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Abstract

We consider models where the Ramsey-optimal fiscal policy under Full Commitment (FC) is

time-inconsistent and define a new notion of optimal policy, Limited-Time Commitment (LTC).

Successive one-period lived governments can commit to future plans over a finite horizon. We

provide a sufficient condition on the mapping from finite policy sequences to allocations, such

that LTC and FC lead to the same outcomes. We then show that this condition is verified in

several existing models, allowing FC Ramsey plans to be supported with a finite commitment

horizon (often a single period). We relate the required degree of commitment to the economic

environment: in economies without capital, the minimum degree of commitment required is given

by the government debt maturity; in economies with capital and government balanced-budget

constraints, the required commitment is given by the horizon over which the budget has to

be balanced. Finally, we solve numerically for the LTC equilibrium of an economy where the

equivalence result fails and show that a single year of commitment to capital taxes provides

substantial welfare gains relative to the No-Commitment time-consistent policy.
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1 Introduction

Governments in advanced economies tend to formulate their macroeconomic policies as plans for a

finite future horizon. In particular, fiscal policy is typically decided upon and announced before or

at the beginning of the fiscal year and remains fixed for the duration of the year.1 Reforms such

as VAT rate changes and fiscal consolidation plans are also announced before their implementation

and typically contain details of short-to-medium run policy plans.2 Moreover, the political process

makes it hard to change contemporaneous policies, with the result that policy changes are often

implemented with a delay.

In contrast, a large part of the literature on optimal fiscal policy assumes either that a single

government at the beginning of time has Full Commitment (FC) into the infinite future, or that in

each period there is a government with No Commitment (NC) at all, only able to choose contempo-

raneous policies. On the face of it, both of these extreme assumptions appear hard to reconcile with

the fact that policymakers act and communicate as if they possessed a limited degree of commitment

over a finite future horizon. On the one hand, policymakers are only in power for a limited period of

time, which makes commitment into the infinite future impossible. On the other hand, institutional

features and political delays may place limits on a policymaker’s ability to change contemporaneous

policy instruments, while allowing for the possibility of planning policy changes for a near future

horizon.

Motivated by this apparent distance between observation and theory, in this paper we study fiscal

policy when successive benevolent governments inherit the plans of their predecessors and formulate

plans for a finite future horizon. In this formulation, which we call Limited-Time Commitment

(LTC), governments cannot commit into the infinite future, but instead only possess the ability

to commit for a finite number of periods. Specifically, we define governments as having L periods

of commitment if the time-t government cannot change policies dated time t to t + L − 1, and

chooses policies dated time t + L. LTC thus lies between FC and NC, and we ask the natural

1For example, in the UK the budget is announced on “Budget Day” in March, before the start of the fiscal year,

and typically passed shortly afterwards.
2Examples of significant pre-announced VAT reforms include Japan (announced in 1996, implemented in 1997) and

Germany (announced in 2005, implemented in 2007). Alesina et al. (2015) document many examples of multi-year

fiscal consolidations.
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question of whether governments with only a finite number of periods of commitment behave more

like governments with full, or no, commitment.

Our main theoretical contribution is an equivalence result: we provide a set of sufficient conditions

under which LTC sustains FC outcomes. Under these conditions, we apply the same Markov perfect

equilibrium (MPE) concept introduced by the literature on time-consistent policies to our setup and

show that a limited number of periods (often a single period) of future commitment is sufficient to

sustain the same allocations and policies that arise when a single time-0 government can commit

into the infinite future.

The time-inconsistency problems we study arise from governments formulating optimal policies

subject to competitive-equilibrium constraints which contain future values of certain choice variables.

We formulate a general deterministic framework in which we establish the conditions under which

LTC can sustain the FC policy. If a finite sequence of future policy instruments is sufficient to

uniquely pin down a certain finite sequence of contemporaneous and future allocations, then the

time-inconsistency problem can be resolved if the government can commit to a finite sequence of

policies of a sufficient length.

To build intuition in a simple case, consider a government elected at time t that chooses taxes in

order to maximize welfare subject to competitive equilibrium conditions, including an Euler equation

for government bonds, which contains marginal utility, and hence consumption, at t+ 1. The time-

inconsistency problem here is that the time-t + 1 government, who no longer has to respect the

time-t Euler equation, could choose policies leading to a different consumption allocation from the

time-t promise. However, if time-t + 1 consumption is fully pinned down by the time-t + 1 policy

instruments, then the time-t government can prevent the time-t+1 government from deviating from

her promise if she can commit to taxes one period ahead. The time-t+2 government will also respect

the promises of the time-t+ 1 government, creating a chain of commitment which is able to sustain

the FC policy.

After formalizing this intuition in our general framework, we show that the key condition for

equivalence of LTC and FC is indeed satisfied in many models of optimal fiscal policy that have been

proposed in the literature. This implies that even if assuming FC into the infinite future may seem

extremely “unrealistic”, depending on the model environment, it may lead to the same outcomes
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that arise in a more empirically plausible setup where there is a succession of governments that

make decisions for the near future. Importantly, we show how the minimum degree of commitment

necessary to sustain FC outcomes in a given model depends on features of the economic environment,

such as technology and asset market structure, and not on the arbitrary definition of the length of

a period.

In models without capital, where governments choose the timing of labor taxes and government

debt (e.g., Lucas and Stokey, 1983), the FC policy can be supported with commitment equal to the

longest government bond maturity. An implication of this result is that commitment frictions are

unlikely to play a large role in models with one-period bonds only, where a period is a quarter or a

year. Models that emphasize lack of commitment to fiscal policy should instead pay close attention

to matching the debt maturity structure.3

In models with capital, and governments who choose capital and labor taxes subject to a bal-

anced budget constraint (a version of the models of Judd, 1985, Chamley, 1986, similar to the one

introduced by Stockman, 2001), we show that FC can be supported with commitment equal to the

length of time over which the government budget must be balanced (or to the length of time to build

of capital, if it is longer). In particular, under the commonly used assumptions of a yearly calibration

and balanced budgets every period (e.g. Klein et al., 2008), we show that the Chamley-Judd result

of zero capital taxes in the long run can be recovered with a single period of commitment. This result

stands in stark contrast to the outcomes obtained under NC, which typically feature high capital

taxes even in the long run. However, without the balanced-budget assumption, LTC cannot support

FC for any finite degree of commitment. Thus, our results uncover a role for balanced-budget rules

in building commitment in environments where governments can only commit to a finite-horizon

plan.

A further implication of our equivalence result is that, whenever LTC and FC lead to the same

outcomes, it is possible to compute the time-inconsistent solution to the FC problem using standard

dynamic programming tools. One can simply use the required pre-committed policies as state

variables when “recursifying” the solution, and then apply standard numerical tools, such as value

3Consistent with this finding, Debortoli et al. (2016) analyze the optimal maturity structure of government debt

in a model without commitment, and find large differences from the FC policy.
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function iteration. Whenever applicable, our approach of including pre-committed policy variables

as states constitutes an intuitive alternative to using, for example, promised utilities or Lagrange

multipliers when solving the FC problem. We illustrate our algorithm for the Lucas and Stokey (1983)

economy.

Finally, we investigate a model where our equivalence result does not hold. This is a version of

the Klein et al. (2008) model of optimal public good provision funded by capital taxation, but with

exogenous labor supply.4 We show that a single year of commitment is sufficient to recover around

one third of the welfare difference between FC and NC, since the LTC government internalizes the

distortionary effect of one-year-ahead capital taxes. We then simulate the effects of a “constitutional

reform”, imposing one year of commitment to taxes and spending starting from the steady-state of

an economy with NC. This reform involves a non-monotone path for the size of the government and

leads to significant welfare gains (approximately 1.7% of permanent consumption), highlighting the

importance of designing institutions that guarantee a limited degree of commitment in economies

where the government lacks credibility.

Related Literature. The time-inconsistency of optimal policy has been a central issue in the

macroeconomic literature since the 1970s. Kydland and Prescott (1977) highlighted that optimal

policy in a dynamic model involves ex-ante promises that appear suboptimal ex-post if the govern-

ment is allowed to reoptimize at a later date. For this reason, the presence of future (expected)

variables in the constraint set of Ramsey-optimal plans rules out the use of standard optimal control

techniques.

Despite its importance both in the academic and in the policy debate, this key insight has not

led to a uniform reaction in the literature. A part of the optimal policy research agenda has worked

on modifying standard recursive methods to deal with this class of problems under the assumption

that the government is endowed with a Full Commitment technology into the infinite future, while

another strand of the literature has considered time-inconsistency a central, unavoidable problem

and has focused on equilibria with No Commitment instead.

As leading examples of the first approach, consider the Recursive Contracts method formalized

4We discuss how this modification breaks our equivalence result.
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in Marcet and Marimon (2011) which adds the Lagrange multipliers on forward-looking constraints

as state variables, allowing the reformulation of optimal policy problems as recursive saddle-point

problems, or the Promised Utility approach proposed by Abreu et al. (1990), based on the result

that past histories can be summarized by promised utility. Relatedly, Kydland and Prescott (1980)

and Chang (1998) proposed similar method based on the addition of future marginal utilities as state

variables in the optimal policy problem. In this paper we propose an alternative, intuitive, recursive

method to solve for optimal policy with FC, based on using policies as state variables. This method

works whenever our equivalence result holds.

The second part of the literature has focused instead on formulating equilibrium concepts without

a commitment technology, starting with the seminal paper on Sustainable Plans by Chari and Kehoe

(1990), and the application of Markov perfect NC equilibria in optimal policy games, as for instance

in Klein and Ŕıos-Rull (2003), Krusell et al. (2004) and Klein et al. (2008). In these papers, there is

a succession of governments that can only choose contemporaneous policy instruments. Hence, any

ability to formulate credible promises about future allocations is ruled out by assumption.5

In our paper, we explore an intermediate assumption on the commitment technology, namely that

a succession of governments can announce policies for a finite future horizon. We allow for some

commitment to future outcomes as in the first strand, but we apply the Markov perfect equilibrium

concept typical of the NC literature. We show that in several models that have been studied in the

optimal fiscal policy literature (e.g. a deterministic version of Lucas and Stokey, 1983) a few periods

of commitment, often only one, are sufficient to sustain the FC outcome as the unique equilibrium

of our game.

Our results on the degree of commitment required to sustain FC outcomes in specific models are

related to several strands of literature. In economies without capital, we show that the government

debt maturity is a key variable: longer debt calls for a longer commitment horizon. Consistent with

this finding, Debortoli et al. (2016) show that the welfare cost of lack of commitment is large and

5A partial exception is Klein and Ŕıos-Rull (2003): in their setup, the government can set capital taxes one period

ahead, but only current labor taxes. They show that capital taxes are on average high, compared to the FC equilibrium

which has average capital taxes near zero. In Section 4 we solve a deterministic version of the same model and show

that if instead the time-t government chooses both the time-t + 1 capital and labor taxes then LTC sustains the FC

policy and allocation.
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dominates the cost of lack of tax smoothing in presence of long-maturity bonds. In economies with

capital, we uncover a role for balanced-budget rules in allowing to sustain FC plans with LTC. The

previous literature, e.g. Halac and Yared (2014), has focused on the role of fiscal rules in overcoming

governments’ present bias. We show that a role for fiscal rules also arises when the government

shares the same discount factor as households, and the source of time-inconsistency is the presence

of forward-looking constraints.6

Close to our work, in terms of motivation, are the Quasi Commitment approach of Schaum-

burg and Tambalotti (2007), and the Loose Commitment approach formulated by Debortoli and

Nunes (2010, 2013), which build on an early contribution by Roberds (1987). These papers assume

that a government can formulate a plan into the infinite future, but with some probability in every

future period a new government is elected and allowed to change the plan. Like ours, this game

represents an intermediate point in the FC vs. NC debate. Differently from these papers, however,

LTC gives the government full commitment within a limited, deterministic time horizon, instead of

probabilistic commitment over an infinite horizon. While this may seem a technical difference, it

turns out to be important. We show that in some models where LTC with one period of commitment

leads to allocations equivalent to FC, Loose Commitment with on average one period of commit-

ment leads to allocations closer to NC. In this sense a result of this paper is that once you limit the

commitment technology of the government, the details of how you do so matter for the results.7

Another related strand of literature studies the so-called “timeless perspective” in optimal policy

(e.g., Woodford, 2011). In this setup, the policymaker is constrained to choose current policies as

6Domeij and Klein (2005) study tax reform in presence of implementation lags. This approach leads to a similar

timing assumption to ours, but with an important distinction: under our main assumption, every government is

inheriting the “right” policy from its predecessor, hence FC policies can be sustained in equilibrium, whereas in

Domeij and Klein (2005) the focus is on a fiscal reform starting from a suboptimal policy. Martin (2015) studies the

effects of within-period commitment to fiscal policy. In contrast, we analyze the effects of commitment across a finite

number of periods.
7An alternative approach is given in the reputational equilibria literature, starting with the seminal contribution

of Barro and Gordon (1983). Bassetto (2016) distinguishes the communication and implementation of future policies,

and shows that there is no separate role for communication if the government has the same information as the private

sector. Other papers explore the extent to which FC outcomes can be supported by adding extra policy instruments,

e.g. Alvarez et al. (2004), Conesa and Dominguez (2012) and Laczó and Rossi (2015).

7



if they were part of an optimal FC plan chosen in an infinitely far past. An important difference

between this approach and ours it that with LTC, under the “right” initial conditions, we recover

exactly the FC plan, whereas the optimal “timeless” policy would lead to a different outcome, because

it is designed to remove the discrepancy in the FC plan between time-0 policies and the rest of the

plan.8

The rest of the paper is organized as follows. Section 2 introduces the concept of LTC in a

general model and discusses informally its equivalence with FC in a simple example. Section 3

proves formally the main equivalence result. Section 4 applies the result to models of optimal fiscal

policy commonly used in the literature and discusses the role of initial policy conditions. Section 5

shows how to solve for FC optimal policy using taxes as state variables. Section 6 discusses a model

where our equivalence result fails and provides numerical results. Section 7 concludes.

2 Full Commitment and Limited-Time Commitment

In this section we describe a generic model economy, and define two notions of optimal policy: Full-

Commitment Ramsey equilibrium and Limited-Time Commitment equilibrium. We argue that LTC

nests both the NC equilibrium, as a special case without any degree of commitment, and the FC

equilibrium, in the limit with infinite commitment, under the right initial conditions.

For each of these equilibrium concepts, we also discuss the specific assumptions on the mapping

from infinite sequences of policies to infinite sequences of allocations needed for the government(s)

to be able to uniquely pin down competitive equilibrium for a given policy. This allows the statement

of the optimal policy problem in each case.

We then describe a simple example and use it to provide intuition for our main result: un-

der a stronger assumption on the mapping from finite sequences of policies to finite sequences of

allocations, LTC with a sufficiently long, but finite, commitment, and FC give rise to equivalent

8To make a concrete example, consider a deterministic version of a model of the optimal timing of taxes (Lucas and

Stokey, 1983). The FC plan calls for a constant tax rate from period 1 onwards, and a different tax rate in period 0.

With one period of commitment, LTC sustains the same outcome. The timeless perspective would call for a constant

tax rate from period 0, and, importantly, this tax rate is different from both the time-0 and the time-1 tax rate arising

under FC.
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outcomes. This result is shown formally in Section 3, and applied to several models of optimal

policy in Section 4.

2.1 Environment and competitive equilibrium

Time is discrete and indexed by t = 0, 1, 2, ... The economy is populated by a continuum of house-

holds, a continuum of firms, and a government or a sequence of governments. A vector of exogenous

variables gt ∈ G follows a deterministic sequence about which all agents have perfect foresight, with

the Markov property that gt is sufficient information to predict gt+1. Denote the transition for gt

by Γg : G 7→ G, such that gt+1 = Γg(gt). We call bt ∈ B the endogenous state variables (b0 being an

initial condition), ct ∈ C the remaining variables constituting allocations (for instance consumption

and hours worked), pt ∈ P ⊂ RnP the prices and τt ∈ T the policy instruments chosen by the

government(s).

Households’ preferences are represented by the following utility function:

∞∑
t=0

βtr(ct, bt, gt, τt) (1)

where r : C×B×G×T 7→ R and β ∈ (0, 1). Households and firms take sequences of prices {pt}∞t=0 and

policy instruments {τt}∞t=0 as given. Households maximize utility subject to their budget constraints

(and potentially other constraints such as borrowing constraints). Firms maximize profits subject

to their production technologies. All markets clear.

Following the general formulation in Marcet and Marimon (2011), we can summarize these equi-

librium conditions with three sequences of constraints: a transition equation for the endogenous

states, a set of constraints involving only contemporaneous allocations and a set of constraints in-

volving future variables.

bt+1 = l(bt, gt, ct, pt, τt) (2)

k(bt, gt, ct, pt, τt) ≤ 0 (3)

h(bt, gt, ct, pt, τt, ..., bt+N , gt+N , ct+N , pt+N , τt+N ) = 0. (4)

for N ≥ 1.
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Definition 1. Given an initial condition b0, an exogenous sequence {gt}∞t=0 and a policy sequence

{τt}∞t=0, a competitive equilibrium is a sequence {ct, pt, bt+1}∞t=0 that satisfies (2), (3) and (4) for

t = 0, 1, ....

As is well known in the literature, the presence of the future variables in the constraint set

defining competitive equilibria is the reason for the time-inconsistency of FC policies. In Definition 2

we explicitly label the future variables which enter into the constraints as “problematic”.

Definition 2. Split ct into its elements (c1
t , ..., c

nc
t ). For every 1 ≤ s ≤ N , we call problematic

from the perspective of time t the elements of ct+s which appear in the constraint (4). The same

definition applies to elements of bt+s (with s > 1), pt+s and τt+s.

We make the following (standard) regularity assumption.

Assumption 1. Given an initial condition b0 and an exogenous sequence {gt}∞t=0, for all sequences

{τt, ct, bt+1, pt}∞t=0 satisfying (2), (3), (4), limn→∞
∑n

t=0 β
tr(ct, bt, gt, τt) exists, although it may be

plus or minus infinity.

2.2 Full-Commitment Ramsey equilibrium

In a FC equilibrium, a single benevolent infinitely-lived government endowed with the ability to

credibly commit into the infinite future announces a plan at t = 0 and then implements it. In

order for the government to be able to pin down a unique competitive equilibrium, the following

assumption on the mapping from infinite sequences of taxes to allocations is required.

Assumption 2. Given an initial condition b0, an exogenous sequence {gt}∞t=0 and a policy sequence

{τt}∞t=0, there exists a unique sequence {(ct, bt+1, pt)}∞t=0 that satisfies equations (2), (3) and (4) for

t = 0, 1, ....

This assumption allows us to map an infinite sequence of policy instruments to a single compet-

itive equilibrium, ensuring that the government knows exactly which equilibrium is selected for a

given policy choice.9 The FC government solves the following problem:

max
{τt,ct,bt+1,pt}∞t=0

∞∑
t=0

βtr(ct, bt, gt, τt) (5)

9Bassetto (2005) argues that a full specification of out-of-equilibrium government strategies is necessary to guarantee

that the desired equilibrium is obtained. In this paper we implicitly assume that there is a more general formulation
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subject to (2), (3) and (4), initial condition b0, and the exogenous sequence {gt}∞t=0.

Definition 3. Fix an initial condition b0, and an exogenous sequence {gt}∞t=0. Let
{
τFCt

}∞
t=0

be a

policy sequence that solves (5). A Full-Commitment (FC) Ramsey equilibrium is the compet-

itive equilibrium associated with
{
τFCt

}∞
t=0

.

As has been extensively discussed in the literature (e.g. Kydland-Prescott, 1977), the presence

of problematic variables in (4) induces time-inconsistency in the FC policy. The FC government

commits to a certain sequence which is optimal from a t = 0 viewpoint, but would no longer be

optimal in subsequent periods, if a reoptimization were allowed.

2.3 Limited-Time Commitment equilibrium

The setup can be described as a game, where successive one-period-lived governments indexed by t

choose only a finite sequence of policy instruments, taking as given the strategies of the following

governments. Each government is benevolent and maximizes (1) subject to the competitive equilib-

rium conditions (2), (3) and (4). Such a game may often have multiple equilibria. In our exposition,

we follow the literature (for instance Klein et al., 2008) in restricting attention to symmetric Markov

perfect equilibria, where each government chooses a common best-response function mapping a small

set of “natural” state variables into the chosen sequence of policy instruments.

Let L = 0, 1, 2, .. index the duration of commitment. Let S0 ≡ {1} and SL ≡ {1} ∪ TL for L > 0

and let τLt ∈ SL be a vector of policies inherited from governments in power before t. In particular,

τLt ≡ 1 for L = 0 and τLt ≡ (1, τt, τt+1, ..., τt+L−1) for L > 0. In the case L = 0, no policy decision

is inherited and LTC nests the NC equilibrium studied for instance by Klein et al. (2008). Hence,

we let the corresponding (redundant) state variable be a constant number, which is equivalent to

not having a policy-related state variable. Note that this should not be confused with the value of

a policy instrument being equal to 1.

The government dated t takes as given the inherited policies τLt and chooses the policy for period

τt+L. In the NC game with L = 0, the government is free from policy constraints and chooses the

value of the current policy instrument. In the simplest case of Limited-Time Commitment, with

of the government strategy, involving binding promises about out-of-equilibrium paths, that guarantees uniqueness of

the desired Ramsey equilibrium.
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L = 1 (which we label One-Period Commitment, or OPC), each government takes the current policy

as given and chooses the next period policy. Relative to the NC case, a positive level of commitment

L > 0 implies that the state vector describing the choice problem of a government has to be enriched

to include all the policy instruments that have been chosen by previous governments and cannot be

changed. Hence, the “natural” state variables of this problem are
(
bt, gt, τ

L
t

)
and accordingly we

have to treat τL0 as an initial condition (as well as b0).

Consider the government in power in period t and let Ṽ LTC(bt+1, gt+1, τ
L
t+1) be the agent’s tail

of discounted utility starting in t + 1 if the next government’s state variables are
(
bt+1, gt+1, τ

L
t+1

)
and all governments from t + 1 onwards are expected to play a common policy function τt+j+L =

τ̃NC(bt+j , gt+j , τ
L
t+j) for j = 1, 2, ... In order to define Ṽ LTC(bt+1, gt+1, τ

L
t+1) more formally, we

restrict the governments to only playing policy functions for which the following assumption holds.

Assumption 2-LTC. Given a state (bt, gt, τ
L
t ) ∈ B×G×SL, a function τ̃LTC : B×G×SL 7→ T :

such that τt+j+L = τ̃LTC(bt+j , gt+j , τ
L
t+j) for j = 1, 2, ... and a time t + L policy τt+L ∈ T , the

competitive equilibrium system given by (2), (3) and (4) for s = t, t + 1, ... admits a unique time-

invariant solution for the vector (ct, pt, bt+1) given by (ct, pt, bt+1) = φLTC
(
bt, gt, τ

L
t , τt+L; τ̃LTC

)
.

This assumption ensures that given any state, and any policies being played by future govern-

ments, the choice of τt+L by the time-t government pins down a unique competitive equilibrium.

When all governments play the policy function τ̃LTC , the function Ṽ LTC satisfies the following

functional equation.

Ṽ LTC
(
bt, gt, τ

L
t

)
= r

(
φLTC1

(
bt, gt, τ

L
t , τt+L; τ̃LTC

)
, bt, gt, τt

)
+ βṼ LTC

(
φLTC3

(
bt, gt, τ

L
t , τt+L; τ̃LTC

)
, gt+1, τ

L
t+1

) (6)

where τt+L = τ̃LTC
(
bt, gt, τ

L
t

)
and φLTCi is the i-th entry of the vector (ct, pt, bt+1) implied by the

competitive equilibrium mapping φLTC .

The government dated t anticipates that all future governments will play the policy function

τ̃LTC and solves the following maximization problem

max
τt+L,ct,pt,bt+1

r(ct, bt, gt, τt) + βṼ LTC
(
bt+1, gt+1, τ

L
t+1

)
(7)

subject to (ct, pt, bt+1) = φLTC
(
bt, gt, τ

L
t , τt+L; τ̃LTC

)
, where future variables appearing in constraint

(4), such as ct+1, are given by φ1

(
bt+1, gt+1, τ

L
t+1, τt+L+1; τ̃LTC

)
, and so on.
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In a symmetric Markov perfect equilibrium, the solution for the optimal policy instrument is

given by τt+L = τ̃LTC
(
bt, gt, τ

L
t

)
and the maximized value is Ṽ LTC

(
bt, gt, τ

L
t

)
. In words, the policy

function τ̃LTC is associated with a fixed point of the operator defined in (7).

Definition 4. Fix initial conditions
(
b0, τ

L
0

)
, and an exogenous sequence {gt}∞t=0. A symmetric

Markov-perfect Limited-Time-Commitment (LTC) equilibrium is a competitive equilibrium

associated with the policy sequence
{
τ̃LTC

(
bt, gt, τ

L
t

)}∞
t=0

if L = 0 and with the sequence(
τ0, ..., τL−1,

{
τ̃LTC

(
bt, gt, τ

L
t

)}∞
t=0

)
if L > 0.

This definition includes the No Commitment equilibrium as the special case with L = 0. Notice

that for L → ∞, if we take as “initial conditions” the FC policy sequence then this equilibrium

trivially coincides with the FC equilibrium, as in the limit the entire path of taxes coincides with

the initial conditions. In this case, LTC nests both NC (L = 0) and FC (L→∞).

2.4 Example

We now discuss the relationship between the equilibrium notions of FC and LTC in the context of

a simple deterministic version of the optimal fiscal policy model of Lucas and Stokey (1983). In

this model, we informally argue that a single period of commitment (L = 1) is sufficient to sustain

FC outcomes. To avoid notational clashes with the general framework presented above, here and

wherever we refer to a specific model we use upright text to denote variables.

A representative household has preferences defined over sequences of private consumption {ct}∞t=0

and labor effort {lt}∞t=0:
∞∑
t=0

βtu(ct, lt) (8)

with standard assumptions uc > 0, ucc < 0, ul < 0, ull < 0. Her budget constraint is given by10

ct + qtbt+1 = wtlt

(
1− τ lt

)
+ bt (9)

where qt is the price of a one-period discount bond, bt+1, issued at t that repays one unit of

consumption at t + 1. wt is the wage, and τ lt the proportional tax on labor income. The resource

10Here and throughout the paper we ignore the possibility that the government can issue lump-sum rebates. This

is without loss of generality, and all results go through if the rebate is treated as a policy instrument, symmetrically

with the other taxes.
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constraint reads

ct + g = lt (10)

where g is a constant level of government expenditure that needs to be financed through the pro-

portional labor income tax. Output is produced using a linear technology in labor: yt = lt, hence

firms’ profit maximization implies a unit wage: wt = 1. The government’s budget is implied by the

agent’s budget constraint and the resource constraint:

bt + g = τ lt lt + qtbt+1. (11)

The agent’s first order conditions with respect to consumption, labor effort and bonds, together

with the resource constraint, can be summarized by an intratemporal optimality condition and an

Euler equation.

− ul(ct, ct + g)

uc(ct, ct + g)
= 1− τ lt (12)

qtuc(ct, ct + g) = βuc(ct+1, ct+1 + g) (13)

In terms of the general notation introduced above, we have bt = bt, no exogenous state (g is

constant), ct = (ct, lt), pt = qt, and τt = τ lt . Note that in principle we should distinguish between

the demand for bonds coming from household and the supply coming from the government (a policy

variable), but for simplicity we directly impose bonds market clearing and refer to bonds generically

as bt. We have also implicitly solved out for the real wage. Equation (9) is an example of a constraint

like (2), while (10) and (12) are examples of constraints like (3). Equation (13) represents a constraint

like (4), involving ct+1 as the only “problematic” variable, after we have substituted out lt+1 using

the resource constraint.

We refer to Lucas and Stokey (1983) for a detailed treatment of the FC optimal policy in this

setup. When t = 0, the FC government has an incentive to use the initial allocation to twist the

interest rate and decrease the value of outstanding initial debt b0, hence reducing the distortions

required to finance expenditure. In particular, if the FC government starts with a positive stock of

debt, b0 > 0, she will choose a lower tax rate in the first period than in the later periods.

In this model, the source of time-inconsistency of the FC policy is the presence of ct+1 in the

Euler equation for bonds. Only c0 does not enter into an Euler equation from the previous period.

Hence, any FC promises about allocations ct with t > 0 would be reneged if the government was
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allowed to reoptimize at t: in order to decrease the value of outstanding debt, bt, the government

would like to offer another tax cut, although she promised not to do this initially.

These are precisely the incentives faced by governments in the NC game, for whom outstanding

debt bt is the only “natural” state variable. Each government chooses the contemporaneous tax rate

τ lt as a function only of bt. The government in power in each period now has an incentive to twist

the interest rate, leading to a deviation from the FC outcomes. The solution to the NC game in this

and similar models is investigated by Krusell et al. (2004) and Debortoli and Nunes (2013).

Assume, however, that there is a positive, albeit finite, degree of commitment. In particular,

consider the LTC game with L = 1. Each government takes the contemporaneous tax rate as given

and chooses the policy for the following period. The “natural” state variables are (bt, τ
l
t ). Notice that

now the government dated t is unable to affect the allocation (ct, lt), which is entirely pinned down

by (10) and (12), given the inherited tax rate τ lt . This implies that the government cannot twist the

interest rate and affect the value of outstanding debt. Furthermore, by announcing (and committing

to) a future tax rate τ lt+1, the government is effectively choosing (qt, bt+1) and, importantly, the

“problematic” variable ct+1, as well as lt+1 from the resource constraint at t + 1. Hence, in this

model, commitment to a finite sequence of policies, specifically a single future tax rate, is sufficient

to uniquely pin down the future variables generating the time-inconsistency, thereby eliminating the

ability of the future government to act in a way that is inconsistent with the FC plan. By doing

so, starting from an initial condition consistent with the FC plan, a chain of successive governments

with LTC will sustain the whole FC plan as the unique equilibrium.

In the general framework presented above, whether LTC is sufficient to sustain FC outcomes

depends on whether finite sequences of policy instruments can uniquely pin down allocations. Our

main result, which we prove in the following section, is that an equivalence result between FC and

LTC outcomes (with sufficiently large but finite L) holds in a general class of models for which an

inherited τLt , together with a commitment to τt+L, uniquely pin down all the problematic variables

appearing in the constraints at t. This implies that FC outcomes can be sustained with a significantly

lighter requirement on the policymaker’s ability to control future policies than the one assumed in

the standard Ramsey-optimal policy literature.
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3 Equivalence result

In this section we first introduce some new notation that will be convenient for deriving our main

result. We then state our key assumption on the mapping from sequences of policies to sequences of

allocations and finally prove the equivalence result between the FC and LTC equilibria under this

assumption. We apply standard proofs of recursivity from Stokey and Lucas (1989) to our setup.

Hence, readers that are more interested in the applications can skip much of this section if desired,

and simply familiarize themselves with Assumption 3*. This is the key assumption that must

be satisfied for our equivalence result to hold, and in Section 4 we show that this assumption is

satisfied in several optimal fiscal policy models. All relegated proofs from this section can be found

in Appendix A.

3.1 Competitive equilibrium

It is convenient at this point to summarize the variables of the model using yt ≡ (bt, gt, ct, pt, τt) ∈

Y ⊂ B×G×C×P ×T . A sequence y ≡ {yt}∞t=0 ∈ Y∞ is denoted a plan. We denote a subsequence

starting from time t by yt ≡ {ys}∞s=t ∈ Y∞. The definition of competitive equilibrium, Definition 1,

can be straightforwardly restated as a plan satisfying (2), (3), and (4).

Definition 5. The constraints (2), (3), and (4) define a time-invariant correspondence Γ∗ : Y 7→

Y N . Let Y ⊂ B ×G× C × P × T be such that Γ∗(y) is non-empty for all y ∈ Y .

A plan y thus satisfies competitive equilibrium if and only if (yt+1, ..., yt+N ) ∈ Γ∗(yt) for all

t = 0, 1, .... The presence of any terms besides bt+1 in determining the feasibility of yt derives from

the problematic elements in (4). We have defined Y as a set such that for any yt ∈ Y , there exists

a continuation sequence starting from t+ 1 which satisfies competitive equilibrium. Note that given

this definition, non-emptiness of the correspondence Γ∗ simply requires the existence of at least one

competitive equilibrium plan.

At t = 0 the only predetermined variables are (b0, g0) ∈ B×G. The set of competitive equilibrium

plans from a given initial state (b0, g0) is denoted by Π∗(b0, g0), which is constructed as follows. For
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any (b0, g0) ∈ B ×G:

Π∗(b0, g0) = {{yt}∞t=0 : c0 ∈ C, p0 ∈ P, τ0 ∈ T, y0 = (b0, g0, c0, p0, τ0), (yt+1, ..., yt+N ) ∈ Γ∗(yt) ∀t = 0, 1, ...}

(14)

Define B∗ ∈ B × G as the set of initial conditions for which at least one competitive equilibrium

plan exists. Π∗(b0, g0) is thus non-empty for all (b0, g0) ∈ B∗. From now on we take as a maintained

assumption that B∗ is non-empty, and restrict ourselves to initial conditions in B∗. It is also worth

noting at this point that since we can always construct a competitive equilibrium plan by truncating

an existing plan at time t, any time-t pair (bt, gt) is on a competitive equilibrium plan if and only if

it is in B∗. Additionally, any subsequence yt satisfies all competitive equilibrium constraints dated

t and onwards if and only if yt ∈ Π∗(bt, gt). The representative agent’s utility from t = 0 for a given

plan, y, is given by

u∗(y) =
∞∑
t=0

βtr(ct, bt, gt, τt) (15)

where it is understood that the values of (ct, bt, gt, τt) used to evaluate r are taken as the relevant

elements of yt.

3.2 Full Commitment

The FC government chooses and commits to an entire path {τt}∞t=0 ∈ T∞ at t = 0, taking the initial

state (b0, g0) ∈ B∗ as given. It is now convenient to restate our Assumptions 1 and 2 with our new

notation.

Assumption 1*. Given any (b0, g0) ∈ B∗, for all y ∈ Π∗(b0, g0), limn→∞
∑n

t=0 β
tr(ct, bt, gt, τt)

exists, although it may be plus or minus infinity.

Assumption 2*. Given any (b0, g0) ∈ B∗, any path for government policy, {τt}∞t=0 ∈ T∞ which lies

on a competitive equilibrium plan y ∈ Π∗(b0, g0) lies on no other plans contained in Π∗(b0, g0).

The first assumption ensures that discounted utility converges to a limit, and is hence defined.

The second is an invertibility assumption, ensuring that the government is able to pin down a

unique path for competitive equilibrium given a path for tax rates. Under this assumption we can

equivalently define the government’s problem as choosing a path for taxes, or simply choosing the
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associated plan, y. This allows us to state the FC government’s problem, for any (b0, g0) ∈ B∗, as

V ∗(b0, g0) = sup
y∈Π∗(b0,g0)

u∗(y) (FC)

where V ∗ : B∗ 7→ R̄ is the supremum, giving the value on an optimal plan. The first two assumptions

ensure that this exists and is well defined for any (b0, g0) ∈ B∗, since there is always at least

one competitive equilibrium plan, and all plans lead to well-defined discounted utilities. For any

(b0, g0) ∈ B∗, denote the set of plans which achieve the supremum by yFC(b0, g0).

3.3 Limited-Time Commitment

The aim of this subsection is to introduce sufficient conditions such that the solutions to the FC and

LTC problems coincide, allowing us to restate the LTC problem. We first define the state vector for

the LTC game when the governments have L periods of commitment: xt ≡ (bt, gt, τt, ..., τt+L−1) ∈

B × G × TL. This is the state that the time-t government inherits: the natural states, bt and gt,

and the pre-committed taxes, τt to τt+L−1.11 The government then chooses τt+L. Notice that any

sequence of y defines a sequence of x using the definition of xt: the elements in (yt, ..., yt+L−1) give

us xt.

In Section 2.3, we introduced Assumption 2-LTC in order to define the government maximiza-

tion problem with LTC. We now replace it with a stronger assumption, which is our key requirement

for equivalence of LTC and FC outcomes.

Assumption 3*. There exists an L, with N ≤ L <∞, such that for any t = 0, 1, ..., any (b̂t, ĝt) ∈

B∗ and implied ĝt+1 = Γg(ĝt), and any sequence {τ̂s}t+Ls=t ∈ TL+1:

1. All competitive equilibrium plans yt ∈ Π∗
(
b̂t, ĝt

)
for which {τs}t+Ls=t = {τ̂s}t+Ls=t have the same

values of yt, and hence bt+1 from (2), which we denote ŷt and b̂t+1.

2. All competitive equilibrium plans yt+1 ∈ Π∗
(
b̂t+1, ĝt+1

)
for which {τs}t+Ls=t+1 = {τ̂s}t+Ls=t+1 have

the same values of any elements of {bs, cs, ps}t+Ns=t+1 which are problematic from the perspective

of time t.

11We are now omitting the (redundant) constant state 1 that allowed us to nest the NC equilibrium in Section 2.

This is because we only focus on non-zero degree of commitment in this section.
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This assumption is crucial in overcoming the time-inconsistency problems inherent in this frame-

work, since it guarantees that L periods of commitment restrict the admissible competitive equilib-

rium allocations sufficiently. In particular, point 1 defines a function that maps (bt, gt, τt, ..., τt+L)

into a single value of (yt, bt+1), which is the only value consistent with competitive equilibrium con-

ditions. In other words, it requires that we can uniquely pin down all variables at time t once we add

the government’s choice, τt+L, to the state, xt. This allows us to evaluate time t utility and compute

the following value of the endogenous state, bt+1. Note that this assumption does not imply that

time t utility, r(ct, bt, gt, τt), becomes predetermined from the point of view of time t’s government.

It can still be affected via the endogenous response of ct to the government’s choice of τt+L. Since

the functions defining competitive equilibrium conditions, given in (2), (3), and (4), do not explicitly

depend on time, this mapping is time invariant.

In point 2, the assumption defines a mapping from (bt+1, gt+1, τt+1, ..., τt+L) to the problematic

elements of {bt+s, ct+s, pt+s}Ns=1. This restricts the ability of the time-t + 1 government to alter

the problematic variables which appear in the time-t government’s constraints. This is because all

competitive equilibria which are reachable given her state xt+1 feature the same values of these

variables.

Note that by point 1 of Assumption 3* and given xt, choosing τt+L pins down a unique xt+1

(and vice versa), hence we can equivalently state the government’s problem as one of choosing xt+1

given xt. The time-t + 1 government then inherits the state xt+1 and chooses xt+2, and so on. It

is worth stressing that this assumption does not imply that each government in the LTC game has

only one feasible choice. In all of the examples we present below, the time-t government has many

feasible choices of τt+L, and will optimally choose the value consistent with the FC plan.

We next need to establish the time-t government’s choices for xt+1 which belong to a competitive

equilibrium path given the state xt, which we do in the following lemma. First define the restricted

set:

X =
{
x ∈ B ×G× TL : x lies on at least one path y ∈ Π∗(b0, g0) for some (b0, g0) ∈ B∗

}
(16)

This is the set of values for the state xt which are compatible with competitive equilibrium.12

12In Appendix C we provide an algorithm for computing this set recursively, which we apply in our numerical work.
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Lemma 1. There exists a time-invariant transition function Γ : X 7→ X defined s.t. xt+1 is on t

least one competitive equilibrium path given xt iff xt+1 ∈ Γ(xt). For all xt ∈ X, Γ(xt) is non-empty.

We relegate the proof to Appendix A, and here simply note that the key feature of this lemma is

that it has converted all of the constraints facing the time-t government, some of which were of the

form in (4) which contained problematic variables, into a standard constraint, compatible with the

usual dynamic programming methods. Specifically, the feasibility of the time-t choice of xt+1 does

not depend on any choices made by future governments, for example xt+2.

Assumption 3* is crucial in proving this result. Since xt+1 is restricted to lie in X, we know

that there exists at least one competitive equilibrium path starting from t+ 1 for any choice of xt+1.

Thus to check whether xt+1 is on at least one competitive equilibrium path starting from t we only

need to check the time-t constraints: does (yt+1, ..., yt+N ) ∈ Γ∗(yt)? Assumption 3* implies that

we can check if this is true by looking only at xt and xt+1, since they pin down unique values of all

the variables needed to check if (yt+1, ..., yt+N ) ∈ Γ∗(yt) regardless of the values of xt+2, xt+3, ....

Finally, let P = {(x, y) ∈ X ×X : y ∈ Γ(x)} be the graph of Γ(x), and redefine the utility func-

tion as F : P 7→ R such that F (xt, xt+1) = r(ct, bt, gt, τt). Again, note that Assumption 3* allows

us to back out a unique yt = (bt, gt, ct, pt, τt) given (xt, xt+1), which is what allows this reformulation.

We make the following boundedness assumption on the utility function.13

Assumption 4*. The environment is such that F (x, y) is bounded for all x ∈ X and y ∈ Γ(x).

Under these assumptions, a Markov perfect equilibrium of the LTC game with L periods of

commitment can be re-expressed as

v(xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + βv(xt+1)} , ∀xt ∈ X (LTC)

This definition of the LTC game is equivalent to the definition from Section 2.3, which defined MPE

as a fixed point of (7), but the statement is simplified by the above results. In particular, we are able

to express both the transition, Γ, and the utility, F , in terms only of today’s state, xt, and today’s

choice, xt+1. This means that, stated this way, no future choice variables enter the constraints,

13Note that this assumption does allow unbounded utility functions, such as CRRA over consumption, as long as

competitive equilibrium places a bound on the feasible levels of utility.
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allowing a standard recursive formulation. In terms of the notation of Section 2.3, our assumptions

allow us to remove the dependence of φLTC on the policy function of future governments, τ̃LTC .

This allows the return function, F , and transition correspondence, Γ, to depend only on xt and xt+1.

3.4 Equivalence of LTC and FC

Having restated the FC and LTC games in terms of our notation, we now turn to demonstrating the

equivalence between the two equilibrium outcomes. The main proposition is stated below.

Proposition 1. Consider an L such that Assumptions 1* to 4* hold, and fix a (b0, g0) ∈ B∗. If,

in the LTC game, either

1. {τt}L−1
t=0 is restricted to be optimal values from the FC game, or

2. the time-0 government, in addition to choosing τL, is also allowed to choose {τt}L−1
t=0

then all equilibria of the LTC game generate paths y ∈ yFC(b0, g0), and the supremum of time-0

value is V ∗(b0, g0).

The bulk of the proof rests on establishing the equivalence between the recursive LTC game and

the FC problem, which is done in two steps. We first re-express the FC problem as a “Modified

Problem” (MP) where the government chooses paths for xt instead of yt. We then show that MP

has a recursive formulation equivalent to the LTC game.

To set up the Modified Problem, we first need to define plans in terms of our new state variable:

x ≡ {xt}∞t=0 ∈ X∞. This allows us to define the set of competitive equilibrium plans, x, starting

from a given x0 ∈ X:

Π(x0) = {{xt}∞t=0 ∈ X∞ : xt+1 ∈ Γ(xt), t = 0, 1, ...}

This allows us to redefine the path utilities using u : Π(x0) 7→ R̄ by u(x) =
∑∞

t=0 β
tF (xt, xt+1).

We can then define MP as:

V (x0) = sup
x∈Π(x0)

u(x) (MP)

This problem is to maximize utility given an initial state x0, by choosing a plan x.14 Notice that

there are thus two differences from the original FC problem. Firstly, the state for the FC problem

14Lemma A1 in Appendix A establishes that the supremum in MP is well defined.
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is just (b0, g0), but the state here is x0 = (b0, g0, τ0, ..., τL−1), so the MP problem maximizes utility

subject to the initial taxes being taken as given. Secondly, the MP chooses plans for x, whereas

the FC problem chooses plans for y. However, the following lemma demonstrates that under our

assumptions, choosing plans for x or y is equivalent.

Lemma 2. For all (b0, g0) ∈ B∗, each y ∈ Π∗(b0, g0) implies a unique x ∈ Π(x0) for some x0 ∈ X.

Conversely, for all x0 ∈ X, each x ∈ Π(x0) implies a unique y ∈ Π∗(b0, g0) for some (b0, g0) ∈ B∗.

Proof in Appendix A. For any (b0, g0) ∈ B∗, define the set Q(b0, g0) as follows:

Q(b0, g0) ≡
{

(τ0, ..., τL−1) ∈ TL : (b0, g0, τ0, ..., τL−1) ∈ X
}

This is the set of L initial government choices that lie on competitive equilibrium paths for a given

initial state. The following lemma establishes that as long as these initial choices are chosen correctly,

the same paths solve MP and FC, and lead to the same maximized value.

Lemma 3. (FC = MP) For any (b0, g0) ∈ B∗,

1. V ((b0, g0, τ0, ..., τL−1)) = V ∗(b0, g0) for any (τ0, ..., τL−1) from an optimal FC plan in yFC(b0, g0)

2. sup(τ0,...,τL−1)∈Q(b0,g0) V ((b0, g0, τ0, ..., τL−1)) = V ∗(b0, g0)

and the implied optimal plans from MP, x, all generate plans y which lie in yFC(b0, g0).

Proof in Appendix A. This lemma states that the Modified Problem generates the same maxi-

mized utility and paths as the Full Commitment solution, as long as the initial policies are either

1) arbitrarily chosen to be the FC-optimal policies, or 2) chosen to maximize the value attained in

MP. Having established the equivalence between the FC and MP problems, all that remains is to

establish the equivalence between the MP problem and the LTC game. This is done in the final

lemma.

Lemma 4. (MP = LTC) The function V is the unique solution to (LTC). Additionally, for any

x0 ∈ X, any plan x ∈ Π(x0) which satisfies V (x∗t ) = F (x∗t , x
∗
t+1) + βV (x∗t+1) for t = 0, 1, ... attains

the supremum in (MP) for initial state x0.
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Proof in Appendix A. Intuitively, the MP was constructed to be recursive with xt as a state. This

is precisely the state variable of the LTC game, and given the identical underlying environments,

the LTC provides the recursive form of MP. The boundedness condition in Assumption 4* then

ensures that the MP value, V , provides the unique solution to LTC.

Combining the two equivalences between FC and MP, and MP and LTC delivers the proof of

Proposition 1.

Proof of Proposition 1. In Lemma 4 we showed that the unique equilibrium of the LTC game

is the solution to MP, for an arbitrary x0. To prove point 1, note that if (τ0, ..., τL−1) are chosen to

be optimal values from the FC problem then point 1 of Lemma 3 implies the equivalence of MP

and FC, thus establishing the equivalence of LTC and FC. For point 2, where the time-0 government

is also allowed to choose (τ0, ..., τL−1), note that we can then split the time-0 problem of choosing

(τ0, ..., τL) into two steps: 1) Choose τL given (τ0, ..., τL−1), which we know from Lemma 4 solves

MP for the implied x0 = (b0, g0, τ0, ..., τL−1). This yeilds maximised value V ((b0, g0, τ0, ..., τL−1)).

2) Choose (τ0, ..., τL−1) to maximize V ((b0, g0, τ0, ..., τL−1)). In this case the time-0 problem can be

expressed as sup(τ0,...,τL−1)∈Q(b0,g0) V ((b0, g0, τ0, ..., τL−1)), which we know from point 2 of Lemma 3

to be equal to the FC value V ∗(b0, g0).

This completes the proof of Proposition 1. We have thus proved that the solution to the FC

problem can be supported as the unique Markov perfect equilibrium of the LTC game, as long as the

initial policies, {τt}L−1
t=0 , are either arbitrarily chosen to be the optimal FC choices, or if the time-0

government is also allowed to optimally choose these policies.

4 Equivalence in specific models of fiscal policy

In this section we show how our equivalence result applies in several models of optimal fiscal policy

that have been studied in the literature. We start from bond-only economies such as Lucas and

Stokey (1983) and Faraglia et al. (2014) and then move on to study optimal capital taxation in a

version of the Chamley (1986) and Judd (1985) economies. In all these models, we illustrate that

Assumption 3* holds and hence FC outcomes can be supported as symmetric Markov equilibria
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in the LTC game.15

We restrict the set of exogenous states to just government spending for simplicity, and it is

worth noting that all our results go through if extra exogenous states (such as deterministically

time-varying productivity) satisfying the Markov property are added. We restrict exposition to

two popular models in this section, and discuss additional models where our theorem holds in

Appendix B.

4.1 Economies without capital

We start our analysis by considering a deterministic economy without capital and generalizing the ex-

ample presented in Section 2.4, by allowing for time-varying government spending and long-maturity

bonds. An exogenous stream of expenditure, {gt}∞t=0, which for simplicity we assume to be purely

wasteful, needs to be financed with labor income taxes,
{
τ lt
}∞
t=0

, and debt, {bt+N}∞t=0, with generic

maturity N ∈ [1,∞). This model encompasses a deterministic version of the model studied by Lucas

and Stokey (1983) as well as models of optimal debt maturity as in Faraglia et al. (2014).16 The

choice of the label N for maturity is not accidental, as this will indeed turn out to coincide with the

definition of N from our general formulation: variables N periods ahead appear in the constraints.

A representative household has preferences defined over sequences of private consumption {ct}∞t=0

and labor effort {lt}∞t=0:
∞∑
t=0

βtu(ct, lt) (17)

with standard assumptions uc > 0, ucc < 0, ul < 0, ull < 0. Her budget constraint is given by

ct + qtbt+N = wtlt

(
1− τ lt

)
+ bt (18)

where qt is the price of a bond issued at t that repays one unit of consumption at t+N .17 Output

15We relegate the discussion of the restrictions on the environment necessary for the boundedness condition in

Assumption 4* to hold to Appendix B. Assumption 1* holds in all of our settings, and Assumption 2* is implied

by Assumption 3*.
16The analysis can easily be extended to multiple maturities, but we restrict ourselves to one bond for expositional

simplicity.
17In the case of N > 1 we are considering a long-bond economy with “no buy-back”: governments cannot repurchase

bonds before maturity. This is for expositional purposes, and our results also apply in the case of buy-back.
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equals labor effort, hence the resource constraint reads

ct + gt = lt (19)

and firms’ profit maximization implies a unit wage: wt = 1. The government’s budget is implicitly

defined by the agent’s budget constraint and the resource constraint.

The household’s first order conditions with respect to consumption, labor effort and bonds,

together with the resource constraint, can be summarized by an intratemporal optimality condition

and a Euler equation:

− ul(ct, ct + gt)

uc(ct, ct + gt)
= 1− τ lt (20)

qtuc(ct, ct + gt) = βuc(ct+N , ct+N + gt+N ) (21)

This completes the description of the model, allowing us to map it into the general framework of

Section 3. In the general notation we have bt = (bt, ...,bt+N−1), gt = gt, ct = (ct, lt), pt = qt, and

τt = τ lt . Note that we have already imposed bond market clearing implicitly and solved out for the

real wage. The transition Γ∗ is defined by the equations (18), (19), (20), and (21), and an assumed

transition Γg for gt. Note that, according to our definition, ct+N is thus the only problematic variable

in the time-t constraints, since it appears in (21). We refer to the previous literature for a derivation

of FC optimal policy in this model. Here we limit ourselves to a brief discussion of the difference

between FC and NC equilibria in this context.

As in the example in Section 2.4, the Euler equation (21) highlights the source of time-inconsistency

of the FC policy in this model. At t = 0, the FC government has an incentive to use the initial

allocation to decrease the value of outstanding initial debt b0, and hence reduce the distortions

required to finance expenditure.

The properties of the solution under NC depend crucially on the assumptions about government

spending. For N = 1, and if government spending is assumed exogenous and constant, Krusell

et al. (2004) prove the existence of a “step function” equilibrium which supports multiple steady

states for government debt.18 Debortoli and Nunes (2013) study a version of this economy with

N = 1 which also features endogenous government spending valued in utility. As discussed above,

18In principle, it is also possible for a smooth equilibrium to exist, although it is challenging to find numerically,

making its characterization hard.
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the FC equilibria features a long run level of debt which depends on the initial level of debt: initial

conditions matter. The NC government, on the other hand, has a debt policy which converges to a

steady state level b∗ regardless of initial conditions. Overall, there are thus large differences in debt

dynamics between the solutions to these models under FC and NC.

In the LTC game with an arbitrary L periods of commitment the government inherits the fol-

lowing states at time t. Firstly there are the natural states, gt and (bt, ...,bt+N−1). Then there are

the pre-committed taxes, (τ lt , ..., τ
l
t+L−1). The government then chooses τ lt+L. Note the similarity to

the NC problem, where the government only inherits the natural states, and chooses τ lt .

We now show that the FC equilibrium can be supported in the LTC game with L = N periods of

commitment. In the Lucas and Stokey (1983) economy, which has N = 1, this means that just one

period of commitment is sufficient to recover FC. To prove this, we need to show that our key as-

sumption on the mapping between sequences of taxes and sequences of allocations, Assumption 3*,

holds in this model. In other words, we need to show that given the natural states (gt, bt, ...,bt+N−1),

if we fix (τ lt , ..., τ
l
t+N ), then (i) we pin down all of yt = (bt, ...,bt+N−1, gt, ct, lt, qt, τ

l
t ), of which

we only need to check (ct, lt, qt), and bt+N , and (ii) the problematic variable ct+N is fixed given

(gt+1,bt+1, ...,bt+N , τ
l
t+1, ..., τ

l
t+N ). To see that this is the case, consider equation (20). Given a tax

rate τ lt (and an exogenous gt), this is one equation pinning down one unknown, namely ct.
19 Hours lt

can then be easily recovered from the resource constraint. Hence a sequence
{
τ lt , ..., τ

l
t+N

}
pins down

a sequence of consumption and hours {(ct+j , lt+j)}t+Nj=0 . The bond price, qt can then be recovered

from (21) and bonds bt+N from the budget constraint (18), given an outstanding level of debt bt.

Having shown that our key assumption holds, we have proved that the FC solution can be

supported by the LTC game. An important result of this analysis is that the degree of commitment

necessary to achieve FC outcomes depends crucially on the the maturity of debt. The longer this

maturity, the higher the number of periods of commitment required. Hence for a given planning

horizon for fiscal policy, economies with longer debt maturity appear to be more prone to the welfare

costs of imperfect commitment.

19 Since this equation is nonlinear, an additional, weak regularity assumption is required in order to ensure that the

solution is unique, so that a given tax rate pins down a unique allocation. This amounts to ensuring that the left hand

side of (20) is either strictly increasing or decreasing in ct for ct ≥ 0, a condition that is satisfied for standard utility

functions, such as separable isoelastic utility in ct and lt.
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4.2 The role of initial conditions

The equivalence between LTC and FC outcomes proved in Section 3 relies on initial policy instru-

ments being consistent with the FC plan. We now discuss the consequences of letting governments

with LTC inherit arbitrary initial policies. By Lemma 4, we know that for any model, the LTC

outcome coincides with the outcome of a FC Ramsey plan restricted to start from the same arib-

trary initial policy. Hence even if the LTC game is initialized with “incorrect” initial policies, the

remaining policies will be chosen optimally in the sense that a FC Ramsey planner restricted to the

same initial policies would choose the same sequence. However, for specific models, we are able to

provide a more detailed characterization of the equilibrium. In particular, here we focus again on

the model without capital.

We simplify the exposition as in the example in Section 2.4 by restricting the analysis to one-

period bonds (N=1) and constant government spending.20 For this economy, we have established

that, starting from initial conditions given by the FC policy sequence, LTC sustains FC outcomes

with a single period of commitment. We now ask the question of what happens if a government

with LTC game inherits an arbitrary initial policy, potentially different from the one implied by the

FC policy path. We show that the economy converges in one period to another FC equilibrium,

consistent with a different level of initial debt. We also provide simple formulas to evaluate the

welfare cost of starting from a “wrong” initial policy.

From the intratemporal optimality condition (20), imposing constant gt, we can obtain hours as

an implicit function of the tax rate: lt = l(τ lt ). Using this function, the government budget constraint

in period 0 can then be expressed as

uc(l(τ
l
0)− g, l(τ l0))

(
b0 + g − τ l0l(τ l0)

)
= βuc(c1, l1)b1. (22)

Let at ≡ uc
(
l
(
τ lt
)
− g, l

(
τ lt
)) (

bt + g − τ lt l(τ lt )
)

and note that this variable is a function only of

the inherited level of debt and the current tax rate: at = a
(
bt, τ

l
t

)
. The economic interpretation

of this variable is the (marginal utility) value of the resources that the time-t government needs to

raise on the bond market.

20This assumption can be easily relaxed without affecting the main insight. However, perfect tax smoothing then

arises only under a stronger assumption on preferences, such as separable, CRRA in both consumption and labor.
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Let s
(
τ lt
)
≡ uc

(
l
(
τ lt
)
− g, l

(
τ lt
)) (

g − τ l1l
(
τ lt
))

. Adding and subtracting s
(
τ l1
)

on the right-hand

side of (22) yields

a0 = β
(

a1 + s
(
τ l1

))
. (23)

Note that that the problem of the government at t = 0 is affected by
(
b0, τ

l
0

)
only through

their effect on a0. This is because this government cannot affect hours worked at t = 0. Hence the

government’s optimization problem can be formulated in the following recursive form.21

W (a) = max
(a′,τ ′)

β
[
u
(
l
(
τ ′
)
− g, l

(
τ ′
))

+W
(
a′
)]

(24)

subject to the transition a′ = β−1a− s (τ ′). Note that this recursive form ignores contemporaneous

utility, which is an any case fixed from the government’s point of view. The FC policy for this model

is fully characterized by two functions: τ l0,FC(b0) for t = 0 and τ lFC(b0) with τ lt = τ lFC(b0) for all

t ≥ 1. The government chooses a perfectly smooth tax from t = 1 onwards and uses the tax rate at

t = 0 to affect the utility value of initial debt by distort the initial allocation in order to decrease

the amount of tax distortions needed to finance expenditure and service the debt. The allocation is

also constant from t = 1 onwards.

In order for debt not to explode with a constant tax rate and constant hours and consumption,

it has to be the case that at is also constant. Hence, we can find the optimal tax rate from time

1 onwards from the transition equation for a in steady-state: τ∗(a0) = s−1
(

1−β
β a0

)
and the value

function satisfies

W (a0) =
β

1− β
[u (l (τ∗ (a0))− g, l (τ∗ (a0)))] . (25)

Total welfare starting from arbitrary initial conditions (b0, τ
l
0) is then given by

V
(

b0, τ
l
0

)
= u

(
l
(
τ l0

)
− g, l

(
τ l0

))
+W (a0). (26)

We now argue that the LTC policy and allocation starting from
(
b0, τ

l
0

)
, with τ l0 6= τ l0,FC (b0)

converges to another FC policy (and allocation), indexed by a different debt level.

21This is an alternative formulation relative to the more general recursive formulation used to prove Proposition 1.

It holds in this model because the welfare-relevant component of the allocation (ct, lt) is fixed from the point of view

of the government dated t.
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Let b̃0 be the solution to the non-linear equation a
(

b̃0, τ
l
0,FC

(
b̃0

))
= a

(
b0, τ

l
0

)
.22 Then, the

government at time 0 solves the problem defined in (24) starting from a0 = a
(

b̃0, τ
l
0,FC

(
b̃0

))
and the policy and allocation from t = 1 onwards will coincide with the ones implied by the FC

equilibrium starting from b̃0. In particular, we will have τ lt = τ∗ (a0) = τ lFC

(
b̃0

)
for all t ≥ 1. In

order to assess the welfare cost of starting from any initial tax, it is sufficient to compare the value

attained by the FC policy starting from t = 0 with the value defined in (26).

In Appendix B we consider a model with capital and prove a similar result on the role of initial

policy conditions, under the assumption of linear utility from consumption.

4.3 Capital and labor taxes

We now consider optimal fiscal policy in economies with capital, as in Chamley (1986) and Judd (1985).

In particular, we consider a model that nests the economies analyzed by Klein et al. (2008) and

Debortoli and Nunes (2010). We allow for government consumption to be valued by households and

chosen by the government, making the policy instruments labor taxes, τ lt , capital taxes, τkt , and

government spending, gt. We also let the capital utilization rate, vt, be endogenous.

Crucially, we assume that the government must balance its budget period by period. The impor-

tance of balanced-budget rules was first studied by Stockman (2001) under the assumption of FC.

While Stockman (2001) allows for an arbitrary constant level of debt, we set this level to zero and

explore the role of balanced-budget rules for the possibility of sustaining FC outcomes under LTC.

We defer discussion of more general budget rules and time-to-build to Section 4.4.

We follow Debortoli and Nunes (2010) in the model description.23 Household preferences are

represented by the utility function
∞∑
t=0

βtu(ct, gt, lt) (27)

with uc > 0, ucc < 0, ug > 0, ugg < 0, ul < 0, ull < 0. Output is produced using a Cobb-Douglas

technology that combines capital (with an endogenous utilization rate vt) and labor:

yt = (vtkt)
α l1−αt . (28)

22Under standard parametrizations of the utility function there is a unique solution.
23Klein et al. (2008)’s models can be recovered by removing endogenous capital utilization. Klein and Ŕıos-Rull

(2003) add stochastic shocks to this framework, while we focus on its deterministic version.
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Following Greenwood et al. (2000), capital depreciates at rate δ(vt) with δv > 0 and δvv > 0.

Depreciation is increasing in the rate of utilization, giving a well defined trade-off which determines

the optimal level of utilization. Endogenous utilization makes the capital taxation problem more

tractable, because even at time 0 the government faces the cost that higher capital taxes will lower

utilization. The resource constraint of the economy reads:

ct + kt+1 − (1− δ(vt)) kt + gt = (vtkt)
α l1−αt . (29)

Households consume, supply labor, invest in capital and choose its utilization rate, renting utilized

capital to firms. Combining the households’ and firms’ optimality conditions leads to the following

conditions.24

− ul(ct, gt, lt)

uc(ct, gt, lt)
=
(

1− τ lt
)

(1− α) (vtkt)
α l−αt (30)(

1− τkt
)
αvαt kα−1

t l1−αt = δ′(vt) (31)

uc(ct, gt, lt) = βuc(ct+1, gt+1, lt+1)
[
α (vt+1kt+1)α−1 l1−αt+1

(
1− τkt+1

)
+ 1− δ(vt+1)

]
(32)

We assume that the government budget constraint has to be balanced in every period. This imposes

the restriction that τ ltwtlt + τkt rtvtkt = gt, where rt is the rental rate of capital. Combined with the

firms’ first order conditions for capital and labor, this gives the condition[
ατkt + (1− α) τ lt

]
(vtkt)

α l1−αt = gt. (33)

The households’ budget constraint is implied by the government’s budget and the resource constraint.

That the government must balance its budget every period turns out to be an important assumption

in order to obtain equivalence of LTC and FC in this economy, as will be made clear. This completes

the statement of the model. In the general notation of Section 3 we have bt = kt, ct = (ct, lt, vt), and

τt = (τkt , τ
l
t , gt). There are no exogenous states (gt) and we have solved out for all prices (pt). The

transition correspondence, Γ∗, is defined by (29), (30), (31), (32), (33).

A source of time-inconsistency in this model is the incentive of the government to promise low

capital taxes in order to foster capital accumulation and then to tax capital ex post once it has been

24The households’ optimality conditions are a standard labor supply condition, utilization choice, and Euler equation

for capital. The firms’ optimality conditions are the standard labor and capital rental conditions wt = (1−α) (vtkt)
α l−αt

and rt = α (vtkt)
α−1 l1−αt .
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installed. More formally, the government is constrained by the Euler equation, (32), which contains

the problematic variables ct+1, vt+1 and lt+1, and next period’s capital tax, τkt+1 and government

spending gt+1. In the notation of our general formulation we have N = 1, with variables one period

ahead appearing in the constraints.

Once again we refer to the previous literature for the derivation of the optimal policy under FC

and NC. We limit ourselves to proving that FC outcomes can be supported as equilibrium of the

LTC game. It will turn out that the government can sustain the FC solution with L = 1 periods of

commitment in this model. In the LTC game with L = 1 periods of commitment the government

inherits the following states at time t. Firstly there is the natural state, kt. Then there are the

pre-committed policies, (τkt , τ
l
t , gt). The government then chooses (τkt+1, τ

l
t+1, gt+1).

We need to show that Assumption 3* holds in this model for L = 1. In other words, we need

to show that given the natural state kt, if we fix (τkt , τ
l
t , τ

k
t+1, τ

l
t+1, gt, gt+1), then (i) we pin down

all of yt = (kt, ct, lt, vt, τ
k
t , τ

l
t , gt), of which we only need to check (ct, lt, vt), and kt+1, and (ii) the

problematic variables (ct+1, lt+1, vt+1) are uniquely pinned down given (kt+1, τ
k
t+1, τ

l
t+1, gt+1).

To see that this is the case, notice that, given the government’s state,
(
kt, τ

k
t , τ

l
t , gt

)
, equations

(29), (30), (31) and (33) form a system of four (non-linear) equations in four unknowns, namely

(ct, lt, vt, kt+1). If this system admits a unique solution, then we satisfy the first requirement. This

is the case as long as preferences are such that there are non-separability and/or wealth effects

on labor supply. That is, the MRS, −ul(ct, gt, lt)/uc(ct, gt, lt), is a function of ct. This rules out

preferences of the Greenwood, Hercowitz and Huffman (1988) form, but admits all preferences such

that the MRS is monotone in ct, given lt. This allows all standard separable preferences in con-

sumption and leisure for which u′(c) > 0 and u′′(c) < 0 for all c, non-separable preferences of the

Cobb-Douglas form, and other non-separable preferences under suitable restrictions.25 By the same

logic, by choosing
(
τkt+1, τ

l
t+1, gt+1

)
, the government thus pins down (ct+1, lt+1, vt+1), which are the

problematic variables in (32), satisfying the second requirement. Since our main assumption holds,

we have shown the equivalence of the LTC and FC solutions in this model. Since, in this model, the

Chamley-Judd result of zero capital taxation in the long run holds under FC, we have also shown

25We can prove uniqueness recursively. First take the ratio of (31) and (33) to form a single equation in vt. Since

δ(vt) is strictly increasing, this pins down a unique vt. Next, (33) gives a unique lt. Given lt, (30) pins down a unique

ct as long as the MRS is monotone in ct, as discussed above. Finally, (29) pins down a unique kt+1.
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that the Chamley-Judd result can be sustained with a single period of commitment.

It is worth discussing the importance of the balanced budget assumption for this result. The

balanced budget equation, (33), is one of the four equations we used to pin down equilibrium with

only a finite number of periods of taxes. Intuitively, to sustain commitment, the time-t government

must not be able to affect the values of ct and the other problematic variables, since she disagrees

with the time-t− 1 government about their optimal values.

Pinning down ct was possible with just one period of commitment in the models without capital

of Section 4.1, because in equilibrium consumption was determined by a static goods market clearing

condition and labor market optimality condition, summarized by (20). One period of commitment

to τ lt completely determines ct in equilibrium, irrespective of the time-t government’s choice of

τ lt+1. However, with capital the goods market clearing condition is no longer static, so the time-t

government can affect ct by using
(
τkt+1, τ

l
t+1, gt+1

)
to affect investment.

The balanced budget assumption stops the time-t government from being able to do this, since

this would influence government revenue, potentially unbalancing the time-t budget. We showed

above that there is a unique ct which is consistent with balancing the budget if time-t government

spending and taxes are predetermined. Thus, the time-t government is unable to deviate from the

values of the problematic variables that the time-t− 1 government intended her to choose when she

set the time-t policies, and this inability to deviate is what allows LTC to sustain the FC allocation.

Without assuming a balanced budget our theorem would not hold, and LTC would not support

the FC solution. The balanced budget rule effectively plays the role of an extra static equation,

replacing the static goods market clearing condition that was lost when capital was added to the

model. It is the fact that the rule is static, and not that the budget has to be exactly balanced,

which is important. Hence, it is possible to show that constitutionally imposed cyclically-adjusted

balanced budget rules would also allow LTC to support the FC outcome.26

26Relatedly, Halac and Yared (2014) study the role of fiscal rules when present-biased governments cannot commit.

We focus on a different source of time-inconsistency, namely forward-looking constraints.
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4.4 Additional models

In this section we briefly discuss three additional models where our theorem holds, with detailed

expositions and proofs relegated to Appendix B. These are all extensions of the capital and labor

taxation model of Section 4.3.

Firstly, we provide an extension where the budget must be balanced across a fixed number of

periods. In particular, we suppose that the government can issue one-period bonds, denoted bt, but

that every M periods the government must set bt+1 = 0 and not issue any bonds. This captures

the idea of medium run fiscal constraints placed upon the government, such as yearly balanced-

budget restrictions in a quarterly model. In this case LTC can support FC with L = M periods of

commitment.

This extension is interesting for two reasons. It illustrates the key role that the length of time over

which the budget must be balanced plays in achieving FC in this model. This leads to potentially

important policy implications, especially for countries that are implementing multi-annual budget

plans, such as several European countries. Moreover, it provides an example where L > N , and the

number of periods of commitment required to support FC exceeds the number of periods ahead that

choice variables appear in the constraints. In both previous examples we had L = N .

While we do not do so here, it is also possible to show that it is not required that the balanced

budget rules be constitutionally imposed and hence unchangeable by any future governments. We can

make the following, weaker assumption. Suppose that the government is allowed to raise resources

via one period bonds, bt+1, with equilibrium price qt. Define dt = qtbt+1 as the value of the resources

the government raises on the market at time t. If the constitution stipulates that the time-t + 1

government must raise d̄t+1 next period, and the time-t government is allowed to choose d̄t+1 along

with the original time-t + 1 policy instruments, then again one period of commitment can support

FC. Thus budget requirements may be quite flexible, here chosen just one period in advance, while

maintaining their commitment enhancing abilities.

Secondly, we consider varying time-to-build, while maintaining the single-period balanced budget

assumption. Instead of the standard assumption that investment in period t becomes productive at

t + 1, we assume that it becomes productive at t + M . In this case, we show that M periods of

commitment are required to support FC.
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Finally, we consider an extension where there is no requirement for balanced budgets, but as-

suming linear utility from consumption. Even under this assumption, the FC and NC solutions

to the model differ, since the FC solution will typically feature zero capital taxes in the long run,

and governments without commitment will always be tempted to deviate and increase capital taxes.

However, we show that our theorem holds in this model, and a single period of commitment is

sufficient to recover the FC solution.

4.5 Comparison with Loose Commitment

The above results allow us to compare optimal policy under LTC with the existing results on optimal

policy under Loose Commitment, an assumption that has been explored in two of the economies

given above. First, Debortoli and Nunes (2013) study a version of the Lucas and Stokey (1983)

economy from Section 4.1 with one period bonds, and endogenous government spending. They show

that under Loose Commitment, an equilibrium exists where government debt will always optimally

converge to a steady state value independent of initial conditions, even if commitment only lasts on

average for one period.

In their economy our theorem holds with a single period of commitment, and thus LTC with one

period of commitment is enough to recover the FC solution. However, the FC solution features a

long run level of government debt which depends on the government’s initial debt position. Hence,

perhaps surprisingly, one year of LTC and Loose Commitment which lasts on average one year do

not lead to similar outcomes.

Second, Debortoli and Nunes (2010) study the capital and labor taxation problem with balanced

budgets from Section 4.3. They find that under Loose Commitment the capital tax rate does not

converge to zero, as it does under FC. Since LTC supports the FC solution, capital taxes do converge

to zero under LTC. Hence LTC and Loose Commitment again deliver different results in this model.

These results highlight that, once we depart from FC or NC, how we do so can have potentially

large implications for the results. This suggests that deviations from full or no commitment might

need to be tailored to the exact institutional setting one has in mind.

In general, it should be noted that our equivalence results generalize to different power structures

beyond L periods of commitment: it is irrelevant whether the same government is able to commit
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beyond that horizon with any probability, because it would anyway want to announce policies con-

sistent with the FC plan. Hence, in our setup, the probability that a government stays in power (or

can commit) beyond L periods is irrelevant, as long as commitment for L periods is certain.

5 A new algorithm for FC: policies as state variables

In this section we show that, whenever there exists a degree of commitment, L, such that LTC and FC

lead to the same outcomes, it is possible to solve for the time-inconsistent solution to the FC problem

using standard dynamic programming tools. This solution coincides with the solution to the LTC

problem, and hence uses the LTC states, including the appropriate pre-committed policies, as state

variables. This provides an intuitive alternative to using promised utilities or Lagrange multipliers

to solve the FC problem, and also allows us to clarify the relationship between the solution to the

FC sequence problem and the LTC policy functions. We first give a general outline of the algorithm,

and then apply it to the Lucas and Stokey (1983) model.

5.1 Description of algorithm

In Section 3 we proved that whenever the assumptions such that LTC supports FC hold, the

FC plan has a recursive form given by (LTC). This recursive form takes as state variables xt ≡

(bt, gt, τt, ..., τt+L−1), which are precisely the state variables of the LTC problem. The policy and

value functions of this recursive form of the FC game can be found by applying standard dynamic

programming tools to (LTC).

The only complication is that the state space must be appropriately restricted to rule out choices

which violate competitive equilibrium. Note that the statement of (LTC) restricts xt, and conse-

quently choices for xt+1, to lie in the set X, defined as the set of xt which lie on some competitive

equilibrium path. Rather than having to compute all CE paths and checking whether any xt lies

somewhere on one of them, in Appendix C we provide an algorithm which solves for the set X

recursively. This can be done “once and for all” before solving for policy and value functions.

Once the set X is solved for, one can apply standard dynamic programming tools to (LTC) to

solve for the “recursified” FC policy functions. Since the LTC policy functions take pre-committed
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policies as states, one also has to solve for the initial policies, τL0 . This is done by by maximizing

the LTC value function, v(x0) = v((b0, g0, τ0, ..., τL−1)), over τL0 .

5.2 Illustration: Lucas and Stokey (1983)

This section demonstrates the equivalence of the LTC and FC solutions numerically in the Lucas

and Stokey (1983) economy. Since we know that LTC and FC are equivalent, and the solution to

FC has been extensively studied, the focus is not on making quantitative statements, but rather

qualitatively illustrating the links between the two solutions.

For simplicity we focus on the case of one period bonds with constant government spending, as

laid out in the example of Section 2.4. We consider a government who starts with an initial stock of

debt b0 > 0. As previously discussed, the solution to the FC problem in this case involves a tax cut

at time 0, followed by higher but constant taxes from time 1 onwards. We denote the optimal time

0 tax rate by τ l0,FC and the time 1 and onwards tax rate by τ lFC . This policy leads to a constant

level of debt from time 1 onwards, which we label bFC .

The solution to the LTC problem is given by a policy function τ lt+1 = g(bt, τ
l
t ), and an associated

transition for debt from the implementability condition. The policy function is solved for on the set

X of values of (bt, τ
l
t ) consistent with at least one competitive equilibrium. This set restricts us to

values of initial debt such that the government can actually afford to repay without violating any

limits on borrowing or taxes. Figure 1 illustrates the solution, with details on solution method and

parametrization relegated to Appendix C.

The left panel shows the set X, represented as an upper and lower limit for debt for a given

tax rate: all values between the dashed and solid lines are consistent with at least one competitive

equilibrium. Values with high initial debt and low initial taxes are not consistent, since they imply

the lowest initial resources for the government, which it may not be feasible to finance.

The right panel plots three slices of the policy function g
(
bt, τ

l
t

)
for different values of bt. The

optimal tax rate tomorrow is increasing in government debt, and decreasing in today’s pre-committed

tax rate. This is because increasing debt or reducing today’s tax both worsen the fiscal position of

the government, requiring higher taxes tomorrow to balance the intertemporal budget constraint.

Since our theorem holds in this setup, iterating on this policy function starting from initial
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state
(

b0, τ
l
0,FC

)
must replicate the FC path for taxes and debt. That is, we must have that

τ lFC = g
(

b0, τ
l
0,FC

)
for time 0, and τ lFC = g

(
bFC , τ

l
FC

)
, meaning that the FC plan appears as

points which lie on the LTC policy functions. This is shown in Figure 2. The left panel plots

g
(
b0, τ

l
0

)
, giving a slice of the LTC policy function across different τ l0 values for debt equal to the

initial value. The cross plots the (independently calculated) FC optimal taxes for t = 0 and t = 1.

The cross lies on the LTC policy function, confirming that the LTC game replicates the FC choice

of τ l1 if the initial tax is restricted to be τ l0,FC .

The right panel repeats the exercise for t = 1, which is also identical for any t > 0. This time the

LTC policy function is drawn for debt equal to bFC , which is the value inherited at time 1 for both

the LTC and FC policies. Again, the FC cross lies on the LTC line, confirming that the LTC game

replicates the FC choice of τ l2 since the government inherits a pre-committed choice for τ l1 equal to

τ lFC .

6 LTC in a model where equivalence fails: numerical results

In this section, we consider a model in which the conditions for equivalence between LTC and FC

fail. In particular, we study the problem of optimal public good provision in a neoclassical growth

model, following Klein et al. (2008). We focus on the case in which the public good is financed only

through capital taxation and we simplify their model slightly by assuming that labor is inelastically

supplied. This serves as a test of LTC in a setting where our theorem doesn’t hold, as the missing

labor-consumption margin and labor income tax imply that consumption at time t is not pinned

down by taxes at t and depends instead on the whole infinite future sequence of policies.

Capital taxation leads to interesting differences between FC and NC outcomes: Klein et al.

(2008) show that when the government cannot commit, the steady-state level of the public good (and

hence the capital tax rate) is significantly higher than in the FC Ramsey steady-state. Furthermore,

we show that lack of commitment leads to a substantial welfare loss (nearly 10% of permanent

consumption in steady-state). Hence, we believe it is important to understand what fraction of this

welfare loss could be recovered by imposing a “reasonable” degree of commitment in the constitution

(e.g., one year).
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6.1 A model of public good provision and capital taxation

Preferences of the representative household are represented by the following utility function

∞∑
t=0

βt [u(ct) + z(gt)] (34)

where ct is the privately-produced consumption good and gt is the public good, and we assume that

u′, z′ > 0, and u′′, z′′ < 0. The budget constraint of the household is

ct + kt+1 = wtlt + kt

[
1 + rt(1− τkt )

]
. (35)

Output is produced with production function yt = kαt l1−αt , with labor inelastically supplied at lt = 1.

Firms profit maximization implies that the pre-tax return on assets is given by rt = αkα−1
t − δ and

the wage by wt = (1− α)kαt . The resource constraint of the economy reads

ct + kt+1 + gt = kαt + (1− δ)kt, (36)

and the government balanced-budget constraint is27

τkt (αkαt − δkt) = gt. (37)

The competitive equilibrium is fully characterized by (36) and the following Euler equation for

capital, where we substitute taxes from (37).

u′(ct) = βu′(ct+1)

(
1 + αkα−1

t+1 − δ −
gt+1

kt+1

)
(38)

To see why the equivalence between LTC and FC does not hold in this model, notice that a key

difference with respect to the version presented in Section 4 is the absence of the intratemporal

labor-consumption margin, (30), which determines the only level of consumption consistent with

household optimality, given the only level of hours worked consistent with government balanced

budget. With exogenous labor, consumption and investment at time t are not uniquely pinned down

by the tax rate at time t, and depend instead on the whole infinite sequence of future tax rates.

In Appendix D we provide the first order conditions of the FC Ramsey plan as well as a charac-

terization of the smooth NC equilibrium as analyzed by Klein et al. (2008). In the case of LTC, we

27Differently from Section 4, here we allow for a deduction for depreciation before capital taxes are charged.
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assume that governments have one period of commitment, which in our calibration will correspond

to a year.28 Thus, the natural state variables of the Markov perfect LTC equilibrium are (kt, gt),

that is, the government at time t inherits an aggregate capital stock as well as a fiscal plan to be

enacted at time t.29 In a symmetric equilibrium, all governments play the same policy function,

gt+1 = g̃LTC(kt, gt). Details of the recursive formulation of the game are relegated to Appendix D,

which also includes a description of a simple global algorithm to solve for smooth LTC equilibria

based on projection with third-order polynomials.

6.2 Calibration

We follow the calibration choices of Klein et al. (2008) in the interest of comparison, with the

difference that we set hours worked equal to an exogenous constant. Table 1 reports the parameter

values. One period in the model corresponds to a year, hence we study the case where governments

can commit to fiscal policy for a single fiscal year. We parametrize utility as follows: u(c) = log(c)

and z(g) = D log(g).30

6.3 Steady-state comparison: FC, NC, LTC

In Table 2 we compare steady-state allocations, policies and welfare in three economies: FC, NC

and LTC.31 The LTC government internalizes the distortionary effect of capital taxes promised for

the following period and accordingly lowers them relative to the NC government. However, tax rates

beyond one period ahead are out of the LTC government’s control, just like taxes at t + 1 for the

NC government. Because the whole infinite sequence of future tax rates matters for the allocation

at t in this model, the LTC equilibrium does not coincide with FC, and is characterized by higher

28Klein and Ŕıos-Rull (2003) also assume one year of commitment to capital taxes, but no commitment to labor

taxes, and compute linear approximations of optimal policy in a model with shocks to productivity and spending.

Differently from them, we consider a deterministic economy with endogenous g, abstract from labor taxes and focus

on a global solution that allows to characterize transitional dynamics after a constitutional reform.
29Thanks to the balanced-budget, we could equivalently use the tax rate as a state variable.
30With linear u, we would recover our equivalence between LTC and FC outcomes.
31The assumption of exogenous labor drives the difference between the statistics reported in our NC column and

the corresponding column in Table 1 of Klein et al. (2008). We have verified that our method delivers the same

steady-state results as theirs in the case of NC and endogenous labor supply.
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taxes. Hence, LTC taxes and public good provision in steady-state are set at an intermediate level

between FC and NC.32

This result on policies leads to an intermediate steady-state level of capital, consumption and

output. Notice that out of a given amount of output produced, governments can affect how these

resources will be devoted to private consumption, public consumption and investment. Interestingly,

we find that most of the difference in the allocation between LTC and NC is driven by the fact that

a larger fraction of output is devoted to investment under LTC. This extra investment is financed

almost entirely by reducing the fraction of public spending, while the fraction of output devoted to

private consumption is remarkably similar across all three economies.

We also compute the welfare losses from FC to NC (and LTC) as the fraction of steady-state

consumption that would make the representative household indifferent between living in these dif-

ferent economies and living in the FC economy. Going from FC to NC is equivalent to a drop in

permanent consumption of 9.6%. Approximately a third of this loss can be recovered by imposing a

single year of commitment to fiscal policy.

6.4 Transitional dynamics

Using our global solution method, we can compute the transitional dynamics of the LTC economy

starting from an arbitrary initial capital stock and policy. We choose to compute the transition from

the steady-state associated with the NC regime. This exercise may shed light on the benefits of

implementing a limited degree of commitment to fiscal policy in the constitution in economies where

governments lack credibility.

Figure 3 shows the paths of capital, private consumption, public consumption and tax rate. The

solid red line shows the transition of interest, the dashed blue line illustrates the counterfactual

NC steady-state. Interestingly, the optimal transition path involves a non-monotonic path for the

size of the government. We observe a large fiscal adjustment (cut in gt) at the beginning, followed

by an increase in the provision of the public good. This is because the first LTC government

inherits a ratio between public and private consumption that is “too high”. By partially internalizing

32In all three economies, taxes are substantially higher than in the US economy. This is because the only tax base

in the model is capital income net of depreciation.
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the distortionary effect of capital taxes, the LTC government decides to decrease the size of the

government (both in terms of spending and tax rate) at the beginning in order to foster capital

accumulation. The overall welfare benefit of this reform is equal to 1.7% of permanent consumption,

stemming from capital accumulation equal to 8% of the initial stock, and an increase in output of

4.4%.

This economy is very stylized, hence we do not wish to draw strong quantitative conclusions from

this exercise. However, the significant welfare gain in this simple economy suggests that creating

institutional devices that induce even a small degree of commitment to fiscal policy may lead to

non-trivial benefits in economies characterized by lack of commitment.

7 Conclusion

In this paper we have studied optimal policy in economies where successive one-period lived govern-

ments formulate plans for a finite horizon. We have emphasized a key condition on the mapping from

policy instruments to allocations. If this condition is satisfied in a given model, then this Limited-

Time Commitment game with (sufficiently long) finite commitment leads to the same outcomes that

would arise if there were a single government at time 0, endowed with Full Commitment into the

infinite future.

This is indeed the case for a number of economies that have been studied in the fiscal policy

literature. In this sense, we have provided a case for assuming Full Commitment in those models:

even with a lighter commitment assumption we find the same results. This is also comforting from

a practical perspective, given that solving for NC equilibria, particularly in models with government

debt, can lead to numerical issues, as well as issues of multiplicity of equilibria. Additionally, we

relate the length of commitment required to support FC to economic features, which could allow

disciplining of the appropriate equilibrium concept based on the model at hand.

In a model of labor taxes without capital, we require commitment equal to the length of the

longest maturity bond. In a model of capital taxation with balanced budgets, we require commitment

equal to the length of time over which the budget must be balanced (or the time to build of capital, if

longer). In this sense, this paper uncovers a role for balanced-budget rules in building commitment.

In a stochastic economy, a balanced-budget rule imposes costs in terms of lack of tax smoothing. We
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leave for future work a quantitative analysis of the trade-off between such costs and the commitment

benefits of balanced-budget rules in a business-cycle model.

Another result of our analysis is that once we start making assumptions that limit the govern-

ment’s commitment technology, the details of how we do so can be quite important: we obtain

equivalence with Full Commitment in cases where the Loose Commitment approach (probabilistic

commitment into the infinite future) would lead to outcomes more similar to No Commitment.

We have also provided a new algorithm to solve for optimal policy with FC using pre-committed

policies as state variables. This algorithm works whenever our equivalence theorem holds and con-

stitutes an intuitive alternative to using promised utilities or Lagrange multipliers as currently done

in the literature.

Finally, we have studied a model of capital taxation where LTC and FC are not equivalent and

we have shown that introducing a single year of commitment to capital taxes in the constitution

induces substantial welfare gains relative to a regime of NC. In this sense, this paper makes a case

for designing institutional features that induce realistic degrees of commitment to fiscal policy.

In this paper we have worked with deterministic economies, and we leave a general characteri-

zation of optimal policy with Limited-Time Commitment in stochastic economies for future work.

However, we conjecture that our main equivalence result will survive in stochastic models, provided

that governments can commit to finite sequences of state-contingent policy instruments.
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A Appendix to Section 3

Lemma A1. For any x0 ∈ X:

1. The set of competitive equilibrium paths, Π(x0), is non empty

2. For all x ∈ Π(x0), limn→∞
∑n

t=0 β
tF (xt, xt+1) exists, although it may be plus or minus infinity.

Proof. Point 1 follows trivially from the non-emptiness of Γ for any x ∈ X. For point 2, note that

Lemma 2 established that any x ∈ Π(x0) has a unique associated path y ∈ Π∗(b0, g0) for some

(b0, g0) ∈ B∗. By Assumption 1* we know that for this y, limn→∞
∑n

t=0 β
tr(ct, bt, gt, τt) exists,

although it may be plus or minus infinity. Given that we defined F as F (xt, xt+1) = r(ct, bt, gt, τt),

it must also be that limn→∞
∑n

t=0 β
tF (xt, xt+1) exists.

Proof of Lemma 1. Γ : X 7→ X is defined s.t. xt+1 is on a competitive equilibrium plan given xt

iff xt+1 ∈ Γ(xt). To show that such a definition is possible we first need to show that we can check

if xt+1 is on at least one competitive equilibrium plan given xt without knowledge of xt+2, xt+3, ....

Since xt+1 ∈ X, we know that it lies on at least one competitive equilibrium plan from t+1 onwards,

from the set Π∗(bt+1, gt+1). (xt, xt+1) then lies on at least one competitive equilibrium plan from

t onwards, from the set Π∗(bt, gt), iff (yt+1, ..., yt+N ) ∈ Γ∗(yt). Assumption 3* implies that if

(xt, xt+1) does lie on any competitive equilibrium plans, they must all have the same values of yt,

bt+1, and the variables which are problematic from the perspective of time t. These are all the

variables needed to check whether (yt+1, ..., yt+N ) ∈ Γ∗(yt), and thus we can establish whether xt+1

lies on at least one competitive equilibrium plan given xt with knowledge of only (xt, xt+1).

Since Γ∗ and the relationship between (xt, xt+1) and the variables it pins down are both time

invariant, defining Γ without time dependence is possible. Γ(xt) is non-empty for all xt ∈ X be-

cause being in X implies that xt lies on at least one competitive equilibrium plan, y. The values

(yt+1, ..., yt+L) from this plan define a value for xt+1 on a competitive equilibrium plan.

Proof of Lemma 2. For the first statement: For all (b0, g0) ∈ B∗, each y ∈ Π∗(b0, g0) defines a

unique path x, including its initial element x0. Since y is a competitive equilibrium, we know that

(yt+1, ..., yt+N ) ∈ Γ∗(yt), and hence, by the definition of Γ, that xt+1 ∈ Γ(xt), for all t = 0, 1, ...,

and that x0 ∈ X. Thus x ∈ Π(x0). For the converse: For all x0 ∈ X, each x ∈ Π(x0) means that
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xt+1 ∈ Γ(xt) for all t = 0, 1, .... The definition of Γ means that each pair (xt, xt+1) along the path

defines a unique sequence (yt, yt+1, ..., yt+N ) which satisfies (yt+1, ..., yt+N ) ∈ Γ∗(yt). This is thus a

competitive equilibrium path y ∈ Π∗(b0, g0), with (b0, g0) ∈ B∗ taken from y0.

Proof of Lemma 3. We established in Lemma 2 the equivalence of x and y paths. Suppose that

for some (b0, g0) ∈ B∗ we had V ∗(b0, g0) > sup(τ0,...,τL−1)∈Q(b0,g0) V ((b0, g0, τ0, ..., τL−1)), where the

left hand side supremum is achieved with the path y and the right hand side by the path x′. The

path x defined by y is a competitive equilibrium and delivers higher utility, contradicting that the

right hand side is the supremum. The equivalent argument applies in the opposite direction, leaving

equality as the only possibility.

Proof of Lemma 4. The following four statements follow from Theorems 4.2-4.5 in Stokey and

Lucas (1989). We require that their Assumptions 4.1 and 4.2 hold, which we proved in Lemma 1

and Lemma A1.

1. The function V satisfies (LTC).

2. Let x∗ ∈ Π(x0) be a competitive equilibrium plan that attains the supremum in (MP) for

initial state x0. Then

V (x∗t ) = F (x∗t , x
∗
t+1) + βV (x∗t+1), t = 0, 1, 2, ... (P)

3. If v is a solution to (LTC) and satisfies

lim
t→∞

βtv(xt) = 0, ∀x ∈ Π(x0), ∀x0 ∈ X (BC)

then v = V .

4. Let x∗ ∈ Π(x0) be a competitive equilibrium plan for initial state x0 satisfying (P) and with

lim
t→∞

βtV (x∗t ) ≤ 0

Then x∗ attains the supremum in (MP) for initial state x0.

The first two items of the lemma prove that MP solves the LTC problem: the MP value function V (x)

satisfies the LTC recursion, as do the generated optimal plans. The second two items, combined with
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Assumption 4* can then be used to show that these are the unique function and plans which solve

the LTC recursion. Assumption 4* states that the return function is bounded, which implies that

there is a finite F̄ <∞ for which |F (x, y)| < F̄ for any x, y ∈ X. This implies that |v(x)| ≤ F̄ /(1−β)

for any candidate solution to LTC, including the MP solution, V . This bound, combined with β < 1,

implies that 1) the boundedness condition in point 3 is satisfied for any candidate solution to LTC,

meaning that all solutions must be V , and 2) the boundedness condition in point 4 is satisfied for

any plan, meaning that any optimal plans in the LTC game must be an optimal plan in MP.

B Appendix to Section 4

B.1 Boundedness restrictions

The boundedness restriction in Assumption 4* is satisfied in the applications as long as there are

no competitive equilibria leading to (positive or negative) infinite value, which is a relatively weak

restriction. Competitive equilibrium places an upper bound on period utility, since consumption

must ultimately be produced according to the economy’s production technology, which is bounded

every period if we assume an upper bound for labor supply and capital.

To ensure a lower bound on period utility is less straightforward, since governments in these

models may be able to “shut down” the economy by issuing arbitrarily high taxes. This can push

consumption towards zero, which leads utility to tend to −∞ without bound with, for example,

CRRA utility over consumption. This can be ruled out by an appropriate upper bound on taxation,

such as requiring that the government must remain to the left of the peak of the dynamic Laffer curve,

or by an arbitrary lower bound on utility. These bounds can always be chosen to be non-binding

along an optimal path.

B.2 Additional model 1: Multi-period balanced budget in the capital tax model

In this section we consider a government who faces the constraint that she must balance her budget

every M periods. There are many ways to implement this which lead to LTC supporting FC, and

we illustrate one method here. In particular, we suppose that the government can issue one-period
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bonds, denoted bt, which are priced according to the agent’s Euler equation:

qtuct = βuct+1 (39)

Where uct ≡ uc(ct, gt, lt). The government’s budget is now:

qtbt+1 +
[
ατkt + (1− α) τ lt

]
(vtkt)

α l1−αt = gt + bt (40)

Substituting in the bond Euler gives:

β
uct+1

uct

bt+1 +
[
ατkt + (1− α) τ lt

]
(vtkt)

α l1−αt = gt + bt (41)

We implement the balanced budget assumption by assuming that the government cannot issue

bonds once every M periods. Give each period an index mt ∈ {1, 2, ...,M} denoting its position

in the cycle, with mt = M denoting the last period of the cycle (where the government can’t issue

debt) and mt = 1 denoting the first (where there is thus no inherited debt to repay). To fix ideas,

consider a model where one period is a quarter, and the government must balance her yearly budget.

This means that M = 4, and the government cannot issue any bonds in the fourth quarter of every

year.

The rest of the model equations are as in the baseline model where the government must balance

the budget every period: (29), (30), (31) and (32), to which we add the government budget, (41),

and the restriction that bt+1 = 0 if mt = M . We now prove that we can support FC with LTC with

L = M periods of commitment.

To prove Assumption 3*, we need to prove that given the natural state (kt, bt), if we fix

(τkt , τ
l
t , gt, ..., τ

k
t+M , τ

l
t+M , gt+M ), then (i) we pin down all of yt = (kt,bt, ct, lt, vt, τ

k
t , τ

l
t , gt), of which

we only need to check (ct, lt, vt), and (kt+1,bt+1), and 2) the problematic variables (ct+1, lt+1, vt+1)

are uniquely pinned down given (kt+1,bt+1, τ
k
t+1, τ

l
t+1, gt+1, ..., τ

k
t+M , τ

l
t+M , gt+M ).

This has do be done separately for each position in the cycle, but the procedure is similar in all

cases. First consider a period where mt = 1, at the beginning of the cycle. To check point (i), we

can forward (41) from t to t+M − 1 to yield:

M−1∑
s=0

uct+s

[
ατkt+s + (1− α) τ lt+s

]
(vt+skt+s)

α l1−αt+s =

M−1∑
s=0

uct+sgt+s (42)

Combining this with
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• M resource constraints, (29), from t to t+M − 1

• M labor FOCs, (30), from t to t+M − 1

• M utilization FOCs, (31), from t to t+M − 1

• M − 1 capital Euler equations, (32), from t to t+M − 2

gives 4 × M equations in 4 × M unknowns, {ct+s, lt+s, vt+s, kt+s+1}M−1
s=0 . While the number of

equations does equal the number of unknowns, given the nonlinearity of the system we are unable

to prove that this system admits a unique solution, and must maintain sufficient functional form

restrictions as an additional assumption to be checked case by case. Under this assumption, this

system thus pins down (ct, lt, vt), and (kt+1,bt+1), which were required for point (i).

To check point (ii) forward (41) from t+ 1 to t+M − 1, given (kt+1,bt+1), and apply the same

procedure using the same equations from t+ 1 to t+M − 1 to solve for (ct+1, lt+1, vt+1). A similar

procedure can be applied for periods at different points in the cycle.

B.3 Additional model 2: Time-to-build

In this section we consider an extension of the model of Section 4.3 with single-period balanced

budgets but M period time-to-build. By M period time-to-build, we mean that investment today,

it, creates capital which becomes productive at time t+M :

kt+M = (1− δ)kt+M−1 + it (43)

Note that kt+M−1 is predetermined at time t. In this case the agent’s Euler equation for capital

becomes:

uct = βuct+1(1− δ(vt+1)) + βMuct+Mα (vt+Mkt+M )α−1 l1−αt+M

(
1− τkt+M

)
(44)

All other equations of the model remain the same, apart from the resource constraint which now

reads ct + kt+M − (1− δ) kt+M−1 + gt = kαt l1−αt . The problematic variables are now ct+1, lt+1, vt+1,

ct+M , lt+M , and vt+M , as well as the policies gt+1, gt+M , and τkt+M . In the notation of our general

formulation we have N = M , with variables up to M periods ahead appearing in the constraints.

As in the original model with one period time-to-build, given
(
kt, τ

k
t , τ

l
t , gt

)
, equations (29),

(30), (31) and (33) still form a system of four (non-linear) equations in four unknowns, namely
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(ct, lt, vt, kt+1), which admit a unique solution under the original assumptions. However, note that to

satisfy the second part of Assumption 3* we need to be able to pin down (ct+1, lt+1, vt+1, ct+M , lt+M , vt+M )

given kt+1 and the policies predetermined from the time-t+ 1 government’s perspective.

One period of commitment is no longer enough to achieve this, since (kt+1, τ
k
t+1, τ

l
t+1, gt+1) will

only pin down (ct+1, lt+1, vt+1). However, by the same logic (kt+1, τ
k
t+1, τ

l
t+1, gt+1, ..., τ

k
t+M , τ

l
t+M , gt+M )

will pin down all of the required problematic variables. Thus, M periods of commitment are sufficient

to recover FC in this extension.

B.4 Additional model 3: Unbalanced budget in the capital tax model

In this section we consider an extension of the capital taxation model where the government is able

to borrow and lend from the household using a one-period bond. Thus we replace the government’s

balanced equation with (41) from the previous section, allowing for government debt, bt pricing

according to the household’s Euler equation.

In the general notation of Section 3 we have bt = (kt,bt), ct = (ct, lt, vt), pt = qt, and τt =

(τkt , τ
l
t , gt). There are no exogenous states (gt is empty). The transition correspondence, Γ∗, is

defined by (29), (30), (31), (32), and (41).

It is possible to prove that our theorem holds in the special case of linear utility from consumption.

In particular, consider a version of the model with constant government spending, g, which is purely

wasteful, a utility function u(ct, gt, lt) = ct − v(lt), and no capital utilization margin, giving vt = 1.

The function v(lt) is assumed to satisfy the usual conditions vl > 0 and vl,l > 0. The equations of

the model are now:

ct + kt+1 − (1− δ) kt + gt = kαt l1−αt . (45)

v′(lt) =
(

1− τ lt
)

(1− α)kαt l−αt (46)

βbt+1 +
[
ατkt + (1− α) τ lt

]
kαt l1−αt = g + bt (47)

1 = β
[
αkα−1

t+1 l1−αt+1

(
1− τkt+1

)
+ 1− δ

]
(48)

Since there is no utilization margin we also add the constraint that capital taxes cannot exceed an

upper bound τ̄k. Even with linear utility from consumption, there is still a meaningful distinction

between the FC and NC solutions to this model. A government with FC will choose to have the
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time-0 capital tax at the maximum level, and then set capital taxes from time 1 onwards to zero.33

Labor taxes will be constant from period 1 onwards. A government with NC, on the other hand,

will have the temptation to tax capital once it is installed, and is going to set capital taxes to the

maximum level for a long time, potentially forever.

To see that LTC can support FC in this special case, note that the only problematic variable is

now lt+1. In the notation of our general formulation we have N = 1, with variables one period ahead

appearing in the constraints. We need to show that Assumption 3*, holds in this model for L = 1.

In other words, we need to show that given the natural state (kt,bt), if we fix (τkt , τ
l
t , τ

k
t+1, τ

l
t+1), then

1) we pin down all of yt = (kt, ct, lt, τ
k
t , τ

l
t ), of which we only need to check (ct, lt), and (kt+1,bt+1),

and 2) the problematic variable lt+1 is fixed given (kt+1,bt+1, τ
k
t+1, τ

l
t+1).

To see that this is the case note that, given kt and τ lt , (46) pins down a unique lt, defining a

function lt = l(kt, τ
l
t ). Combined with (48) and the time-t government’s choice of (τkt+1, τ

l
t+1) this

uniquely pins down (kt+1, lt+1). Finally, the resource constraint, (45) uniquely pins down ct, and the

government’s budget, (47), uniquely pins down bt+1.

The economic reason that one period of commitment can sustain FC in this model is that it

features one period time-to-build. It is simple to prove, as we did in the second extension, that with

M period time-to-build M periods of commitment are required to support FC in this model.

B.5 Arbitrary initial conditions in the capital tax model

In the special case of the capital tax model with linear utility from consumption for which our

theorem holds, we can also prove that the equilibrium of the LTC game converges to a different FC

solution if a generic time-t government inherits “incorrect” policies. Recall that in this model the

FC solution for t > 0 features zero capital taxes and constant labor taxes.

To prove this, it is convenient to combine the competitive equilibrium constraints into a single

33Straub and Werning (2015) show that in the presence of an upper bound on capital taxation, it is possible that

the Chamley-Judd result that capital taxes converge to zero does not hold for sufficiently high initial government debt,

and the upper bound optimally binds asymptotically. We assume that initial government debt is low enough to avoid

this case.
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implementability constraint:

1

β
kt + bt = ct − vl,tlt + kt+1 + βbt+1 (49)

This constraint combines all the time-t constraints except for the capital Euler equation, and also

incorporates the time-t − 1 Euler equation.34 We can write the government’s problem recursively.

Note that we can use (bt, kt, lt) as the only states since we can use the time-t labor condition, (46),

and t−1 Euler, (48) to infer what time-t taxes they imply, instead of holding the taxes as additional

states.

W (bt, kt, lt) = max
bt+1,kt+1,lt+1

kαt l1−αt + (1− δ) kt − g − kt+1 − v(lt) + βW (bt+1, kt+1, lt+1) (50)

where the maximization is subject to (49). Denote by λt the multiplier on (49), then the capital,

bond and labor first order conditions give respectively:

1− λt = β
(
αkα−1

t l1−αt + 1− δ
)
− λt+1 (51)

λt = λt+1 (52)

(1− α)kαt+1l−αt+1 − v
′(lt+1)− λt+1(v′′(lt+1)lt+1 + v′(lt+1)) = 0 (53)

We can combine the capital and bond first order conditions to give:

1 = β
(
αkα−1

t l1−αt + 1− δ
)

(54)

This is just the household’s capital Euler equation with zero capital taxes. Hence we have shown

that regardless of the initial condition at time-t, a government with LTC will always immediately

set τkt+1 = 0. Labor taxes will be constant from period t + 1 onwards because both the multiplier

and capital in (53) are constant, implying constant hours, and hence constant labor taxes. The level

these constant labor taxes must be set at can be solved for by iterating the government’s budget

constant forward and imposing transversality. These constant labor taxes must be the solution to a

FC game for a different value of the initial endogenous state variables.

34Thus the constraint requires that the time-t capital tax is consistent with the optimal choice of kt made one period

before. Hence the following discussion applies to any deviation of t + 1 policy from the FC plan which is announced

at time-t, not surprise deviations. The result that we converge to another FC plan also holds for surprise deviations,

but the convergence simply takes one period longer.

53



C Numerical appendix: solving models where the LTC-FC equiv-

alence holds

C.1 Algorithm to construct feasible set, X

In this section we construct a procedure to calculate the set X, on which the LTC problem is defined.

Recall that X was defined as:

X =
{
x ∈ B ×G× TL : x lies on at least one path y ∈ Π∗(b0, g0) for some (b0, g0) ∈ B∗

}
(55)

The procedure is iterative, and based on Phelan and Stacchetti’s (2001) procedure for solving for

the value correspondence in their setup. First we define a transition correspondence:

Definition 6. Γ̃ : B × G × TL 7→ B × G × TL is defined such that xt+1 ∈ Γ̃(xt) iff there exists a

(yt+1, ..., yt+N ) ∈ Y N such that 1) (yt+1, ..., yt+N ) contains the problematic elements {bt+s, ct+s, pt+s}Ns=1

and bt+1 uniquely pinned down by (xt, xt+1), and 2) (yt+1, ..., yt+N ) ∈ Γ∗(yt).

Note that this is closely related to the correspondence Γ, but is defined on the more general set

B×G×TL, since we do not know the set X at this point. Now, for a generic set Xn ∈ B×G×TL,

define the mapping over sets:

B(Xn) =
{
x ∈ B ×G× TL : there exists x′ ∈ Γ̃(x) s.t. x′ ∈ Xn

}
(56)

B(Xn) is the set of xt = (bt, gt, τ
L
t ) such that it is possible to find a xt+1 = (bt+1, gt+1, τ

L
t+1) which

satisfies today’s CE constraints (given xt) and leaves xt+1 ∈ Xn. We first prove two preliminary

lemmas:

Lemma 5. X = B(X)

Proof. Suppose that X ⊃ B(X) strictly. Then there exists some x̂ ∈ B(X) and x̂ /∈ X such that

there exists x′ ∈ Γ̃(x̂) with x′ ∈ X. Since x′ is on a CE path and is reachable from x̂, x̂ must also

be on a CE path which features x̂ and x′ as its first and second elements. This contradicts x̂ /∈ X.

Now suppose that X ⊂ B(X) strictly. Then there exists some x̂ ∈ X such that there exists no

x′ ∈ Γ̃(x̂) with x′ ∈ X. Thus x̂ cannot be on a CE path, contradicting x̂ ∈ X. Thus it must be that

X = B(X).
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Lemma 6. If Xn+1 ⊂ Xn, then B(Xn+1) ⊂ B(Xn).

Proof. Consider a generic x ∈ Xn+1. To be in B(Xn+1) there must exist an x′ such that x′ ∈ Xn+1

and x′ ∈ Γ̃(x). Since Xn+1 ⊂ Xn, we must have x′ ∈ Xn, and hence also x ∈ B(Xn). Since this is

true for any x ∈ Xn+1, we have B(Xn+1) ⊂ B(Xn).

We are now ready to state the main result:

Lemma 7. Suppose that X0 ⊃ X, and B(X0) ⊂ X0. Define the recursion Xn+1 = B(Xn). Then

limn→∞Xn = X.

Proof. The proof is recursive. 1) X1 = B(X0) ⊂ X0 ⇒ B(X1) ⊂ B(X0)⇒ X2 ⊂ X1. Carrying this

on, we find that Xn ⊂ Xn−1 ⊂ ... ⊂ X0 for any n. 2) Also, X ⊂ X0 ⇒ B(X) ⊂ B(X0)⇒ X ⊂ X1.

This inductively implies that X ⊂ Xn for any n. Combining points 1 and 2 gives X ⊂ Xn ⊂

Xn−1 ⊂ ... ⊂ X0. Since this sequence of sets is decreasing it has a limit in the sense of set inclusion:

X∞ ≡ limn→∞Xn. By a simple limit argument, X∞ = X.

This recursion is thus guaranteed to converge to X for an appropriately chosen X0. A simple

example of an X0 which satisfies the required conditions is X0 = B ×G× TL.

C.2 Lucas and Stokey (1983) economy

Utility is parameterized as u(c, l) = c1−σ/(1− σ)−Dl1+η/(1 + η), specialized to σ = η = 1. We set

β = 0.96 as standard. We calibrate g, b0 and D to a fictional steady state were taxes to be constant.

We target l = 1/3 by appropriately choosing D, and set g to 20% of output. We target debt to GDP

of around 60% and choose b0 accordingly, leading to required constant taxes of around 22% in the

fictional steady state.

The LTC game is solved using value function iteration. We discretize the state, (b, τ l), and maxi-

mize over (τ l)′ using a grid search procedure, with b′ solved for explicitly using the implementability

constraint. Future values off the grid are interpolated using splines. The set X is solved for using the

iterative procedure developed in the paper. We solve for explicit maximum and minimum feasible b

values on the τ l grid. During the value function iteration, we restrict the government from making

(τ l)′ choices which would lead ((τ l)′,b′) to be outside of X.
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To choose grids for the LTC game, we first solve the FC problem starting from b0. We then take

the maximum and minimum values for the grids for b and τ l to be 5% above and below the largest

values observed along the FC path respectively.

D Public good and capital taxation: characterization of FC and

NC and solution algorithm for LTC

D.1 Full Commitment

Let λt and γt be the Lagrange multipliers on (36) and (38) respectively. Starting from a given k0

and γ−1 = 0, first order conditions for the FC equilibrium are

λt = u′(ct) + γtu
′′(ct)− γt−1u

′′(ct)

(
1 + αkα−1

t+1 − δ −
gt+1

kt+1

)
(57)

λt = z′(gt) + γt−1
u′(ct)

kt
(58)

λt = βλt+1(1 + αkα−1
t+1 − δ)− βγtu

′(ct+1)

[
α(α− 1)kα−2

t+1 +
gt+1

k2
t+1

]
(59)

D.2 No Commitment

All future governments play gt+j = g̃NC(kt+j) for j = 1, 2, .., leading to continuation value Ṽ NC(kt+1).

The private sector follows the optimal consumption rule consistent with current and future govern-

ment policies: ct = c̃NC(kt, gt; g̃). The government problem, given state k is:

max
c,g

u(c) + z(g) + βṼ NC(k′)

subject to

k′ = kα + (1− δ)k− g − c̃NC(k, g; g̃) (60)

and a NC equilibrium implies that the argmax of this maximization yields g = g̃NC(k).

D.3 Limited-Time Commitment

Future governments play gt+j+1 = g̃LTC(kt+j , gt+j), leading to continuation value Ṽ LTC(kt+1, gt+1).

The private sector follows the optimal consumption rule consistent with current and future govern-
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ment policies: ct = c̃LTC(kt, gt, gt+1; g̃). Hence the continuation value can be expressed recursively

as follows:

Ṽ LTC(k, g) = u(c̃LTC(k, g, g̃LTC(k, g); g̃)) + z(g) + βṼ LTC(k′, g̃LTC(k, g)) (61)

with

k′ = kα + (1− δ)k− g − c̃LTC(k, g, g′; g̃) (62)

The government problem, given state (k, g) is:

max
c,g′

u(c) + z(g) + βṼ LTC(k′, g′)

subject to (62) and a LTC equilibrium implies g′ = g̃LTC(k, g) as argmax.

D.4 Algorithm for LTC

We briefly describe a global solution algorithm for LTC, based on projection methods. First, notice

that thanks to separability between the two goods in utility, both in the consumer’s saving problem

and in the government’s optimization, the capital stock and current government spending matter

only through their joint effect on the amount of resources available for private consumption and

investment, which we define as at ≡ k1−α
t + (1− δ)kt− gt. Hence we can use this as a sufficient state

variable to compute the decision rules. However, we need to use k and g independently to compute

the continuation value function Ṽ LTC . We proceed as follows.

1. Discretize the sets of a, k, g

2. Set a polynomial order S (in our case, S = 3) and guess a future policy function g̃LTC ≈

P (a;φg) ≡
∑S+1

0 φg,ja
j

3. Solve the households’ consumption-saving problem by iterating on the Euler equation (38) and

approximating the consumption function c̃LTC ≈ P (a;φc)

4. Approximate the continuation value function Ṽ LTC ≈ P (k, g;φw) by iterating on (61)

5. Solve the maximization problem of government t on a grid for a. Approximate the associated

decision rule with a polynomial with coefficients φ′g

6. Update the guess for g̃LTC as follows: φg = ψφ′g + (1− ψ)φg with ψ ∈ [0, 1] until convergence.
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E Figures

Figure 1: Feasible set and LTC policy function in the LS economy
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Left panel represents the feasible set X via upper and lower limits bmin(τ l) and

bmax(τ l). Right panel plots slices from the policy function τ lt+1 = g(bt, τ
l
t ) at

given values of bt, where τ lt and τ lt+1 are represented on the x- and y-axes re-

spectively. bL, bM , and bH represent low, medium, and high debt levels corre-

sponding to 20% above the bottom of the grid for b, 50% above, and 80% above.
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Figure 2: LTC and FC in the LS economy
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Lines give LTC policy function τ lt+1 = g(bt, τ
l
t ) at a given value of bt, where τ lt

and τ lt+1 are represented on the x- and y-axes respectively. Crosses denote the

t and t + 1 values of the optimal FC plan. The left panel plots the t = 0

problems, showing the LTC plicy function for state b0 and the time-0 and 1 FC

taxes. The right panel plots the t > 0 problems, showing the LTC plicy func-

tion for state bFC and the time-1 and 2 FC taxes, which are both equal to τ lFC .
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Figure 3: A “constitutional reform”: transition from NC to LTC
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Transitional dynamics from NC steady-state (dashed blue) to LTC with one year

of commitment (solid red). Top left panel: capital stock kt; top right: private

consumption ct; bottom left: government spending gt; bottom right: tax rate τkt .
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F Tables

Table 1: Parameter values

Parameter Interpretation Value

β discount factor 0.96

D public good utility .5

α capital share .36

δ depreciation .08

Parameter values for the model in Section 6. We follow the yearly calibration in Klein

et al. (2008).

Table 2: Steady-state comparison

Variable FC NC LTC

y 1 .866 .905

k/y 1.735 1.344 1.452

c/y .712 .696 .701

c/g 4.776 3.542 3.821

τk .674 .778 .752

welf.loss (0) .096 .062

Steady-state results for the model in Section 6. We consider three versions of the

economy (FC, NC and LTC) and report steady-state output, capital-output ratio, pri-

vate consumption-output ratio, private consumption-public consumption ratio, tax rate

and welfare loss, measured as the fraction of permanent consumption that would make

the representative household indifferent between the economy considered and the FC

economy.
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