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Abstract

We introduce a new fractionally integrated model for covariance matrix dynamics

based on the long-memory behavior of daily realized covariance matrix kernels and

daily return observations. We account for fat tails in both types of data by appropri-

ate distributional assumptions. The covariance matrix dynamics are formulated as a

numerically efficient matrix recursion that ensures positive definiteness under simple

parameter constraints. Using intraday stock data over the period 2001-2012, we con-

struct realized covariance kernels and show that the new fractionally integrated model

statistically and economically outperforms recent alternatives such as the Multivari-

ate HEAVY model and the multivariate HAR model. In addition, the long-memory

behavior is more important during non-crisis periods.

Keywords: multivariate volatility; fractional integration; realized covariance matri-

ces; heavy tails; matrix-F distribution; score dynamics.
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1 Introduction

Various fields in financial econometrics, such as risk- and portfolio management, require

the use of an adequate multivariate volatility model to estimate or forecast the covariance

matrix of financial asset returns. We can distinguish two main lines of literature dealing

with these models, namely multivariate generalized autoregressive conditional heteroskedas-

ticity (GARCH) type models (for an overview, see Silvennoien and Teräsvirta, 2009) and

stochastic volatility (SV) type models (for an overview, see Asai et al., 2006). More re-

cently, the availability of intraday high-frequency data has led to a new class of volatility

models including realized (co)variance measures. Such realized measures help to describe

and forecast volatility more precisely than traditional measures such as squares and cross-

products of daily returns; see for instance Andersen et al. (2001). Typically, either either

realized variance measures (Barndorff-Nielsen and Shephard, 2002) or realized kernel mea-

sures (Barndorff-Nielsen et al., 2008) are included. Examples of the former include the

Wishart autoregressive (WAR) model of Gourieroux et al. (2009) and the Conditional Au-

toregressive Wishart (CAW) model of Golosnoy et al. (2012), while examples of the latter

include the High-frEquency-bAsed VolatilitY (HEAVY) model of Shephard and Sheppard

(2010) and its multivariate extension by Noureldin et al. (2012), and the multiplicative error

model (MEM) model of Englo and Gallo (2006).

Volatilities are typically strongly persistent, which has led to the introduction of volatil-

ity models with long-memory features. A seminal reference is the fractionally integrated

GARCH (FI-GARCH) model of Baillie et al. (1996), which is based on squared daily re-

turns. Realized variance measures exhibit even stronger long memory features than squared

daily returns. Andersen et al. (2001) for instance find that realized measures are highly

persistent and behave as fractionally integrated processes that can be modeled by autore-

gressive fractionally integrated moving average (ARFIMA) models; see also Koopman et al.

(2005). Corsi (2009) also caputures long-memory volatility dynamics, but does so using

a heterogeneous autoregressive (HAR) model, which relates realized volatility to a linear

combination of lagged daily, weekly and monthly realized volatilities. Proietti (2016) intro-

duces an alternative integrated moving average model for realized variances and assesses its

predictive power against other univariate models.
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The univariate volatility models with long-memory features available in the literature

have two main drawbacks complicating their application in a multivariate context. First,

these models do not account for fat-tailed returns and outliers in either the realized measures,

the returns, or both. Though fat-tailed distributions are often used to describe returns, thin-

tailed distributions such as the Wishart are typically used for the realized measures despite

the fact that also data for the realized measures can be subject to outliers and influential

observations. For example, the Flash Crash in 2010 led to a spike in the realized (co)variance

of a large number of assets. Ignoring the possible occurrence of such influential events in the

specification of the volatility propagation mechanism and the likelihood function can have a

huge impact on the estimated volatility dynamics for each of the volatility models discussed

above. Second, multivariate models that incorporate the long-memory features of (realized)

(co)variances face the challenge to simultaneously avoid the curse of dimensionality and

solve the requirement of ensuring positive definite covariance matrices. Chiriac and Voev

(2011) deal with these issues by proposing vector ARFIMA (VARFIMA) models for the

cholesky decomposition of the realized covariance matrix. The same study also extend the

HAR model of Corsi (2009) to the multivariate setting. Bauer and Vorkink (2011) solve

the issue differently by modeling the matrix-logarithm of the realized covariance matrix.

Both studies, however, model the vectorized (vech) matrix of interest. This may become

computationally intensive in higher dimensions. Moreover, neither model accounts for the

possible fat-tailedness of realized measures and its impact on the volatility dynamics as

discussed earlier.

In this paper, we solve both of the above issues by introducing a new multivariate

volatility model for realized (kernel) covariance matrices. The model can also be used

to simultaneous model realized covariance matrices and daily returns. Our model allows

for both the long-memory behavior and the fat-tailedness of (realized) covariances and

returns by combining fractionally integrated dynamics with the generalized autoregressive

score (GAS) dynamics of Creal et al. (2011, 2013). The only paper to our knowledge that

combines long-memory and GAS is Janus et al. (2014), but this paper is set entirely in a

univariate context and does not incorporate realized measures. Moreover, Janus et al. fails

to provide parameter constraints to ensure positive definiteness of the covariance matrix.

The model set-up developed in the remainder of this paper, by contrast, has easy parameter
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restrictions that render the covariance matrix positive definite at all times.

To account for fat tails, we assume a matrix-F distribution for the realized covariance

matrix and a Student’s t distribution for the daily returns. The use of the matrix-F dis-

tribution for realized volatility models was first propagated in Opschoor et al. (2017). The

combination of the matrix-F and vector-valued Student’s t distribution allows for a tractable

analytic expression for the score of the log predictive density with respect to the unknown,

dynamic covariance matrix. The score expressions can be used in the generalized autoregres-

sive score-driven (GAS) framework of Creal et al. (2013) to provide the covariance matrix

dynamics. The score-driven framework has been applied successfully in a number of other

settings, including volatility and location modeling (Harvey, 2013; Harvey and Luati, 2014),

credit risk modeling (Creal et al., 2014), and systemic risk modeling (Oh and Patton, 2016;

Lucas et al., 2014). The availability of a closed-form expression for the likelihood function

and the optimality of score-driven steps (see Blasques et al., 2015) make the GAS framework

a good starting point for combining long-memory, fat tails, robust time-varying parameter

dynamics, and ease of estimation. As we show later, the score expressions automatically

account for a reduced impact of outlying realized covariance matrices and/or return vectors

in an intuitive way. The convenient advantage of the score-driven approach is also that

we can directly apply the theoretical results of Conrad and Haag (2006) to obtain simple

parameter restrictions to establish positive definiteness of the estimated covariance matrices

over the entire sample period. In addition, due to the matrix formulation of our volatility

dynamics, the introduction of the long-memory feature can be done in a parsimonious yet

flexible way that allows for generalizations of the model in many directions of empirical

interest. The parsimony of the approach is a major asset in the multivariate context, where

the curse of dimensionality looms large.

We provide an empirical application of our multivariate Fractionally Integrated model

based on the matrix-F and Student’s t distribution (FIGAS tF model from now on) on

daily realized kernels and daily returns for 15 equities from the S&P 500 index. Our sample

spans the period January 2001 to December 2012. Using a forecasting horizon of 1, 5,

10, and 22 days ahead, we compare both statistically and economically the performance

of our new dynamic covariance matrix model to several strong benchmarks, such as the

HEAVY model (Noureldin et al., 2012), the GAS tF model (Opschoor et al., 2017) and
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the multivariate extension of the HAR model of Corsi (2009). Using a quasi-likelihood

loss function, the FIGAS model outperforms the competing HEAVY and HAR models,

both inside and outside crisis periods. Interestingly, we find that the fractionally integrated

part of our new model only outperforms the short-memory GAS model during non-crisis

periods. Hence the long-memory property seems particularly relevant during calm periods.

We assess the economic significance of our results by considering mean-variance efficient

portfolios based on the forecasts. Again we find that the FIGAS tF model outperforms

its competitors by producing statistically significantly lower ex-post conditional portfolio

standard deviations.

The rest of this paper is set up as follows. In Section 2, we introduce the new FIGAS

tF model for realized covariance matrices and return vectors under fat-tails. In Section 3

we provide a simulation experiment to show the performance of the model and estimation

procedure. In Section 4 we apply the model to a panel of daily realized kernels and equity

returns. We conclude in Section 5.

2 Modeling Framework

2.1 The fractionally integrated GARCH model

Before we introduce our new score-driven fractionally integrated volatility model, we first

briefly recapitulate the main steps in the development of the univariate fractionally in-

tegrated GARCH(1,1) or FIGARCH(1, d, 1) model of Baillie et al. (1996). This paves

the way to the new fractional integrated dynamics in the score-driven framework. The

FIGARCH(1, d, 1) model is obtained by rewriting the standard GARCH(1,1) model of

Bollerslev (1986) as

σ2
t+1 = ω + αε2t + βσ2

t ⇔ (1− αL− βL)ε2t+1 = ω + (1− βL)vt+1, (1)

with L the lag operator Lσ2
t+1 = σ2

t , σ
2
t the conditional variance of εt, and vt = ε2t − σ2

t

a martingale difference. Baillie et al. (1996) introduce the FIGARCH(1, d, 1) model by

replacing the left-hand side lag polynomial (1−αL−βL) by (1−L)d(1−φL), with |φ| < 1
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and (1− L)d the fractional difference operator defined by the binomial expansion

(1− L)d = 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + . . . , (2)

for any real order of fractional integration d > −1. Using vt = ε2t−σ2
t , the FIGARCH(1, d, 1)

model can also be rewritten in its ARCH(∞) representation

(1− L)d(1− φL)ε2t+1 = ω + (1− βL)vt+1 ⇔ σ2
t+1 = ω̃ + Ψ(L)ε2t+1, (3)

with ω̃ = 1/(1− β) and

Ψ(L) = 1− (1− L)d(1− φL)

(1− βL)
=
∞∑
i=1

ψiL
i. (4)

Thus, the conditional variance σ2
t+1 depends on lags of ε2t+1, where the weight assigned to

each lag declines hyperbolically according to Ψ(L).

2.2 Score-driven fractionally integrated volatility dynamics

Analogously to the FIGARCH case, we can now introduce the fractionally integrated score-

driven multivariate volatility model. Consider a (k × 1) vector process yt and a (k × k)

matrix process RKt, t = 1, . . . , T , generated by

yt = µ+ V
1/2
t zt, zt|Ft−1 ∼ Dz(0, Ik), (5)

RKt = V
1/2
t Zt (V

1/2
t )′, Zt|Ft−1 ∼ DZ(Ik), (6)

where Ft−1 is the information set containing all information up to time t − 1, µ denotes

the conditional mean vector of the return vector yt, Vt denotes the conditional covariance

matrix, RKt denotes the realized kernel covariance matrix measure, and zt and Zt denote a

(k×1) vector-valued and (k×k) matrix-valued innovation. The matrix root V
1/2
t is defined

such that V
1/2
t (V

1/2
t )′ = Vt. The realized kernel process RKt is a consistent and robust

estimator of Vt correcting for market-microstructure noise; for more details, see Barndorff-

Nielsen et al. (2011). For simplicity and ease of notation, we set µ = 0. Note, however,
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that we can easily allow for time-varying conditional means µt that incorporate for example

autoregressive or moving average dynamics into the specification of yt.

We assume Vt follows the score-driven dynamics as introduced by Creal et al. (2011, 2013)

and Harvey (2013). Score dynamics adjust the time varying parameter Vt in the direction

of steepest ascent of the local log likelihood function. The approach is computationally

easy to implement given its explicit form for the likelihood function. Score-driven dynamics

also possess information theoretic optimality properties; see Blasques et al. (2015). Let

p(yt, RKt | Vt) denote the predictive conditional density for (yt, RKt). Then the score-

driven dynamics for Vt are driven by the scaled score

st = St ·
(
∂ log p(yt, RKt | Vt)/∂Vt

)
· S ′t, (7)

where St is a scaling matrix to correct for the curvature of the log predictive density at time

t. We come back to the precise form of the conditional observation density p(yt, RKt | Vt)

and the scaled score st in Subsection 2.3. For now, it suffices to note that our distributional

and scaling choices allow us to write st as st = s?t − Vt, where s?t is positive definite for all t.

To introduce fractionally integrated dynamics for the score-driven model, we first note

that due to the standard properties of a predictive density score, st is a martingale difference

by construction. It thus automatically takes the role of the martingale difference vt in (1).

Similarly, s?t is always positive definite and takes the role of ε2t in (1). In particular, if we

assume yt to be conditionally normally distributed and we scale the score by the inverse

Fisher information matrix, we obtain st = yty
′
t−Vt, such that s?t = yty

′
t, which is the familiar

expression for a multivariate GARCH model. Consider the standard GAS(1,1) dynamics

Vt+1 = Ω +α∗st + β∗Vt of Creal et al. (2013), where α∗ and β∗ are scalar parameters. Using

Vt = s?t − st and the GAS(1,1) model, the fractionally integrated score-driven dynamics can

now be derived analogously to the FIGARCH setting, namely

Vt+1 = Ω + α∗st + β∗Vt ⇔
(
1− β∗ L

)
s?t+1 = Ω +

(
1 + α∗ L− β∗ L

)
st+1

⇒
(
1− L

)d (
1− φL

)
s?t+1 = Ω +

(
1− β L

)
st+1, (8)

where we again replaced the standard GAS polynomial (1 − β∗L) by the fractionally inte-
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grated polynomial (1 − L)d(1 − φL), and defined β = β∗ − α∗ to homogenize the notation

with the FIGARCH case, where φ and β are scalar parameters, and Ω is a fixed positive

definite parameter matrix. We label the model the fractionally integrated generalized au-

toregressive score model of order (1, d, 1), or in short FIGAS(1, d, 1). Using the definition

st = s?t − Vt, we can rewrite (8) as

Vt+1 =
Ω

1− β
+

(
1−

(
1− L

)d (
1− φL

)
1− β L

)
s?t+1 = Ω̃ + Ψ(L) s?t+1, (9)

with Ω̃ = Ω/(1 − β), and Ψ(L) as defined in (4). Thus, also for the FIGAS(1, d, 1) model,

the conditional covariance matrix Vt+1 is an infinite weighted sum of current and past s?t ,

where the weight assigned to each lag declines hyperbolically according to Ψ(L).

The fractional integrated score dynamics introduced in (8) are substantially different

from those introduced in Janus et al. (2014). Whereas Janus et al. impose a fractional

polynomial directly on the (in their case univariate) volatility parameter Vt, we follow the

original approach of Baillie et al. (1996) much more closely and impose the fractional poly-

nomial on s?t . An important advantage of our current FIGAS specification compared to that

of Janus et al. (2014) is not only that we allow for a multivariate setting, but also that we

can immediately establish the positive definiteness of the sequence of covariance matrices Vt

for all times t using simple parameter restrictions. This is stated in the following proposition

for the FIGAS(1, d, 0) model, which we use in the empirical application later on.

Proposition 1 Assume that Ω and s?t in (8) are positive definite for all t. Then the con-

ditional covariance matrices Vt from the FIGAS(1, d, 0) model are positive definite if

Case 1: 0 < β < 1, d− β ≥ 0;

Case 2: −1 < β < 0, (d−
√

2(2− d))/2 ≤ β.

The proof follows directly from Corollary 3 of Conrad and Haag (2006). The proposition is

stated for the FIGAS(1, d, 0) model, which is the model we use in the empirical application

later on. It is straightforward, however, to apply the results of Conrad and Haag (2006)

also for more general forms of the FIGAS model, such as the FIGAS(1, d, 1). This feature

is quite convenient and follows from the way we have set up the fractionally integrated

dynamics in contrast to earlier papers on fractionally integrated score-driven dynamics.
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The conditions of Proposition 1 are easily checked for our model. The assumption on

Ω is easily enforced through the model’s parameterization. We show in the next subsection

that also the second assumption on the positive definiteness of s?t is automatically satisfied

for the fat-tailed distributional choices made in this paper. The restrictions in case 1 or case

2 of the proposition can then again be easily imposed by the model’s parameterization.

2.3 Score for the Student’s t – matrix-F distribution

We now turn to our choice for the conditional observation densities Dz(·) and DZ(·) in

(5)–(6) to complete the FIGAS specification under fat tails. To account for the possible fat-

tailedness of the returns, we assume that yt follows a (conditional) Student’s t distribution,

py(yt|Vt,Ft−1; ν0) =
Γ((ν0 + k)/2)

Γ(ν0/2)[(ν0 − 2)π]k/2|Vt|1/2
×

(
1 +

ytV
−1
t yt

ν0 − 2

)−(ν0+k)/2
, (10)

with degrees of freedom parameter ν0 > 2 and Vt a positive definite covariance matrix

at time t. Similarly, to account for possible fat tails of the realized kernel distribution,

we assume that RKt has a matrix-F distribution. The use of a matrix-F distribution for

realized measures was first proposed in Opschoor et al. (2017). The matrix-F distribution

is given by

pRK(RKt|Vt,Ft−1; ν1, ν2) = K(ν1, ν2)×

∣∣∣ ν1
ν2−k−1V

−1
t

∣∣∣ ν12 |RKt|(ν1−k−1)/2∣∣∣Ik + ν1
ν2−k−1V

−1
t RKt

∣∣∣(ν1+ν2)/2 , (11)

with positive definite expectation Et[RKt|Ft−1] = Vt, and degrees of freedom parameters

ν1, ν2 > k + 1, where

K(ν1, ν2) =
Γk((ν1 + ν2)/2)

Γk(ν1/2)Γk(ν2/2)
, (12)

and Γk(x) is the multivariate Gamma function

Γk(x) = πk(k−1)/4 ·
k∏
i−1

Γ(x+ (1− i)/2); (13)
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see for example Konno (1991). Both observation densities depend on the common time vary-

ing covariance matrix Vt. We assume that conditional on Vt and Ft−1, returns yt and realized

covariances RKt are independent such that the joint conditional density p(yt, RKt | Vt) is

the product of the conditional marginal densities (10) and (11). Preliminary data analyses

for bivariate snapshots of the data reveal that this assumption is empirically reasonable:

conditional correlations between returns and realized kernels are typically small.

Given the two observation densities (10) and (11), we have the following result. The

proof can be found in the appendix.

Proposition 2 Using the scaling matrix St =
√

2Vt, the scaled score for the Student’s t –

matrix-F distribution equals

st = 1
ν1+1
· wt · yty′t + ν1

ν1+1
·Wt ·RKt − Vt, (14)

with weight wt and weight matrix Wt given by

wt = (ν0 + k) · (ν0 − 2 + y′tV
−1
t yt)

−1, (15)

Wt =
ν1 + ν2

ν2 − k − 1
·
(

Ik +
ν1

ν2 − k − 1
RKt · V −1t

)−1
. (16)

Finally, given ν0, ν1, ν2 > 0 and Vt and RKt positive definite, we have that s?t = st + Vt is

positive semi-definite.

The score st has a number of intuitive properties. It contains familiar terms of the form

wt · yty′t and Wt · RKt. For the normal distribution, wt ≡ 1, such that Vt+1 directly reacts

to the unweighted squared daily returns yty
′
t, similar as in a standard multivariate GARCH

model. Analogously, for the Wishart distribution Wt = Ik, such that Vt reacts directly to the

realized kernel value. For finite ν0 and ν2, the weights wt and Wt automatically downplay

the importance of outlying values of yt and RKt, respectively. For example, if ytV
−1
t yt

grows large, the weight wt tends to zero. The same holds for Wt if RKtV
−1
t grows large.

The presence of both wt and Wt thus gives the model a doubly robust feature for both types

of measurements for Vt. The parameter ν1 in (14) determines the relative weights in the

score attributed to yty
′
t and RKt. A larger value of ν1 decrease the variance of the matrix-F
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distribution and indicates that RKt is a more reliable estimate of Vt. As a result, more

weight is put on the score related to RKt than on the score related to yt if ν1 increases.

Important for the fractionally integresed dynamics of Subsection 2.2 is that s?t = st + Vt

is positive semi-definite for all t. Looking at the expressions in Proposition 2 this requires

the degrees of freedom parameters to be strictly positive and Vt to be positive definite. Then

the weight wt is clearly positive, and wt · ytyt is positive semi-definite. We can easily show1

that also the term Wt ·RKt is positive semi-definite in that case. This allows us to conclude

that the parameter restrictions formulated in Proposition 1 can be used to enforce positive

definiteness of Vt for all t in the FIGAS model.

2.4 Estimation

We estimate the parameters of the FIGAS model by maximum likelihood. In order to

circumvent the number of estimated parameters corresponding to Ω̃ = Ω/(1−β), we target Ω̃

by Ω̃ = (1−
∑∞

i=1 ψi) (1/T )
∑T

t=1RKt with ψi defined in (4). This specification is related to

the covariance targeting approach as Ω depends on the sample average of RKt. We estimate

the remaining static parameter vector θ = {φ∗, β, ν0, ν1, ν2, d} of the FIGAS model by

maximum likelihood. To do so, we maximize the log-likelihood LtF(θ) =
∑T

t=1 Lt, where Lt
is defined as the sum of the log likelihoods of the Student’s t and the matrix-F distributions

of equations (10) and (11). This standard prediction error decomposition of the likelihood

function is made possible due to the observation-driven nature of the FIGAS model using

the classification of Cox (1981). The starting value V1 can be either estimated or set equal

to RK1.

The maximum likelihood estimation for the fractionally integrated model requires trun-

cation of the infinite distributed lags in (2). We choose the maximum number of lags, which

equals T −1. Finally we put the pre-sample innovations equal to zero, guided by the finding

of Bollerslev and Mikkelsen (1996) that the effect of pre-sample values has a negligible effect

on the parameter estimates, provided that the sample size is sufficiently large. Pre-sample

values of Vt are put to the sample analogue of the unconditional covariance matrix.

1Note that Wt ·RKt can be written as ν1+ν2
ν2−k−1 (RK−1

t + ν1
ν2−k−1V

−1
t )−1, which is positive definite as RKt

and Vt (and their inverses) are both positive definite, ν1, ν2 > k + 1, and the inverse of the sum of two
positive definite matrices is again positive definite.
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Table 1: Parameter estimations of FIGAS tF DGP
This table shows Monte Carlo averages and standard deviations (in parentheses) of parameter estimates

from simulated FIGAS tF processes with Ω̃ = cI. The table reports the mean and the standard deviation
in parentheses based on 1000 replications.

Coef. True T = 500 T = 1500

Panel A: k = 5
d 0.60 0.591 (0.024) 0.601 (0.015)
β -0.10 -0.109 (0.052) -0.106 (0.040)
c 0.05 0.059 (0.010) 0.058 (0.008)
ν0 9.00 9.204 (1.287) 9.080 (0.776)
ν1 50.00 49.982 (3.340) 50.228 (2.298)
ν2 35.00 35.235 (1.636) 34.908 (1.260)

Panel B: k = 15
d 0.60 0.587 (0.009) 0.598 (0.006)
β 0.15 0.136 (0.014) 0.147 (0.008)
c 0.05 0.059 (0.003) 0.059 (0.003)
ν0 12.00 12.136 (1.089) 12.069 (0.653)
ν1 70.00 69.769 (1.173) 69.859 (0.675)
ν2 60.00 60.249 (0.843) 60.114 (0.484)

3 Simulation Experiment

Before presenting the empirical results, we perform a Monte Carlo study to investigate the

statistical properties of the maximum likelihood estimator for θ. To that end, we simulate

T time series observations of k×1 daily returns and k×k daily realized covariance matrices

using the FIGAS tF model as the true data genarating process (DGP). We set T equal to

500 and 1500 respectively, and choose k equal to 5 and 15. The chosen parameters are based

on the FIGAS(1, d, 0) model estimated in the application in Section 4. For k = 5, we choose

β = −0.10, ν0 = 9, ν1 = 50, ν2 = 35, d = 0.60, and Ω̃ = cIk with c = 0.05. For k = 15, we

set β = 0.15, ν0 = 12, ν1 = 70, ν2 = 60, while the other parameters remain the same. For

each simulated series, we estimate θ by numerically maximizing the likelihood function.

Table 1 presents the results based on 1000 replications. Clearly, all parameters are

estimated near their true values. The standard deviations decrease if the sample size T

increases or if the cross-dimensional dimension k becomes larger. There is a slight upward

bias in c, which is probably due to a long lasting effect of the initialization of the initial

covariance matrices to their unconditional expectation. This bias tapers off (not shown) if

the sample size grows substantially larger. We also observe that the fractional integration
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Table 2: S&P 500 constituents
This table lists 15 companies listed at the S&P 500 index during the period January 2, 2001 until December
31, 2012. Ts denotes the Ticker Symbol and PERMNO is the CRSP identifier.

Nr. Ts Permno Name Subsector
1 AA 24643 Alcoa Inc. Materials
2 AXP 59176 American Express Company Financials
3 BA 19561 The Boeing Company Industrials
4 CAT 18542 Caterpillar Inc. Industrials
5 GE 12060 General Electric Company Industrials
6 HD 66181 The Home Depot Consumer discretionary
7 HON 10145 Honeywell International Industrials
8 IBM 12490 International Business Machines IT
9 JPM 47896 JP Morgan Financials
10 KO 11308 Coca-Cola Consumer staples
11 MCD 43449 McDonald’s Consumer discretionary
12 PFE 21936 Pfizer Health care
13 PG 18163 Procter & Gamble Consumer staples
14 WMT 55976 Wal-Mart Stores Inc. Consumer staples
15 XOM 11850 Exxon Mobil Energy

parameter d is estimated accurately.

4 Empirical Application

In this section we apply the FIGAS model to an empirical data set of 15 US equities. Our

aim is to describe the covariance dynamics both in-sample and out-of-sample. All equities

are part of the S&P 500 index. We first provide some of the stylized facts of the data.

Next, we introduce our competing benchmark models. Finally, we test the in-sample and

out-of-sample performance of the different models.

4.1 Data

The data consist of daily returns and daily realized covariances measures for 15 US equities.

Table 2 provides an overview of the companies considered in our data set. The data spans

the period January 2, 2001 until December 31, 2012 and contains T = 3017 trading days.

We observe consolidated trades (transaction prices) extracted from the Trade and Quote

(TAQ) database from 9:30 until 16:00 with a time-stamp precision of one second. We first

clean the high-frequency data following the guidelines of Barndorff-Nielsen et al. (2009) and
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Figure 1: Realized Kernel estimates of AA/CAT
This figure shows daily realized kernel volatilities (square root of the variance) of Alcoa Inc. (AA) and
Caterpillar Inc. (CAT) returns on the diagonal panels. The off-diagonal panels contain the realized kernel
covariance (upper-right) and correlation (lower-left) between the two asset returns. The sample spans the
period from January 2, 2001 until December 31, 2012 (T = 3017 days).

Brownlees and Gallo (2006).2 Next, we construct realized kernels using the refresh-time-

sampling methods of Barndorff-Nielsen et al. (2011) with the same hyper-parameters as

used by Hansen et al. (2014).

Figure 1 shows a snapshot of the data by plotting the realized variances (based on the

kernel approach) of Alcoa Inc. (AA) and Caterpillar Inc. (CAT) in the diagonal panels, and

the realized correlation and covariance in the off-diagonal panels. The figure shows that

both the realized (co)variance(s) and the realized correlation contain a substantial number

of spikes. The spikes do not only occur during the global financial crisis, but also during other

periods such as the early 2000s. This motivates the use of our FIGAS tF framework based

on the fat-tailed matrix-F and Student’s t distributions, which automatically downweights

the impact of such incidental observations on the volatility and covariance dynamics.

2See Web Appendix A for more details.
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Figure 2: Empirical autocorrelation functions of realized kernels
This figure shows the autocorrelation function (ACF) for lag 1 until 50 of daily realized kernel volatilities
(square root of variance) of Alcoa Inc. (AA) and Caterpillar Inc. (CAT) in the diagonal panels. The off-
diagonal panels contain the ACF of the realized kernel covariance (upper-right) and correlation (lower-left)
between the two asset returns. The sample is January 2, 2001 until December 31, 2012 (T = 3017 days).

The autocorrelation functions in Figure 2 strongly suggest that the realized covariance

matrix displays long-memory behavior. After lag 50, the autocorrelation is around 0.4 for

the realized kernel volatilities of AA and CAT. Likewise, the autocorrelation of the realized

covariance and correlation is equal to 0.25 and 0.3 at this long lag length. This provides an

empirical motivation to incorporate long-memory features into the model.

4.2 Alternative forecasting models

To benchmark the performance of our FIGAS tF model, we use three relevant alterna-

tive models: the multivariate extension of the HAR model (Corsi, 2009), put forward by

Chiriac and Voev (2011), the multivariate HEAVY model of Noureldin et al. (2012) and the

short-memory GAS tF model of Opschoor et al. (2017). As a fourth benchmark, we also

considered the long-memory extension of the RiskMetrics model (Zumbach, 2006). This
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model, however, appears to be inferior compared to all other models considered. Results

are therefore relegated to Web Appendix B.

Our first benchmark does not directly model RKt, but first computes the matrix’ choleski

decomposition RKt = PtP
′
t , where Pt is lower triangular. The multivariate HAR model then

considers Xt = vechPt as a function of lagged daily, weekly and monthly (transformed)

volatilities, where vechPt stacks the lower triangular elements of Pt into a vector:

Xt+1 = α + β1Xt + β2X
w
t + β3X

m
t + ut+1, (17)

where Xw
t and Xm

t are defined as N−1
∑N−1

i=0 Xt−i with N = 5 (weekly) and 22 (monthly)

respectively. Finally, α represents a k(k + 1)/2 vector of coefficients and βj (j = 1, 2, 3) are

scalar parameters. All parameters are estimated by OLS.

The multivariate HEAVY model incorporates realized measures into the volatility spec-

ification by proposing a system of two multivariate GARCH equations for the quantities

Vt = Et[yty′t|Ft−1] and Mt = Et[RKt|Ft−1]. The innovations in both of these equations are

the realized (co)variance measures as gathered in the matrix RKt. The dynamics are given

by

Vt+1 = CVC
′
V + αVRKt + βV Vt, (18)

Mt+1 = CMC
′
M + αMRKt + βMMt, (19)

where αV , αM , βV , and βM are scalar parameters, and CV and CM are lower triangular

matrices. The scalar parameters of both equations are estimated separately by maximum

likelihood, assuming a singular Wishart distribution for yty
′
t and a standardized Wishart

distribution with k degrees of freedom for RKt. The matrices CV and CM are typically

estimated by covariance targeting, as discussed by Noureldin et al. (2012). We follow this

approach when implementing the model in the remaining analysis.

Our final benchmark is the GAS tF model, which is the short memory equivalent of

our FIGAS model. All benchmark models allow for easy h-step ahead prediction of Vt. In

case of the HEAVY model, the second transition equation delivers forecasts of RKt+h for

h = 1, 2, . . ., which can subsequently be inserted into the first equation to obtain Vt+h. The
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h-step ahead forecast of Vt of the FIGAS model follows directly from (8): Vt+h depends

on s∗t+h−1, s
∗
t+h−2, . . . s

∗
t , s
∗
t−1, . . ., with s∗t = st + Vt by definition. Given the property that

Et[st+h|Ft] = 0k for any value of h ≥ 1, Vt+h is obtained recursively by setting the values of

future score matrices st to zero. Similar results hold for the GAS tF model.

We follow Bollerslev et al. (2016) by considering direct forecasts in case of the the

multivariate HAR model. These forecasts are obtained by running the following regression:

Xt+h = α + β1Xt + β2X
w
t + β3X

m
t + ut+h, (20)

where h stands for the forecast horizon. As indicated by Bollerslev et al. (2016), direct

forecasts might be more adequate than iterative forecasts due to the possibility of model

misspecification.

4.3 Model Evaluation Procedure

We follow Noureldin et al. (2012) and compare the in-sample and out-of-sample statistical

fit of the models by computing the quasi-likelihood loss function:

QLIKt,h(RKt+h, V
a
t+h|t) = log |V a

t+h|t|+ tr((V a
t+h|t)

−1RKt+h), (21)

with V a
t+h|t the covariance matrix forecast for time t + h given all information up to time t

based on model a. Note that we use RKt+h as a proxy of the true covariance matrix. In-

sample, h is set to zero. Since Vt is known at time t−1, the criteria can also be interpreted as

one-step ahead forecasting criteria. As indicated by Patton (2011), the QLIK loss-function

implies a consistent ranking of volatility models since it is robust to noise in the proxy RKt.

To assess the in-sample performance, we set h = 0 and note that Vt only depends on the

information in Ft−1 for all three models considered. For the out-of-sample performance, we

set h > 0.

We additionally test the predictive performance of the models using the framework of

Giacomini and White (2006). We start by computing the difference in loss functions between
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two competing models a and b,

dt,h(a, b) = QLIKt,h(RKt+h, V
a
t+h|t)−QLIKt,h(RKt+h, V

b
t+h|t), (22)

for t = R + 1, . . . T − h, where the parameters are estimated based on a rolling window of

Tw = 1500 observations. The difference dt can be interpreted as a difference between two

Kullback-Leibler (KL) divergences. Even if the underlying two models are both misspeci-

fied, the difference in their KL divergences still provides a valid assessment criterion. The

corresponding null-hypothesis of equal predictive ability is given by H0 : E[dt,h(a, b)] = 0 for

all T − h− R out-of-sample forecasts, which can be tested using the Diebold and Mariano

(1995) (DM) test-statistic

DMh(a, b) =
d̄h√

ŝ2h/(T − h−R)
, (23)

with d̄h the out-of-sample average of the loss differences, and ŝ2h a HAC-consistent variance

estimator of dt,h(a, b). A significantly negative value of DMh(a, b) means that model a

has a superior forecast performance over model b. The QLIK test can be used in-sample

(interpreted as a ‘one-step-ahead prediction’) and out-of-sample. In the out-of-sample test,

we choose h = 1, 5, 10 and 22. In addition, we consider the cumulative forecasts Vt:t+N |t =∑N
i=1 Vt+i|t, where N equals 5, 10 and 22, respectively.

As the above evaluation criteria are statistical in nature, we finally also assess the fore-

casting performance from a economic point of view. Motivated by the mean-variance op-

timization setting of Markowitz (1952), we do so by considering global minimum variance

portfolios (GMVP); see for example Chiriac and Voev (2011); Engle and Kelly (2012),

among others, who perform a similar analysis. The best forecasting model should provide

portfolios with the lowest ex-post variance. Assuming that the investor’s aim is to minimize

the h-step portfolio volatility at time t subject to a fully invested portfolio, the resulting

GMVP weights wt+h|t are obtained by the solution of the quadratic programming problem

minw′t+h|tVt+h|twt+h|t, s.t. w′t+h|tι = 1. (24)

with ι a k×1 vector of ones. Similar as Chiriac and Voev (2011), we assess the predictive abil-
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ity of the different models by comparing the results to the ex-post realizations or ‘oracle fore-

casts’ of the conditional standard deviation, which are given by σp,t =
√
w′t+h|tRKt+hwt+h|t.

We again test for significantly different portfolio standard deviations by means of the DM

test statistic.

4.4 In-sample results

Table 3 shows parameter estimates and standard errors based on the sandwich (robust

covariance matrix) estimator S0 = A−10 B0A
−1
0 with B0 the inverse Hessian of the likelihood

evaluated at the optimum (information matrix), and A0 the expected value of the outer

product of the gradients at the optimum. We show the results for a selection of k = 5

randomly chosen stocks and for the complete set of all 15 equities.
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Table 3: Parameter estimates, likelihoods and loss function
This table reports maximum likelihood parameter estimates of the FIGAS tF, GAS tF, HEAVY and the HAR model, applied to daily equity returns and
daily realized kernels of 5 and 15 assets. In case of the HAR model (see (17)), we suppress the constant vector and report only β1, β2 and β3. Asset
identifiers are explained in Table 2. Standard errors are provided in parenthesis and based on the (sandwich) robust covariance matrix estimator. The
α column corresponds to α coefficient of the GAS tF model (see (8)) and the αV coefficient of the HEAVY model (see (18)) respectively. Likewise, β
corresponds with β of the (FI)GAS tF model, the βV coefficient of the HEAVY model or the β1 coefficient of the HAR model. The table reports the total
log-likelihood, the BIC criteria as well as the mean of the QLIK loss function, which is defined in (21). For comparative reasons, the total likelihood consists
of the sum of a Multivariate Normal and the Wishart distribution for the HEAVY and HAR models. The sample is January 2, 2001, until December 31,
2012 (3017 observations).

Panel A: AA/BA/CAT/GE/KO
d α β β2 β3 ν0 ν1 ν2 L∗ BIC QLIK

FIGAS 0.655 -0.063 10.89 46.31 36.68 -44,213 88,466 7.645
(0.014) (0.044) (0.830) (2.032) (1.437)

GAS 0.611 0.987 10.46 46.39 35.58 -44,686 89,412 7.664
(0.025) (0.001) (0.730) (1.669) (1.112)

HEAVY 0.284 0.589 -71,090 142,211 7.894
(0.049) (0.080)

HAR 0.306 0.418 0.214 -69,456 139,056 7.684
(0.016) (0.023) (0.020)

Panel B: AA/AXP/BA/CAT/GE/HD/HON/IBM/JPM/KO/MCD/PFE/PG/WMT/XOM
d α β β2 β3 ν0 ν1 ν2 L∗ BIC QLIK

FIGAS 0.647 0.166 12.79 67.17 62.18 5,486 -10,931 18.88
(0.009) (0.015) (0.612) (1.218) (0.989)

GAS 0.386 0.991 12.30 66.63 61.54 3,092 -6,143 18.96
(0.012) (0.001) (0.571) (1.161) (0.975)

HEAVY 0.160 0.738 -132,489 265,011 20.06
(0.019) (0.033)

HAR 0.204 0.419 0.296 -118,435 237,854 19.45
(0.008) (0.012) (0.011)
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The results in Table 3 show that the FIGAS tF model has the best fit to the data com-

pared to the other models. In a preliminary analysis, the coefficient φ in the FIGAS speci-

fication turned out to be statistically insignificant, such that we estimate a FIGAS(1, d, 0)

model as our preferred fractionally integrated score-driven model.

Based on the QLIK loss function, the FIGAS tF has the best value, followed by the GAS

tF, HAR and the HEAVY model, respectively. Comparing the FIGAS, GAS, and HEAVY

models, the QLIK values suggest that the largest gain is obtained by introducing the score-

driven dynamics: the average QLIK drops from 7.89 (20.06) for the HEAVY model to 7.66

(18.96) for the GAS model. Hence allowing for fat-tailedness in both the return observations

and realized covariance kernels improves the fit substantially. The further drop in QLIK

when moving from GAS to FIGAS is more modest, but still sizable given the sample size.

For k = 5, the simple HAR model still does quite well. The HAR model’s relative

performance, however, quickly deteriorates in higher dimensions such as k = 15, as is seen

in Panel B of Table 3.

The likelihood and the BIC values for the different models underline that the FIGAS

tF model provides a better fit to the data than the GAS and HEAVY models. Especially

when k = 15 the differences are large. In order to compare the FIGAS type model with the

HEAVY and HAR models, we compute the total likelihood of these models as the sum of a

Multivariate Normal (for the returns) and a Wishart distribution with k degrees of freedom

for the realized kernels. This makes the likelihood comparable to that of the FIGAS model,

as the latter is the sum of a multivariate Student’s t and a matrix-F distribution.

We see a clear distinction between the likelihoods of the HEAVY and HAR model and

the FIGAS model. This occurs mainly due to the likelihood contribution for the realized

kernels. More specifically, this contribution equals 25, 000 points (k = 5) or 120, 000 points

(k = 15) when going from the Wishart distribution (HEAVY and HAR model) to the matrix-

F distribution (FIGAS model). Fat-tailedness of RKt thus appears a prevalent feature in

the data.

The likelihood values for the short-memory GAS specification and the FIGAS model

are easier to compare. The likelihood increases by almost 450 points (k = 5) or even more

than 2300 points (k = 15) for the same number of parameters. This underlines that the

long-memory features also play an important role in explaining the volatility and correlation
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Figure 3: FIGAS implied correllograms for Vt for k = 5 (left) and k = 15 (right)
This figure plots the implied correllograms of the conditional variance of Alcoa Inc. (AA) corresponding with
the FIGAS tF model based on parameter estimates in Table 3. The left panel shows the correllogram implied
by the estimated model on AA/BA/CAT/GE/KO, while the right panel uses all (k = 15) all equities.

dynamics.

Looking at the individual parameter estimates, we first note the positive and significant

long-memory coefficient d. A similar estimate of d is found by for example Proietti (2016)

in the univariate case. The value of d is highly robust across the dimensions considered and

indicates that autocorrelations only die out very slowly.

The high degree of persistence in the FIGAS tF model is mirrored by the other models.

For example, for the HAR model β1 + β2 + β3is also close to 1. Similarly, the estimate of

the autoregressive coefficient for the short-memory GAS model is very close to 1 (β ≈ 0.99),

indicating a strong persistence. The value of β of the FIGAS tF model changes from

insignificantly negative for k = 5 to significantly positive for the case of all equities. Based

on Proposition (1), we empirically satisfy the constraint for positive definiteness of the

resulting covariance matrices Vt for both dimensions. Though the value of B is negative

for k = 5 and positive for k = 15, both values imply a highly similar set of autocovariance

functions; see Figure 3. If anything, the increase of the dimension leads to a slightly stronger

long-memory feature.

The degrees of freedom parameter ν2 is estimated at around 35 and 65 for 5 and 15

dimensions, respectively. Despite that the value of ν̂2 may appear high, such values already

result in a substantial moderation of the effect of incidentally large observations RKt in

(14) through the matrix weighting scheme. Also fat-tailedness for these values of ν2 is

considerably larger than that of the Wishart distribution (see also Opschoor et al., 2017)
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Figure 4: Estimated volatilities and correlations
This figure plots the estimated volatilities of AA and BA (see Table 2) in the upper-left and lower-right pan-
els, and the pairwise covariances and correlations in the upper-right and lower-left panels respectively. Time
varying parameter paths are estimated using the FIGAS tF model (blue line) and HAR model (red line).
The estimates are based on the full sample, January 2, 2001 until December 31, 2012 (3017 observations).

Figure 4 plots some of the fitted volatilities and correlations. We show the results for

Alcoa (AA) and Boeing (BA) for the FIGAS tF model (blue line) and the HAR model of

equation (17) (red line). The figure shows remarkable differences between the two models

for both the volatility and the covariances and correlations. Focusing first on the volatilities

and covariances, the robust transition scheme based on the Student’s t and matrix-F score

dynamics produces considerably fewer spikes: red (HAR) spikes stand out much more clearly

than the blue (FIGAS) ones. Notable differences are apparent for both companies during

the periods 2001-2003, 2007-2008, and 2010–2011. The FIGAS framework is able to mitigate

the impact of temporary RKt and yty
′
t observations on the estimates of Vt.

We conclude that already for short horizons there is evidence that a combination of

long-memory and fat-tailedness improves model performance. We expect the long-memory

properties to become even more important once we move into longer forecasting horizons,

as we do next.
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4.5 Out-of-sample results

In our out-of-sample analysis, we assess both the short-term and long-term forecasting

performance of the FIGAS tF model. We consider h-step ahead forecasts, with h = 1, 5, 10,

and 22. In addition, we consider aggregated covariance forecasts for the next one or two

trading weeks and for the next month, i.e. Vt:t+h = Vt+1+Vt+2+ . . .+Vt+h with h = 5, 10, 22.

Similar to the in-sample analysis of the previous subsection, we compare the FIGAS tF

model with the HEAVY model, the GAS tF model and the multivariate HAR model.

We test the predictive ability of the different models based on the loss-differences of the

QLIK loss function (21) using the test-statistic defined in (23). We use a moving window of

1500 observations and re-estimate the parameters after each 25 observations (≈ one month).

The first in-sample period corresponds to the period January 2001 until December 2006,

which is well before the financial crisis of October 2008. This current forecasting experiment

therefore constitutes a major robustness test for all the models considered.

Table 4 contains the results for the whole out-of-sample period (Panel A). We present the

results for the 5-dimensional case, as well as for all assets (k = 15). Negative t-test statistics

(in parentheses) indicate that the FIGAS tF model performs better. The overall significant

negative values in Panel A for horizons h = 1, 5, 10, 22 as well as for the aggregated forecasts

clearly show that the FIGAS model statistically outperforms the HEAVY and HAR models.

The short-memory GAS model still does quite well for horizons of (up to) h = 5 or 10, though

worse than the FIGAS specification. Also here, however, the FIGAS model does significantly

better for longer horizons such as h = 22 and h = 1 : 22. The improvements due to the long

memory features of the FIGAS specification thus appears particularly pronounced in cases

where they matter most, namely at long horizon forecasting.

To further investigate where the performance of the fractionally integrated specification

comes from, we split the sample in two periods: the Financial Crisis period (July 2007 – De-

cember 2009) and the Non-crisis period (Dec 2006 – July 2007 and January 2010 – December

2012). Panels B and C of Table 4 show that discriminating between the crisis and non-crisis

periods provides us two additional remarkable insights. First, the differences between the

average QLIK values between the FIGAS model and the HAR and HEAVY models increase

during the crisis compared to the non-crises period. This holds especially for k = 15. The
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Table 4: Test-statistics on predictive ability (QLIK criterion)
This table shows test statistics on superior predictive ability between the FIGAS tF model and the GAS
tF, HEAVY or multivariate HAR model respectively, based on the QLIK loss function defined in (21). The
test is based based on 1, 5, 10 and 22-step ahead predictions of the covariance matrix, applied to 5 and
15 (all) equities. Panel A present results for full out-of-sample (December 2006 - December 2012), Panel
B describes the results for the Financial Crisis period (July 2007 - December 2009) k = 15 and panel C
shows the results for the Non-crisis period (Dec 2006 - July 2007 and January 2010 - December 2012). The
subpanels 1 and 2 correspond to number of considered assets, i.e. k = 5 and k = 15. We report the average
QLIK loss for each model with the associated DM-type of test statistic in parentheses. A negative test
statistic indicates superior predictive ability of the FIGAS tF model. We use a moving window of 1500
observations. The prediction period contains 1495 observations.

1 5 10 22 1:5 1:10 1:22

Panel A: Full out-of-sample

A.1: AA/BA/CAT/GE/KO
FIGAS 8.039 8.417 8.677 9.119 16.30 19.93 24.16

( ) ( ) ( ) ( ) ( ) ( ) ( )
GAS 8.057 8.438 8.754 9.317 16.32 19.96 24.24

(-2.8) (-0.9) (-1.5) (-1.9) (-1.0) (-1.2) (-1.8)
HEAVY 8.259 8.678 9.009 9.706 16.54 20.19 24.50

(-14.1) (-7.7) (-3.4) (-2.2) (-10.6) (-6.1) (-3.4)
HAR 8.061 8.512 8.836 9.503 19.73 26.14 33.77

(-2.1) (-3.1) (-2.2) (-1.6) (-33.9) (-34.5) (-26.4)

A.2: All assets (k = 15)
FIGAS 19.06 20.03 20.76 21.88 43.75 54.60 67.18

( ) ( ) ( ) ( ) ( ) ( ) ( )
GAS 19.12 20.06 20.89 22.23 43.78 54.65 67.32

(-3.2) (-0.5) (-1.0) (-1.8) (-0.9) (-0.8) (-1.3)
HEAVY 20.61 21.64 22.49 23.98 45.32 56.21 68.90

(-19.9) (-9.7) (-5.4) (-2.9) (-13.6) (-8.6) (-5.0)
HAR 19.41 20.65 21.71 23.48 53.15 72.22 95.06

(-6.8) (-5.1) (-3.1) (-1.9) (-32.1) (-34.0) (-27.4)
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(continued from previous page)

1 5 10 22 1:5 1:10 1:22

Panel B: Crisis period

B.1: AA/BA/CAT/GE/KO
FIGAS 10.82 11.38 11.86 12.71 19.17 22.92 27.34

( ) ( ) ( ) ( ) ( ) ( ) ( )
GAS 10.83 11.36 11.94 12.94 19.16 22.92 27.41

(-0.6) (-0.5) (-0.7) (-1.0) (-0.6) (-0.1) (-0.7)
HEAVY 11.04 11.72 12.42 13.83 19.44 23.27 27.92

(-6.9) (-4.5) (-2.5) (-1.9) (-5.6) (-3.7) (-2.5)
HAR 10.84 11.52 12.18 13.53 22.21 28.49 35.89

(-1.1) (-2.3) (-2.0) (-1.5) (-16.2) (-15.7) (-11.3)

B.2: All assets (k = 15)
FIGAS 27.67 29.14 30.46 32.76 52.60 63.76 76.95

( ) ( ) ( ) ( ) ( ) ( ) ( )
GAS 27.70 29.02 30.43 32.91 52.53 63.68 76.92

(-0.7) (0.9) (0.1) (-0.4) (0.8) (0.5) (0.1)
HEAVY 29.23 31.14 32.86 36.22 54.37 65.74 79.38

(-9.4) (-5.2) (-3.2) (-2.1) (-6.8) (-4.6) (-3.1)
HAR 28.14 30.16 32.25 36.12 60.72 79.37 101.5

(-5.9) (-4.2) (-2.8) (-1.8) (-14.9) (-15.5) (-11.9)

Panel C: Non-Crisis period

C.1: AA/BA/CAT/GE/KO
FIGAS 6.00 6.25 6.35 6.49 14.21 17.75 21.82

( ) ( ) ( ) ( ) ( ) ( ) ( )
GAS 6.03 6.30 6.42 6.67 14.24 17.79 21.91

(-3.9) (-2.2) (-2.6) (-2.8) (-2.4) (-2.4) (-2.6)
HEAVY 6.24 6.45 6.51 6.69 14.41 17.93 21.99

(-15.8) (-10.3) (-5.4) (-3.3) (-13.2) (-9.4) (-5.3)
HAR 6.02 6.31 6.39 6.56 17.92 24.41 32.22

(-2.1) (-2.1) (-1.2) (-0.8) (-36.0) (-43.4) (-45.2)

C.2: All assets (k = 15)
FIGAS 12.76 13.35 13.67 13.92 37.28 47.89 60.03

( ) ( ) ( ) ( ) ( ) ( ) ( )
GAS 12.85 13.50 13.92 14.41 37.38 48.04 60.30

(-6.5) (-4.1) (-3.6) (-3.4) (-4.5) (-3.8) (-3.3)
HEAVY 14.31 14.70 14.90 15.02 38.71 49.23 61.23

(-29.4) (-20.7) (-15.3) (-9.4) (-25.4) (-19.7) (-14.0)
HAR 13.03 13.69 13.99 14.23 47.62 66.99 90.32

(-4.0) (-3.1) (-1.6) (-0.9) (-35.3) (-42.4) (-45.8)
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crisis period is charactarized by more spikes, and the FIGAS specification can better deal

with these due to the score dynamics and the fat-tailed distributional assumptions. The

FIGAS model therefore performs particularly well in the crisis period compared to its HAR

and HEAVY counterparts.

Second, the FIGAS model and the short-memory GAS specification perform similarly

well during the crisis period, but not during the non-crisis period. In non-crisis years, the FI-

GAS model statistically outperforms its short-memory counterpart. Hence the fractionally

integrated dynamics appear particularly valuable during calm periods, while accounting

for fat-tailedness of returns and realized covariances is more important during turbulent

years. To summarize, taking account of both fat-tailedness (during turbulent times) and

long-memory effects (during calm periods) provides the FIGAS tF model with its superior

forecasting performance over longer time spans.

Table 5 illustrates the economic significance of the covariance matrix forecasts by showing

the mean of the ex-post conditional portfolio standard deviation, computed by implementing

the period-by-period ex-ante minimum variance portfolio weights obtained from equation

(24). Panels A and B display the average out-of-sample portfolio standard deviation and the

associated DM test statistics vis-à-vis the FIGAS tF model (in parentheses). For all pairs

of assets and all forecasting horizons considered, the FIGAS tF model produces the lowest

ex-post portfolio standard deviation. This result also holds for the aggregated forecasts.

The reductions in standard deviations are statistically significant compared to all of the

benchmarks.

5 Conclusions

We introduced a new multivariate fractionally integrated model with score-driven volatility

dynamics (FIGAS tF) that combines observed realized covariance matrices and vector-

valued return observations to estimate the dynamics of unobserved common covariance

matrices. The proposed model explicitly acknowledges that realized (co)variances display

long-memory behavior. It does so in a way that ensures positive definiteness of the covari-

ance matrices by simple parameter restrictions in the model. In addition, the model takes

into account that both realized covariance matrices and financial return data are typically
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Table 5: Ex-post minimum variance portfolio standard-deviations
This table shows results on a global minimum variance portfolio, based on 1, 5, 10 and 22-step ahead
predictions of the covariance matrix, according to the FIGAS tF, GAS, HEAVY and the multivariate HAR
model, applied to 5 and 15 equities. For each model, the table shows the ex-post mean of the daily portfolio
volatility, whereas below the GAS, HEAVY and HAR model. The number between parentheses shows the
test-statistic on equal portfolio volatility between the FIGAS tF model and the HEAVY, GAS or RM 2006
model. We use a moving window of 1500 observations. The prediction period runs from December, 2006
until December, 2012 (1495 observations).

1 5 10 22 1:5 1:10 1:22

Panel A: AA/BA/CAT/GE/KO
FIGAS 0.925 0.933 0.938 0.946 2.121 3.032 4.567

( ) ( ) ( ) ( ) ( ) ( ) ( )
GAS 0.926 0.937 0.942 0.952 2.126 3.043 4.588

(-5.6) (-6.6) (-4.2) (-3.9) (-6.5) (-5.5) (-4.5)
HEAVY 0.948 0.954 0.957 0.961 2.168 3.096 4.651

(-21.1) (-12.6) (-9.3) (-6.7) (-14.6) (-11.1) (-8.2)
HAR 0.927 0.935 0.940 0.948 2.124 3.038 4.577

(-3.6) (-3.2) (-2.8) (-2.2) (-4.2) (-3.8) (-3.3)

Panel B: all equities
FIGAS 0.688 0.700 0.707 0.718 1.589 2.282 3.461

( ) ( ) ( ) ( ) ( ) ( ) ( )
GAS 0.689 0.703 0.711 0.723 1.593 2.289 3.477

(-5.1) (-5.4) (-4.5) (-4.1) (-5.6) (-5.1) (-4.7)
HEAVY 0.737 0.746 0.750 0.755 1.693 2.424 3.655

(-35.7) (-21.9) (-16.4) (-12.3) (-22.7) (-17.1) (-12.2)
HAR 0.693 0.705 0.712 0.723 1.597 2.294 3.480

(-7.5) (-5.7) (-4.4) (-3.7) (-6.6) (-5.3) (-3.6)

fat-tailed. The score-driven matrix-valued dynamics automatically correct for influential

observations in either type of data. For S&P500 equity returns over the period 2001–2012

we showed that both in-sample and out-of-sample and both statistically and economically

the new model outperformed recent competitors such as the HEAVY model of Noureldin

et al. (2012) and the multivariate HAR model of Corsi (2009) and Chiriac and Voev (2011).

Interestingly, the fractionally integrated dynamics appear particularly valuable during calm

periods. The outlier robust features of the model due to the score dynamics and the fat-tailed

distributional assumptions, by contrast, are most useful during turbulent times. Combining

the two, the FIGARCH model shows the best overall performance over the sample.
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Appendix A: Cleaning high-frequency data

We obtain intraday trade data (stock prices) of 15 stocks from the TAQ database during the period 2001-

2014. The cleaning procedure stems from Barndorff-Nielsen et al. (2009) and Brownlees and Gallo (2006)

and consists of the following steps:

1 Delete entries with a time stamp outside the 9:30 am4 pm window when the exchange is open.

2 Delete entries with a bid, ask or transaction price equal to zero.

3 Retain entries originating from a single exchange (NYSE in our application). Delete other entries.

4 Delete entries with corrected trades. (Trades with a Correction Indicator, CORR 6= 0).

5 Delete entries with abnormal Sale Condition. (Trades where COND has a letter code,except for “E”

and “F”). See the TAQ 3 Users Guide for additional details about sale conditions.

6 If multiple transactions have the same time stamp, use the median price.

Note that the last three filters specifically correspond to Trade data only. After applying the above

filters, we run the filter described in Brownlees and Gallo (2006) (see page 2237) that removes outliers.
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Appendix B: Results of the EWMA model

Table B.1: Test-statistics on predictive ability (FIGAS vs EWMA)
This table shows test statistics on superior predictive ability between the FIGAS tF model and long-memory
EWMA model of Zumbach (2006), based on the QLIK loss function defined in (21). The test is based based
on 1, 5, 10 and 22-step ahead predictions of the covariance matrix, applied to 5 and 15 (all) equities. Panel
A present results for full out-of-sample (December 2006 - December 2012), Panel B describes the results
for the Financial Crisis period (July 2007 - December 2009) k = 15 and panel C shows the results for
the Non-crisis period (Dec 2006 - July 2007 and January 2010 - December 2012). The subpanels 1 and 2
correspond to number of considered assets, i.e. k = 5 and k = 15. We report the average QLIK loss for
both models with the associated DM-type of test statistic in parentheses. A negative test statistic indicates
superior predictive ability of the FIGAS tF model. We use a moving window of 1500 observations. The
prediction period contains 1495 observations.

1 5 10 22 1:5 1:10 1:22

Panel A: Full out-of-sample
A.1: AA/BA/CAT/GE/KO
FIGAS 8.04 8.42 8.68 9.12 16.30 19.93 24.16
EWMA 8.98 10.02 11.59 15.76 17.48 21.54 26.96

(-9.9) (-7.9) (-6.2) (-4.6) (-8.6) (-6.7) (-4.9)
A.2: All assets (k = 15)
FIGAS 19.06 20.03 20.76 21.88 43.75 54.60 67.18
EWMA 27.28 31.02 36.24 49.85 53.13 65.63 82.53

(-10.1) (-9.1) (-6.8) (-4.9) (-9.7) (-7.3) (-5.4)

Panel B: Crisis period
B.1: AA/BA/CAT/GE/KO
FIGAS 10.82 11.38 11.86 12.71 19.17 22.92 27.34
EWMA 12.07 13.72 16.31 23.49 20.85 25.28 31.71

(-7.4) (-5.6) (-4.4) (-3.4) (-6.1) (-4.8) (-3.6)
B.2: All assets (k = 15)
FIGAS 27.67 29.14 30.46 32.76 52.60 63.76 76.95
EWMA 40.34 46.66 55.50 79.50 67.38 81.41 102.0

(-7.6) (-6.7) (-5.1) (-3.8) (-7.1) (-5.4) (-4.1)

Panel C: Non-Crisis period
C.1: AA/BA/CAT/GE/KO
FIGAS 6.00 6.25 6.35 6.49 14.21 17.75 21.82
EWMA 6.72 7.31 8.13 10.10 15.02 18.79 23.48

(-7.2) (-6.7) (-6.3) (-5.9) (-7.0) (-6.1) (-5.4)
C.2: All assets (k = 15)
FIGAS 12.76 13.35 13.67 13.92 37.28 47.89 60.03
EWMA 17.74 19.59 22.14 28.17 42.72 54.09 68.25

(-9.9) (-9.4) (-8.0) (-7.2) (-9.9) (-8.3) (-7.0)
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Table B.2: Ex-post minimum variance portfolio standard-deviations (FIGAS vs
EWMA)
This table shows results on a global minimum variance portfolio, based on 1, 5, 10 and 22-step ahead
predictions of the covariance matrix, according to the FIGAS tF and the (long-memory) EWMA model
of Zumbach (2006). GAS, HEAVY and the multivariate HAR model, applied to 5 and 15 equities. For
each model, the table shows the ex-post mean of the daily portfolio volatility, whereas below the GAS,
HEAVY and HAR model. We use a moving window of 1500 observations. The prediction period runs from
December, 2006 until December, 2012 (1495 observations).

1 5 10 22 1:5 1:10 1:22

Panel A: AA/BA/CAT/GE/KO
FIGAS 0.925 0.933 0.938 0.946 2.121 3.032 4.567
EWMA 0.983 0.978 0.975 0.970 2.235 3.179 4.749

(-20.9) (-11.7) (-7.7) (-5.3) (-12.5) (-9.1) (-6.6)

Panel B: all equities
FIGAS 0.688 0.700 0.707 0.718 1.589 2.282 3.461
EWMA 0.834 0.819 0.808 0.795 1.884 2.663 3.946

(-25.0) (-12.4) (-9.0) (-6.3) (-12.5) (-9.1) (-6.3)
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