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Abstract

We develop a multivariate unobserved components model to extract business cycle and

financial cycle indicators from a panel of economic and financial time series of four

large developed economies. Our model is flexible and allows for the inclusion of cycle

components in different selections of economic variables with different scales and with

possible phase shifts. We find clear evidence of the presence of a financial cycle with

a length that is approximately twice the length of a regular business cycle. Moreover,

cyclical movements in credit related variables largely depend on the financial cycle,

and only marginally on the business cycle. Property prices appear to have their own

idiosyncratic dynamics and do not substantially load on business or financial cycle

components. Systemic surveillance policies should therefore account for the different

dynamic components in typical macro financial variables.

Key Words: financial cycle; business cycle; phase shift; multivariate state space model;

Kalman filtering; panel time series.
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1 Introduction

We introduce a model-based rather than a pure filtering approach to estimate the financial

cycle from a panel of economic and financial time series for four large developed economies.

The possible existence and dynamics of a financial cycle have gained momentum following the

2008 financial crisis and the subsequent European sovereign debt crisis. Cyclical fluctuations

in macro financial variables appear to be not only caused by business cycle fluctuations, but

also by other secular swings in financial aggregates. It is widely established that such ‘finan-

cial cycles’ have a typical length between 10 and 30 years, which is substantially longer than

a typical business cycle. Therefore, estimating the dynamics of such cycles is an important

step in surveilling systemic stability.

Recent contributions in the extraction of the financial cycle from economic and financial

variables are given by, among others, Claessens, Ayhan Kose, and Terrones (2011), Borio

(2014), Strohsal, Proaño, and Wolters (2015), Drehmann, Borio, and Tsatsaronis (2012),

and Galati, Hindrayanto, Koopman, and Vlekke (2016). We refer to Galati et al. (2016) for

an elaborate introduction and review of the financial cycle literature. Many of the papers

on the financial cycle use standard non-parametric detrending techniques from the macro-

economics literature to estimate the cycle, such as the well-known decomposition method

of Hodrick and Prescott (1980) or the so-called band-pass filters of Baxter and King (1999)

and Christiano and Fitzgerald (2003). These filters are typically formulated in the frequency

domain (spectral analysis). An alternative to these non-parametric detrending techniques is

the econometric model-based approach to a trend-cycle decomposition as developed within

the autoregressive integrated moving average (ARIMA) modeling literature; see, for example,

Beveridge and Nelson (1981) and Morley, Nelson, and Zivot (2003).

Our contribution is to develop an econometric, model-based decomposition framework for

the extraction of the business cycle and financial cycle using a panel of macro financial time

series. For this purpose, we adopt the unobserved components time series (UCTS) model,

or structural time series model, of Harvey (1989); see also Clark (1987), Harvey and Jaeger

(1993) and Harvey and Trimbur (2003) for a complete econometric treatment of trend-cycle

decompositions within the UCTS framework. Our approach is explicitly multivariate in na-

ture and builds on the work presented in Galati et al. (2016). In particular, we consider larger

panels of economic and financial variables and we allow the common (business and financial)

cycles to be shifted to the right or left in each individual variable of the panel. Within the

UCTS approach, especially when compared to semi-nonparametric detrending methods or

even to ARIMA-based approaches, it is rather convenient to extend the econometric analysis

into a multivariate framework with interesting features such as shifting cycles. A success-
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ful exemption is the multivariate band-pass filter of Valle e Azevedo (2011). Multivariate

generalization of the UCTS framework for extracting business cycles is developed by Valle e

Azevedo, Koopman, and Rua (2006). Such methods can also be used to simultaneously

extract the business cycle and financial cycle from a panel of time series.

We apply our multivariate model to a panel of macro financial variables including most

of the typical variables used to estimate the financial cycle. The variables include gross

domestic product (GDP), credit related variables, and property prices. We perform our

analysis for four main developed economies: the United States, Germany, France, and the

United Kingdom. To account for the possibility that the business cycle and financial cycle

may affect each of these variables differently, our model set-up allows for different amplitudes

and different lead/lag relationships of the cycles across the different variables. The lead/lag

relationships are estimated implicitly by adopting the phase shift methodology of Rünstler

(2004), which is applicable to stochastic cyclical processes. Furthermore, the cycle lengths

are not fixed ex-ante but are estimated from the data. The UCTS model can conveniently be

formulated in a linear state space form and the parameters can be estimated using standard

maximum likelihood and Kalman filtering methods; see Harvey (1989) and Durbin and

Koopman (2012).

We find clear evidence of a financial cycle above and beyond business cycle movements

for the countries in our sample, with the exception of Germany. The financial cycle typically

has twice the length of the business cycle and is in line with the 10–30 year range that is

reported in earlier studies; see Galati et al. (2016) and the references therein. Interestingly,

the financial cycle explains most of the cyclical movements in the credit related variables

in our sample. Using the level of credit, the credit-to-GDP, and the credit-to-disposable-

personal-income (DPI) ratios, the financial cycle explains more than 79% of the cyclical

variation in these variables, the remainder being captured by the business cycle. For the

credit-to-GDP and credit-to-DPI ratios, the business cycle even captures less than 6% of

the cyclical movements. This underlines the importance of keeping track of financial cycle

movements in systemic stability surveillance, as business cycle fluctuations alone do not

capture the full dynamic pattern of the macro finance environment.

Another important finding of our empirical analysis is that property prices appear to

follow their own dynamic pattern. Property prices only react marginally to business cycle

and financial cycle fluctuations. To replicate financial cycle patterns from the literature,

the trend components in property prices have to be restricted to be sufficiently rigid. If

such restrictions are relaxed, the data indicate that the dynamic pattern in property prices

deviates substantially from that in GDP or in the credit related variables. Relaxing these
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assumptions is possible in our model-based framework. However, some caution should be

taken when property prices are mixed with credit information to estimate a financial cycle.

The extraction of financial cycles from economic and financial time series stands in a

much longer tradition in the literature on business cycle extraction; see, for example, Stock

and Watson (1999) for a review of the literature, Krolzig (1997) for a multivariate approach

using switching regime vector autoregressive (VAR) models, and Sims (1980) and Bernanke

and Blinder (1992) for seminal references to the structural VAR literature for analyzing and

extracting business cycles.

The remainder of this paper is organized as follows. We describe the data in Section 2.

The multivariate unobserved components time series model with common cycles and phase

shifts is explained in Section 3. Results are presented in Section 4. Section 5 concludes.

2 Data

To construct our panel data set of quarterly economic and financial time series, we follow the

predominant choice of variables in the financial cycle literature and include Credit, Credit-to-

GDP, Credit-to-Disposable Personal Income (Credit-to-DPI), and residential property prices

(Property). For the use of these and similar variables, see for example Claessens et al. (2011),

Drehmann et al. (2012), Strohsal et al. (2015), and Galati et al. (2016). In addition to these

credit and price related variables, we include GDP to represent the business cycle and isolate

the financial cycle.

Credit data are provided by the Bank for International Settlements.1 The variable mea-

sures the outstanding amount of credit at the end of each quarter. Credit covers core debt,

i.e., loans, debt securities and currency and deposits. Disposable Personal Income and GDP

are obtained from the research website of the Federal reserve bank of St. Louis2 for the U.S.,

and from Datastream for the other countries. Nominal property prices are also obtained

from the Bank of International Settlements.3 House prices are typically included in analyses

on the financial cycle. One of the typical economic sectors where excess credit can settle

in case of an upward financial cycle is housing. Excess credit may lead to excess demand

on the housing market, which under inflexible supply, has an effect on house prices and

therefore may be reflective of a financial cycle being active. Such cyclical movements may be

systemically distortive, such that it is important to get a clear signal of whether such cycles

are effective or not.

1’BIS total credit statistics’, http://www.bis.org/statistics/totcredit.htm.
2See https://research.stlouisfed.org/.
3See http://www.bis.org/statistics/pp.htm.
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If possible, real (constant price) time series are considered, expressed in billions of the

domestic currency. For nominal series, the series are first deflated by the Consumer Price

Index (CPI, all items) of the respective country. Also, if series are not seasonally adjusted, we

apply the X12-ARIMA filter for seasonal adjustment. Finally, we take natural logarithms to

remove (potentially) exponential growth patterns and to approximately linearize the series.

The Credit-to-GDP and Credit-to-DPI series are ratios and are therefore not expressed in

logs. The length of each time series in the panel is determined by data availability. Hence

we are analyzing unbalanced panels of data. For example, data for GDP are typically more

abundant than for property prices. Our final sample comprises the period 1970–2014.

3 Multivariate unobserved components model

Let yt = (y1t, . . . , ypt)
′ be a vector of observations at time t with elements yit for i = 1, . . . , p

and t = 1, . . . , n. To obtain our trend-cycle decomposition, we use the model

yit = µit + δiψBC,t + βiψFC,t + εit, εit
iid∼ N(0, σ2

ε,i), (1)

where µit represents a series-specific trend component for series i, and ψκ,t, κ ∈ {BC,FC}
represent the two stochastic cycles (BC for business cycle and FC for financial cycle) which

are common to all series in yt. The BC and FC cycles are intended to capture the respective

medium-term business cycle and long-term financial cycle dynamics. The contributions of

the BC and FC cycles to the ith time series variable yit are determined by the loadings

δi ≥ 0 and βi ≥ 0, respectively. The non-negative restrictions are imposed for convenience

and interpretation since we also introduce possible phase shifts in the cycles between the

series in yt; see Section 3.1. The individual disturbance term, or also referred to as the irreg-

ular component, εit is assumed to be normally distributed and serially and cross-sectionally

uncorrelated, that is across i and t. Seasonal components could also be added to the de-

composition in (1) as in Harvey (1989) and Durbin and Koopman (2012). Since we focus

on extracting cycles, we do not consider seasonal components here and instead use the X12-

ARIMA filter for the seasonal adjustment the time series, prior to the modelling task.

Cycles are typically viewed as temporal deviations from a long-term trend. In order to

provide some space for the cycle component to make an impact on yit, we impose a certain

level of smoothness to the trend component. For this purpose, we specify it as a local linear

trend that is given by

µi,t+1 = µit + νit,

νi,t+1 = νit + ξit, ξit
iid∼ N(0, σ2

ξ,i),
(2)
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where νit represents the gradient of the trend component µit and is often referred to as the

growth or slope term; see Harvey (1989), Durbin and Koopman (2012) and the references

therein. The disturbance term ξit is assumed to be serially and cross-sectionally uncorrelated

and independent of εit, contemporaneously and for all leads and lags. Further smoothness

for the trend component can be introduced in this specification and is discussed in detail by

Harvey and Trimbur (2003).

The stochastic cycle components ψBC,t and ψFC,t are modelled as stationary dynamic

processes and are formulated by the trigonometric specification(
ψκ,t+1

ψ?κ,t+1

)
= φκ

[
cosλκ sinλκ

− sinλκ cosλκ

](
ψκ,t

ψ?κ,t

)
+

(
ωκ,t

ω?κ,t

)
,

(
ωκ,t

ω?κ,t

)
iid∼ N

(
0,

[
σ2
ω,κ 0

0 σ2
ω,κ

])
, (3)

for κ ∈ {BC,FC}, where the frequency of the cycle λκ is measured in radians with 0 ≤
λκ ≤ π leading to a period of the stochastic cycle of 2π/λκ. The persistence parameter φκ

is restricted within the interval 0 < φκ < 1 to ensure a stationary process for the cycle.

The disturbances ωit and ω?it are mutually, serially, and cross-sectionally uncorrelated and

independent of all other disturbances in the model. The unconditional variance of the cycle is

σ2
ψκ

= σ2
ωκ/(1−φ

2
κ), such that ψκ,1

iid∼ N(0, σ2
ψκ

) and ψ?κ,1
iid∼ N(0, σ2

ψκ
) for κ ∈ {BC,FC}. This

cycle specification is somewhat stylized but the parameters have clear interpretations. Also,

it can be shown that this cyclical dynamic process for ψκ,t can be specified as a stationary

autoregressive moving average (ARMA) process with an autoregressive lag polynomial with

complex roots.

In our decomposition model (1), all time series variables in the panel only share two

common cycles. The trend and irregular components are specific to each equation in the

panel; these two components are truly idiosyncratic. In our specification, we do not impose

the trend, cycle and irregular components to each time series. For example, when a time

series in yt does not exhibit trend behaviour, the variance σ2
ξ,i of the slope term νit can be

set to zero so that νit reduces to a constant (possibly zero, depending on its initial condition)

and µit reduces to a constant (when the slope is zero) or a fixed time trend. Similarly, in

case variance σ2
ε,i is zero, the irregular component εit will vanish from the model equation

(1). When a series does not exhibit cyclical behaviour (or only the BC or FC parts of it),

this can be accounted for by putting either δi and/or βi to zero. Finally, in order to identify

the scales of the BC and FC cycles by means of the variance σ2
ω,κ, we set one of the loadings

δi and one of the loadings βj, across i, j = 1, . . . , p, to unity. The scale of the cycle is then

associated with the variable to which this restriction applies.
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3.1 Phase shifts

A further flexibility in the model equation (1) is introduced by letting the, say, business

cycle component in one variable i lead or lag those in another variable j. We do the same

for the financial cycle. Such an individual shift of the cycle in each equation accounts for

the possibility that the cyclical behaviour in one series is the same as in another series

but only the timing is different: the cycle in variable i leads the same cycle (possibly with

a different scale) in variable j, or vice-versa. This shifting can also be relevant for the

financial cycle component. To introduce this flexibility in our model, we adopt the phase

shift methodology of Rünstler (2004) and replace the decomposition model equation (1) by

the model specification

yit = µit + δiψBC,it + βiψFC,it + εit, εit
iid∼ N(0, σ2

ε,i), (4)

ψBC,it = cos(γBC,iλBC)ψBC,t + sin(γBC,iλBC)ψ?BC,t, (5)

ψFC,it = cos(γFC,iλFC)ψFC,t + sin(γFC,iλFC)ψ?FC,t, (6)

where the components µit, ψBC,it, ψFC,it and εit are introduced and discussed above. This

modelling framework is similar to Valle e Azevedo et al. (2006) where the phase shift is

introduced for a single common cycle. In our modelling framework we have two cyclical

components, BC and FC, in series i that are shifted by γBC,i and γFC,i periods, respectively.

The phase shift coefficients γBC,i and γFC,i are measured in radians with 0 ≤ λκ ≤ π and

are treated as parameters which can be either positive or negative. When positive, the cycle

for series i is shifted to the left (and it is leading the base cycle) and when negative, the

cycle moves to the right (and it follows or lags the base cycle). The base cycle for BC and

the base cycle for FC must be set a-priori with restrictions δi = 1 and γBC,i = 0, for a

specific variable i, and βj = 1 and γFC,j = 0, for a specific variable j, with i, j = 1, . . . , p.

Due to the periodicity of trigonometric functions, γBC,i and γFC,i are restricted to the range

−1
2
π/λBC < γBC,i <

1
2
π/λBC and −1

2
π/λFC < γFC,i <

1
2
π/λFC.

The details of the model used in our empirical study of Section 4 are as follows. The first

series in yt is reserved for the key macroeconomic series of GDP to facilitate the identification

of the business cycle. Hence the equation for GDP includes the base cycle BC but does not

include FC; we have δ1 = 1, γBC,1 = β1 = γFC,1 = 0. The remaining variable equations

for yt include both cycles but the series placed second in yt contains the base cycle for FC;

we have β2 = 1 and γFC,2 = 0. The remaining parameters and unobserved components are

estimated simultaneously. For this purpose, we adopt the state space methods as presented

and discussed in Durbin and Koopman (2012). It requires the formulation of the model as

7



a linear Gaussian state space model and is presented next.

3.2 Linear Gaussian state space model

In order to formulate our decomposition model as a linear Gaussian state space model, we

need to introduce some further notation. Let the vector of states αt consist of all unobserved

trend and cycle components,

αt =
(
µ1t ν1t . . . µpt νpt ψBC,t ψ?BC,t ψFC,t ψ?FC,t

)′
, (7)

By adopting the notation in, for example, Durbin and Koopman (2012, Part I), we can

formulate our model as the linear Gaussian state space model given by

yt = Zαt + εt, εt ∼ N(0,H),

αt+1 = Tαt + ηt, ηt ∼ N(0,Q), α1 ∼ p(·;θ),
(8)

where εt = (ε1t, . . . , εpt)
′,

Z =
(
Z[µ],Z[ψ]

)
, H = diag

[
σ2
ε,1, . . . , σ

2
ε,p

]
, (9)

T = diag
[
T[µ],T[ψBC],T[ψFC]

]
, Q = diag

[
Q[µ],Q[ψBC],Q[ψFC]

]
, (10)

with (A,B) denoting the horizontal concatenation of the matrices A and B, and diag[A,B]

denoting the block diagonal matrix with matrices (or scalars) A and B on the diagonal. The
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submatrices are given by

Z[µ] =
[
Ip ⊗

(
1 0

)]
, T[µ] = Ip ⊗

[
1 1

0 1

]
, (11)

Z[ψ] =



1 0 0 0

δ2 cos(γBC,2λBC) δ2 sin(γBC,2λBC) 1 0

δ3 cos(γBC,3λBC) δ3 sin(γBC,3λBC) β3 cos(γFC,3λFC) β3 sin(γFC,3λFC)
...

...
...

...

δp cos(γBC,pλBC) δp sin(γBC,pλBC) βp cos(γFC,pλFC) βp sin(γFC,pλFC)


, (12)

T[ψBC] = φBC

[
cosλBC sinλBC

− sinλBC cosλBC

]
, T[ψFC] = φFC

[
cosλFC sinλFC

− sinλFC cosλFC

]
, (13)

Q[µ] = diag
[
σ2
ξ,1 , · · · , σ2

ξ,p

]
⊗

[
0 0

0 1

]
, Q[ψBC] = σ2

ω,BCI2, Q[ψFC] = σ2
ω,FCI2, (14)

with Ip being the identity matrix of dimension p, and ⊗ denoting the Kronecker product.

We notice that the specification of matrix Z[ψ] has accounted for the restrictions imposed

for our empirical study.

For this empirical study, we have collected the unknown static parameters in the vector

θ =
{
σ2
ε,1, . . . , σ

2
ε,p, σ

2
ξ,1, . . . , σ

2
ξ,p, δ2, . . . , δp, β3, . . . , βp, γBC,2, . . . , γFC,p, (15)

λBC, λFC, φBC, φFC, σ
2
ω,BC, σ

2
ω,FC

}
.

For a given parameter vector θ, the loglikelihood value, the minimum mean square error

(MMSE) estimates of αt and the forecasts for yt+h, for any h > 1, can be obtained by the

Kalman filter and smoother. The parameter vector θ can subsequently be estimated by the

numerical maximization of the loglikelihood function with respect to θ. Given the possibly

large dimension of θ we use several starting values for the maximization routine to prevent

the risk of searching around local maxima of the loglikelihood function. All calculations are

carried out with the software package OxMetrics of Doornik (2007) and the library of state

space functions in Ssfpack, see Koopman, Shephard, and Doornik (2008).
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4 Results of empirical study

We present the estimation results for the financial cycle based on our macro finance data set

presented in Section 2 and our modelling framework developed in Section 3. The observation

vector yt consists of five quarterly time series variables, that is p = 5 and

yt = (GDP , Credit , Credit-to-GDP , Credit-to-DPI , residential property prices)′t,

for t = 1, . . . , n. We have constructed this data panel for four countries: United States

(U.S.), Germany, France and United Kingdom (U.K.). The data sample stretches from 1970

to 2014, that is n = 140. The data panels are unbalanced which implies that we have

many missing values. Our methods are based on the Kalman filter which enables us to treat

missing values without much additional effort.

The parameters of the business cycle ψBC,t and the financial cycle ψBC,t are subject to

one further mild restriction: the length of the business cycle is bounded between 1.5 and 12

years (compare the business cycle definitions of Burns and Mitchell (1946)) while the length

of the financial cycle must be larger than 12 years. This restriction also implies that the two

cycles have strictly different lengths. For Germany, we allow for a level shift in the trend

component of Credit-to-DPI to account for a break in the DPI series in 1990 due to the

German re-unification. Table 1 presents the parameter estimates.

The estimates of φBC ≈ 0.95 and φFC ≈ 0.99 reveal that both the business cycle and

the financial cycle are highly persistent. In particular, the financial cycle is slowly varying.

The business cycles have estimated lengths of 1
2
π/λBC = 8.05 years for the U.S., and 4.91,

8.75, and 11.99 years for France, U.K. and Germany, respectively. Except for Germany,

the estimates appear to lie well below the 12 year bound that we have imposed during the

estimation process. These estimates are similar to those obtained in earlier empirical work;

see, for example, Galati et al. (2016). In the case of Germany, the data does not appear to

give rise to a separate (idiosyncratic) business cycle with a much shorter cycle length. Even

when we consider a univariate decomposition (trend plus cycle) model for GDP only, the

estimated cycle has a relatively long period, between 13 and 14 years.

It is an interesting finding that the extracted financial cycles have typically around twice

(or more) the length of the business cycle. For the U.S. we have estimated a financial cycle

length of 1
2
π/λFC = 16.84 years, while we have estimated cycle lengths of 23.72, 18.29, and

26.14 for France, U.K., and Germany, respectively. For France, the estimated length of the

financial cycle is more than four times the length of the business cycle. Still, this estimate

is similar to the estimates of the other three countries in our study. It appears that also
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Table 1: Maximum likelihood estimates of the parameter vector θ for United States (U.S.), Germany (GER),
France (FR) and United Kingdom (U.K.). The numbered subscripts of the parameters refer to 1=GDP,
2=Credit, 3=Credit-to-GDP, 4=Credit-to-DPI, and 5=Property. Standard errors are given in parenthesis
and ∗, ∗∗ denote significance at the 5% and 1% level, respectively. Although the data is quarterly, the
estimated periods and phase shfits of the cycles are presented in years for clarity.

δ2 δ3 δ4 δ5 β3 β4 β5

U.S. 0.985∗∗ 0.301∗∗ 0.110∗∗ 0.514∗∗ 0.696∗∗ 0.191∗∗ 0.900∗∗

(0.066) (0.041) (0.025) (0.137) (0.018) (0.025) (0.147)

GER 1.026∗∗ 2.263∗∗ 1.766∗∗ 0.259∗∗ 4.625∗∗ 7.752∗∗ 0.615∗∗

(0.057) (0.312) (0.300) (0.104) (0.091) (0.503) (0.069)

FR 1.080∗∗ 0.939∗∗ 1.347∗∗ 0.299∗∗ 5.195∗∗ 1.784∗∗ 0.082
(0.055) (0.068) (0.230) (0.136) (0.106) (0.112) (0.064)

U.K. 1.114∗∗ 2.175∗∗ 4.596∗∗ 0.747∗∗ 4.255∗∗ 6.022∗∗ 0.211
(0.144) (0.210) (1.208) (0.226) (0.143) (0.596) (0.228)

γBC,2 γBC,3 γBC,4 γBC,5 γFC,2 γFC,4 γFC,5

U.S. −0.659∗∗ −2.013∗∗ −1.010∗∗ 0.771 0.332∗∗ 0.305 −1.158
(0.154) (0.284) (0.289) (0.451) (0.064) (0.380) (0.626)

GER −0.955∗∗ −3.000∗∗ −1.320∗∗ 0.945 0.776 −0.043 6.532∗∗

(0.212) (0.407) (0.618) (0.491) (0.858) (0.054) (1.450)

FR −0.097 −1.228∗∗ −0.279∗ −0.049 0.017 1.970∗∗ 3.655
(0.218) (0.101) (0.141) (0.513) (0.075) (0.571) (2.946)

U.K. 0.155 −2.187∗∗ −0.996∗∗ −0.444 −0.227 1.404∗∗ −18.288∗∗

(0.208) (0.254) (0.156) (0.585) (0.312) (0.447) (1.612)

100× 100×
1
2π/λBC

1
2π/λFC φBC φFC σω,BC σω,FC

U.S. 8.054∗∗ 16.840∗∗ 0.953∗∗ 0.990∗∗ 0.682∗∗ 0.717∗∗

(1.114) (2.074) (0.016) (0.006) (0.039) (0.041)

GER 11.990∗∗ 26.138∗∗ 0.940∗∗ 0.990∗∗ 0.011∗∗ 0.903∗∗

(1.473) (4.384) (0.025) (0.006) (0.001) (0.049)

FR 4.914∗∗ 23.717∗∗ 0.941∗∗ 0.979∗∗ 0.353∗∗ 0.964∗∗

(0.564) (5.777) (0.020) (0.012) (0.025) (0.058)

U.K. 8.750∗∗ 18.290∗∗ 0.952∗∗ 0.992∗∗ 0.734∗∗ 0.015∗∗

(1.075) (2.217) (0.016) (0.006) (0.042) (0.001)

for our model-based approach, we find clear evidence of cyclical behaviour in macro-finance

related data above and beyond business cycle fluctuations. This finding is consistent with

the results from pure filtering based approaches such as those of Drehmann et al. (2012) and

Borio (2014).

The extracted cycles are visualized in Figures 1 and 2. When we investigate the extracted

business cycle for the U.S., we encounter the familiar pattern: our model-based business

cycle indicator declines during the periods classified as recessions by the NBER; these are

the grey areas in Figure 1. It is revealing that the extracted business cycles are quite different
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Figure 1: Extracted business cycles (property prices included)

across our four selected countries. This also holds for the three European countries. For

example, cyclical movements in France during the 1990s were much more pronounced than

those obtained for the U.S. and U.K., whereas the trough in the early 1980s was much less

deep. Conversely, the business cycle rebound after the financial crisis of 2008–2009 was much

stronger in France and Germany when compared to the rebound in the U.K. or the U.S. This

underlines the need to allow for heterogeneity across countries in the cyclical movements,

despite the global economic integration processes that have taken place over this period.

Our estimated financial cycle indicators in Figure 2 show that the cyclical movements in

the financial variables are much longer overall when compared to those of the business cycles.

The cross-country heterogeneity of these results is even more noticeable in this case. The

movements between the U.S. and U.K. largely coincide, with the financial cycle in the U.S.

in the 1980s–1990s peaking about 3 years before the one in the U.K. The financial cycle for

France peaks 3 to 4 years later, around 1994, but does not show a similar build-up towards

2008 as we can observe this build-up for the financial cycles for the U.K. and U.S. The results

for Germany are quite different. After the German re-unification, the financial cycle rises

steadily during the 1990s, but declines afterwards rather than building up to the financial

crisis of 2008. The recent financial crisis is only noticeable as a small increase, after which

12



Figure 2: Extracted financial cycles (property prices included)

the downward trend in the financial cycle continues. It is clear from these patterns that

further important cyclical patterns are clearly present in the time series above and beyond

the business cycle dynamics. Economic policy targeted at financial stability can therefore

not exclusively focus on business cycle dynamics. It appears that longer swings in financial

key ratios also contribute to unhinging systemic stability.

The business cycle and the financial cycle enter each variable in our decomposition model

via the parameters γBC/FC,i. The cycle for each separate variable is not simply a linear

combination of ψBC/FC,t, but it is a linear combination of both ψBC/FC,t and ψ?BC/FC,t as

indicated in equations (5) and (6). The estimated δi coefficients in Table 1 indicate that the

business cycle affects all variables included in the model. Given the negative γBC,i estimates,

most of the financial variables lag the business cycle by 1 to 3 quarters, whereas the total

amount of credit for France and the U.K. appears to be contemporaneously linked with the

business cycle. We regard it as an interesting and insightful empirical finding that property

prices appear to be largely coincidental with the business cycle for all countries in the sample.

The aberrant behaviour of property prices is reinforced when we consider the estimated

βi coefficients which indicate how the financial variables load on the common financial cycle.

Property prices appear to be the only financial variable in the model that does not load

13



strongly on the financial cycle. Whereas the γFC,i estimates are close to zero for most

financial variables, they are substantial and sometimes even significant for property prices.

This is remarkable, because most previous empirical studies on the financial cycle have

included property prices as a key variable for the financial cycle using standard filtering

techniques such as the Hodrick-Prescott filter or the Christiano-Fitzgerald filter; see, for

example, Strohsal et al. (2015), Drehmann et al. (2012), Galati et al. (2016) and Claessens

et al. (2011). Our model-based empirical results reveal that the cyclical movements in

property prices may not be so easily reconciled with the cycles in credit related variables. It

is important to be aware of this when financial cycle estimates are to be used for systemic

risk surveillance.

To investigate the robustness of our estimates of the financial cycle to the inclusion of the

apparently aberrant property prices series, we have re-estimated parameters in our model

specification but for four variables (p = 4), thus leaving out property prices. Comparing

these results (which are not shown but can be provided upon request) with those in Figures 1

and 2, the results present a very similar picture and the conclusions largely coincide. The

only apparent difference is that the business cycle for the U.K. after the financial crisis

now appears to rebound more in line with the other two European countries in the sample,

France and Germany. The effect on the financial cycle estimates of leaving out property

prices, however, appears negligible, thus reinforcing our previous results and conclusions.

Finally, it is interesting to investigate which part of the cyclical variation in our panel

of time series is explained by the business cycle versus the financial cycle. For this purpose,

we compute the unconditional variances of both components for each series and report their

proportions in Table 2. The unconditional variances for the cycles can be derived from

equation (3) and we obtain

σ2
ψBC,it

= σ2
ω,κ/(1− φ2

κ), (16)

for κ ∈ {BC,FC}. This variance has to be multiplied by the square of the loading coefficient

βi or δi. It is implied by the identification restrictions that the business cycle explains 100%

of the cyclical variation of the GDP series. We further find that the business cycle only has

a very modest contribution to the credit related variables. Particularly for the credit related

ratios, the contributions of the business cycle component remain below 6%. The financial

cycle thus appears to be an important part of the credit related variables, and its dynamics

are substantially different from those of the business cycle. Systemic surveillance should thus

account for both types of dynamics when designing adequate policies.
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Table 2: Proportions of the business cycle and financial cycle in the cyclical variance of each series

U.S. Germany France U.K.
BC FC BC FC BC FC BC FC

GDP 100% 0% 100% 0% 100% 0% 100% 0%
Credit 16% 84% 21% 79% 5% 95% 5% 95%
Credit-to-GDP 3% 97% 6% 94% 0% 100% 0% 100%
Credit-to-DPI 6% 94% 1% 99% 3% 97% 1% 99%

5 Conclusions

We have developed a multivariate unobserved components model to construct a model-

based decomposition of a panel of economic time series into a set of smooth trends, a country

specific business cycle and a country specific financial cycle. Our approach provides a model-

based alternative to earlier estimates of the financial cycle based on standard macro filtering

techniques such as the Hodrick-Prescot filter. The cycles in our approach vary stochastically

over time and can be subject to different scalings and phase shifts for different economic

series. Our framework is therefore much more flexible than the filtering approaches while

still targeting a common financial cycle for each specific country using the relevant macro

finance variables.

In our empirical analysis, we have focused on four large economies: the United States,

Germany, France, and the United Kingdom. For a data panel with GDP information, credit

related variables and property prices, we have found statistically significant evidence of the

existence of a financial cycle. The length of the financial cycle typically is around twice as

long as that of the business cycle. The dynamics of the financial cycle also appear to be

quite distinct from the business cycle dynamics: less than 6% of the cyclical variation in

credit related quantities is explained by the business cycle. The remainder can be attributed

to the financial cycle. We therefore conclude that the dynamics of a financial cycle should

be taken into account when designing systemic surveillance policies.

Finally, our results point out that property prices may be subject to different cyclical

dynamics. Using our model-based approach, property prices appear to load only marginally

on either the business cycle or the financial cycle. This finding appears to be in contrast

with earlier literature where property prices are routinely included in the analysis for the

estimation of the financial cycle. Such a routine inclusion may bias the estimates of the

financial cycle and should therefore be interpreted with care.
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