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Abstract

A wide class of models with On-the-Job Search (OJS) predicts that
workers gradually select into better-paying jobs, until lay-off occurs,
when this selection process starts over from scratch. We develop a
simple methodology to test these predictions. Our inference uses two
sources of identification to distinguish between returns to experience
and the gains from OJS: (i) time-variation in job-finding rates and (ii)
the time since the last lay-off. Conditional on the termination date of
the job, job duration should be distributed uniformly. Using extreme
value theory, we can infer the shape of the wage-offer distribution from
the effect of the time since the last lay-off on wages.
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This methodology is applied to the NLSY 79. We find remarkably
strong support for all implications. The offer distribution is Gumbel,
which has an unbounded support, which is inconsistent with pure
sorting models. The standard deviation of wage offers is 7 to 15%
(depending on educational level and urbanisation). OJS accounts for
30% of the experience profile and 9% of total wage dispersion. The
average wage loss after lay-off is 11%.

Keywords: On-the-job search, Wage dispersion, Job duration
JEL Classification: J31, J63, J64

1 Introduction

Labour market models with on-the-job search (OJS) as developed by Burdett
and Mortensen (1998) have become the workhorse model for explaining job-
to-job transitions and wage dynamics in macro economics. Since job-to-job
flows are an empirically relevant feature of the data (see Nagypal (2006)), a
model with OJS is particularly useful. While there are several versions of the
model, which differ in particular in their assumptions on wage formation (see
for example the model with tenure profiles by Burdett and Coles (2003), the
model with sequential auctioning by Postel-Vinay and Robin (2002), or the
model with bargaining by Shimer (2006)) the basic mechanics of this class
of models are the same. Workers receive job offers as random draws from a
stable offer distribution. They accept any offer that improves their expected
lifetime utility. In this way they gradually select into better matches, up
until the point where they are laid off. After lay-off, this selection process
of increasingly better job offers starts all over again. The models predict an
increasing and concave wage-experience profile with workers moving up the
job ladder up until the point of lay-off.

Though this process clearly captures important features of real-life labour
markets, no one has yet studied the extent to which this process adequately
describes the finer details of the interrelation between job-to-job transitions
and wage growth over the career of a worker. This paper fills that gap. We
derive detailed predictions on both job transitions and wage growth which
can be brought to the data. We find remarkably strong empirical support for
a simple version of this model. The returns to OJS are highly stable over the
life cycle. These returns explain about 30% of the overall return to labour
market experience. The random nature of the returns to OJS accounts for

2



9% of wage dispersion among male workers. The persistence of the wage loss
depends on the arrival rate of job offers and the shape of the offer distribution.
If job offers arrive frequently, then workers revert quickly to the top of the
job ladder. If the distribution of job offers has a thin upper tail, the gains
of selection die out quickly. The methodology laid out in this paper allows
the measurement of the job offer arrival rate and the characterization of the
shape and the dispersion of the offer distribution.

Our methodology builds on ideas developed by Wolpin (1992), Barlevy
(2008) and Hagedorn and Manovskii (2013). Wolpin (1992) introduces the
concept of an employment cycle. An employment cycle starts at the begin-
ning of an unemployment spell, follows the worker when he first moves from
unemployment to a job and subsequently from one job to another, and ends
when the worker gets laid off and becomes unemployed again. This starts a
new cycle. In a model with OJS and efficient transitions, this corresponds
to a sequence of ever-better draws from the job-offer distribution. Random
variation in the arrival of lay-off shocks that characterize the beginning and
the end of subsequent employment cycles can be used to estimate the returns
of OJS. Barlevy (2008) shows how results from record theory can be used
to characterise the distribution of job offers. The current job offer is viewed
as the maximum of the job offers received to date. The record measures the
highest draw and is updated every time a higher offer is received. A sequence
of jobs in an employment cycle is then a sequence of records. A sequence
of wage changes for workers who change jobs compared to the evolution of
wages for those who do not change jobs can then be used to characterise the
distribution. Our approach uses not only the sequence of records, but also
the time between successive records. This gives us more variation to identify
the distribution.

Hagedorn and Manovskii (2013) use the interaction between job-to-job
transitions and wage dynamics to control for match quality in wage regres-
sions. They apply this methodology to test for history dependence in wages.
In a tight labour market, job offers arrive more frequently. Hence, workers
move up the job ladder more quickly. Hagedorn and Manovskii (2013) use
business cycle fluctuations in labour market tightness to estimate the return
to OJS in terms of improvement in match quality.

In order to to disentangle the return to OJS from the general returns to
experience this paper combines two sources of variation, individual variation
in lay-offs and aggregate variation in job-offer arrival rates related to the
business cycle. While the returns to experience accumulate proportionally
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to calendar time, job search accumulates proportionally to what we refer to
as labour market time. In a tight labour market, the clock of labour market
time runs faster than that of calendar time, thereby speeding up the selection
process. The speed at which labour market time runs is equal to the job-offer
arrival rate for OJS. An attractive feature of our methodology is that it does
not depend on the cyclical behavior of lay off rates.

Our methodology is summarized in three propositions. The first propo-
sition deals with the relation between the expected rank of the actual job
in the offer distribution and the observed job tenures within an employment
cycle. We show that the end date of the current job is a sufficient statistic
for its expected rank. The starting date of that job does not add any useful
information. In fact, we show that the model predicts that in the absence
of job-specific experience, the starting date of the current job is uniformly
distributed over the length of the employment cycle up until the termination
date of this job. If job-specific experience were important, the latter result
would not hold, as the likelihood of a job transition would decline over the
employment cycle (since, by switching jobs, a worker spoils the returns of
accumulated job-specific experience). The second and the third proposition
are derived from Extreme Value Theory. The second proposition states that
there is a one-to-one correspondence between the expected value of the cur-
rent job as a function of the number of job offers and the shape of the offer
distribution. The third propostion discusses the role of Generalized Extreme
Value distribution in models of OJS. It deals with the relation between the
evolution of the expected rank of the current job over the employment cycle
and the shape of the offer distribution.

We apply our methodology to the data from the NLSY 79. We find re-
markably strong support for all predictions derived from this model. We
show that match quality improves over an employment cycle according to a
concave profile. The shape of this profile is the same across subsequent em-
ployment cycles in a worker’s career, irrespective of whether the employment
cycle is the first in his career (starting at the date of labour market entry) or
is a subsequent cycle (starting after a lay-off at higher age). We show that
both sources of variation, the restart of employment cycles after lay-off and
business cycle variation in job offer arrival rates, generate the same estimates
of the return to OJS and that ignoring either source of variation yields an
underestimation of these returns. Our discussion reveals that the empirical
distinction between quits and lay offs as registered in the data matches very
well the theoretical distinction between quits and lay-offs in the benchmark
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OJS model. We show that the starting date of the current job is indeed
uniformly distributed over the length of the employment cycle up until the
termination date of the current job, suggesting that job specific experience
plays a minor role. This conclusion is corroborated by our finding that the
tenure profile in wages largely disappears when controlling properly for the
return to OJS.

Now that the empirical validity of the model has been established, it
can be applied for empirical inference. We show that the distribution of log
wage offers is best characterized by a Gumbel distribution, which has an
unbounded upper support and a fat upper tail. This runs counter to mod-
els with assortative matching with an interior upper bound of the match-
ing set (for example Shimer and Smith (2000) and Gautier, Teulings, and
Van Vuuren (2010)), because in these models the upper support of the offer
distribution is finite, implying a thin right tail. Hence, sorting cannot be
the only source of variation in the offer distribution. The standard devia-
tion of the offer distribution is estimated to be about 10%. We differentiate
this estimate by the education level of the workers and between cities on the
one hand and the countryside on the other hand. The standard deviation is
shown to be one and a half times higher for higher educated workers than for
the lower educated and one and a half times higher for the city than for the
countryside, where differences between the city and the countryside are more
pronounced for higher educated workers than for the lower educated. This
provides support for models that explain the existence of cities from returns
to scale in job search (including Gautier and Teulings (2009)). These esti-
mates can then be used to derive a number of relevant statistics. As stated
before, our estimates suggest that the expected return to OJS explains some
30% of the observed return to experience, and that controlling properly for
the return to OJS explains most of the return to tenure. The return to OJS
explains some 9% of male wage dispersion, for four reasons: i) on average,
the length of the current employment cycle increases with the experience of
the worker, ii) random variation occurs in the length of employment cycles
due to lay-off shocks; iii) random variation exists in the number of job offers
received (it is a Poisson process), and iv) random variation plays a role in the
quality of the job offer (see Manovskii and Hagedorn (2010) for an alternative
estimate). Finally, our estimates of the wage offer distribution show that the
fall in wages in the first job after displacement is about 11%.

This paper relates to a number of recent papers interested in match qual-
ity (see, for example, Fredriksson, Hensvik, and Nordstrom Skans (2015),
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Guvenen, Kuruscu, Tanaka, and Wiczer (2015) and Postel-Vinay and Lise
(2015)). Jacobson, LaLonde, and Sullivan (1993) and Davis and Wachter
(2011) have shown that the wage losses following mass lay-offs are large and
persistent. Bagger, Fontaine, Postel-Vinay, and Robin (2014) and Altonji,
Smith, and Vidangos (2013) have provided estimates for the part of the expe-
rience profile that comes from moving up the job ladder. This paper assumes
that job transitions are efficient, in the sense that workers always move to
better quality jobs when a job offer arrives. Testing this assumption is an
interesting topic for future research.

The structure of this paper is as follows. Section 2 develops the main
theoretical concepts and derives the relation between wages and accumulated
labour market experience. Section 3 presents our empirical results.

2 The theoretical argument

2.1 Assumptions

Consider a labour market with search frictions and OJS. Worker i’s log wage
at time t, denoted w̄it, satisfies

w̄it = βi + β′Xit + wia + εit, (1)

where βi is a worker fixed effect measuring unobserved general human capital,
Xit is a vector measuring observed general human capital obtained by either
education or work experience, a is the time at which the worker started in
her current job, wia measures the component of wages that is specific to the
current job, and εit is a random variable. The three components βi+β

′Xit, wia
and εit are mutually uncorrelated. For the moment, we abstract from job-
specific work experience; we return to this issue in Section 2.2.

During their labour market career, workers receive job offers at a rate
λt. When receiving a job offer characterized by wia, the worker negotiates
with the firm on the wage. We do not take a stance on how that bargaining
process proceeds, since we are only interested in its outcome, the match-
specific component of the log wage, wia. We assume wia to be constant over
the duration of the job. Let F (wia) denote the distribution function of wia;
F (·) is assumed to be differentiable; alternatively, F (wia) will be referred to
as the rank of job offer. We assume that even the least attractive job offer
is more attractive than unemployment. Hence, an unemployed job seeker
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accepts any job offer. The wage-bargaining process is assumed to be efficient:
workers accept any job offer that yields a higher output than their current job;
they do this because their higher productivity enables the employer to offer
a higher wage. Most models of job search have this property. As the labour
market history of workers accumulates, they receive ever more job-offers.
Since they switch permanently to better-paying jobs, the wage they can get
in their current job is the maximum of all wage offers that they have received
thus far. Hence, the expected wage is increasing in the accumulated labour
market history. This selection process of ever better matches continues until
the worker is laid off. We assume that this happens at a rate δt. Then, the
worker becomes unemployed and the selection process starts all over again.
We refer to the time elapsing between the start of the labour market career
and the first lay-off—the time elapsing between two consecutive lay-offs—as
an employment cycle. A worker’s current employment cycle has therefore
started either at the last lay-off or —if a worker has never been laid off up
till date— at the start of the labour career. We normalize our measure of
calendar time t such that it takes the value 0 at the start of the first job of the
current employment cycle. Hence, as long as a worker has not experienced a
lay-off, t is equal to labour market experience as usually defined. Note that
this definition of t does not include the unemployment spell at the beginning
of the employment cycle.

It is useful to define:

Λt ≡
∫ t

0

λrdr,

∆t ≡
∫ t

0

δrdr.

We refer to Λt as the labour market time elapsed since the start of the first
job of the current employment cycle, in contrast to t, which is the calendar
time since the start of the first job. While the clock of calendar time runs at
a constant rate, the clock of labour market time runs faster during a boom
(when λt is high) than during a bust (when λt is low). We define b as the
termination date of the current job. Hence, Λa is the labour market time
elapsed since the beginning of the employment cycle up until the date of
job start, and Λb is the labour market time elapsed up until the date of job
termination. Finally, let n denote the number of job offers received during
the current employment cycle.
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We assume that the job-offer arrival rate for employed job seekers λt
varies proportionally to the job-offer arrival rate for unemployed job seekers
λut:

λt = ψλut. (2)

The variation in the speed at which labour market time runs allows us to
disentangle the regular return to labour market experience and the return to
OJS.

2.2 Job duration and job transition

This section derives the pattern of job duration and job-to-job transitions
implied by the model. Since workers will always move to a better paying
job, the only relevant statistic for the transition dynamics of workers is a job
offer’s rank in the offer distribution F , where the rank is normalized such
that it is uniformly distributed on [0, 1]. The proposition below specifies the
relation between the elapsed labour market times Λa and Λb, the number of
job offers n, and the of the expected rank of the current job F .

Proposition 1 Transition dynamics

1. The expected number of job offers n in the time interval [0, b] satisfies:

E[n] = Λb + 1 if the job ends in a lay-off;

E[n] = Λb + 1 +O(Λ−1
b ) if the jobs ends in a quit.

2. For each job other than the first job of an employment cycle, Λa/Λb is
uniformly distributed on the unit interval [0, 1];

3. For jobs ending in a lay-off, the expected rank of the current job satisfies

E [F ] = 1− Λ−1
b +O

(
Λ−2
b

)
;

4. For jobs ending in a quit, the expected rank satisfies

E [F ] = 1− 2Λ−1
b +O

(
Λ−2
b

)
.

The proof is presented in Appendix A. However, all results can be un-
derstood intuitively. The first statement says that the number of job offers
until the moment of separation from the current job at time b is equal to
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Λb + 1. The term Λb measures the expected number of job offers from the
start of the first job of the cycle until the moment of separation from the
current job. Since λt is the job-offer arrival rate at time t, Λb =

∫ b
0
λtdt is the

accumulated arrival rate over that time interval. This process follows a Pois-
son distribution. Hence, the expected number of job offers is Λb. We should
add one for the job offer that yielded the first job of the employment cycle,
which allowed the worker to transition from unemployment to employment
at t = 0. Since the unemployed accept any job offer, we know that a job
seeker transitioning from unemployment to employment has received exactly
one offer at t = 0.

The second statement states that for all jobs except for the first job of
an employment cycle, the time a of the start of the current job is uniformly
distributed over the labour market time from the start of the first job of the
cycle at time 0 until the end of the current job at time b. The intuition for
this result is that the current job is the maximum value of wia of all job offers
received up until time b. Job offers arrive proportionally to the value of λt.
Suppose that n offers have arrived in the time interval [0, b). They constitute
n independent draws from the job-offer distribution, each associated with
its own arrival time; a is the arrival time of the max. Each draw has an
equal probability of being the maximum of these draws; a is thus uniformly
distributed on the time scale of labour market time on the time interval [0, b].
Hence, Λa/Λb is distributed uniformly.

The third and the fourth statements are about the expectation of the rank
of the current job, conditional on the labour market time elapsed until the end
of that job. This expectation depends on the reason for separation from the
current job: either a lay-off or a quit. First, consider the case of separation by
means of a lay-off (see statement 3). Then, the rank of the current job is the
max of Λb + 1 expected draws from the job-offer distribution (see statement
1). The expected maximum of Λb + 1 draws from the uniform distribution is
1− (Λb + 2)−1,1 which explains the result. The relation is not exact, because
we replace the actual number of job offers by its expectation, Λb + 1. Since
the relation between the actual number of offers and the expected rank is
non-linear, replacing the actual number by its expectation introduces a bias,
which is of order O

(
Λ−2
b

)
. Note that the difference between (Λb + 2)−1 and

Λ−1
b is of order O

(
Λ−2
b

)
, so the difference between the two can be ignored.

1The expectation of the i-th order statistic for n draws of a uniform distribution is
i/ (n+ 1).
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Next, consider the case of separation from the current job by means of
a quit (see statement 4). The easy way to calculate the max is to consider
the number of offers received up until time b, including the offer of the job
to which the worker transitions at time b. The expected number of offers is
Λb + 1. In this case, the job that the worker holds up till time b is not the
max, but is the second highest job offer, since the offer to which the worker
transits at time b is higher (otherwise the worker would not have moved to
that job). The expectation of the second to highest job offer is 1−2(Λb+2)−1.
Note that in both statements 3 and 4, E[F ]→ 1 if Λb →∞: if the selection
of ever-better offers is allowed continue forever, the actual rank will converge
to maximum rank, F = 1.

Proposition 1 provides a framework for understanding the methodology
to test the model discussed in Section 2.1. A particularly attractive feature of
Proposition 1 is that none of its statements depend on the lay-off rate δt,∆t.
The intuition for this result is that the only thing that a lay-off achieves is
that it stops the selection process and lets the worker start the process all
over again. As long as the risk of a lay off has not materialized, it can be
ignored. Statement 3 implies that the expected rank of the current job E[F ]
depends on its termination date b, but does not depend on its starting date
a. Hence, we can ignore the value of a in our analysis of the effect of OJS on
log wages.

Statement 3 allows an analysis of the potential role of job specific-experience
in the model. For the sake of the argument, let us assume that on-the-job
experience has a linear impact on w̄it:

w̄it = βi + βXit + wia + βx (t− a) + εit.

It is easy to see that the optimal strategy of the worker is no longer to quit
at time b for any job for which wib > wia. Instead, the optimal strategy is
to quit if wib > wia + βx (b− a). This statement can be generalized. Let S
be the set of arrival times s of new job offers during the current employment
cycle. Then, the job offer wia currently held by the worker satisfies

wia = arg max
s∈S

[wis + βx (a− s)] .

The worker is prepared to move to a better job only if the gain in wia offsets
the loss in job-specific experience in the previous job. The selection pro-
cess can still be described as the max over a number of draws from an offer
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distribution, but the offer distribution is non-stationary: it gradually dete-
riorates at a rate βx per unit of calendar time. Hence, labour market time
spent early in the career is more valuable for the selection process than time
spent later as job offers at that stage are more attractive since they leave a
longer time period to accumulate job-specific experience. This implies that
workers will change jobs more often early in their career than is predicted
by statement 2. If the distribution of Λa/Λb is skewed to the left relative
to the uniform distribution, this shows that job-specific experience plays a
role. Hence, the distribution of Λa/Λb provides a test for the relevance of job-
specific experience. The equations are more complicated for the case with,
rather than without, job-specific experience. For the sake of transparency,
we therefore focus the subsequent discussion on the case without job-specific
experience. Extending the theory to the case with job-specific experience is
straightforward, in principle.

2.3 Extreme Value Theory

Thus far, we have made no assumptions regarding the shape of the offer
distribution except for the fact that F (w) is differentiable. This section
discusses how information of the conditional expectations can be used to
identify the distribution. From Theorem 6.3.1 in Arnold, Balakrishnan, and
Nagaraja (2008) we have the following:

Proposition 2 Nonparametric identification
Let F and F’ be arbitrary distributions. For n = 1, 2, · · · wn and wn′

denotes the maximum from n iid draws from F and F ′ respectively. Assume
E[wn] =E[wn′], n = 1, 2, · · · (assume finite). It follows that F (w) = F (w)′
for w ∈ R.

The function E[wn] can therefore be used to nonparametrically identify
the distribution F . For sufficiently large values of b we can make strong
predictions regarding the shape of E[wia|b] without knowing the exact distri-
bution F . A high value of b implies that the expected number of job offers
received since the beginning of the employment cycle is large. In that case we
can invoke Extreme Value Theory, showing that the normalised maximum of
a large number of draws from a distribution converges to the Generalized Ex-
treme Value (GEV) distribution for a large class of distributions. Proposition
3 states the relevant result from GEV distribution needed for our purpose.
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Proposition 3 Generalized Extreme Value distribution

1. Let x = wn−µn
σn

be the maximum of n i.i.d. properly normalized draws
w from some distribution F (w), where µn and σn are normalizing con-
stants. If the distribution of x converges to a stable distribution, then
this distribution is the Generalized Extreme Value distribution G (x)
which satisfies

G (x) = exp[−t(x)] with t(x) =

{
(1 + ξx)−1/ξ if ξ 6= 0

exp (−x) if ξ = 0

2. G (x) has an unbounded upper support if ξ ≥ 0 and an unbounded lower
support if ξ ≤ 0.

3. If F is unbounded above, ξ ≥ 0.

4. If F is bounded above ξ ≤ 0.

5. If F itself is the GEV distribution, then:

(a)

E [wn] =


µ+ γ + σ lnn if ξ = 0

µn if ξ < 1 ∨ ξ 6= 0

∞ if ξ ≥ 1

,

where γ = 0.577 is Euler’s constant and µn = µ+σξ−1
[
[Γ(1− ξ)]nξ − 1

]
;

(b)

Var [wn] =


π2

6
σ2 if ξ = 0

Γ(1−2ξ)−Γ(1−ξ)2
ξ2

σn2ξ if ξ < 1
2
∨ ξ 6= 0

∞ if ξ ≥ 1
2

.

6. If F is the normal distribution then ξ = 0 and

σn = σ(2 lnn)−1/2,

µn =
√

2 lnn− ln(lnn)− ln(4π),

E [wn] ∼= µn + γσn,

Var [wn] ∼=
π2

6
σ2
n.
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Theorems 1.13 and 1.2.1 in De Haan and Ferreira (2007) prove that the
only non-degenerate distribution that the normalized maximum can converge
to is the GEV distribution. The book gives the conditions on the tail of the
distribution F for which the distribution converges. Example 1.1.7 yields the
normalising constants for the normal distribution.

The parameter ξ is referred to as the shape parameter. The cases ξ < 0,
ξ = 0 and ξ > 0 correspond to the Weibull, Gumbel and Frechet distribution,
respectively. Intuitively, the constants µn and σn ensure that the mean and
variance, respectively, are well-behaved. The variance decreases with n if
ξ < 0, increases if ξ > 0, and remains constant if ξ = 0. Similarly, the
expectation of wn per unit increase in lnn decreases with n if ξ < 0, increases
if ξ > 0, and remains constant if ξ = 0.

When F (w) follows the Gumbel distribution, F (w) = exp
(
−e−(w−µ)/σ

)
,

the transformation of F (w) to the GEV distribution G (x) is particularly
simple since µn = µ+ σ lnn and σn = σ.

The formulas presented are for the case when the number of offers is
fixed. In our case, this number is stochastic, following a Poisson distribution.
Then, the distribution of match quality for workers experiencing lay-offs is
F exp[−Λb(1− F )] instead of FΛb+1. Figure 1 plots the expected maximum
for the case of a fixed number of offers of Λb + 1 compared to the case
where the number of offers follows a Poisson distribution. We plot the GEV
distribution for values of ξ ∈ {−0.4, 0, 0.4} and the Normal distribution. The
location and scale parameter for each distribution is choosen such that the
underlying job-offer distribution F (w) has a zero expectation and a unit
variance. The figure shows that the difference between a fixed number of
offers and a Poisson distributed number is small relative to the effect of the
shape of the offer distribution.

The Normal distribution converges to the Gumbel distribution, but it
does so slowly. For values of Λb + 1 ≤ 30, however the expectation is ap-
proximated well by a second-order polynomial in ln(Λb + 1). Figure 2 plots
the expected value of the maximum for the Normal distribution when the
number of offers is Poisson distributed and β0 +β1 ln(Λb+1)+β2 ln(Λb+1)2.
The approximation of the expected maximum for the normal distribution
fits very well. This is important, as it suggests a simple test to use for the
null hypothesis whereby the data is generated from the Normal distribution.
Create a variable for the conditional expectation of the Normal distribution
Λ̃b = β0 + β1 ln(Λb + 1) + β2 ln(Λb + 1)2 and then include ln(Λb + 1)2, which
should be zero under the null and equal to −β2 for the case of the Gumbel
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Figure 1: Expectation of the maximum as a function of the number of draws
for four distribution
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Figure 2: Approximation of the maximum of the Normal distribution

distribution.
The speed of convergence to the GEV distribution differs between distri-

butions; it is n−1 for the exponential distribution, whereas it is much lower
for the normal distribution, only (lnn)−1. The speed of convergence depends
on the shape of the right tail of the distribution. For example, after just
four job offers, Pr (F < 0.5) = 0.0625 and E[F ] = 0.80. The left tail of the
distribution becomes irrelevant even for a low number of job offers and only
the upper deciles of the distribution matter. If these deciles fit the Weibull,
Gumbel or Frechet distribution well, then convergence will be fast.

Jointly, Propositions 1 and 3 can be used for the derivation of expressions
for E[wia|b,lay-off] and E[wia|b,quit]. By Proposition 3, the expected value
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wia of the max of n offers satisfies

E [wia|n] =

{
σ lnn if ξ = 0

γξσn
ξ if ξ < 1 ∨ ξ 6= 0

,

When a job ends with a lay-off, E[n] = Λb + 1 and value wia is the maximum
of these offers; see Proposition 12

E [wia|Λb + 1,lay off] =

{
σ ln (Λb + 1) +O

(
Λ−2
b

)
if ξ = 0

γξσ (Λb + 1)ξ +O
(

Λξ−2
b

)
if ξ < 1 ∨ ξ 6= 0

. (3)

When a job ends by a quit, we use the distribution of wia conditional on the
fact that it is the second highest draw from n draws. The second highest
draw is related to the highest draw by

E[wia|n,quit] =

∫
n(n− 1)wf(w)(1− F (w))F (w)n−2dw

= nE[wia|n− 1]− (n− 1)E[wia|n].

For the case of the Gumbel distribution we have

E[wia|n,quit] = E[wia|n] + n ln

(
n

n− 1

)
σ = E[wia|n]− σ +O(n−1).

Using the approximation for the number of offers from Proposition 1, state-
ment 4 E[n] ∼= Λb + 1 yields an appealing result:

E[wia|Λb,quit] ∼= σ ln (Λb + 1)− σ. (4)

For large values of Λb the difference between quits and lay-offs is only a
location shifter, where the size of the shift is equal to σ. Hence, we combine

2The exact formula applies the expectation

E [wia|b] =

∞∑
0

Pr (n|b) E [wia|n] =

∞∑
0

(n!)
−1

(Λb + 1)
n
e−Λbγξσn

ξdn.

The formula in the text uses the first-order expansion E[wia|b] ∼=E[wia|E [n]]. A second-
order expansion reads

E[wia|b] ∼= γξσ

[
(Λb + 1)ξ

ξ
+ (ξ − 1)

(Λb + 1)ξ−2

2
Λb

]
.
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data on Λb for jobs ending in a quit or lay-off by including a dummy for jobs
that end in quits. The coefficient for this dummy should be equal to σ.

These relations can be used to estimate the value of ξ by Non-Linear-
Least-Squares (NLLS). In practice, we estimate the equation by a grid search
over different values of ξ, where we pick the value with the lowest residual
variance. Note that none of the relations derived thus far depend on the
lay-off rate δt. Hence, we can analyse the effect of OJS on wages without
taking a stance on δt in general or its cyclical behavior in particular.

2.4 Applications and robustness

This subsection discusses a number of applications of this model. For the
sake of convenience, we present expressions for the Gumbel distribution ξ = 0
only. These expressions tend to be simpler than those for other values of ξ.
However, the expressions for the general case can be derived easily, using the
formulas in Proposition 3.

We can use this framework to analyse the contribution of job search to
wage dispersion. The variance of log wages can be decomposed into three
orthogonal components: (i) observed and unobserved general human capital,
(ii) random shocks, and (ii) match quality:

Var [w̄it] = Var [βi + β′Xit] + Var [εit] + Var [wia] .

The latter term can be further decomposed in three orthogonal terms: (i) the
length of the current employment cycle until the end of the current job Λb,
(ii) the number of job offers received, conditional on Λb, and (iii) the wage
offer of the maximum, conditional on the number of offers. For the case of
the Gumbel distribution, we obtain a particularly simple formula:

Var [wia] = Var [E [wia|Λb]] + E [Var [lnn|Λb]]σ
2 + Var [wia|n] (5)

∼=
(

Var [ln(Λb + 1)] + E
[
Λ−1
b

]
+
π2

6

)
σ2,

where π = 3.14. We apply the first-order approximation for the variance of
the log Poisson distribution3 using the fact that Var [wia|n] = π2

6
σ2 does not

3

Var [lnn|Λb + 1] ∼=
(
d ln E [n]

dE [n]

)2

Var [n|Λb + 1] =
Λb

(Λb + 1)2
= Λ−1

b +O
(
Λ−2
b

)
,

since Var [n|Λb + 1] = Λb and E[n] = Λb + 1.
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depend on n for the Gumbel distribution (see statement 2 of Proposition 3).
Estimates for the first two terms can be obtained from the data. The value
of σ is derived from the estimation of equation (3).

The model can also be applied for the calculation of the expected wage
loss after lay-off by comparing the wage in the job from which the worker is
fired and in the first job after the lay-off. This is equivalent to comparing the
expected wage in last job of the current employment cycle (for which E[n] =
Λb + 1) with the expected log wage in the first job of the new employment
cycle (for which n = 1). The expected loss in log wages can be calculated as

E [wia|n]− E [wia|n = 1] ∼= E [wia|E [n]]− E [wia|n = 1]

=

∫ ∞
0

Pr (t)σ ln (Λt + 1) dt = −σ exp (δ/λ) Ei(−δ/λ) (6)

since Pr (t) = δ exp [−∆t].
Job-offer arrival rates differ between individuals. Some job seekers receive

offers frequently, while others have to wait a long time. As a robustness
check, we investigate how our analysis should be adapted when the job-offer
arrival rate depends on time-invariant observable human capital of the job
seeker, denoted Xi.

4 We assume that the arrival rate follows the well-known

proportional hazard model: λt exp
(
θ′X̃i

)
, X̃i is the deviation of Xi from its

mean; exp
(
θ′X̃i

)
is the baseline hazard rate, and θ is a parameter vector.

Compared to equation (3), we should replace Λb by Λb exp
(
θ′X̃i

)
. Again,

focusing on the Gumbel distribution for the sake of convenience, we obtain

E[wia|n] ∼= E[wia|E [n]] = µ+ σγ + σ ln
[
Λb exp

(
θ′X̃i

)
+ 1
]

= µ+ σγ + σ ln
[
Λb + exp

(
−θ′X̃i

)]
+ σθ′X̃i

∼= µ+ σγ + σ ln (Λb + 1) + σθ′X̃i +O (Var [Xi]) .

Differences in the job-offer arrival rate between individuals are therefore ab-
sorbed in the fixed effects up to a term of order Var[Xi]. As long as the
coefficient of variation of Xi is small relative to Λb, variation in the hazard
rate is absorbed in the term βi in equation (1).

4In the current specification, Xi can include the fixed worker effect βi; it cannot include
experience, since then λt would depend on time not only due to the business cycle but
also due to the return to experience.
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2.5 The identification of λut and ψ

The job-offer arrival rate λt is a critical input for the exercise discussed above.
Although, we observe accepted job offers by counting job-to-job transitions,
we have no reliable measure of rejected offers. This problem does not plague
the job-offer arrival rate for unemployed job seekers λut, since the unemployed
accept all job offers. Hence, we derive an estimate of λt from the observed
transition rate from unemployment to employment and then apply equation
(2). This subsection describes how we can estimate λut and ψ. The transition
rate λut can be estimated from data on the transitions from unemployment
to employment. These data are readily available in most panel data. We
minimize the impact of the selection bias introduced by unobserved hetero-
geneity in job-finding rates by restricting the analysis to these job seekers
who have been unemployed for less than five weeks. The calculation of the
transition rates is described in detail in the empirical section. We present
a new method to back out ψ from data on job-to-job transitions, using the
expected duration of the first job and the average length of the employment
cycle b for the subsequent jobs. For this derivation, we rely on a steady-state
argument, where labour market time runs at a constant rate. Hence, we drop
the suffix t of λt and δt.

First, we derive the expected duration of the first job of an employment
cycle. The duration of a job of rank F follows an exponential distribution
with parameter δ + λF where F ≡ 1 − F is the complement of F Hence,
the expected duration of a job conditional on its rank is (δ + λF )−1. Since
the rank of the first job is a random draw from the uniform distribution, its
expected duration satisfies

E
[
b|1st job in emp.cycle

]
=

∫ 1

0

(δ + λ)−1dF = λ−1 ln (1 + δ/λ) . (7)

Next, we derive the expected termination date b of all subsequent jobs. First,
we calculate the joint density among all jobs of the rank F of the current
job, its start date a, and its termination date b. This density is comprised
of three parts: (i) the fraction F exp

[
−
(
δ + λF

)
a
]

of workers remaining
at a with rank less than F , (ii) the arrival rate λ of an offer at a, and (iii)
the probability

(
δ + λF

)
exp

[
−
(
δ + λF

)
(b− a)

]
that a match ends at b

conditional on it having started at a. Hence, this density is proportional to

Pr(F, a, b) ∝ F exp
[
−
(
δ + λF

)
a
]
× λ×

(
δ + λF

)
exp

[
−
(
δ + λF

)
(b− a)

]
∝ F exp

[
−
(
δ + λF

)
b
] (
δ + λF

)
.
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In the second line, a drops out. We can ignore the job-offer arrival rate λ,
since it depends on neither F , nor a, nor b. We integrate this density over
the possible start dates a ∈ (0, b) to get the joint density of match quality F
and end date b:

Pr(F, b) ∝ F exp
[
−
(
δ + λF

)
b
] (
δ + λF

)
b,

Hence:

E [b|subseq.jobs] =

∫ 1

0

∫ ∞
0

bPr(F, b) db dF =
2

λ

λ/δ − ln (1 + λ/δ)

(1 + δ/λ) ln (1 + λ/δ)− 1
.

(8)
We can derive information on E[b|1st job in emp.cycle] and E[b|subseq.jobs] from
the data. This yields a system of two equations, which can be solved for δ
and λ. The ratio of λ to λu provides an estimate for ψ.

3 Empirical analysis

3.1 Data

We use the cross-sectional sample from NLSY79 over the years from 1979 to
2012. Since many women interrupt their working career for childbearing, a
phenomenon that is not covered in our theoretical model, we focus on males.
Similarly, since our model applies to primary jobs, the sample is restricted to
the primary jobs for men over the age of 18 who are not enrolled in full-time
education5. We exclude job observations in cases when hours worked per
week are less than 15 and when job spells lasted shorter than four weeks or
started before 19796. When there are multiple jobs, the primary job is defined
as the job with highest number of hours7. Jobs with inconsistencies in their
start and end date are adjusted or removed8. If schooling is not reported for

5Enrollment is not recorded in some waves in 2008, 2010 and 2012 but at this point in
the sample the respondents were in their 40s and few were enrolled in the previous waves.

6If information on the number of hour’s is not available for an observation in a job spell
we assigned the average over that job spell.

7If hours are the same, we used the average hours for that job spell and the length of
the job spell to determine which is the main job.

8Observations missing information on the month or year when the job started or ended
were removed from the data. If the day is unknown we set it to 15. If the day reported
is greater than the number of days in the month (e.g. 31st of February), we set the day
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a given month, we assign the maximum from the previous months; if it is
less than previously reported, we use the max previously reported9.

For the construction of the variable Λb, we have to categorize job ter-
minations into either quits (belonging to the same employment cycle) or
lay-offs (starting a new cycle). We follow Barlevy (2008) and Hagedorn and
Manovskii (2013), who define a separation as a quit when the new job starts
within eight weeks of the termination of the previous job and the stated
reason for separation was voluntary (where a non-response is treated as vol-
untary).10 If two jobs overlap, we consider the transition to be voluntary if
the last job is the primary job, over the overlapping period. Jobs that begin
as non-primary jobs and then become primary jobs are dropped, as are all
jobs following in the employment cycle. This definition is used to determine
whether or not two consecutive jobs belong to the same employment cycle.

Having defined employment cycles, we have to decide which jobs to in-
clude in our analysis of jobs. We exclude jobs which have not ended. Jobs end
if the worker reports that he no longer works at the job, if the job becomes
a secondary job or if the worker at an interview during the subsequent year
does not mention working for the firm during the past year. Jobs where the
worker reports being self-employed or working for a family business, or where
the hourly wage is below $1 or above $500, or where some of the covariates
are missing values are dropped from the analysis. Wages are deflated using
seasonally adjusted national CPI (CPIAUCSL).

We calculate the transition rates using the monthly CPS data. We re-
strict our analysis to a sample of males age 25-54 in order to match our
NLSY dataset and avoid moves involving voluntary participation decisions
as opposed to job-offer arrivals11. To calculate the job-finding rate of the

to the last day of the month. If at the interview the worker reported that the job ended
after the interview date, we set the end date to the interview date. Jobs where the start
date is reported as being after either the interview date or the end date are dropped.

9We use the “adjusted”schooling variable.
10We deviate in our approach for cases where the worker stated ”leaving to look for

another job” . We consider a job change a quit only if the next job starts within two
weeks. A worker might have had an outside offer but quit his job to look for an even
better offer. Alternatively, the worker’s requirements for the job might have changed (e.g.
the worker has to move to another city). The first example should be classified as a quit
(hence as a continuation of the current employment cycle), while the second ends the
employment cycle.

11We match the monthly CPS using variables suggested by Drew and Warren (2014).
In addition, we use race and age as extra controls.
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Table 1: Summary Statistics

First Job Second Job Subsequent Jobs Total

Fraction urban 0.798 0.792 0.792 0.789
(0.418) (0.418) (0.418) (0.426)

Fraction high 0.316 0.395 0.395 0.359
(0.465) (0.489) (0.489) (0.480)

w̄it -2.843 -2.653 -2.653 -2.681
(0.540) (0.559) (0.559) (0.558)

ln(Λb + 1) 0.709 1.300 1.300 1.345
(0.598) (0.690) (0.690) (0.879)

ln(ΛTb + 1) 1.569 1.952 1.952 1.968
(0.837) (0.666) (0.666) (0.803)

ln(λTb + 1) 0.716 1.307 1.307 1.352
(0.596) (0.682) (0.682) (0.874)

Individuals 2572 1470 607 2582
Jobs 12624 2254 991 15869
Observations 33387

Notes: For the columns First job, Second job and Subsequent jobs, only
the first observation for each job is used. For the Total column, all
observations are included. Standard deviations are in parentheses.

unemployed, we calculate the fraction of the workers who are unemployed
less than five weeks and are employed in the next month.12 We use the
non-seasonally-adjusted unemployment rate for men 25-54 created by BLS
(LNU04000061). Table 1 provides summary statistics for the variables of
interest.

12Due to changes to the CPS classification, the monthly files cannot be matched for
a small number of months (07/1985, 10/1985, 01/1994, 06/1995, 07/1995, 08/1995 and
09/1995). For these months we use the predicted values from a regression of the transition
rate on a linear trend, a monthly fixed effect and the current unemployment rate.
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3.2 The distribution of job tenure

We apply the method discussed in Section 2.5 to estimate the efficiency of
OJS relative to search as an unemployed ψ. From our data we calculate two
statistics, where the unit of observation is a job:

E[Λb|1st job in emp.cycle] = 1.6,
E[Λb|subsequent jobs] = 4.6.

Using these statistics and the mean value of λu, we obtain the following
values for the monthly transition rates and for the relative efficiency of OJS:

λu = 0.4,
λ = 0.08,
δ = 0.02,
ψ = 0.2.

Statement 2 of Proposition 1 implies that for all jobs (except the first
job of an employment cycle) the labour market time at the moment of the
start of a job should be uniformly distributed over the employment cycle up
until the termination date of the this job. This implies that Λa/Λb for all
jobs other than the first job of an employment cycle should be distributed
uniformly. Figure 3 presents the kernel estimate of the density of Λa/Λb,
separately for low- and high-skilled workers. The actual distributions fit
the uniform distribution remarkably well. If job-specific human capital had
played a major role, the distribution would have been downward sloping.
There is no evidence of that, except for the last decile of the distribution,
where the density function falls sharply. The latter can be explained by
the fact that we ignore jobs lasting less than four weeks. For example, if
the employment cycle at the termination date of the current job has lasted
for two years, Λa/Λb can never be above 23/24 = 0.958. To test this more
formally, we run the test separately for b < 2 years and b ≥ 2 years; see
Figure 4. The sample for b ≥ 2 year exhibits a much smaller decline of the
density function, and the decline starts at a higher point in the distribution.

The results of this test provide a strong and quite unexpected confirma-
tion of the simple model that we apply. We had expected that job-specific
human capital would play an important role, leading to a negative duration
dependence in the job-to-job transition rate —even after controlling for the
initial match quality wia. Our results show the opposite.
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Figure 3: Test of the arrival rate of the maximum
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Figure 4: Test of the arrival rate of the maximum by employment length
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3.3 The shape of the offer distribution

The uniform distribution of Λa/Λb justifies the application of Proposition 3
for the analysis of the evolution of the match-specific component wia over the
employment cycle. This section presents the tests of the model as well as an
estimate for the shape of the offer distribution. All of our regressions include
tenure and experience up to a third order and quadratics in years of education
and time, as well as dummies for region, marriage, and urban versus rural
location of the job. We add the unemployment rate as a proxy for the effect
of general labour market conditions on wages as well as a dummy for jobs
that end in a quit in order to correct for the difference in expected job quality
for jobs ending by a quit or a lay-off (see the discussion related to equation
4). The inclusion of a third order polynomial in tenure is debatable. Strictly
speaking, our model is inconsistent with a return to tenure, since it would
imply that the match-specific term wia is non-constant over the duration
of the job. If there would be a tenure profile in wages, then the optimal
strategy of workers would no longer involve accepting each job offer with
a higher value of wia than the initial value of wia in the current job. The
results regarding the distribution of Λa/Λb presented in the previous section
suggest that job-specific returns are unimportant. We nevertheless include
this third-order polynomial to prevent that the term for the expected number
of job offers Λb captures the effect of the omitted variable ’tenure’. We shall
discuss the effect of tenure later on, in Section 3.5.

We estimate the non-linear equation

w̄it = βi + β′Xit + σ
Λξ
b − 1

ξ
+ εit

for different samples. There are two reasons to be cautious about this
method. First, we use the expected rather than the actual number of job
offers n in our derivations. Since the relation between n and wia is non-linear,
this introduces a bias, particularly for low values of n. Second, the NLLS
procedure for the estimation of ξ is not unbiased itself. To quantify these
drawbacks we therefore generate wage data drawn from the GEV distribution
for different values ξ ∈ {−0.4, 0, 0.4} and from the normal distribution and
run our regression on these simulated data. We generate data by applying
the following procedure. We use the joint distribution of Λb and the type of
job separation (lay-off or quit) from the data. We draw match quality from
the conditional distribution of F given Λb and the type of separation; the
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formula is presented in the derivation in Appendix A. For each distribution
and simulation the scale parameter is chosen such that the coefficient from a
regression on ln(Λb + 1) is the same as in the data. We draw a normally dis-
tributed error term εit for each observation with a scale parameter such that
the variance of the sum of the generated data matches the residual variance
from a regression on just the controls. The parameter ξ is then estimated
by a grid search as described. We then repeat this procedure a one hundred
times, each time obtaining an estimate of ξ. The results appear in Table 2.
Column 1 presents the results from the grid search for different values of ξ
and columns 2, 3, 4 and 5 show the estimation on the simulated data, with
the standard deviation of the estimates appear in parentheses. Examining
the simulated data reveals that our estimation procedure has a small upward
bias. The estimation on a sample containing longer jobs suggests that the
distribution has a fat right tail. The estimated coefficients when we restrict
the data for jobs with Tb greater than 1/2, 1 or 2 years are all very close to
the mean estimate from the Gumbel distribution. We reject the hypothesis
that the shape parameter ξ is −0.4 or ξ = 0.4.

When we estimated the shape parameter we made a parametric assump-
tion on the function E[w|Λb]. We now test this parametric assumption by
including higher-order terms of ln(Λb + 1). The predicted values for the dif-
ferent regressions are presented in the left panel of Figure 5 for the central 90
percentiles of the distribution of Λb. The results show that the conditional
expectation is approximated well by the first order term. The right panel of
Figure 5 presents the results from a nonparametric regression on the resid-
uals from the regression with only the first order term. The results confirm
that the regression approximated the conditional expectation well. Hence,
we cannot reject the hypothesis that the offer distribution is Gumbel.

We perform a separate test for the Normal distribution. From Figure 2 we
take the coefficients from the polynomial in ln(Λb+1) to create the the condi-
tional expectation of the Normal distribution which we call E[w|Normal,Λb].
We then run a regression using E[w|Normal,Λb] and ln(Λb + 1)2 for all data
and for values of Tb greater than 1/2 and 1 year. Under the null hypothesis of
a Normal distribution the coefficient of ln(Λb + 1)2 should be zero —whereas
under the Gumbel distribution it should be positive. The results appear in
table 3. The null-hypothesis of the offer distribution being normal is clearly
rejected. Moreover, the ratio of the coefficient for second order term relative
to the coefficient on E[w|Normal,Λb] fits the ratio of the theoretical coeffi-
cients in Figure 2 very well. Hence, the second term offsets the second effect
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Table 2: Estimation of the shape parameter

Data ξ = −0.4 ξ = 0 ξ = 0.4 Normal

ξAll jobs -0.001 -0.179 0.123 0.490 -0.072

(.) (0.073) (0.077) (0.139) (0.074)

ξTb≥1/2 year 0.080 -0.254 0.092 0.485 -0.127

(.) (0.107) (0.113) (0.186) (0.109)

ξTb≥1 year 0.137 -0.352 0.048 0.473 -0.200

(.) (0.131) (0.128) (0.185) (0.128)

ξTb≥2 years 0.062 -0.422 0.019 0.426 -0.241

(.) (0.166) (0.192) (0.298) (0.175)

ξTb≤10 years -0.266 -0.051 0.179 0.440 0.022

(.) (0.118) (0.123) (0.191) (0.119)

Notes: Mean coefficient and standard deviations of estimates
in parentheses. For the different samples of the data the ξ pa-
rameter is estimated using a grid search over different values
and generated data using the four distributions and the empir-
ical distribution of Λb.
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Figure 5: Robustness test for shape parameter
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Table 3: Test for the Normal distribution

All Data Tb ≥ 1/2 year Tb ≥ 1 year

ut -0.014∗∗∗ -0.013∗∗∗ -0.011∗∗∗

(0.001) (0.002) (0.002)

E[w|Normal,Λb] 0.133∗∗∗ 0.113∗∗∗ 0.100∗∗∗

(0.016) (0.023) (0.032)

ln(Λb + 1)2 0.007∗∗ 0.009∗∗ 0.012∗∗

(0.003) (0.004) (0.005)

Quit -0.041∗∗∗ -0.040∗∗∗ -0.036∗∗∗

(0.006) (0.006) (0.007)

Observations 33387 27788 23780
R2 0.645 0.669 0.697

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Regressions of the logarithm of the real wage on the
conditional expectation for the Normal and Gumbel distri-
bution.

included in the term E[w|Normal,Λb], so that the estimated shape is again
consistent with the Gumbel distribution.

Apart from the convenience of the Gumbel distribution, this conclusion
has an important implication: that the offer distribution has an unbounded
upper support. This rules out pure sorting models with assortative matching,
where matching sets are convex in the type space and the best match is an
interior maximum over this set (e.g. Shimer and Smith (2000) and Gautier
et al. (2010)). An interior maximum implies that the upper support of the
distribution should be finite. The estimation results are inconsistent with
this prediction. Though there is empirical support for this type of sorting
(see Gautier and Teulings (2015)), it cannot be the full story. In all sub-
sequent regressions, we use the Gumbel distribution and hence logarithmic
transformation of Λb + 1.
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3.4 Further test of the OJS model

This section presents some tests of the detailed implications of the model for
the evolution of wages over the career of a worker, maintaining the assump-
tion that job offers are generated by a Gumbel distribution. All regressions
that we run for this purpose are done separately for low- and high-skilled
workers. Across all regressions, the effect of OJS tends to be one and half
times bigger for high- rather than low-skilled workers. For the sake of com-
parison with the literature, we report the value of the coefficient for the
unemployment ut for all regressions. This coefficient is remarkably stable
across all specifications and all subgroups at a value of about −0.01: one
percentage point increase in unemployment reduces real wages by one per-
cent. As discussed before, the dummy for quits should be negative and the
magnitude should be the same as the standard deviation (see equation (4)).
In all estimations the dummy has the right sign, but it tends to be smaller
than the model predicts.

Our first test checks whether the coefficient σ for ln (Λb + 1) is stable
across subsequent employment cycles, as is predicted by the model. In Table
11, this coefficient is allowed to be different for the different employment
cycles, e.g. the first cycle of the career starting at labour market entry versus
subsequent cycles after lay-offs. The results provide strong support for the
prediction that σ is stable across employment cycles. Though the coefficient
for ln(Λb+1) is somewhat lower for later cycles, the order of magnitude is the
same and the coefficient is highly significant for each cycle. This is a strong
confirmation of our model. In Appendix B we present separate estimates for
each of the first eight cycles. These results yield the same conclusion.

Our model assigns a clear role to lay-offs. After a lay-off, the job search
process has to start all over again from the lowest rung of the job ladder.
Suppose that this were not true, but that the returns to search accumulate
during the career, irrespective of the lay-off of a worker. Then, the estimated
effects of the log number of offers during this employment cycle, ln(Λb + 1),
is just a proxy for the omitted variable, the log number of offers accumulated
during the whole career, ln(ΛTb + 1). The latter is correlated to ln(Λb + 1)
by construction, since both variables are equal during the first cycle. To test
this, we run a regression including both variables: see Table 5. For both low-
and high-skilled workers, the number of offers during the current cycle turns
out to be the most important and highly significant, although for the low-
skilled the number of offers during the whole career matters, as well. This
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Table 4: Estimation for the different employment cycles

All Data Low-Skilled High-Skilled

ut -0.014∗∗∗ -0.015∗∗∗ -0.012∗∗∗

(0.001) (0.002) (0.003)

ln(Λb + 1)1(cycle ≤ 3) 0.118∗∗∗ 0.090∗∗∗ 0.146∗∗∗

(0.005) (0.007) (0.009)

ln(Λb + 1)1(3 < cycle ≤ 6) 0.107∗∗∗ 0.091∗∗∗ 0.128∗∗∗

(0.005) (0.007) (0.010)

ln(Λb + 1)1(6 < cycle) 0.077∗∗∗ 0.077∗∗∗ 0.103∗∗∗

(0.006) (0.008) (0.013)

Quit -0.038∗∗∗ -0.053∗∗∗ -0.012
(0.006) (0.007) (0.011)

Observations 33387 20886 11722
R2 0.646 0.565 0.676

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Robustness test for OJS

All Data Low-Skilled High-Skilled

ut -0.015∗∗∗ -0.016∗∗∗ -0.012∗∗∗

(0.001) (0.002) (0.003)

ln(Λb + 1) 0.092∗∗∗ 0.063∗∗∗ 0.144∗∗∗

(0.007) (0.009) (0.013)

ln(ΛTb + 1) 0.028∗∗∗ 0.054∗∗∗ -0.019
(0.011) (0.013) (0.019)

Quit -0.042∗∗∗ -0.057∗∗∗ -0.014
(0.006) (0.007) (0.011)

Observations 33387 20886 11722
R2 0.646 0.565 0.675

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

supports the OJS model.
The effect of the number of offers during the whole career might be ex-

plained by misclassification of the reason for separation. If some quits are
classified as lay-offs, we would expect ln (ΛTb + 1) to be positive, even if the
OJS model was correct. Table 6 runs the same regressions as in Table 5
on simulated data, where we assume that a proportion of the separations
classified as lay-offs are in fact quits and therefore belong to the same em-
ployment cycle. Any layoff we assume with probability p ∈ {10%, 20%, 30%}
to have been a quit. The number of job offers are taken to be deterministic
over the job spells. For the complete spell the number of offers received is
then Λb + 1 and during job k the number of offers received is Λk

b −Λk−1
b . We

then draw the match quality for the last job and then for the previous jobs,
recursively. The results suggest that a moderate amount of misclassification
can explain the estimated coefficients in Table 5. The title in Table 6 refers
to the fraction of the job changers that are misclassified as lay-offs.

In Table 7 we include —next to ln(Λb + 1)— the variable ln(λTb + 1),
where λ measures the average number of offers per unit of calendar time and
where Tb measures calendar time in the current employment cycle. Hence,
Λb and λTb measure the same time episode, on average in the same units,
but on different clocks; Λb takes account of the business cycle fluctuations in
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Table 6: Simulation of misclassification

10% 20% 30%

log(Λb + 1) 0.104 0.101 0.097
(0.004) (0.004) (0.004)

log(ΛT + 1) 0.002 0.009 0.019
(0.010) (0.010) (0.010)

Notes: Mean coefficients and standard de-
viations from 1000 simulations in parenthe-
ses.

the job-offer arrival rate λt. By entering both variables simultaneously, we
can test whether labour market time is indeed the relevant variable, as our
model predicts. In the same spirit, we run regressions where we only include
the calendar time of an employment run, ln(λTb + 1), to test whether the
variation in the length of employment cycles due to the random arrival of
lay-offs alone can identify the effect of OJS on wages.

The results provide support for the OJS model. Columns 1-3 report the
results with both calendar- and labour market time. Labour market time
clearly outperforms calendar time. The coefficients on calendar time have
the wrong sign, though it is only significant when combining low- and high-
skilled workers. Columns 4-6 report the results with only calendar time. This
yields similar estimates for σ as when one only includes labour market time;
the coefficient on ln(λTb + 1) varies between 0.10 and 0.15. Hence, both
sources of variation, the random arrival of lay-offs and the business cycle
fluctuations in the job-offer arrival rate, can separately identify the effect of
OJS - and they both yield estimates for σ of similar magnitude.

In Table 8 we estimate the variance of match quality separately for the
rural and urban samples. The variance is greater for those working in the
city, in particular for high-skilled workers. This is consistent with models with
returns to scale in job search where search intensive activities are located in
cities (see Gautier and Teulings (2009) and Elliott (2014)).

As discussed in Section 2.1 (see equation (11) and (11)), the expected
productivity of a match depends on whether it ends with a quit or a lay-
off. The difference in intercept should be equal to σ. As a further test
we run the regressions of wages on labour market history for both groups
separately. Table 9 reports the results, allowing the intercept and slope to be
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Table 7: Robustness test for OJS

Calendar and labour market time Only calendar time

All Data Low-Skilled High-Skilled All Data Low-Skilled High-Skilled

ut -0.012∗∗∗ -0.013∗∗∗ -0.011∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.014∗∗∗

(0.002) (0.002) (0.003) (0.001) (0.002) (0.003)

ln(Λb + 1) 0.259∗∗∗ 0.194∗∗ 0.274∗

(0.078) (0.096) (0.146)

ln(λTb + 1) -0.155∗∗ -0.108 -0.140 0.104∗∗∗ 0.086∗∗∗ 0.135∗∗∗

(0.078) (0.096) (0.146) (0.005) (0.006) (0.008)

Quit -0.041∗∗∗ -0.054∗∗∗ -0.015 -0.041∗∗∗ -0.054∗∗∗ -0.015
(0.006) (0.007) (0.010) (0.006) (0.007) (0.010)

Observations 33387 20886 11722 33387 20886 11722
R2 0.645 0.565 0.675 0.645 0.565 0.675

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Estimation for subgroups

Low-Skilled High-Skilled

Rural Urban Rural Urban

ut -0.009∗∗ -0.017∗∗∗ 0.000 -0.013∗∗∗

(0.004) (0.002) (0.008) (0.004)

ln(Λb + 1) 0.074∗∗∗ 0.073∗∗∗ 0.020 0.138∗∗∗

(0.015) (0.008) (0.033) (0.012)

Quit -0.098∗∗∗ -0.050∗∗∗ 0.026 -0.025∗

(0.017) (0.008) (0.054) (0.013)

Observations 3786 13589 1124 8036
R2 0.584 0.572 0.705 0.667

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Regressions using the reason for separation

All Data Low-Skilled High-Skilled

ut -0.014∗∗∗ -0.015∗∗∗ -0.010∗∗∗

(0.002) (0.002) (0.004)

ln(Λb + 1)1(Fired) 0.081∗∗∗ 0.075∗∗∗ 0.100∗∗∗

(0.007) (0.009) (0.016)

ln(Λb + 1)1(Quit) 0.102∗∗∗ 0.079∗∗∗ 0.120∗∗∗

(0.008) (0.010) (0.013)

Quit -0.115∗∗∗ -0.097∗∗∗ -0.105∗∗∗

(0.013) (0.015) (0.030)

Observations 18991 11841 6730
R2 0.707 0.608 0.747

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

different for workers subsequently moving into unemployment compared to
those that move to another job. As suggested by the theory, the difference
in the increase in wages with Λb is small. The difference in means captured
by the dummy for quits is close to the estimate of σ.

Conditional on the number of offers, the variance of wages is constant for
the Gumbel distribution. However, the actual number of offers conditional on
its expectation is random, following a log Poisson distribution. The variance
of the log number of offers is (Λb + 1)−1 (see the discussion related to equation
(5)). To test this prediction, we regress the squared residuals of the wage
regression on individual controls and (Λb + 1)−1. Since this squaring of the
residuals yields an heavily right tailed distribution, we exclude the largest 5%
of the squared residuals to reduce the impact of outliers. The results appear
in Table 10. We find a positive coefficient, as suggested by the theory. The
variance of wages is highest at the beginning of an employment cycle, since
the sensitivity of the worker’s wage to an additional wage offer is high in the
beginning of a new employment cycle. If the job offers are Poisson distributed
we would expect the coefficient to be equal to σ2 ∼= 0.01−0.02. The estimated
coefficient is about twice as large. This indicates that the distribution might
be thinner tailed than the Gumbel distribution, as then the variance of wages
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Table 10: Regressions for the variance of wages

All Data Low-Skilled High-Skilled

(Λb + 1)−1 0.026∗∗∗ 0.018∗∗∗ 0.041∗∗∗

(0.003) (0.003) (0.005)

Observations 31718 19842 11136
R2 0.026 0.021 0.042

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

conditional on the number of offers n is decreasing in n (see Proposition 3).

3.5 Applications of the OJS model

We can use our estimate of σ to calculate the contribution of OJS to the
wage dispersion (see equation (5)). We apply a benchmark estimate of the
coefficient σ of 0.10 and use the variance of ln (Λb + 1) from Table 1. We
obtain the following result:

Var[E [lnn]] Var [ln(Λb + 1)]σ2 0.0077
Var[lnn|E [lnn]] E

[
Λ−1
b

]
σ2 0.0016

Var[wia|n] π2

6
σ2 0.0181

Var[wia]
(

Var [ln(Λb + 1)] + E
[
Λ−1
b

]
+ π2

6

)
σ2 0.0275

Var[wit] 0.2970
Share Var[wia] /Var[wit] 9.2%

The result from Table 9 provides an estimate for the relation between the
experience level of the worker and the wage loss associated with separation.
The result suggests that doubling the labour market history increases this
wage loss by 8%. Using the steady-state distribution of experience, we de-
rived the simple expression (equation 6) for the average wage loss in terms
of just two parameters, λ/δ and σ. λ/δ measures the job-offer arrival rate
relative to the rate of separation. If this ratio is high, workers receive more
offers on average before they exogenously separate. The higher λ/δ is, the
better are the outstanding matches compared to the average match a worker
coming out of unemployment gets. σ measures the scale of the distribution.
For a given drop in match quality, the loss in wages increases in σ. Using
σ = 8% and our estimate of λ/δ ∼= 4, we see that a loss of match quality can
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explain an average wage loss after firm lay-off of about 11%. In addition, our
estimates suggest that the offer distribution is fat-tailed, which means that
the earnings losses are persistent. Our estimate of 11% is smaller than the
empirical estimates of earnings losses following mass displacement (Jacob-
son et al. (1993) and Davis and Wachter (2011)), suggesting that the loss of
firm specific human capital or other factors must also play a role. Davis and
Wachter (2011) emphasize the importance of the labour market conditions
at the time of separation.The job-arrival rates vary roughly by a factor of
two: the simple model with OJS therefore results in an earnings loss that
last twice as long in recessions.

Workers experience an increase in expected wages over the life cycle.
There are several potential explanations for this phenomenon. We seek to
decompose the increase into three components: (i) the accumulation of gen-
eral human capital; (ii) a pure tenure profile in wages; and (iii) the selection
into better matches due to OJS. We can use our methodology for estimating
the return to OJS and making this decomposition. First, we obtain the total
experience profile by running a wage regression with a fourth-order polyno-
mial in experience with the same controls as in all of our previous regressions,
but omitting ln(Λb + 1) and the polynomial in tenure. We use the estimated
coefficient on the polynomial in experience to generate a predicted experi-
ence profile. This gives the total return to experience. If we regress wages on
tenure without controlling for match quality, the tenure profile will be up-
ward biased (due to survival bias). In order to quantify the contribution of
tenure to the experience profile, we need an unbiased estimate of the tenure
profile. First we derive an unbiased tenure profile, which we then use to
correct for the effect of tenure on the experience profile. Regressing wages
on match quality ln(Λb + 1), controls, and correcting for tenure and expe-
rience up to a fourth-order gives us an estimate of the pure tenure profile.
For each observation we subtract from the wage the predicted contribution
of tenure. We regress the tenure-corrected wage on a fourth-order polyno-
mial in experience and controls. The predicted experience profile includes
the returns to OJS and the pure returns to experience. The gap between
this experience profile and the total experience profile is the contribution of
tenure to the experience profile. Finally, we get the pure experience profile
by regressing wages on fourth-order polynomials in experience and tenure
including ln(Λb + 1). The estimated coefficients on the polynomial yields the
pure experience profile. These estimates appear in Figure 6. The return to
OJS explains a large part of the total return to experience, (some 30%), and

38



Figure 6: Experience Profile with and without controlling for OJS

results in a much flatter experience profile. The contribution of tenure to the
total return to experience is small.

We perform a similar decomposition for the tenure profile. First, we
obtain the total return to tenure by running a wage regression with the
standard controls and fourth-order polynomials in experience and tenure but
omitting ln(Λb+1). Next, we run the same regression, but include ln(Λb+1).
The tenure profiles derived from both regressions appear in Figure 7. The
results suggest that most of the raw tenure profile is due to survival bias. This
result explains why we find that Λa/Λb is uniformly distributed. The return
to job-specific experience and the true tenure profile in wages are apparently
not that important.
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Figure 7: Tenure Profile with and without controlling for OJS
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A Proof of Proposition 1

1. The expected number of job offers n in the time interval [0, b]:

First, a worker receives one offer at the start of an employment cycle.
Next, the accumulated arrival rate of job offers during period (0, b) is
Poisson distributed with parameter Λb. The expectation of the Poisson
distribution is equal to the arrival rate.

For the case of a job ending by lay-off the expected number of job offers
is therefore Λb + 1 on the interval [0, b].

For the case of a quit, the problem is slightly more involved, since
the likelihood of an acceptable offer coming in a time b depends on
the number of offers received previously. The probability of n − 2

offers during the interval (0, b) is exp (−Λb)
Λn−2
b

(n−2)!
with n ≥ 2. The

probability of an acceptable offer arriving at time b conditional on n−1
previous offers is n−1λb; λb is the arrival rate of job offers and n−1 is
the probability that the offer is acceptable. Because the worker will
have received n offers (one at time 0, n − 2 in the interval (0, b), and
one at time b), the probability is that the last offer is the highest is

n−1. The joint probability is therefore n−1λb exp (−Λb)
Λn−2
b

(n−2)!
. Taking

expectations over n and using the normalizing constant yields

E [n+ 2offers|Λb, quit] =

∑∞
n=2 exp (−Λb)

Λn−2
b

(n−2)!∑∞
n=2 n

−1 exp (−Λb)
Λn−2
b

(n−2)!

=
Λ2
b

Λb + e−Λb − 1

= Λb + 1 +O(Λ−1
b ).

2. Λa/Λb is uniformly distributed on the unit interval [0, 1]:

The distribution of outstanding match quality F at time t for employed
workers satisfies

Pr (F < F |t) = F exp
[
−ΛtF̄

]
, (9)

where F̄ ≡ 1 − F . Let a be the time at which a job started and let b
be the time at which this job will end. Conditional on a job starting
at a with match quality F , the distribution of end dates b satisfies

Pr(b|F, a) =
[
δb + λbF̄

]
exp

[
− (Λb − Λa) F̄ − (∆b −∆a)

]
. (10)
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Now we want to derive the joint probability of starting at a and ending
at b. Using equation (9) for t = a to derive the distribution of the
quality in the previous job, we can therefore write the joint probability
of the job quality F in the current job, its termination time b and its
starting time a as follows:

Pr(F, b, a) = C1 Pr (F < F |a) Pr (F |offer at a) Pr (offer at a) Pr(b|F, a)

= C2

[
δb + λbF̄

]
λa exp

[
−ΛbF̄ −∆b

]
F.

Note that a only enters the expression via λa. Integrating over F gives
G(b, a) = λaC(b). In order to get the density of Λa we use dt = λtdΛt

which gives
Pr(b, a) = C2(b).

Therefore the distribution of a is uniform.

3. Expected rank for jobs ending in a lay-off:

The distribution function of F after one initial offer at time 0 and
E[n] = Λb offers in (0, b) is

Pr (F < F ) = F exp
(
−ΛbF̄

)
.

Hence, the density function reads

Pr (F = F ) = (ΛbF + 1) exp
(
−ΛbF̄

)
Using this, the expectation of F can be written as

E(F |b, lay-off) =

∫ 1

0

F (ΛbF + 1) exp
(
−ΛbF̄

)
dF

= 1− Λ−1
b + Λ−2

b [1− exp (−Λb)] = 1− Λ−1
b +O

(
Λ−2
b

)
.

4. Expected rank for jobs ending in a quit:

E(F |b, quit) =

∫ 1

0

ΛbF̄

1− Λ−1
b [1− exp (−Λb)]

(ΛbF + 1) exp
(
−ΛbF̄

)
dF

= 1− 2
Λb + (Λb + 2) exp (−Λb)− 2

Λb + exp (−Λb)− 1
Λ−1
b = 1− 2Λ−1

b +O
(
Λ−2
b

)
.

B Estimation results by employment cycle
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Table 11: Estimation for the different employment runs

All Data Low-Skilled High-Skilled

ut -0.014∗∗∗ -0.015∗∗∗ -0.012∗∗∗

(0.001) (0.002) (0.003)

ln(Λb + 1)1(cycle 1) 0.116∗∗∗ 0.090∗∗∗ 0.147∗∗∗

(0.008) (0.011) (0.014)

ln(Λb + 1)1(cycle 2) 0.118∗∗∗ 0.088∗∗∗ 0.148∗∗∗

(0.006) (0.008) (0.010)

ln(Λb + 1)1(cycle 3) 0.122∗∗∗ 0.092∗∗∗ 0.152∗∗∗

(0.006) (0.008) (0.011)

ln(Λb + 1)1(cycle 4) 0.111∗∗∗ 0.085∗∗∗ 0.147∗∗∗

(0.006) (0.008) (0.012)

ln(Λb + 1)1(cycle 5) 0.100∗∗∗ 0.092∗∗∗ 0.111∗∗∗

(0.007) (0.008) (0.014)

ln(Λb + 1)1(cycle 6) 0.116∗∗∗ 0.107∗∗∗ 0.114∗∗∗

(0.008) (0.011) (0.015)

ln(Λb + 1)1(cycle 7) 0.098∗∗∗ 0.095∗∗∗ 0.133∗∗∗

(0.009) (0.011) (0.017)

ln(Λb + 1)1(cycle 8) 0.080∗∗∗ 0.076∗∗∗ 0.085∗∗∗

(0.009) (0.011) (0.018)

ln(Λb + 1)1(8 < cycle) 0.063∗∗∗ 0.071∗∗∗ 0.070∗∗∗

(0.008) (0.009) (0.017)

Quit -0.038∗∗∗ -0.054∗∗∗ -0.012
(0.006) (0.007) (0.011)

Observations 33387 20886 11722
R2 0.646 0.565 0.676

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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