conditions are satisfied since b = 0.5551 ∈ (1/2, e/2).

This guarantees the existence of a stationary heavy-tailed distribution for inflation, the output gap and the

interest rate.

Remarkably, the mean persistence of inflation under the OCW is larger than that under the ORW (ie

b̄ > b). However, inflation under the latter model rather exhibits heavy-tailed properties. This observation

proves the importance of multiplicative shocks such as random wage indexation in generating heavy-tailed

distributions.

Monetary policy under CTR and BTR

We derive bounds for the coefficients under the CTR and BTR that satisy the Kesten conditions using

MATLAB. The process for inflation under CTR as found in (26) in the main text can respectively be

expressed as follows:

π̃t = [ccmin + ccextAt]π̃t−1 + [1/∆]vt − [1/∆]ut, (34a)

where ccmin = (φλ1)/(∆2 − φ∆) and ccext = λ2κa/∆. As in (26), the parameter ∆ = λ2 + φωc. Here again,

At is a random variable uniformly distributed on the unit interval. Similarly, the process for inflation under

a BTR as found in (28) can be expressed as follows:

π̃t = [cbmin + cbextAt]π̃t−1 + [1/λ2]vt − [1/λ2]ut, (34b)

where cbmin = Λ/λ2 and cbext = κa.

From (33) and (34), the inflation processes can be given the following generic representation:

π̃t = [cmin + cextAt]π̃t−1 + µt. (35)

Earlier on, we asserted that one needs to only check the second of the Kesten conditions for the existence of

a heavy-tailed unconditional distribution. We nevertheless check both the first and second of the conditions

in our computations. As we will explain later, the first condition reveals information about the average

persistence in the inflation process. Given the inflation process (35), the first two conditions can be derived

using the following: ∫ cmax

cmin

log(|x|)
cext

dx < 0

∫ cmax

cmin

|x|κ

cext
dx = 1,

where cmax = cmin + cext.
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The Table 3 gives the result of the tests regarding the Kesten conditions. From the table, the value of

κ in the case of the CTR is 12.307 while that for the case of the BTR is 2.313. Thus, it can be concluded

that the unconditional distributions of inflation under both types of Taylor rules are stationary and heavy

tailed.

Table 3: Results from the Kesten tests

Condition OCW ORW CTR BTR

E log |B1| N/A -0.896 -0.549 -0.305

κ N/A 34.038 12.307 2.314

Distribution normal heavy tailed heavy tailed heavy tailed

1 Table gives results of the Kesten tests from calibrations N/A denotes that the

test is not applicable. Test conducted on the process Xt = BtXt−1 + Vt.
2 Calibrations were conducted in MATLAB

Interpreting E log |B1| and the parameter κ

The first Kesten condition requires E log |B1| < 0 for the existence of a stationary unconditional distribution

of inflation. This condition can be seen as analogous to the condition that |b̄| < 1 under the OCW. We can

therefore deduce preliminary insights into the persistence of the inflation process from the condition. It can

be concluded from Table (3) that a stationary distribution exists for the inflation process under each of the

models. Also, one can again conclude that the persistence in the inflation process is the highest under the

BTR and the lowest under the ORW. The persistence of this process under the CTR falls between those of

the BTR and the ORW.

The presence of a heavy-tailed unconditional distribution of inflation depends on the existence of a κ > 0

that satisfies the second condition. The magnitude of this parameter indicates how heavy the tails of the

distribution are. In particular, κ is inversely related to the heaviness of the tail: a higher κ denotes that

the tails of the particular distribution in question are relatively less heavy. The intuition behind this inverse

relationship is as follows. A distribution which does not meet the second Kesten condition may have κ =∞.

Thus the further away κ is, the more likely it is that that distribution will fail the requirements for the

presence of heavy tails.

From Table 3, it can be concluded that the distribution of inflation under the BTR has the highest

persistence and the heaviest tails. We may prematurely conclude that variations of variables under that

model are most extreme and most undesirable. The inflation rate, output gap, and interest rate have the

least variances under the ORW (not counting the OCW). One may therefore give the following ranking of

the models based on loss minimization: ORW, CTR, and BTR.

Time paths of variables

Figure 2 gives the time path of the various macroeconomic variables in this section based on a simulation

of 10, 000 observations. Noting that the unconditional distributions of variables under OCW are normally

distributed, the figure shows that extreme observations are more frequent under the ORW model than those
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under the OCW model. It can therefore be concluded that inflation, the output gap and the interest rate

under the ORW model have heavy-tailed unconditional distributions.

Figure 2 also shows the dynamics of the three variables under the two Taylor rules. The unconditional

distributions of both variables are heavy tailed since the processes of inflation under these two Taylor rules

satisfy the Kesten conditions. The figure also shows that the distributions under the BTR are more heavy

tailed than those under the CTR. This result was already implied by the κ values.

Figure 2: Time paths of variables
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Impulse responses to productivity shocks

The dynamic effects of productivity shocks are displayed in Figure 3 in the appendix. The figure suggests

that the three variables converge back to their steady states faster under the ORW model than the OCW

model. However, this is the case only because of the particular set of draws of the random wage indexation

parameter λ1t. For other sets of draws, the variables converge back to their steady states faster under the

OCW than the ORW. Repeated simulations show that on the average, it takes 10 periods to converge back

to the steady state after an initial productivity shock. This is the same number of periods it takes for

variables to converge back to their respective steady states under the OCW. Thus, random wage indexation

induces uncertainty in the amount of time it takes for the three variables to converge back to their steady

states.

Inflation has a higher initial response to productivity shocks under the CTR than under the BTR. Given

the same draws of λ1t, all variables converge faster to their respective steady states under the CTR than

under the BTR. The reason for this result lies in the implied processes of inflation under the two models.

From the expressions (26) and (28), the mean persistence parameters prevailing under these models are:

E[λ1t/∆ + φλ1/(∆
2 − φ∆)] = λ1/(∆− φ) = 0.6706 (CTR)

E[λ1t/λ2 + Λ/λ2] = (λ1 + Λ)/λ2 = 0.8725 (BTR).

The computations above imply that on the average, the inflation process is more persistent under the BTR

than under the CTR.11 conditions We therefore expect inflation to converge back to its steady state faster

under the CTR. Since the output gap and the interest rate are functions of the inflation rate, they also

converge back to their steady states quicker under the latter model.

Impulse responses to demand shocks

Table 4 presents the responses of the various variables to a one standard deviation shock in demand vt.

Under optimal monetary policy, inflation and the output gap are not impacted by demand shocks. This is

due to the assumption that the policy maker observes the demand shocks and moves to offset their likely

effects. The interest rate initially rises in response to demand shocks, but converges back to its steady state

in the subsequent period.

The responses of the output gap and inflation to a one-time demand shock are larger under the BTR

than under the CTR. The interest rate has a delayed response to demand shocks under the BTR. All three

variables converge back to their respective steady states faster under the CTR than under the BTR. The

reason for this is identical to the one provided for the case of productivity shocks.

One can therefore conclude that compared to optimal monetary policy, a Taylor rule targeting only the

inflation rate performs poorly when the economy is subject to demand shocks. This conclusion hinges on

the assumption that a policy maker can observe demand shocks immediately in order to react to them.

Losses from alternative policy rules

Table 4 presents the standard deviations and the implied loss under each type of monetary policy considered

in this work. Inflation is less volatile under the ORW than under the CTR while the output gap is less

11The results from the tests of the first of the Kesten already implied this.
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volatile under the latter than the former. This contrast concerning the volatility of the output gap and

inflation under these two policies stems from their respective interest rate rules. The ORW interest rate in

(21) reacts to demand shocks and current inflation, while the CTR interest rate in (22) targets only current

inflation. Therefore, the excessive volatility in the interest rate under ORW is transferred to the output gap

under this policy regime.

However, it should be noted that the volatility of inflation increases when the interest rate does not

respond to current shocks. The following observations can be made about the various interest rate policy

rules. The BTR interest rate targets none of the current shocks, the CTR interest rate targets only pro-

ductivity shocks (embedded in current inflation), and the ORW interest rate targets both productivity and

demand shocks. As a result from the nature of the interest rate rules, inflation is most volatile under the

BTR and least volatile under the ORW.

Table 4: Standard deviations and loss

OCW ORW CTR BTR

sd% sd% sd% sd%

Inflation (πt) 1.16 1.16 1.34 4.67

Output gap (gt) 0.58 0.73 0.69 1.06

Interest rate (it) 1.99 2.27 2.01 7

Variance of variables in %

Inflation 0.0135 0.0135 0.0180 0.2472

Output gap 0.0033 0.0052 0.0047 0.0126

Loss (V) 0.0101 0.0120 0.0137 0.1362

Not surprisingly, the optimal monetary policy generates the lowest loss among the three types of monetary

policy considered, although the losses from the ORW and the CTR do not differ that much in magnitude.

This means that given the parameters, a Taylor rule targeting current inflation almost replicates optimal

monetary policy. Of the two types of Taylor rules considered, the one targeting current inflation (CTR)

outperforms the lagged inflation targeting Taylor rule (BTR). This comes as no surprise as it is already

known that the CTR comes closest to mimicking the interest rate rule under optimal monetary policy (see

Woodford (2001)).

5 Conclusion

This study investigates the effect of random wage indexation on monetary policy. Most of the extant

literature on wage indexation and its role in monetary policy is based on the assumption that the degree

of wage indexation is constant. However, recent empirical estimates suggest a time varying process for the

degree of wage indexation. Drawing on the empirical properties of the degree of wage indexation, this study

investigates the conduct of monetary policy in the presence of random wage indexation. In particular, we

investigate the conduct of monetary policy under three interest rate rules: the rule implied by optimal

monetary policy under commitment, a current inflation targeting Taylor rule and a lagged or expected
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inflation targeting Taylor rule.

Our findings reveal that under the plausible scenario of wages being overly indexed to inflation, the

unconditional stationary distribution of inflation, the interest rate and the output gap do exhibit heavy-

tailed characteristics under all of the three types of monetary policies considered. This implies that extreme

observations in these variables are more likely to occur than as would be predicted under current standard

theoretical models. Also, inflation exhibits volatility clustering with expected or lagged inflation having

a positive effect on the conditional variance of inflation. Finally, it is better to commit to a Taylor rule

targeting current inflation rather than one targeting lagged inflation.
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A Aggregate supply and optimal monetary policy

A.1 Deriving the aggregate supply (Phillips ) curve

It is assumed that the representative firm is perfectly competitive. The real wage is therefore equal to the

marginal productivity of labour. With the production technology assumed in the main text, the expression

for real wages is:12

Wt

Pt
= αAtN

α−1
t .

Let δ0 = (lnα))(1−α) and δ1 = 1/(1−α). The labour demand expression can be derived by taking the log

of the real wage expression just previously given. This is given below:

ndt =δ0 − δ1(wt − pt) + δ1at. (A.1)

The expression for labour supply can be derived from a representative household’s optimising behaviour.

For the purposes of this study, we make use of the following adhoc labour supply relation:

nst = β0 + β1(wt − pt). (A.2)

By equating (A.1) to (A.2) , one derives the following expressions for equilibrium nominal wage rate (w∗t )

and equilibrium labour (n∗t ). These expressions are as follows:

w∗t =
δ0 − β0

δ1 + β1
+ pt +

δ1

δ1 + β1
at (A.3)

n∗t =
β1δ0 + β0δ1

δ1 + β1
+

β1δ1

δ1 + β1
at. (A.4)

The production function was already given in the main part of this study as follows: Yt = AtN
α
t . Taking

the log of this function permits us to derive an expression in terms of log variables as follows:

yt = αnt + at. (A.5)

The expression for equilibrium output is then derived by substituting (A.4) into (A.5). We give the equation

for equilibrium output below:

y∗t = α
β1δ0 + β0δ1

δ1 + β1
+

(
αβ1δ1

δ1 + β1
+ 1

)
at. (A.6)

The (log) productivity shock term at is assumed in the main part of this text to follow the stationary AR(1)

process given below:

at = ρaat−1 + εat,

where εat is iid normal with a zero mean. The AR coefficient ρa is assumed to lie within the unit internal

to ensure stationary of the AR process.

12Lower cases of variables denote their log values. In discussing these variables, we omit the word’ ‘log’ for convenience
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The wage indexation rule given in Equation (3) stipulates for wages to be adjusted if previously observed

inflation deviates from the target inflation. The rule is repeated below:

wt = w∗et + xt(πt−1 − π̂).

From the expression (A.3), we can derive the expression for the expectation of the wage rate prevailing at

the competitive equilibrium. Let aet = at ≡ ρaat−1. The expectation of the equilibrium wage rate is:

w∗et =
δ0 − β0

δ1 + β1
+ pet +

δ1

δ1 + β1
aet .

Substituting the expression above into the expression for wage indexation we get the following:

wt =
δ0 − β0

δ1 + β1
+

δ1

δ1 + β1
aet + pet + xt(πt−1 − π̂).

The presence of indexation introduces nominal rigidity into the model. A trade-off between inflation and

the output gap can therefore be realized in the presence of wage indexation. Subtracting prices from both

sides of the equation, one derives the following expression for real wages under wage indexation:

wt − pt =
δ0 − β0

δ1 + β1
+

δ1

δ1 + β1
aet − (pt − pet ) + xt(πt−1 − π̂).

We note that (pt − pet ) = πt − πet , where πt = pt − pt−1. Substitute the expression for the real wage under

wage indexation into the labour demand expression (A.1) to obtain the following:

nt =
β1δ0 + β0δ1

δ1 + β1
+ δ1(πt − πet )− δ1xt(πt−1 − π̂) + δ1at −

δ2
1

δ1 + β1
aet .

We note that δ1at = δ1a
e
t + δ1εat and also that πet = π̂ as per the assumption made in the main text. Thus

making this substitution into the labour demand equation previously written down results in the following

equation:

nt =
β1δ0 + β0δ1

δ1 + β1
+ δ1(πt − π̂)− δ1xt(πt−1 − π̂) +

δ1β1

δ1 + β1
aet + δ1εat.

We can derive the output under wage indexation by using the log form of the production technology:

yt = αnt + at. The output is given as follows:

yt = α
β1δ0 + β0δ1

δ1 + β1
+ αδ1(πt − π̂)− αδ1xt(πt−1 − π̂) + α

δ1β1

δ1 + β1
aet + αδ1εat + at.

With the help of equation (A.6), we express the output under wage indexation as a function of equilibrium

output prevailing under flexible wages (y∗t ). The resulting expression is as follows:

yt = y∗t + αδ1(πt − π̂)− αδ1xt(πt−1 − π̂) +
αδ2

δ1 + β1
εat.

Let the output gap(gt) be defined as the deviation of output from the output prevailing under flexible wage

wage equilibrium. Further assume the following: (πt − π̂) = π̃t, αδ1 = λ2, and λ2xt = λ1t. The aggregate

supply relation is given as follows:

gt = −λ1tπ̃t−1 + λ2π̃t + ut,

where ut = αδ2
1/(δ1 + β1)εat.
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A.2 Optimal monetary policy

We assume that wages are indexed to lagged inflation. We assume that agents in the economy fix their

expectations equal to a target inflation which does not necessarily need to be 0. We give the IS and the

Phillips Curve as follows:

gt = −λ1tπ̃t−1 + λ2π̃t + ut

gt = −φ(it − π̃et − r) + vt.

We again assume that in conducting optimal monetary policy, the central bank uses the interest rate and

the expected interest rate (it and iet ) as instruments. Alternative ways of expressing the Phillips and the IS

expressions which will be useful for our optimization purposes are given below:

π̃t = − φ

λ2
(it − iet )−

φ

λ2 − φ
(iet − r) + λ3,tπ̃t−1 +

1

λ2
(vt − ut) (A.7a)

π̃t = π̃et −
φ

λ2
(it − iet ) +

ηt
λ2
π̃t−1 +

1

λ2
(vt − ut), (A.7b)

where λ3,t = φλ̄1
λ2(λ2−φ) + λ1t

λ2
and ηt = λ1t − λ1. The expected inflation can easily be obtained by taking

expectation of the equation (A.7a). The expected inflation is:

π̃et = − φ

λ2 − φ
(iet − r) +

λ1

λ2 − φ
π̃t−1 λ1 = E[λ1t] (A.8)

gt = −φ(it − iet )−
φλ2

λ2 − φ
(iet − r) +

φλ1

λ2 − φ
π̃t−1 + vt (A.9a)

gt = get − φ(it − iet ) + vt, (A.9b)

The (endogenous) state variable in this model is inflation is π̃t. Thus, we can write the value function,

assuming a zero output gap target as follows:

V (π̃t−1) = max
it,iet

Et−1

[
−g2

t − θπ̃2
t + βV (π̃t)

]
. (A.10)

This is maximized subject to the constraints in (A.7a) and (A.9a) in addition to the expression which must

hold under commitment:

iet = Et−1[it]. (A.11)

Since the loss function is quadratic, the value function must be quadratic in the state variable. We therefore

conjecture the following expression for the value function:

V (π̃t) = γ0 + 2γ1π̃t + γ2π̃
2
t . (A.12)

where the parameters γ0, γ1 and γ2 are parameters assumed to be functions of the parameters in (A.7a)

and (A.9a). Let Λt−1 be the Lagrangian multiplier associated with the commitment constraint (A.11). By

the chain rule of differentiation, we can write down the first order conditions as follows:

0 =− 2gt
∂gt
∂it
− 2θπ̃t

∂π̃t
∂it

+ β
∂V (π̃t)

∂π̃t

∂π̃t
∂it
− Λt−1 (A.13)

0 =Et−1

[
−2gt

∂gt
∂iet
− 2θπ̃t

∂π̃t
∂iet

+ β
∂V (π̃t)

∂π̃t

∂π̃t
∂iet

+ Λt−1

]
. (A.14)
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The expectation sign appears in the second of the first order conditions because the policy maker does not

directly control iet , but rather influences it through policy instrument it. From (A.7a) and (A.9a), we derive

the following:

∂gt/∂it = −φ

∂π̃t/∂it = −φ/λ2.

The conjectured value function in (A.12) implies that the derivative of the value function with respect to

inflation is:

∂V (π̃t)/∂π̃t = 2(γ1 + γ2π̃t).

We obtain the following derivatives of gt and π̃et with regards to iet :

∂gt/∂i
e
t = φ− φλ2/(λ2 − φ)

∂π̃t/∂i
e
t = φ/λ2 − φ/(λ2 − φ).

Substitute these expressions into the FOCs derived with respect to it and iet as given by (A.13) and (A.14)

to obtain the following equations.

0 = 2φ[gt + π̃t(θ/λ2)− (γ1 + γ2π̃t)(β/λ2)]− Λt−1

0 = −2φ[get (1− λ2/(λ2 − φ)) + π̃et (θ/λ2 − θ/(λ2 − φ)) + (γ1 + γ2π̃
e
t )(β/λ2 − β/(λ2 − φ))] + Λt−1.

Adding the two equations just listed above derives an intermediate version of the optimal feedback rule.

This expression and a version derived by taking expectations are given below:

0 = 2φ[(gt − get ) + (π̃t − π̃et )(θ − βγ2)/λ2] + 2φ[λ2g
e
t + (θ − βγ2)π̃et − βγ1]/(λ2 − φ) (A.15)

0 = 2φ[λ2g
e
t + (θ − βγ2)π̃et − βγ1]/(λ2 − φ). (A.16)

We substitute the expressions (A.7b) and (A.9b) into (A.15) to obtain an expression in terms of the control

variables. The derived optimal feedback rule after imposing (A.16) and some simplifications is given below

as follows:

0 = [−φ(it − iet ) + vt]

(
1 +

θ − βγ2

λ2
2

)
−
(
θ − βγ2

λ2
2

)
(ut − ηtπ̃t−1). (A.17)

The value function needs to concave in the state variable to ensure the existence of a solution to the

dynamic optimization problem. It will later be shown that a necessary condition for the value function to

be concave in the state variable is the following:

β(b2 + δ2σ2
η) < 1,

where b and δ are coefficients (to be later determined) governing the process of inflation under optimal

control. The other variables, β and σ2
η are the discount rate and the variance of ηt respectively. Given that

the necessary conditions for concavity are satisfied, we know that 1 + (θ − βγ2)/λ2
2 6= 0. This implies that

under optimal control, [−φ(it − iet ) + vt] is a function of ut and ηtπ̃t−1.13

13It is assumed that the policy maker observes and reacts to the shocks in an interim period within which private agents can

neither observe those shocks nor react to them. The shocks are not observed by both parties ex-ante. See Clarke et al. (1999)

for detailed discussion on the implication of this assumption
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Thus gt is a function of ut and ηtπ̃t−1. This observation coupled with the Phillips curve expression

gt = −λ1tπ̃t−1 + λ2π̃t + ut, implies that inflation under optimal control assumes the following general form

π̃t = a+ bπ̃t−1 + δηtπ̃t−1 + cut, (A.18)

where a, b, δ and c are parameters to be determined. Noting that ηt = λ1t − λ1 is a zero mean iid random

variable, the expected inflation under this guess can easily be derived to yield as follows:

π̃e = a+ bπ̃t−1.

However, noting that the original specification of the AS (Phillips curve) relation implies get = λ1π̃t−1 +λ2π̃
e
t

and substituting this expression into (A.16), we get the following expression for expected inflation:

π̃et =
βγ1

λ2
2 + θ − βγ2

+
λ1λ2

λ2
2 + θ − βγ2

π̃t−1. (A.19)

We can identify the parameters a and b in terms of value function parameters and the structural parameters

after comparing (A.19) to the expectation of (A.18) as follows.

a =
βγ1

λ2
2 + θ − βγ2

b =
λ1λ2

λ2
2 + θ − βγ2

. (A.20)

From the expression given for b, we can rule out that λ2
2[1 + (θ− βγ2)/λ2

2] = 0 as earlier on claimed.14 This

is a necessary condition for a stable inflation under optimal control process since b is an AR coefficient. We

substitute the expression for expected inflation into the expression (A.8) to obtain the expected interest rate

expression:

iet = r + [(λ1 − b(λ2 − φ))π̃t−1 − a(λ2 − φ)]/φ. (A.21)

The guess we made for equilibrium inflation under (A.18) implies that π̃t− π̃et = δηtπ̃t−1 + cut. Substituting

this into the expression (A.7b) implies the following expression for the interest rate rule under optimal

control.

it = iet −
1 + cλ2

φ
ut +

1− δλ2

φ
ηtπ̃t−1 +

1

φ
vt. (A.22)

This expression substituted into (A.17) implies that the parameters δ and c can be identified as follows:

δ =
λ2

λ2
2 + θ − βγ2

c =
−λ2

λ2
2 + θ − βγ2

. (A.23)

To proceed further, we note once again that π̃et = a+ bπ̃t−1. One can derive the following expression for the

deviation of expected real interest rate from the natural rate of interest as follows:

iet − π̃et − r = [(λ1b− λ2)π̃t−1 − aλ2]/φ. (A.24)

The interest rate equation in (A.22) implies the following expression for the deviation of the interest rate

from its expected value it − iet = [−(1 + cλ2)ut + (1 − δλe)ηtπ̃t−1 + vt]/φ. Add (it − iet ) to both sides of

Equation (A.24). Using (A.22), make the necessary substitution at the RHS of the resulting equation, to

obtain the following:

it − π̃et − r = [(λ1 − λ2b)π̃t−1 − aλ2 − (1 + cλ2)ut + (1− δλ2)ηtπ̃t−1 + vt]/φ. (A.25)

The last expression implies that the output gap can then be expressed as a function of only the state

variables. The output gap given by (6) in the main part of this text can then be rewritten as follows:

gt = −φ(it − π̃et − r) + vt = aλ2 − (λ1 − λ2b)π̃t−1 + (1 + cλ2)ut − (1− δλ2)ηtπ̃t−1. (A.26)
14The fact that λ1, λ2 6= 0 reinforces this claim.
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Deriving parameters of the value function

We have expressed both inflation and the output gap in terms of the state variables. These are contained in

equations (A.18) and (A.26) respectively. We now proceed to express the various components of the value

function in terms of the state variables. From (A.18) and (A.26), we make the following derivations:

Et−1g
2
t = a2λ2

2 − 2aλ2(λ1 − λ2b)π̃t−1 + (λ1 − λ2b)
2π̃2
t−1 + (1 + cλ2)2σ2

u + (1− δλ2)2σ2
ηπ̃

2
t−1

Et−1π̃
2 = a2 + 2abπ̃t−1 + b2π̃2

t−1 + δ2σ2
ηπ̃

2
t−1 + c2σ2

u

Et−1[V (π̃t)] = γ0 + 2γ1a+ γ2(a2 + c2σ2
u) + 2b(γ1 + aγ2)π̃t−1 + γ2(b2 + δ2σ2

η)π̃
2
t−1.

Substitute the three expressions above into (A.10) to obtain the following:

V (π̃t−1) = βγ0 + 2βγ1a+ (βγ2 − θ)(a2 + c2σ2
u)− a2λ2

2 − (1 + cλ2)2σ2
u

+ 2[βbγ1 + (βγ2 − θ)ab+ aλ2(λ1 − bλ2)]π̃t−1

+
[
(βγ2 − θ)(b2 + δ2σ2

η)− [(λ1 − bλ2)2 + (1− δλ2)2σ2
η]
]
π̃2
t−1.

Equating the coefficients to the ones in the expressions V (π̃t−1) = γ0 + 2γ1π̃t−1 + γ2π̃
2
t−1, we obtain the

following systems of equations :

γ2 = −

[
θ(b2 + δ2σ2

η) + λ2
1(1− δλ2)2 + (1− δλ2)2σ2

η

1− β(b2 + δ2σ2
η)

]
(A.27)

γ1 = a

[
λ2λ1 − (λ2

2 + θ − βγ2)b

1− βb

]
(A.28)

γ0 =

[
2βγ1a+ (βγ2 − θ)(a2 + c2σ2

u)− a2λ2
2 − (1 + cλ2)2σ2

u

1− β

]
. (A.29)

Since the loss function, L = −g2
t − θπ̃2

t , is concave in π̃t−1, it holds that the value function must necessarily

be concave in that state variable. This implies that γ2 < 0, which holds only if β(b2 + δ2σ2
η) < 1.

Solving for policy function parameters

The value for b as given by (A.20) implies that the numerator of (A.28) is 0. We can therefore conclude

that γ1 = 0. This implies the following:

a =
βγ1

λ2
2 + θ − βγ2

= 0. (A.30)

In order to solve for b, we begin by noting that δ = b/λ1 from (A.20) and (A.23). Substituting out the

δ in (A.27) and substituting (A.20) into (A.28) gives a quadratic equation for b. In order to perform a step

by step derivation of this quadratic equation, we begin by noting that an alternative rendition of (A.27) is

the following:

γ2 = −

[
[θb2 + (λ1 − bλ2)2](1 + σ2

η/λ
2
1)

1− βb2(1 + σ2
η/λ

2
1)

]

= −

[
[b2(λ2

2 + θ)− 2λ2λ1b+ λ2
1](1 + σ2

η/λ
2
1)

1− βb2(1 + σ2
η/λ

2
1)

]
.
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The next step is to derive an expression for (λ2
2 + θ − βγ2) and note (A.20) implies that (λ2

2 + θ − βγ2) =

(λ1λ2)/b. The derivations corresponding to this step are given below:

−βγ2 =

[
[βb2(λ2

2 + θ)− 2βλ2λ1b+ βλ2
1](1 + σ2

η/λ
2
1)

1− βb2(1 + σ2
η/λ

2
1)

]

λ2
2 + θ − βγ2 =

[
[βb2(λ2

2 + θ)− 2βλ2λ1b+ βλ2
1](1 + σ2

η/λ
2
1)

1− βb2(1 + σ2
η/λ

2
1)

]
+ λ2

2 + θ

λ1λ2

b
=

[
(λ2

2 + θ) + β(1 + σ2
η/λ

2
1)λ2

1 − 2βλ1λ2(1 + σ2
η/λ

2
1)b

1− βb2(1 + σ2
η/λ

2
1)

]
.

The final of the previous expressions can be rearranged to obtain the following equation which is quadratic

in b:

0 = [β(λ1λ2)(1 + σ2
η/λ

2
1)]b2 − [(λ2

2 + θ) + β(1 + σ2
η/λ

2
1)λ2

1]b+ (λ1λ2).

This equation has two roots on whose values the stability of the system of equations depends. The root that

satisfies the condition β(b2 + δ2σ2
η) ≤ 1 is

b =
[(λ2

2 + θ) + β(1 + σ2
η/λ

2
1)λ2

1]−
√

[(λ2
2 + θ) + β(1 + σ2

η/λ
2
1)λ2

1]2 − 4β(λ1λ2)2(1 + σ2
η/λ

2
1)

2βλ1λ2(1 + σ2
η/λ

2
1)

. (A.31)

In what follows, we show that 0 ≤ b ≤ x̄. It is clear from (A.31) that b ≥ 0 since [(λ2
2 + θ) + β(1 +

σ2
η/λ

2
1)λ2

1] >
√

[(λ2
2 + θ) + β(1 + σ2

η/λ
2
1)λ2

1]2 − 4β(λ1λ2)2(1 + σ2
η/λ

2
1). The derivation of the upper bound on

this parameter is given below:

b =
[(λ2

2 + θ) + β(1 + σ2
η/λ

2
1)λ2

1]−
√

[(λ2
2 + θ) + β(1 + σ2

η/λ
2
1)λ2

1]2 − 4β(λ1λ2)2(1 + σ2
η/λ

2
1)

2βλ1λ2(1 + σ2
η/λ

2
1)

=
[(λ2

2 + θ) + β(1 + σ2
η/λ

2
1)λ2

1]−
√

[(λ2
2 + θ)− β(1 + σ2

η/λ
2
1)λ2

1]2 + 4βθ(λ2
1)(1 + σ2

η/λ
2
1)

2βλ1λ2(1 + σ2
η/λ

2
1)

≤
[(λ2

2 + θ) + β(1 + σ2
η/λ

2
1)λ2

1]−
√

[(λ2
2 + θ)− β(1 + σ2

η/λ
2
1)λ2

1]2

2βλ1λ2(1 + σ2
η/λ

2
1)

=
λ1

λ2

= x̄.

From (A.23) it is obvious that c = −δ. We are therefore able to solve for the remaining policy function

parameters as follows:

δ =
b

λ1
(A.32)

c = − b

λ1
. (A.33)

B Solution to a linear system with rational expectations

Consider the linear system given below as given in Section 3 of the main text:

Xt = FtXt−1 + GEt−1Xt + Hεt. (B.1)
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We guess the solution is of the form Xt = PtXt−1 + Qεt which implies that GEt−1Xt = GPXt−1 where

Et−1Pt = P. A substitution of this guess into B.1 allows us to solve the system by the method of undeter-

mined coefficients. This is illustrated in a step by step manner below:

PtXt−1 + Q = FtXt−1 + GPXt−1 + Hεt

= (Ft + GP)Xt−1 + Hεt.

By the comparing coefficients, we know that that the following should hold true:

Q = H (B.2)

Pt = Ft + GP. (B.3)

Let Et−1Ft = F. Taking expectation of the second equation, we obtain the following:

P = F + GP

(I−G)P = F

P = (I−G)−1F.

Substitute the last expression into B.3 to obtain the following expression for Pt:

Pt = Ft + G(I−G)−1F. (B.4)

C Productivity parameters

In this section, we derive alternative values for the parameters regarding productivity. We do this by first

computing the Solow residual for 3 countries, namely, France, Germany and the UK. We then estimate the

AR coefficient of productivity and the standard deviation of the productivity shocks.

We obtained the real income growth and growth in labour hours data from the OECD data base. Data

on capital stock was obtained from the Federal Reserve Economic Data on FRED St.Louis website. We now

proceed to discuss our estimations in detail. Consider the following Cobb-Douglass function

Yt = ZtN
α
t K

1−α
t . (C.1)

where Zt is productivity, Nt is capital and Kt is labour supplied. To allow for growth in the long-run, we

assume that productivity has two components: one that follows a deterministic trend and the other which

is stationary. In order words,

Zt = AτtAt Aτt = A0 expυt. (C.2)

Let log values of the variables be represented by small case versions of the relevant letters. Take the

natural log of (C.1) to obtain the following:

yt = a0 + υt+ αnt + (1− α)kt + at. (C.3)

We proceed by first noting that a differenced version of (C.3) gives the growth version of (C.1). The difference

version of (C.3) is

∆yt = υ + α∆nt + (1− α)∆kt + ∆at. (C.4)
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The equation (C.4) can be easily estimated by a constrained OLS if one assumes ∆at is the error term. This

error term should be stationary, albeit, possibly serially correlated.

The next procedure is to obtain the estimated residual ε̂t = ∆ât from the first estimation. Now, assume

the following AR(1) structure for at:

at = ρaat−1 + εat, (C.5)

where εat ∼ N (0, σ2
a). It follows that both the AR coefficient ρa and the variance of the productivity shock

σ2
a can be estimated using the following state-space specification:

ε̂t = at − at−1

at = ρaat−1 + εat

εat ∼ N (0, σ2
a).

(C.6)

We used the version 8 of the EVIEWS statistical package to estimate equation (C.6). Table 5 provides the

estimates of (C.4) for the three countries and Table (6) estimates for ρa and σ2
a for the same countries.

The estimates of α for Germany and the UK are similar to estimates obtained from other literature.

That of the UK however is outside the generally accepted range for α. In the main part of this study, we set

α = 0.64 for the calibration exercise to reflect a notional average of the estimates for α. It can be seen from

Table (6) that the country specific estimates for both ρa and σ2
a do not differ that much. The estimates

suggest that productivity shocks are highly persistent, albeit stationary. We will therefore set ρa at 0.9 for

the calibration. Finally, from the estimates, the country specific standard deviation of productivity shocks

σa lies between 0.0121 and 0.0151. We will set σa = 0.013 for the calibration.

C.1 Tables

Table 5: Cobb-Douglass (C.4)

Country υ̂ α̂ R2

France 0.005 0.366** 0.50

(0.004) (0.098)

Germany 0.013** 0.675** 0.57

(0.003) (0.107)

UK 0.015** 0.64** 0.50

(0.004) (0.124)

1 Standard errors in parenthesis
2 * p > 0.05, **p > 0.01

Table 6: Productivity (C.6)

Country ρ̂a ln(σ̂2
a) AIC

France 0.922** -8.818** -5.86

(0.12) (0.194)

Germany 0.978** -8.713** -5.77

(0.099) (0.134)

Uk 0.945** -8.379** -5.42

(0.129) (0.221)

1 Standard errors in parenthesis
2 * p > 0.05, **p > 0.01
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D Figures

Figure 3: Impulse response to productivity shocks

Figure 4: Impulse response to demand shocks
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