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Abstract 

 

There is substantial empirical evidence that energy and financial markets are closely 

connected. As one of the most widely-used energy resources worldwide, natural gas 

has a large daily trading volume. In order to hedge the risk of natural gas spot markets, 

a large number of hedging strategies can be used, especially with the rapid 

development of natural gas derivatives markets. These hedging instruments include 

natural gas futures and options, as well as Exchange Traded Fund (ETF) prices that 

are related to natural gas stock prices. The volatility spillover effect is the delayed 

effect of a returns shock in one physical, biological or financial asset on the 

subsequent volatility or co-volatility of another physical, biological or financial asset. 

Investigating volatility spillovers within and across energy and financial markets is a 

crucial aspect of constructing optimal dynamic hedging strategies. The paper tests and 

calculates spillover effects among natural gas spot, futures and ETF markets using the 

multivariate conditional volatility diagonal BEKK model. The data used include 

natural gas spot and futures returns data from two major international natural gas 

derivatives markets, namely NYMEX (USA) and ICE (UK), as well as ETF data of 

natural gas companies from the stock markets in the USA and UK. The empirical 

results show that there are significant spillover effects in natural gas spot, futures and 

ETF markets for both USA and UK. Such a result suggests that both natural gas 

futures and ETF products within and beyond the country might be considered when 

constructing optimal dynamic hedging strategies for natural gas spot prices. 

 

Keywords: Energy, natural gas, spot, futures, ETF, NYMEX, ICE, optimal hedging 

strategy, covolatility spillovers, diagonal BEKK. 
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1. Introduction 

 

Natural gas is a vital component of the world’s energy markets. It is cleaner than 

other fossil fuels and occupies an important position in the world’s energy pantheon. 

Compared with other fossil fuels, natural gas is cleaner burning. It is an extremely 

important source of energy for reducing pollution, contributing to health, and 

maintaining a clean natural environment. Natural gas will release a lower ratio of 

carbon emissions than coal and oil in the production of the same units of heat.  

 

According to data from the US Energy Information Administration (EIA), Carbon 

Dioxide Emissions of natural gas is 53.1kg/million Btua, while coal has 95.3 

kg/million Btu, gasoline has 71.3 kg/million Btu, and Kerosene has 72.3 kg/million 

Btu. As carbon dioxide is a well-known greenhouse gas, the use of natural gas will 

have significant benefits for the environment.  

 

Composed primarily of methane, the main products of the combustion of natural gas 

are carbon dioxide and water, while coal and oil are composed of much more complex 

molecules, such as nitrogen and sulfur. This means that, when combusted, natural gas 

releases very small amounts of harmful emissions, including nitrogen oxides (NOx) 

and sulfur dioxide (SO2), which degrade the environment and have a negative impact 

on health. The combustion of natural gas releases approximately no ash, substances 

that do not burn, but enter the atmosphere and contribute to the formation of smog. 

 

Benefits from advances in natural gas exploration technology have led to large 

production and low prices. The production of natural gas has increased rapidly in the 

21st Century, especially in the USA. Such increases in natural gas production have 

come from shale gas resources, an unconventional gas, which is much more 

accessible and economical than conventional gas. Shale gas is natural gas trapped 

within shale formations, was developed in the USA just after 2000, and has become 

an increasingly important source of natural gas. In 2000 shale gas provided only 1% 
                                                       

a British thermal unit: a Btu is the amount of heat required to raise the temperature of 1 avoirdupois pound of 

liquid water by 1 degree Fahrenheit at a constant pressure of one atmosphere. 
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of USA natural gas production, but by 2015 it was approximately 56%, according to 

data from the US EIA. The world’s storage capacity of shale gas is quite large, 

especially in the USA, Canada, Argentina, Algeria and China. The USA and Canada 

already have significant shale gas production, while China has ambitious plans to 

increase shale gas production dramatically. 

 

The prospect of ample natural gas supplies, continuing low prices, and the favorable 

environmental and economic position of natural gas, have led to expectations of  

continuing growth in the demand for natural gas, especially in the electricity and 

industrial sectors. Natural gas is now the third largest usable energy resource in the 

world, preceded only by oil products and coal. According to the 2015 Key World 

Energy Statistics published by the International Energy Agency (IEA), natural gas 

provided 21.4% of total energy supply, 21.7% of electricity generation, and 15.1% of 

total final consumption in the world in 2013.  

 

The natural gas industry is an extremely important segment of the economy, including 

producers, processing plants, pipeline companies, storage operators, marketers and 

local distribution companies, with each group having a large number of companies. 

 

Natural gas has many applications, primarily in electric power, industry, transportation 

and residential use, such as house heating and cooking. Electricity generation is the 

fastest growing use of natural gas. Data from the 2015 Key World Energy Statistics 

show that the share of natural gas in electricity generation has risen from 12.1% in 1973 

to 21.7% in 2013. In the industrial sector, natural gas also has a broad range of 

usefulness, both as a source of heat and power and as an input for producing plastics 

and chemicals.  

 

As for the transportation sector, compressed natural gas has been used as transportation 

fuel, especially in public transit. Residual use is another major consumption of natural 

gas. Referring to data in 2013 from the US Department of Energy, about one-half of US 

homes used natural gas for heating, and 70% of new homes were built using gas heating 

systems.  
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Natural gas is also a critical energy source for energy markets in the future. According 

to data from the US Energy Administration (EIA), natural gas will occupy a greater 

proportion in the USA in both the energy consumption and electricity generation 

sectors for the next 30 years. The situation of primary energy consumption and 

electricity generation by fuel in the USA from 1980 to 2040 is shown in Figures 1 and 

2. In 1990, the consumption of natural gas occupied only 23% of total energy 

consumption in USA, which had risen to 27% in 2013, and is predicted to rise to 29% in 

2040. The proportion of natural gas in electricity generation also increased from 16% in 

1990 to 27% in 2013, and is expected to reach 31% in 2040. 

 

[Insert Figures 1 and 2 here] 

 

Each country has their own strategy for natural gas, with most countries being willing 

to develop natural gas industries. The US Government believes that natural gas 

resources are a critical transitional energy during the process of transforming from 

fossil fuel to clean and renewable energy, and has displayed a willingness to provide 

policy support for natural gas development. The shale gas revolution led by the US 

Government has made natural gas prices fall rapidly, and has promoted the 

transformation of coal to gas for electricity generation. The UK Government has also 

changed their focus from wind and solar energy to natural gas and nuclear energy. 

Despite their reliance on diesel fuel for several decades, the German Government has 

begun to promote natural gas as a new type of motor vehicle fuel since the 1990s.  

 

Since the Fukushima nuclear crisis, Japan’s consumption of natural gas has risen 

rapidly, and the Japanese Government has placed great emphasis on natural gas 

strategies. China has also committed to developing the natural gas industry in order to 

reduce carbon emissions. France has been more willing to invest in green and 

renewable energy, such as wind energy, solar energy, wave energy, and bio-fuel. In 

general, natural gas will play an important role in the future of energy markets. 

 

Unlike other internationally-traded commodity markets, natural gas has disparate 

regional benchmark prices. For instance, the Henry Hub price is the major benchmark 

of natural gas spot prices in USA. In the UK, the National Balancing Point (NBP) gas 

market is Europe’s oldest spot-traded natural gas market, and publishes daily data of 
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natural gas prices. There are many other regional benchmark prices, such as the 

Canadian Gas Price Reporter (CGPR) Daily, prices published by the Dutch Title 

Transfer Facility (TTF), German NetConnect Germany (NCG) and GASPOOL, 

Belgian Zeeburgge Tradint Point (ZTP), and French Powernext exchange (PEG), 

among others. 

 

The derivatives markets for natural gas have grown rapidly from their inception. 

NYMEX published the first natural gas futures in 1990, with great success. 

Derivatives markets for natural gas have recently become the second largest source of 

energy derivatives, exceeded only by crude oil. According to the 2014 FIA Annual 

Volume Survey, Futures Industry Association (FIA), on the basis of trading volume, 

there are five futures or option contracts based on natural gas rankings in the top 20 

energy futures and option contracts. Table 1 lists the Top 20 Energy Futures and 

Options Contracts in 2004. 

 

[Insert Table 1 here] 

 

There are two major natural gas derivatives exchanges, namely, the New York 

Mercantile Exchange (NYMEX) and the Intercontinental Exchange (ICE). NYMEX 

is owned and operated by the CME (Chicago Mercantile Exchange) Group. NYMEX 

published the first natural gas futures in 1990, and has already published 10 kinds of 

futures or options contracts for natural gas. The NYMEX natural gas futures contract 

prices have been used widely as a reference price for natural gas. Its contract trading 

unit for each hand is 10000 MMBtu (million British thermal units), and the delivery 

point is Louisiana Henry Hub.  

 

ICE is the world’s third-largest futures exchange, and owns and operates 23 regulated 

exchanges and marketplaces in different regions, including the USA, Canada and 

Europe. Up to 2015, ICE owned nearly 200 kinds of contracts related to natural gas or 

the natural gas index, and also provided the related Over the Counter (OTC) services 

and products, such as forward prices and swaps.  

  

In addition to exchange-traded natural gas futures and option contracts, natural gas 

derivative contracts are also traded in OTC markets. The OTC market is a market 



 5

where financial instruments such as currencies, stocks and commodities are traded 

directly between two parties, and the agreements are all made based on 

non-standardized mutual consent, which is different from financial instruments traded 

on stock exchanges. The bilateral trading that occurs in OTC markets includes 

forward contracts and swaps, which are generally non-standardized contracts that can 

be tailored to the specific needs of the counterparties involved in the transaction. 

 

Apart from trading derivatives of natural gas, investing in natural gas ETF is also a 

convenient approach to gain exposure to natural gas spot prices. As an emerging 

component of energy ETF, natural gas ETF is quite popular among investors. 

 

An ETF (exchange-traded fund) is a passively managed investment fund that may be 

traded on stock exchanges. Most ETFs track a stock index, such as S&P 500 or Dow 

Jones Industrial Average. There are also other kinds of ETFs. For example, a currency 

ETF tracks a currency index or a foreign exchange, and commodity ETFs track the 

prices of commodities or commodity indices, including metals, energy and 

agricultural products. Due to the inherently low costs and tax efficiency, ETFs are 

very popular. Compared with futures contracts, investing in ETFs does not need to 

consider maturity dates or margins, which is an attractive prospect for investors. 

 

Natural gas ETFs are varied. For example, UNG (United States Natural Gas Fund), 

one of the most popular natural gas ETFs, tracks Henry Hub natural gas spot prices by 

holding near-month natural gas futures contracts (including futures contracts traded in 

both NYMEX and ICE), and also forward and swap contracts. As distinct from UNG, 

DGAZ (VelocityShares 3X Inverse Natural Gas ETN) provides three times the 

negative exposure to the S&P GSCI Natural Gas Excess Return Index for a one-day 

holding period. There are also natural gas ETFs that track stock prices of natural gas 

companies, such as FCG (First Trust ISE-Revere Natural Gas Index Fund). FCG 

tracks the ‘ISE-REVERE Natural Gas Index’, an equally weighted index of US 

companies that derives a substantial portion of their revenue from the exploration and 

production of natural gas. 

 

As one of the most widely used energy resources worldwide, natural gas has a large 

daily trading volume, so that its spot markets are full of risks. Figure 3 shows the 
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Henry Hub daily spot prices and UK NBP natural gas spot prices from February 3, 1997 

to April 15, 2016. As the spot price of natural gas changes considerably in both the US 

and UK markets, it is self-evident that dynamic hedging strategies should be taken in 

natural gas markets. 

 

[Insert Figure 3 here] 

 

Volatility spillovers appear to be widespread in financial markets (Milunovich and 

Thorp, 2006), including energy futures markets (Lin and Tamvakis, 2001), and are 

important for constructing an appropriate dynamic hedging strategy. A volatility 

spillover occurs when changes in return shocks in one market produce a lagged 

impact on volatility in other markets, over and above local effects.  

 

However, testing for spillovers in the literature is typically both confused and 

confusing. Spillover effects can be examined in the conditional means or in the 

conditional volatility of the shocks to returns (see Chang et al. (2015)). When 

volatility spillover effects are tested, univariate conditional volatility models, such as 

ARCH and GARCH, as well as multivariate conditional volatility models, including 

variations of BEKK, are among the most widely-used models..  

 

McAleer et al. (2008) have shown that the Quasi Maximum Likelihood Estimates 

(QMLE) of the parameters in the BEKK model are consistent and asymptotically 

normal only when the covariance matrix of the random coefficient is diagonal or 

scalar. The full BEKK model has no underlying stochastic process, and hence no 

associated regularity conditions. Therefore, any purported asymptotic properties hold 

only by assumption (see Chang et al. (2015)), and none of the purported tests of 

volatility spillover effects using the full BEKK model has any statistical validity. 

However, most of the published papers in the literature testing for volatility spillovers 

have used the problematic full BEKK model, which certainly suggests that much of 

the empirical research is highly questionable. 

 

Indeed, many so-called tests of spillovers in the literature are not actually tests of 

spillover. Therefore, the paper will estimate models using the three definitions of 
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volatility spillovers of Chang et al. (2015), specifically full volatility, full co-volatility 

and partial co-volatility spillovers, and test the partial co-volatility spillover effects 

among the natural gas spot, futures and ETF markets by using the diagonal BEKK 

model. 

 

In light of the above, the three primary purposes of the paper are as follows:  

 

(1) analyze the natural gas industry, emphasizing the key issues that drive various 

aspects of natural gas across commodities, data sources, and financial derivatives; 

 

(2) estimate multivariate conditional covariance models, namely diagonal BEKK, 

using the returns on spot, futures and ETF prices for the USA and UK;  

 

(3) calculate co-volatility spillovers among natural gas spot, futures and ETF markets, 

both within and outside the US and UK energy markets. 

 

The remainder of the paper is presented as follows. Section 2 reviews the brief extant 

literature on volatility spillovers. Section 3 introduces volatility models in detail. 

The data and empirical analysis is presented in Section 4. Section 5 gives some 

concluding comments. 

 

 

2. Literature on Volatility Spillovers  

 

Substantial research has been undertaken on testing volatility spillover effects within 

and across energy spot, futures, and ETF markets in the energy sector.  

 

With the development of the ARCH model of Engle (1982) and GARCH model of 

Bollerslev (1986), the literature in the early 2000s focused on using these univariate 

conditional volatility models to test volatility spillovers using energy data. Lin et al. 

(2001) seems to have been the first attempt to examine spillover effects in energy 

markets. The authors investigate volatility spillover effects between crude oil contracts 

of NYMEX and IPE using both ARCH and GARCH models, and find the existence of 
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substantial spillover effects. Hammoudeh et al. (2003) examine both mean and 

volatility spillovers among spot and futures prices for crude oil, heating oil and 

gasoline, using co-integration methods, error-correction representations, and GARCH 

models. 

 

Subsequently, all estimation and testing of spillover effects seems to have shifted to 

multivariate GARCH models, including variations of the BEKK model of Baba et al. 

(1985) and Engle and Kroner (1995), and the DCC model of Engle (2002). Ewing et 

al. (2002) estimate a full BEKK model to test simultaneously how the volatility in the 

oil and natural gas sectors changes over time and across markets. The empirical results 

show that volatility spillovers exist between the oil and natural gas markets.  

 

From a risk management perspective, Haigh et al. (2002) model the time-varying 

volatility spillovers among the crude oil, heating oil, and natural gas futures markets 

using multivariate GARCH models, and find the volatility spillovers between the 

markets are not only significant, but are also able to assist in reducing risks. 

 

In order to investigate the determinants of price volatility in energy futures markets and 

forecast volatility in energy markets, Karali et al. (2014) analyze the spillover effects in 

crude oil, heating oil, and natural gas futures markets using the problematic full BEKK 

model. Bi-directional volatility spillover effects were found between natural gas and 

crude oil, and between the natural gas and heating oil markets.  

 

As natural gas has recently occupied an increasingly important position in electricity 

generation, especially in the USA, Efimova et al. (2014) focused on investigating the 

volatilities of the oil, natural gas, and electricity markets in USA. Trivariate BEKK and 

DCC models were used to observe volatility spillovers among the energy and 

electricity markets. The empirical results show significant interactions among the three 

markets, including volatility spillovers from one asset to another. The performance of 

estimating and forecasting univariate and multivariate models were also be compared, 

with the estimates from the univariate and multivariate models being broadly similar, 

while the forecasts from the univariate models were determined to be more accurate. 
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Despite the widely used full BEKK and DCC models, alternative multivariate volatility 

models are available, such as the constant conditional correlation (CCC) model of 

Bollerslev (1990), the varying conditional correlation (VCC) model of Tse and Tsui 

(2002), the vector ARMA-GARCH (VARMA-GARCH) model of Ling and McAleer 

(2003), and the VARMA-asymmetric GARCH (VARMA-AGARCH) model of 

McAleer et al. (2009). McAleer (2005) provides further details for most of these 

multivariate models. In practice, there are also substantial applications of each of these 

multivariate models.  

 

For purposes of testing volatility spillovers between crude oil futures prices and oil 

company stocks prices, Chang et al. (2010) analysed the volatility spillovers and 

asymmetric effects across and within four major benchmarks of crude oil markets: 

WTI, Brent, Dubai/Oman and Tapis, by using multivariate GARCH models, namely 

CCC, VARMA–GARCH and VARMA–AGARCH. The results presented some 

volatility spillover effects between Brent and WTI returns, and from the Brent and WTI 

crude oil markets to the Dubai and Tapis markets. These empirical results confirm that 

the Brent and WTI crude oil markets are the international benchmarks for crude oil.  

 

In order to hedge the risks of crude oil spot and futures prices, Chang et al. (2011) 

investigated the effectiveness of the BEKK, diagonal BEKK, CCC, DCC, and 

VARMA-GARCH models. Two major benchmark international crude oil markets, 

Brent and WTI crude oil prices, are considered in the empirical analysis. Volatility 

spillover effects between spot and futures returns are found in both the Brent and WTI 

markets.  

 

As a clear and accurate definition of volatility spillovers have recently been provided 

by Chang et al. (2015), namely full volatility, full co-volatility and partial co-volatility 

spillovers, virtually all the previous testing of so-called “volatility spillovers” in the 

literature are highly questionable. Chang, McAleer and Wang (2016) seems to have 

been the first paper to estimate and calculate (partial) co-volatility spillovers that could 

be tested validly using the diagonal BEKK model.  

 

In the paper, co-volatility spillover effects for spot and futures returns and 

bio-ethanol-related agricultural commodities, namely corn and sugar, are analysed 
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using the diagonal BEKK model. The empirical results suggest significant positive 

co-volatility spillover effects among the futures markets of the three commodities, 

while negative co-volatility spillover effects occur only between the corn and sugar 

markets for spot prices.   

 

Although spillover effects between the ETF and equity markets have been tested in 

several papers, including Chen et al. (2010), Chen (2011), Krause (2013) and Chang 

Hsieh, McAleer (2016), the literature on testing spillovers between the energy and ETF 

markets is sparse. The closest research is Sadorsky (2012), in which volatility 

spillovers between oil prices and stock prices of clean energy and technology 

companies, are analyzed using multivariate GARCH models.  

 

The first paper that seems to have investigated energy ETF is Chang et al. (2014), in 

which the relationships between the flows and returns for five energy ETFs in the USA 

are examined using the VAR model. The empirical results show a negative relationship 

between energy returns and subsequent energy ETF flows, which has clear implications 

for spillover effects. 

 

3. Methodology   

 

As the primary purpose of the paper is to test for spillover effects for natural gas 

markets, the estimation of multivariate conditional volatility models, with 

appropriate regularity conditions and asymptotic properties of the Quasi 

Maximum Likelihood estimators (QMLE) of the parameters underlying the 

conditional means and conditional variances, is required.  

 

This section is organized as follows: 

 

(1) A brief introduction of the GARCH model, the most widely-used univariate 

conditional volatility model; 

 
(2) A discussion of two popular multivariate conditional volatility models: 

diagonal BEKK and full BEKK models; 
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(3) A definition of three novel types of volatility spillovers and the method of 

calculating covolatility spillover effects. 

 

The analysis of univariate and multivariate conditional volatility models below 

follows closely the presentation in Chang et al. (2015) 

 

The first step in estimating multivariate models is to obtain the standardized residuals 

from the conditional mean returns shocks. For this reason, the most widely-used 

univariate conditional volatility model, namely GARCH, will be presented briefly, 

followed by the two most widely estimated multivariate conditional covariance 

models, namely the diagonal and full BEKK models. 

 

Consider the conditional mean of financial returns, as follows: 

 

 

 

where the returns, , represent the log-difference in financial commodity 

or agricultural prices, ,  is the information set at time t-1, and  is 

conditionally heteroskedastic. In order to derive conditional volatility specifications, it 

is necessary to specify the stochastic processes underlying the returns shocks, . 

 

3.1 Univariate Conditional Volatility Models 

 

Alternative univariate conditional volatility models are of interest in single index 

models to describe individual financial assets and markets. Univariate conditional 

volatilities can also be used to standardize the conditional covariances in alternative 

multivariate conditional volatility models to estimate conditional correlations, which 

are particularly useful in developing optimal dynamic hedging strategies. The most 

popular univariate conditional volatility model, GARCH model, is discussed below. 

 

Consider the random coefficient autoregressive process of order one underlying the 

return shocks, : 
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where 

 

 

 

and  is the standardized residual.  

 

Tsay (1987) derived the ARCH (1) model of Engle (1982) from equation (2) as:  

 

 

 

where  represents conditional volatility, and  is the information set available 

at time t-1.  

 

The use of an infinite lag length for the random coefficient autoregressive process in 

equation (2), with appropriate geometric restrictions (or stability conditions) on the 

random coefficients, leads to the GARCH model of Bollerslev (1986). From the 

specification of equation (2), it is clear that both  and  should be positive as they 

are the unconditional variances of two different stochastic processes.  

 

The QMLE of the parameters of ARCH and GARCH have been shown to be 

consistent and asymptotically normal in several papers. For example, Ling and 

McAleer (2003) showed that the QMLE for GARCH (p,q) is consistent if the second 

moment is finite. Moreover, a weak sufficient log-moment condition for the QMLE of 

GARCH (1,1) to be consistent and asymptotically normal is given by: 

 

 

 

which is not easy to check in practice as it involves two unknown parameters and a 

random variable. The more restrictive second moment condition, namely , 

is much easier to check in practice. 
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In general, the proofs of the asymptotic properties follow from the fact that ARCH 

and GARCH can be derived from a random coefficient autoregressive process. 

McAleer et al. (2008) give a general proof of asymptotic normality for multivariate 

models that are based on proving that the regularity conditions satisfy the conditions 

given in Jeantheau (1998) for consistency, and the conditions given in Theorem 4.1.3 

in Amemiya (1985) for asymptotic normality.  

 

3.2 Multivariate Conditional Volatility Models  

 

The multivariate extension of univariate GARCH is given in Baba et al. (1985) and 

Engle and Kroner (1995). 

 

In order to establish volatility spillovers in a multivariate framework, it is useful to 

define the multivariate extension of the relationship between the returns shocks and 

the standardized residuals, that is, . The multivariate extension of 

equation (1), namely , can remain unchanged by assuming that 

the three components are now  vectors, where  is the number of financial 

assets. The multivariate definition of the relationship between  and  is given as:  

 

 

 

where  is a diagonal matrix comprising the univariate 

conditional volatilities. 

 

Define the conditional covariance matrix of as . As the  vector, , is 

assumed to be iid for all  elements, the conditional correlation matrix of , which 

is equivalent to the conditional correlation matrix of , is given by . Therefore, the 

conditional expectation of (4) is defined as:   

 

 

 

Equivalently, the conditional correlation matrix, , can be defined as: 
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Equation (5) is useful if a model of  is available for purposes of estimating , 

whereas (6) is useful if a model of  is available for purposes of estimating .  

 

Equation (5) is convenient for a discussion of volatility spillover effects, while both 

equations (5) and (6) are instructive for a discussion of asymptotic properties. As the 

elements of  are consistent and asymptotically normal, the consistency of  in 

(5) depends on consistent estimation of , whereas the consistency of  in (6) 

depends on consistent estimation of . As both  and  are products of matrices, 

neither the QMLE of  nor  will be asymptotically normal, based on the 

definitions given in equations (5) and (6). 

 

3.2.1 Diagonal and Scalar BEKK 

 

The diagonal BEKK model can be derived from a vector random coefficient 

autoregressive process of order one, which is the multivariate extension of the 

univariate process given in equation (1): 

 

 

 

where 

 

 and  are  vectors,  is an  matrix of random coefficients, and  

 

, 

 

, 

 

Technically, a vectorization of a full (that is, non-diagonal or non-scalar) matrix A to 

vec A can have dimension as high as , whereas vectorization of a symmetric 

matrix A to vech A can have dimension as low as .  
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In a case where A is either a diagonal matrix or the special case of a scalar matrix, 

, McAleer et al. (2008) showed that the multivariate extension of 

GARCH(1,1) from equation (7), incorporating an infinite geometric lag in terms of 

the returns shocks, is given as the diagonal or scalar BEKK model, namely:  

 

 

 

where A and B are both either diagonal or scalar matrices. 

 

McAleer et al. (2008) showed that the QMLE of the parameters of the diagonal 

BEKK model were consistent and asymptotically normal, so that standard statistical 

inference on testing hypotheses is valid. Moreover, as  in (8) can be estimated 

consistently,  in equation (6) can also be estimated consistently. 

 

3.2.2 Full BEKK model 

 

The full BEKK model, a multivariate extension of univariate GARCH, is given in 

Baba et al. (1985) and Engle and Kroner (1995), without actually deriving the model 

from an appropriate stochastic process: 

 

 

 

except that A and B are both full, rather than diagonal or scalar matrices, as in (8). 

 

The full BEKK model cannot be derived from any known underlying stochastic 

process, which means there are no valid asymptotic properties of the QMLE of the 

parameters. Moreover, as the number of parameters in a full BEKK model can be as 

much as 3m(m+1)/2, the “curse of dimensionality” will be likely to arise, which 

means that convergence of the estimation algorithm can become problematic and less 

reliable when there is a large number of parameters to be estimated. As a matter of 

fact, estimation of the full BEKK can be problematic even when m is as low as 5 

financial assets. Such computational difficulties do not arise for the diagonal BEKK 

model. 



 16

 

3.3 Volatility spillover effects 

 

According to Chang, Li and McAleer (2015), spillovers can be defined in terms of 

full volatility spillovers and full co-volatility spillovers, as well as partial co-volatility 

spillovers, as follows: 

 

1) Full volatility spillovers:  

2) Full co-volatility spillovers:  

3) Partial co-volatility spillovers:  

where   denote the return shocks, and  is the conditional 

covariance matrix of .  

 

The full BEKK model has full volatility spillovers, full co-volatility spillovers and 

partial co-volatility spillovers. As there are no asymptotic properties in the full BEKK 

model, any statistical analysis of the estimated parameters is not valid.  

 

In terms of volatility spillovers of the diagonal BEKK model, as the off-diagonal  

elements in the second term on the right-hand side of equation (8),  , 

have typical (i,j) elements , there are no full 

volatility or full covolatility spillovers. However, partial covolatility spillovers are not 

only possible, but they can also be tested using valid statistical procedures.  

 

Diagonal BEKK provides the appropriate model to test partial co-volatility spillovers 

effect. The matrices A and B in equation (8) can be expressed as: 

  

 ,  

 

where  and  , i,j = 1,…,m. 
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The partial co-volatility spillover effect from return shocks to commodity i at t-1 to 

the co-volatility between commodities i and j at t, is defined as follows: 

 

 

 

Hence, the null hypothesis of the test for a co-volatility spillover effect is given as: 

 

 

 

where the rejection of  means there is a spillover effect from the return shock of i 

at time t-1 ( ) to the co-volatility between i and j at time t ( ). 

 

4. Empirical Analysis 

 

4.1 Data  

 

As there is no natural gas ETF to track UK natural gas prices or the stock prices of 

related companies, this means that the data for UK natural gas ETF prices are latent. 

A Natural Gas ETF price for the UK market can be contructed or generated by 

defining a “London ETF Spot” in a similar manner to that of the definition of FCG, 

the natural gas ETF for the USA.  

 

FCG (First Trust ISE-Revere Natural Gas Index Fund) is a natural gas ETF traded in 

the NYSE Arca. This ETF tracks the ISE-Revere Natural Gas Index, which is an 

equally weighted index of US companies that derive a substantial portion of their 

activities from natural gas exploration and production. FCG provides investors with 

exposure to the global natural gas industry. The component companies of ISE-Revere 

Natural Gas Index are listed in Table 2.  

 

We define the London ETF Spot is as follows: 
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London ETF Spot tracks a stock index with equally weights on the share prices of UK 

natural gas exploration and production companies. The list of the six companies are in 

Table 3. 

 

[Insert Tables 2 and 3 here] 

 

An equally weighted index can be obtained by weighting equally the stock prices of 

the six companies. 

 

According to the definition of London ETF Spot, its price is supposed to track the 

price of the equally weighted index, which will be referred to as Index, so we have: 

 

 

 

where  is the latent price of London ETF Spot at time t,  is the 

observable price of the equally weighted index at time t, and the random error 

. 

 

According to Efficient Market Theory (see, for example, Fama (1970)), the price of 

the equally weighted index at time t-1 is able to explain its price at time t. As the 

London ETF Spot is based on UK markets, the UK NBP natural gas spot price and 

FTSE 100 index, which is a share index of the 100 companies listed on the London 

Stock Exchange with the highest market capitalization, are used to specify the 

following model: 

 

 

 

where  is the observable price of the equally weighted index at time t-1, 

 is the UN NBP natural gas spot price at time t-1,  is the price of 

FTSE 100 index at time t-1, and the random error, which should be distinguished 

from the return shock, is assumed to be . 

 

Combining equations (14) and (15) leads to: 
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where London ETF refers to London ETF Spot prices. The parameters in equation (16) 

can be estimated by ordinary least squares (OLS) or Quasi-Maximum Likelihood 

Estimation (QMLE), depending on the specification of the conditional volatility of the 

errors, to yield estimates of Index, if the explanatory variables are stationary. As 

prices are typically non-stationary, there is no reason to expect the error to be 

conditionally heteroskedastic.  

 

For the reasons given above, estimation of the parameters in equation (16) by OLS 

yields: 

 

 

 

where the fitted values in equation (17) refer to London ETF Spot prices. As the price 

of the equally weighted index, NBP, and FTSE 100 at time t-1 are already known, 

estimation of the price of London ETF Spot at time t is obtained by estimating the 

equally weighted index price at time t. Moreover, as the equally weighted index, UK 

NBP prices, and FTSE 100 are non-stationary, the t-ratios in this case does not have 

the asymptotic normal distribution. However, it is not problematic as the main 

purpose of the exercise is to generate the price of London ETF Spot.  

 

As an alternative to OLS, Instrumental Variables (IV) or Generalized Method of 

Moments (GMM) can be used to estimate the parameters in equation (16) to obtain an 

estimate of Index, and hence also an estimate of the latent variable, London ETF Spot. 

However, finding suitable instruments can be problematic when daily data are used. 

Cointegration analysis might also be used to estimate the parameters in equation (16), 

but only if consistent estimates of the parameters are desired, and also if statistical 

inference is intended for the parameter estimates. As we are interested only in the 

fitted values of Index to generate London ETF Spot, these alternative methods are 
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eschewed in favour of the OLS estimates. In view of the definition in equation (14), 

the estimates of Index will provide estimates of the latent London ETF Spot.  

 

After the price of London ETF Spot is generated, daily time series data on natural gas 

spot, futures and ETF prices in both USA and UK markets that are to be used for the 

empirical analysis will all be available. The sample ranges from 14 May 2007 to 15 

April 2016, consisting of 2330 observations. The sample size is dictated by the 

inception date of FCG, 11 May 2007, which was also a Friday. The daily time series 

data of natural gas spot, futures and FCG are downloaded from the Datastream 

database, and the prices of FTSE 100 index are downloaded from Yahoo Finance. All 

the series are expressed in US dollars. The data descriptions are given in Table 4. 

 

[Insert Table 4 here] 

 

The daily return at time t is calculated as:  

 

, 

 

where  is price at time t, and  is the price at time t-1. The definitions of the 

variables are presented in Table 5. 

 

[Insert Table 5 here] 

 

Figure 4 shows the returns of natural gas spot, futures and EFT prices in the USA and 

UK. The phenomenon of volatility clustering is obvious, with large volatilities 

followed by groupings of large volatility, and small volatilities followed by groupings 

of small volatilities. 

 

[Insert Figure 4 here] 

 

Table 6 provides the descriptive statistics for the daily returns of natural gas spot, 

futures and ETF prices. The means of all returns are negative. The Henry Hub natural 

gas spot market has the highest standard deviation in US markets, followed by the 

futures market, with the standard deviation of the ETF market being slightly lower in 
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comparison. In the UK market, the spot and futures markets have similar standard 

deviations, while the standard deviation of the ETF market is much lower. In general, 

the standard deviations of US natural markets are larger than those of the UK.  

 

The returns of natural gas spot and futures markets in both the USA and UK have 

positive skewness, especially the UK spot and futures markets, where the magnitudes 

are much larger than in the USA. Positive skewness means those returns have extreme  

observations in the right tails of the distribution, indicating that natural gas spot and 

futures market are more likely to incur extreme gains than extreme losses. On the 

contrary, the ETF markets in both the USA and UK are skewed to left, though with 

quite small magnitudes.  

 

The value of the kurtosis of all returns are significantly greater than 3, implying the 

probability of extreme positive and negative observations in the natural gas spot, 

futures and ETF markets is larger than for the normal distribution. In particular, the 

kurtosis of daily returns in the Henry Hub spot, and UK NBP spot and futures 

markets, is much higher than in the other markets.  

 

The large values of the Jarque-Bera statistics for all the return series signify the 

non-normal distributions of the variables.  

 

[Insert Table 6 here] 

 

The results of the unit root tests for daily prices and returns are given in Tables 7 and 

8. The Augmented Dicky-Fuller (ADF) and Phillips-Perron (PP) tests are used to test 

the stability of each return series. As the null hypothesis of both the ADF and PP tests 

is that the series has a unit root, indicating non-stationarity, a significant result means 

rejection of the null hypothesis. As can be seen in Tables 7 and 8, the results for the 

price series are all insignificant, while the results for returns are all significant. 

Therefore, the six price series are non-stationary, while the return series are all 

stationary. 

 

[Insert Table 7 here] 
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4.2 Empirical Results 

 

Partial co-volatility spillover effects may be tested by estimating the weight matrix A 

in the diagonal BEKK model. If the null hypothesis  is rejected, the 

value of  is significantly different from zero, so there will be partial 

co-volatility spillover effects from market i to j. From the definition of co-volatility 

spillover effects in equation (13), it can be seen that the sizes and signs of the 

co-volatility spillover effects from market i to j will be determined by the return shock 

of commodity j at time t-1 when  and  are known.  

 

The testing of co-volatility spillover effects is performed in the following three 

dimensions: 

(1) Co-volatility spillover effects across markets for each country; 

(2) Co-volatility spillover effects across markets between the USA and UK; 

(3) Co-volatility spillover effects across two countries for each market. 

 

The first dimension tests co-volatility spillovers among natural gas spot, futures and 

ETF markets in the USA and UK respectively. Specifically, the co-volatility spillover 

effects among Henry Hub natural gas spot, futures and FCG are tested for the USA; 

and the co-volatility spillovers among UK NBP natural gas spot, futures and London 

ETF Spot are tested for the UK. These tests could assist in developing domestic 

hedging opportunities  

 

In order to discover hedging opportunities internationally, the tests of the second 

dimension are performed. In particular, the co-volatility spillover effects among the 

Henry Hub natural gas spot, UK NBP natural gas futures and London ETF Spot 

markets are tested for hedging opportunities for Henry Hub spot prices; similarly, the 

co-volatility spillover effects among the UK NBP spot, Henry Hub futures and FCG 

are examined for UK NBP spot prices. 

 

As to the third dimension, the co-volatility spillover effects between Henry Hub 

natural gas spot and UK NBP natural gas spot, Henry Hub natural gas futures and UK 

NBP natural gas futures, and FCG and London ETF Spot are tested to check the 
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interactions between specific markets in the USA and UK. 

 

The EViews 8 econometric software package is used for the empirical analysis. 

 

(1) Co-volatility spillover effects across markets for each country 

 

The empirical results of the VAR (1)-Diagonal BEKK (1,1) model for the US and UK 

markets are presented in Tables 9 and 10, respectively. 

 

[Insert Tables 9 and 10 here] 

 

From the estimates of matrix A shown in Table 9, it can be seen that all three 

coefficients are statistically significant. Such results indicate that there are significant 

co-volatility spillover effects among the natural gas spot, futures and ETF markets in 

the USA. The two coefficients, 0.213 and 0.220, have similar values, while the third 

coefficient, 0.425, is substantially different from the other two, which implies that the 

BEKK model for the USA is diagonal.  

 

Table 10 shows that all the estimates of the coefficients in matrix A are significantly 

different from zero, which suggests the existence of significant co-volatility spillover 

effects among the NBP spot, futures and London ETF Spot markets. The value of 

0.173 is quite different the other two, at 0.420 and 0.417. The BEKK model for the 

UK is also diagonal, but has different coefficient weights in matrix A comparing its 

counterpart for the USA. The range of the coefficients in matrix A is 0.212 (= 0.425 - 

0.213) in the USA and 0.247 (= 0.420 - 0.173) in the UK, which are similar. 

 

Tables 9 and 10 also show the mean return shocks for each market in the two 

countries. In both the USA and UK, the Henry Hub spot market is the only one that 

has positive mean return shocks. Comparing the absolute values of mean return 

shocks shows that the return shocks in US markets are greater than in UK markets, 

and the market that has largest absolute mean return shocks is FCG. 

 

Table 11 gives the partial co-volatility spillover effects for the USA and UK. In the 

USA, both positive and negative co-volatility spillovers exist. Return shocks from 
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Henry Hub spot prices have negative spillover effects on subsequent Henry Hub 

futures prices, while Henry Hub futures prices have positive spillover effects on 

subsequent Henry Hub spot prices. When comparing the absolute value of 

co-volatility spillover effects, Henry Hub spot markets have greater effects than do 

Henry Hub futures markets. It is clear that the co-volatility spillover effects between 

the Henry Hub spot and futures markets are asymmetric, with negative return shocks 

having greater impacts on co-volatility than positive return shocks of the same 

magnitude.  

 

The situation between Henry Hub spot prices and FCG prices are similar, with 

asymmetric co-volatility spillover effects. The co-volatility spillover effects between 

the Henry Hub futures market and FCG markets are both negative. In the UK, all the 

co-volatility spillover effects are negative, implying no asymmetry. In particular, the 

co-volatility spillovers between the UK NBP spot and futures prices not only have the 

same signs but also approximately the same magnitudes. The case of the NBP futures 

and London ETF Spot markets are similar. Both the return shocks from the NBP spot 

and London ETF Spot markets have negative impacts on their respective 

co-volatilities, but the impact from NBP spot is greater than from London ETF Spot.  

 

[Insert Table 11 here] 

 

In general, there are significant co-volatility spillover effects among natural gas spot, 

futures and ETF markets in both USA and UK. Hedging opportunities can be found 

both between Henry Hub spot and futures markets and between Henry Hub spot and 

FCG markets. 

 

(2) Volatility spillovers across markets between two countries 

 

Tables 12 and 13 show the empirical results of the VAR (1)-Diagonal BEKK (1,1) 

model for the Henry Hub spot and UK NBP spot markets. 

 

[Insert Tables 12 and 13 here] 

 

In Table 12, the three coefficients of matrix A, 0.364, 0.297 and 0.163, are all different 
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from each other, indicating that BEKK is diagonal. The estimates of A in Table 13 are 

0.295, 0.211 and 0.228, where 0.295 is the largest and differs from other two. The 

estimated BEKK model is also diagonal in Table 13. Unlike the results of the first 

dimension, the range and weights of the coefficients of the matrix A in Tables 12 and 

13 are different. As in Tables 9 and 10, the Henry Hub spot market is the only one that 

has positive mean return shocks, while the FCG market still has the largest absolute 

mean return shocks. 

  

The co-volatility spillover effects are shown in Table 14. The results in this dimension 

are similar to the first dimension, namely the co-volatility spillover effects between 

the Henry Hub spot and UK NBP futures, and Henry Hub spot and London ETF Spot, 

are both asymmetric, thereby suggesting opportunities for hedging. 

 

[Insert Table 14 here] 

 

Co-volatility spillover effects also exist between the spot and futures markets, as well 

as between the ETF markets between the two countries. 

 

(3) Volatility spillovers across two countries for each market 

 

The co-volatility spillover effects across three kinds of US and UK natural gas 

markets, namely the spot, futures and ETF markets, are obtained using the VAR 

(1)-Diagonal BEKK (1,1) model, as given in Tables 15-17 respectively.  

 

[Insert Tables 15 - 17 here] 

 

The estimates of matrix A in Table 15 show that two coefficients are significant, but 

with different values. Such results indicate a diagonal BEKK model for the spot 

market. The mean return shocks in the Henry Hub spot market are still the only one 

that is positive. Table 16 also shows two significant and different coefficients, at 

0.228 and 0.303. There are no positive mean return shocks in either the UK NBP spot 

or futures markets. The results shown in Table 17 are similar to those in Table 16. 

Comparing the estimates of matrix A in the three markets, the ranges are similar, 

while the weights are distinctly different. 
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The partial co-volatility spillover effects are given in Table 18. In the natural gas spot 

markets, the co-volatility spillover effects have similar absolute values, but with 

different signs. The return shocks in the Henry Hub spot market at t-1 have a negative 

impact on the co-volatility between the Henry Hub spot return and UK NBP spot 

return at time t, while the co-volatility spillover effects from the UK NBP spot market 

have positive impacts on the Henry Hub spot market.  

 

The co-volatility spillovers effects between the Henry Hub futures market and UK 

NBP futures market are both negative. The empirical results for the US and UK 

natural gas ETF markets are similarly negative as that for the natural gas futures 

markets.  

 

[Insert Table 18 here] 

 

In summary, there are significant co-volatility spillovers between the USA and UK 

natural gas for the spot, futures and ETF markets. The asymmetry of co-volatility 

spillover effects between the Henry Hub spot and UK NBP spot markets suggests 

opportunities for hedging. The absolute values of the co-volatility spillover effects 

indicates that UK markets have greater impacts on USA markets than the reverse. 

 

5. Conclusion 

 
The paper tested and calculated spillover effects among natural gas spot, futures and 

ETF markets in both the USA and UK using the diagonal BEKK multivariate 

conditional volatility model. Data used for the empirical analysis ranges from 14 May 

2007 to 15 April 2016, incorporating 2330 observations.  

 

The empirical analysis is presented in three dimensions:  

(1) Co-volatility spillover effects across markets for each country; 

(2) Co-volatility spillover effects across markets between the USA and UK; 

(3) Co-volatility spillover effects across two countries for each market. 
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For the first dimension, it is obvious that there are spillover effects among the natural 

gas spot, futures and ETF markets in both the USA and UK. In the USA, 

opportunities exist between the spot and futures markets, and between the spot and 

ETF markets.  

 

In order to search for hedging opportunities abroad, tests of the second dimension are 

performed. The empirical analysis shows that hedging opportunities also arise 

between the spot market in the USA and futures market in the UK, simultaneously 

with the spot market in the USA and ETF market in the UK.  

 

For the third dimension, the empirical results show that there are significant spillover 

effects between natural gas markets in the USA and UK, including between the spot, 

futures and ETF markets.  

 

As the co-volatility spillover effects between the spot markets in the USA and UK are 

asymmetric, there are hedging opportunities between the two markets. 

 

It is clear that there are significant co-volatility spillover effects in the natural gas spot, 

futures and ETF markets for both the USA and UK, which means that world natural 

gas markets are highly correlated. Interestingly, spot and futures prices across 

countries are useful for purposes of constructing optimal dynamic hedging strategies, 

and similarly for ETF.
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Figure 1: Primary Energy Consumption by Fuel in the USA 

 

 
 
 
 
 
 

Figure 2: Electricity Generation by Fuel in the USA 
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Figure 3: Natural Gas Spot Prices from February 3, 1997 to April 15, 2016 
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Figure 4: Natural Gas Spot, Futures and ETF Spot Returns 
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Table 1: Top 20 Energy Futures and Options Contracts in 2014 

 

Rank  Contract  Trading volume ($) 
1 Brent Crude Futures 160,425,461  

2 Light, Sweet Crude Oil Futures,  145,147,334  

3 Henry Hub Natural Gas Futures  74,206,602  

4 Coke Futures  63,688,294  

5 Coking Coal Futures  57,605,436  

6 Gasoil Futures  52,800,084  

7 NY Harbor RBOB Gasoline Futures  34,421,866  

8 No. 2 Heating Oil Futures  33,946,420  

9 WTI Crude Futures  31,600,959  

10 Crude Oil (LO) Options  31,107,783  

11 Natural Gas European-Style Options 20,936,070 

12 Crude Oil Futures 20,731,880 

13 Brent Crude Oil Last Day Futures 18,493,384 

14 U.S. Oil Fund ETF Options 16,492,138 

15 Natural Gas Futures 15,628,773 

16 Brent Crude Opt. on Fut. 13,285,768 

17 U.S. Natural Gas Fund ETF Options 9,254,832 

18 Brent Oil Futures 7,084,451 

19 EUA Futures 7,008,526 

20 Henry Hub Swap (NN) Futures 6,332,365 
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Table 2: Component Companies of ISE-Revere Natural Gas Index 

 
No. Company Name 
1 Anadarko Petroleum Corporation 
2 Antero Resources Corporation 
3 Apache Corporation 
4 Cabot Oil & Gas Corporation 
5 Cimarex Energy Co. 
6 Columbia Pipeline Group Inc 
7 Concho Resources Inc. 
8 Devon Energy Corporation 
9 Diamondback Energy, Inc. 
10 EQT Corporation 
11 Golar LNG Limited 
12 Gulfport Energy Corporation 
13 Hess Corporation 
14 Kinder Morgan Inc Class P 
15 Marathon Oil Corporation 
16 Matador Resources Company 
17 Memorial Resource Development Corp 
18 Murphy Oil Corporation 
19 Newfield Exploration Company 
20 Noble Energy, Inc. 
21 PDC Energy Inc 
22 Pioneer Natural Resources Company 
23 QEP Resources, Inc. 
24 Range Resources Corporation 
25 Rice Energy Inc. 
26 SM Energy Company 
27 Southwestern Energy Company 
28 Spectra Energy Corp 
29 Statoil ASA 
30 Synergy Resources Corporation 
31 WPX Energy, Inc. Class A 
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Table 3: List of Selected UK Natural Gas Companies 

 

Company Market Sector Country of 
Incorporation

Market Cap 
(million 
GBP) 

BP Main Market oil & gas 
producers UK 6736.87 

Royal Dutch 
Shell “B” Main Market oil & gas 

producers UK 53411.09 

Cairn Energy  Main Market oil & gas 
producers UK 1156.56 

Faroe Petroleum  AIM oil & gas 
producers UK 193.58 

Parkmead 
Group  AIM oil & gas 

producers UK 57.38 

IGas Energy AIM oil & gas 
producers UK 56.92 

 
Notes:  
1. Main Market is London Stock Exchange’s flagship market for larger, more 

established companies. 
2. AIM is the London Stock Exchange’s international market for smaller growing 

companies. 
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Table 4: Data Sources 

 
Source Transaction market Description 

Henry Hub Natural 
Gas Spot 

New York Mercantile 
Exchange (NYMEX) 

Natural Gas-Henry Hub Price 
(US dollar per Million Btu) 

Henry Hub Natural 
Gas Futures 

New York Mercantile 
Exchange (NYMEX) 

NYMEX Henry Hub Natural 
Gas Futures Continuous 
Settlement Price  
(US dollar per Million Btu) 

FCG 
New York Stock Exchange 
Arca (NYSE Arca) 

First Trust ISE-Revere 
Natural Gas Index Fund 
Price  
(US dollar) 

UK NBP Natural Gas 
Spot 

Intercontinental Exchange 
(ICE) 

ICE Natural Gas 1Month 
Forward Price  
(Pence per Therm) 

UK Natural Gas 
Daily Futures 

Intercontinental Exchange 
(ICE) 

ICE UK Natural Gas Daily 
Futures Continuous 
Settlement Price  
(Pence per Therm) 

FTSE 100 Index Can not be traded 
The Financial Times Stock 
Exchange 100 Index  
(Pound) 

London ETF Spot  
The spot stocks it tracks 
can be traded in London 
Stock Exchange (LSE) 

Self-defined Natural Gas 
ETF Spot in London Market 
(Pound) 
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Table 5: Definitions of Variables 

 

Variable Definition 

 Daily price of Henry Hub natural gas spot 

 Daily price of Henry Hub natural gas futures 

 Daily price of USA natural gas ETF 

 Daily price of UK NBP natural gas spot 

 Daily price of UK NBP natural gas futures 

 Daily price of UK natural gas ETF spot 

 Daily price return of Henry Hub natural gas spot 

 Daily price return of Henry Hub natural gas futures 

 Daily price return of USA natural gas ETF 

 Daily price return of UK NBP natural gas spot 

 Daily price return of UK NBP natural gas futures 

 Daily price return of UK natural gas ETF spot 

 
Note: London ETF Spot is a generated variable. 
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Table 6: Descriptive Statistics 

 
Returns Mean SD Max Min Skewness Kurtosis Jarque-Bera

 -0.065 3.704 37.815 -27.018 0.919 19.530 26842.76 

 -0.061 3.043 26.771 -14.893 0.653 7.773 2376.199 

 -0.064 2.629 17.336 -16.551 -0.412 8.057 2547.737 

 -0.013 2.967 36.624 -13.466 2.250 26.799 56931.37 

 -0.013 2.959 36.624 -13.466 2.276 27.058 58176.77 

 -0.011 0.627 4.477 -3.911 -0.030 8.011 2437.007 

 
Note: London ETF Spot is a generated variable. The Jarque-Bera Lagrange Multiplier 
test is asymptotically chi-squared, and is based on testing skewness and kurtosis 
against the normal distribution. 
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Table 7: Unit Root Test for Prices 

 

 ADF test 

Variables No trend and intercept With intercept With trend and intercept 

 -1.522 -1.939 -2.524 

 -1.569 -1.856 -2.380 

 -1.093 -1.028 -1.738 

 -0.732 -2.123 -2.215 

 -0.731 -2.118 -2.210 

 -1.063 -2.061 -2.084 

 PP test 

Variables No trend and intercept With intercept With trend and intercept 

 -1.567 -1.971 -2.503 

 -1.579 -1.797 -2.313 

 -1.094 -1.028 -1.728 

 -0.688 -1.976 -2.067 

 -0.687 -1.974 -2.065 

 -1.073 -2.051 -2.073 

 
Notes: 

1. None is significant at standard levels. 

2. London ETF Spot is a generated variable. 
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Table 8: Unit Root Test for Returns 

 

 ADF test 

Variables No trend and intercept With intercept With trend and intercept 

 -31.933* -31.946* -31.940* 

 -52.517* -52.528* -52.517* 

 -49.173* -49.193* -49.225* 

 -30.450* -30.444* -30.493* 

 -30.437* -30.432* -30.481* 

 -46.422* -46.426* -46.418* 

 PP test 

Variables No trend and intercept With intercept With trend and intercept 

 -44.153* -44.204* -44.195* 

 -52.609* -52.632* -52.621* 

 -49.222* -49.252* -49.321* 

 -47.112* -47.102* -47.148* 

 -46.883* -46.874* -46.918* 

 -46.396* -46.401* -46.393* 

 
Notes: 

1. * denotes 1% level. 

2. London ETF Spot is a generated variable. 
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Table 9: Diagonal BEKK for USA 

 
VAR(1)  

(-1) 
0.016 

(0.019) 
0.037* 
(0.017) 

0.016 
(0.015) 

(-1) 
0.519** 
(0.024) 

-0.103** 
(0.022) 

-0.015 
(0.019) 

(-1) 
0.003 

(0.028) 
0.034 

(0.025) 
-0.017 
(0.022) 

C 
-0.032 
(0.069) 

-0.063 
(0.063) 

-0.065 
(0.055) 

 
 

BEKK A  

 
0.425** 
(0.011) 

  0.016 

  
0.213** 
(0.011) 

 -0.061 

   
0.220** 
(0.010) 

-0.105 

 
Notes: 

 

1.  

2.  is the mean return shock. 

3. * denotes 5% level; ** denotes 1% level. 

4. Standard errors are given in parentheses. 
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Table 10: Diagonal BEKK for UK 

 
VAR(1)  

(-1) 
-0.817* 
(0.327) 

-0.317 
(0.327) 

0.105 
(0.069) 

(-1) 
0.849** 
(0.328) 

0.348 
(0.327) 

-0.109 
(0.069) 

(-1) 
-0.075 
(0.101) 

-0.057 
(0.101) 

0.043* 
(0.021) 

C 
-0.012 
(0.061) 

-0.012 
(0.061) 

-0.011 
(0.013) 

 
 

BEKK A  

 
0.420** 
(0.010) 

  -0.015 

  
0.417** 
(0.009) 

 -0.011 

   
0.173** 
(0.009) 

-0.007 

 
Notes: 

 

1.  

2.  is the mean return shock. 

3. * denotes 5% level; ** denotes 1% level.  

4. Standard errors are given in parentheses. 

5. London ETF Spot is a generated variable. 
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Table 11: Co-Volatility Spillovers for USA and UK 

 

Country i j Mean Co-volatility Spillovers ( )

USA 

  
  
  
  
  
  

UK 

  
  
  

  
  

  
 
Notes: 

1. Co-volatility spillovers are from market i to j. 

2. London ETF Spot is a generated variable. 
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Table 12: Diagonal BEKK for Hedging Henry Hub Spot 

 

VAR(1)  

(-1) 
0.097* 
(0.021) 

-0.004 
(0.017) 

0.003 
(0.004) 

(-1) 
0.023 

(0.027) 
0.032 

(0.022) 
-0.004 
(0.005) 

(-1) 
0.027 

(0.126) 
-0.056 
(0.101) 

0.042 
(0.021) 

C 
-0.058 
(0.076) 

-0.012 
(0.061) 

-0.010 
(0.013) 

 
 

BEKK A  

 
0.364* 
(0.013) 

  0.037 

  
0.297* 
(0.006) 

 -0.016 

   
0.163* 
(0.009) 

-0.012 

 
Notes: 

 

1.  

2.  is the mean return shock. 

3. * denotes 1% level. 

4. Standard errors are given in parentheses. 

5. London ETF Spot is a generated variable. 
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Table 13: Diagonal BEKK for Hedging UK NBP Spot 

 
VAR(1)  

(-1) 
0.015 

(0.021) 
0.013 

(0.021) 
-0.025 
(0.019) 

(-1) 
0.111* 
(0.021) 

-0.095* 
(0.022) 

-0.010 
(0.019) 

(-1) 
0.007 

(0.024) 
0.035 

(0.025) 
-0.013 
(0.022) 

C 
-0.005 
(0.061) 

-0.064 
(0.063) 

-0.066 
(0.054) 

 
 

BEKK A  

 
0.295* 
(0.006) 

  -0.005 

  
0.211* 
(0.013) 

 -0.032 

   
0.228* 
(0.011) 

-0.097 

 
Notes: 
 

1.  

2.  is the mean return shock. 

3. * denotes 1% level. 

4. Standard errors are given in parentheses. 
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Table 14: Co-Volatility Spillovers for Hedging Henry Hub and UK NBP Spot 

 

 i j 
Mean Co-Volatility Spillovers  

( ) 

HHS 
(USA) 

   

   

   

   

NBP 
(UK) 

   

   

   

  
 
Notes: 

1. Co-volatility spillovers are from market i to j. 

2. London ETF Spot is a generated variable. 
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Table 15: Diagonal BEKK for Spot Prices 

 
VAR(1)  

(-1) 
0.097* 
(0.021) 

-0.004 
(0.017) 

(-1) 
0.025 
(0.026 

0.024 
(0.021) 

C 
-0.058 
(0.076) 

-0.012 
(0.062) 

 
 

BEKK A  

 
0.365* 
(0.012) 

 0.039 

  
0.297* 
(0.007) 

-0.030 

 
Notes: 

 

1.  

2.  is the mean return shock. 

3. * denotes 1% level. 

4. Standard errors are given in parentheses. 
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Table 16: Diagonal BEKK for Futures 

 
VAR(1)  

(-1) 
-0.087* 
(0.021) 

0.112* 
(0.020) 

(-1) 
0.016 

(0.021) 
0.020 

(0.021) 

C 
-0.066 
(0.063) 

-0.005 
(0.061) 

 
 

BEKK A  

 
0.228* 
(0.014) 

 -0.020 

  
0.303* 
(0.006) 

-0.005 

 
Notes: 
 

1.  

2.  is the mean return shock. 

3. * denotes 1% level. 

4. Standard errors are given in parentheses. 
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Table 17: Diagonal BEKK for ETF Spot 

 
VAR(1)  

(-1) 
-0.020 
(0.022) 

0.037* 
(0.005) 

(-1) 
0.005 

(0.090) 
-0.004 
(0.021) 

C 
-0.065 
(0.055) 

-0.009 
(0.013) 

 
 

BEKK A  

 
0.257* 
(0.013) 

 -0.103 

  
0.186* 
(0.011) 

-0.012 

 
Notes: 
 

1.  

2.  is the mean return shock. 

3. * denotes 1% level. 

4. Standard errors are given in parentheses. 

5. London ETF Spot is a generated variable. 
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Table 18: Co-volatility Spillovers for Spot, Futures and ETF Spot 

 

Market i j Mean Co-volatility Spillovers ( ) 

Spot   

  

Futures   

  

ETF    

  
 
Notes: 

1. Co-volatility spillovers are from market i to j. 

2. London ETF Spot is a generated variable. 

 


