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ABSTRACT

This paper investigates whether the overpricing of out-of-the money single stock calls can be
explained by Tversky and Kahneman’s (1992) cumulative prospect theory (CPT). We hypoth-
esize that these options are overpriced because investors overweight small probability events
and overpay for positively skewed securities, i.e, lottery tickets. We find that overweighting
of small probabilities embedded in the CPT explains the richness of out-of-the money single
stock calls better than other utility functions. Nevertheless, overweighting of small probabili-
ties events is less pronounced than suggested by the CPT, is strongly time-varying and most
frequent in options of short maturity. Fluctuations in overweighting of small probabilities are
largely explained by the sentiment factor.
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1 Introduction

Barberis and Huang (2008) hypothesize that Tversky and Kahneman’s (1992) cumulative

prospect theory (CPT) explains a number of seemingly unrelated pricing puzzles. In con-

trast to previous literature, which concentrates on the CPT’s value function (see Benartzi and

Thaler, 1995; Barberis et al., 2001; Barberis and Huang, 2001), Barberis and Huang (2008)

focus on the probability weighting functions of the model. They conclude that the CPT’s over-

weighting of small probability events explains why investors prefer positively skewed returns, or

“lottery ticket” type of securities. Because of such preference, investors overpay for positively

skewed securities, turning them expensive and causing them to yield low forward returns. The

authors argue that this mechanism is the reason why IPO stocks, private equity, distressed

stocks, single segment firms and deep out-of-the money (OTM) single stock calls are overpriced

among other irrational pricing phenomena.

The proposition made by Barberis and Huang (2008) that deep OTM single stock calls

resemble overpriced lottery-like securities due to investors’ overweight of tails has not yet been

verified empirically1. Empirical studies on probability weighting functions implied by option

prices are offered by Dierkes (2009), Kliger and Levy (2009), and Polkovnichenko and Zhao

(2013)2. The evidence provided by these papers is, however, based on the index put options

market, which behaves very differently from the single stock option market. The main buyers

of OTM index puts are institutional investors, which use them for portfolio insurance (Bates,

2003; Bollen and Whaley, 2004; Lakonishok et al., 2007; Barberis and Huang, 2008). Because

institutional investors comprise around two-thirds of the total equity market capitalization

(Blume and Keim, 2012), their option trading activity strongly impacts the pricing of put

options (Bollen and Whaley, 2004) by making them expensive. The results of Dierkes (2009)

and Polkovnichenko and Zhao (2013) reiterate this evidence and suggest that overweighting

of small probabilities partially explains the pricing puzzle present in the equity index option

market.

Contrary to the index put market, trading activity in single stock calls is concentrated among

individual investors (Bollen and Whaley, 2004; Lakonishok et al., 2007) and is speculative in

nature (Lakonishok et al., 2007; Bauer et al., 2009; Choy, 2015). Beyond that, Mitton and

Vorkink (2007); Bauer et al. (2009); Kumar (2009) provide important empirical support to

the link between preference for skewness and individual investor trading activity. The fact

that many individual investors have a substantial portion of their portfolios tied up in low risk

investments, such as pensions, social security, 401(k)s, IRAs, or are averse (or constrained)

to borrow (Frazzini and Pedersen, 2014) encourages them to buy financial instruments with

1Boyer and Vorkink (2014) provide evidence that lottery-like single stock options do deliver lower forward
returns than options with lower ex-ante skewness. However, their paper does not test why these options are
overvalued, nor does it analyse the potential time-variation in ex-ante skewness and forward returns. Conrad
et al. (2013) find similar results for ex-ante skewness and subsequent stock returns.

2These studies focus on the rank-dependent expected utility (RDEU) rather than the CPT, as the RDEU
is seamlessly effective in dealing with the overweighting of probability phenomena. The RDEU’s probability
weighting functions are strictly monotonically increasing, whereas the CPT one is not. RDEU functions are
also easier to estimate because they use one less parameter than the CPT.
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implicit leverage such call options. Hence, given the very distinct clientele of these two option

markets (institutional investors vs. retail investors) and the different motivation for trading

(portfolio insurance vs. speculation), we reason that the OTM single stock calls overpricing is

a puzzle in itself, requiring an independent empirical proof from the index option market.

The first contribution of our study is to investigate whether the CPT can empirically ex-

plain the claimed overpricing of OTM single stock call options. To that purpose, we empirically

test whether tails of the CPT density function outperform the risk-neutral density and ratio-

nal subjective probability density functions on matching tails of the distribution of realized

returns. We find that our estimates for the CPT probability weighting function parameter γ

are qualitatively consistent with the ones predicated by Tversky and Kahneman (1992), partic-

ularly for short-term options. Our estimates do suggest that overweight of small probabilities

is less pronounced than suggested by the CPT though. This analysis complements the results

of Barberis and Huang (2008) and provides novel support to explain the overpricing of OTM

single stock calls. Our empirical results extend the findings of Dierkes (2009), Kliger and Levy

(2009), Polkovnichenko and Zhao (2013), because we show that investors’ overweighting of

small probabilities is not restricted to the pricing of index puts but also applies to single stock

calls.

Secondly, we provide evidence that overweighting of small probabilities is strongly time-

varying and connected to the Baker and Wurgler (2007) investor sentiment factor. These

findings contrast the CPT model, where the probability weighting parameter for gains (γ)

is constant at 0.61. In fact, our estimations suggest that the γ parameter fluctuates widely

around that level, sometimes even reflecting underweighting of small probabilities. We show

that overweighting of small probabilities was quite strong during the dot-com bubble, which

coincided with a strong rise in investor sentiment. The strong time-variation in overweight of

tails indicates that investors have either a “bias in beliefs” or time-varying (rather than static)

skewness preferences, see Barberis (2013) for a discussion on the topic3.

Moreover, we find that overweighting of small probabilities is largely horizon-dependent,

because this bias is mostly observed within short-term options prices (i.e., three- and six-

months) rather than in long-term ones (i.e., twelve-months). We reason that such positive

term structure of tails’ overweighting exist because individual investors may speculate using the

cheapest available call at their disposal. In other words, individual investors buy the cheapest

lottery tickets that they can find. As three- and six-month options have much less time-value

than twelve-month ones, more pronounced overweighting of small probabilities within short-

term options seems sensible. This result is consistent with individual investors being the typical

buyers of OTM single stock calls and the fact that they mostly use short-term instruments to

speculate on the upside of equities (Lakonishok et al., 2007).

3We acknowledge that it is unclear whether overpicing of OTM calls is caused by overweighting of small
probablities (i.e., a matter of preferences), or rather by biased beliefs. Barberis (2013) eloquently discusses how
both phenomena are distinctly different and how both (individually or jointly) may explain the overpricing in
OTM options. In this paper we take a myopic view and use only the first explanation, for ease of exposition.
Disentangling the two (beliefs and preferences) would potentially be very interesting, but we deem it to be
outside the scope of this paper.

3



In our analysis of probability weighting functions, we focus on the outmost tails of RNDs4.

We argue that, as distribution tails (mostly estimated from OTM options) are the sections of

the distribution that reflect low probability events, we may analyze these locally, thus, isolated

from the distribution’s body. To this purpose, we use extreme value theory (EVT) and Kupiec’s

test (as a robustness check), which are especially suited for the analysis of tail probabilities

and, so far, have not been employed yet to the evaluation of overpricing of OTM options. As

an additional robustness check, we replace the CPT by the rank-dependent expected utility

(RDEU) function of Prelec (1998). This alteration reconfirms the presence of overweighted

small probabilities by investors within the OTM single stock call market and, at the same time,

reiterates that such bias is less pronounced than suggested by the CPT model. Time-variation

of the weighting function parameters is also observed when RDEU is applied.

The remainder of this paper is organized as follows. Section 2 describes the CPT model.

Section 3 describes the data and methodology employed in our study. Section 4 presents our

empirical analysis and Section 5 discusses our robustness tests. Section 6 concludes.

2 Cumulative Prospect Theory

The Prospect theory (PT) of Kahneman and Tversky (1979) incorporates behavioral biases

into the standard utility theory (von Neumann and Morgenstern, 1947), which presumes that

individuals are rational5. Such behavioral anomalies are i) loss aversion, ii) risk seeking behavior

and iii) non-linear preferences6. The CPT is described in terms of a value function (υ) and

a probability distortion function (π). The value function is analogous to the utility function

in the standard utility theory and it is defined relative to a reference point zero. Therefore,

positive values within the value function are considered as gains and negative values are losses,

which leads to:

υ(x) =

{
xα , if x >= 0

−λ(−x)β , if x < 0
(1)

where λ ≥ 1, 0 ≤ β ≤ 1, 0 ≤ α ≤1, and x are gains or losses. Thus, along the dominium

4Per contrast, Dierkes (2009) and Polkovnichenko and Zhao (2013) explore the relation between overweight-
ing of small probabilities and options prices by analyzing the full RND from options. Dierkes (2009) applies
Berkowitz’s tests, whereas Polkovnichenko and Zhao (2013) estimate an empirical weighting function via poly-
nomial regressions.

5The expected utility theory of von Neumann and Morgenstern (1947) is the standard economics framework
on decision making under risk. Their theory assumes that decision-makers behave as if they maximize the
expected value of some function defined over the potential (probabilitistic) outcomes. Individuals are assumed
to have stable and rational preferences; i.e., not influenced by the context or framing.

6Loss aversion is the property in which people are more sensitive to (or affected by) losses than gains. For
details, see Kahneman and Tversky (1979), Tversky and Kahneman (1992) and Barberis and Huang (2001).
Risk-seeking behavior happens when individuals are attracted by gambles with unfair prospects. In other words,
the risk-seeking individual is the one that chooses for a gamble versus a sure thing even though the two outcomes
have the same expected value. For details, see Kahneman and Tversky (1979). Non-linear preferences occur
when preferences between risky prospects are not linear in the probabilities, thus, equally probable prospects
are more heavily weighted by agents than others. For details, see Tversky and Kahneman (1992), Fox et al.
(1996), Wu and Gonzalez (1996), Prelec (1998) and Hsu et al. (2009).
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of x, the CPT’s value function is asymmetrically S-shaped (see Figure 1A) with diminishing

sensitivity as x→ ±∞.

The value function is, thus, concave over gains and convex over losses, differently from

the traditional utility function used by standard utility theory. Such a shape of the value

function implies diminishing marginal values as gains or losses increase, which means that any

additional unit of gain (loss) becomes less relevant when wealth increases (decreases). As α

and β increase, the effect of diminishing sensitivity decreases, and as λ increases the degree of

loss aversion increases. We also note in Figure 1A that the value function has a kink at the

reference point, which implies loss aversion, as the function is steeper for losses than for gains.

[Please insert Figure 1 about here]

The use of a probability distortion function or decision weight function is the adjustment

made to the PT to address nonlinear preferences. This function takes probabilities and weights

them nonlinearly, so that the difference between probabilities at high percentiles, e.g., between

99 percent and 100 percent, has more impact on preferences than the difference between prob-

abilities at small percentiles, e.g., between 10 percent and 11 percent. This is the main advance

of the CPT over the original PT. The CPT applies probability distortions to the cumulative

probabilities (i.e., the CDF), whereas the PT applies them to individual probabilities (i.e.,

the PDF). The enhancement brought by this new formulation satisfies stochastic dominance

conditions not achieved by the PT, which renders the CPT applicable to a wider number of

experiments. The probability distortion functions suggested by Tversky and Kahneman (1992),

respectively, for gains (π+
n ) and losses (π−−m) are:

π+
n = w+(pn) (2a)

π+
i = w+(pi + ...+ pn)− w+(pi+1 + ...+ pn) , for 0 ≤ i ≤ n− 1 (2b)

π−−m = w−(p−m) (2c)

π−i = w−(p−m + ...+ pi)− w−(p−m + ...+ pi−1) , for 1−m ≤ i ≤ 0 (2d)

where p are objective probabilities of outcomes, which are ranked for gains from the reference

point i = 0 to i = n, the largest gain, and for losses from the largest loss i = −m to i = 0, the

reference point. Further, w+ and w−, the parametric form of the decision weighting functions,

are given by:

w+(p) =
pγ

(pγ + (1− p)γ)1/γ
(3a)

w−(p) =
pδ

(pδ + (1− p)δ)1/δ
(3b)

where parameters γ and δ define the curvature of the weighting function for gains and losses,

which leads the probability distortion functions to assume inverse S-shapes. Figure 1B depicts

how low probability events are overweighted at the cost of moderate and high probabilities
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within the CPT probability distortion functions. Tversky and Kahneman (1992) indicate that

the weighting functions for gains are slightly more curved than for losses (i.e., γ < δ). The

parameters estimated by the authors for the CPT model, which are discussed in our empirical

analysis below, are λ = 2.25; β = 0.88; α = 0.88; γ = 0.61; δ = 0.69.

3 Data and Methodology

In this section, we first describe the theoretical background that allows us to relate empirical

density functions (EDF), RND, and subjective density functions. This is a key step for testing

the hypothesis that the CPT helps to explain overpricing of OTM options, because we build on

the assumption that investors’ subjective density estimates should correspond, on average7, to

the distribution of realizations (see Bliss and Panigirtzoglou, 2004). Thus, testing whether the

CPT’s weighting function explains the overpricing of OTM options, ultimately, relates to how

the subjective density function produced by CPT’s preferences matches empirical returns. Be-

cause the representative agent is not observable, subjective density functions are not estimable

like EDF and RND are. As such, we build on the following theory to derive subjective density

functions from RNDs.

In our empirical exercise, we first derive subjective density functions for (a) the power

and (b) exponential utility functions. Because the CPT model contains not only a utility

function (the value function) but also a probability weighting scheme (the weighting function),

we produce two density functions: (c) the hereafter called partial CPT density function (PCPT),

where only the value function is taken into account, and (d) the CPT density function, where

the value and the weighting functions are considered. Lastly, we also calibrate γ to market data

and are, then, able to compute (e) the estimated CPT density (ECPT). We provide details on

estimation methods for our five subjective density functions, (a) to (e), in Section 3.1, and for

the RND and EDF in Section 3.4.

Once all five subjective density functions are obtained, we distinguish four analyses in our

empirical analysis section: 1) the estimation of long-term CPT value and weighting function

parameters (from which we can produce the ECPT density) (Section 4.1); 2) EVT-based tests of

consistency between tails of the EDF, the RND and our five subjective probability distributions

(Section 4.2); 3) the estimation of time-varying γ parameter (Section 4.3); and 4) a regression

linking the CPT time-varying probability weighting parameter (γ) to sentiment measures as

well as numerous control variables (Section 4.4).

We use single stock weighted average IV data used for the largest 100 stocks of the S&P

500 index within our RND estimations. Appendix A.2 shows how single stock weighted average

IV are computed. Weights applied are the S&P 500 index weights normalized by the sum of

weights of stocks for which IVs are available. Following the S&P 500 index methodology and the

7This implies that investors are somewhat rational. This assumption is not inconsistent with the CPT
assumption that the representative agent is less than fully rational. The CPT suggests that investors are
biased, not that decision makers are utterly irrational to the point that their subjective density forecast should
not correspond, on average, to the realized return distribution.
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unavailability of IV information for every stock in all days in our sample, stocks weights in this

basket change on a daily basis. The sum of weights is, on average, 58 percent of the total S&P

500 index capitalization and it fluctuates between 46 and 65 percent. The IV data comes from

closing mid-option prices from January 2, 1998 to March 19, 2013 for fixed maturities for five

moneyness levels, i.e., 80, 90, 100, 110, and 120, at the three-, six- and twelve-month maturity.

Continuously compounded stock market returns are calculated throughout our analysis from

the basket of stocks weighted with the same daily-varying loadings used for aggregating the IV

data. IV data and stock weights are kindly provided by Barclays8. Single stock returns are

downloaded via Bloomberg.

We take the perspective of end-users of single stock OTM call options9. Hence, we assume

that supply imbalances are minimal and do not impact implied volatilities. We think this

assumption is reasonable because 1) option markets for the largest 100 U.S. stocks are liquid;

2) any un-hedged risk run by market makers can be easily hedged by purchasing the stock;

and 3) unhedged risk by market makers is likely much smaller when supplying call options

relative to put options. Market makers run little unhedged risk when supplying call options

vis-à-vis supplying puts because stocks returns are negatively skewed, making gap and jump

risk much lower on the upside than on the downside. Garleanu et al. (2009) have shown that

this condition is different for the index option market, where market makers mostly provide

put options for portfolio insurance programs. As the authors suggest, put sellers become more

risk-sensitive following equity market declines, as their un-hedged risk increases, which makes

them unwilling to write additional puts to the market. Our implied volatility data show no

indication of an increase in the implied volatility skew from 120 percent moneyness options, nor

from at-the-money options around moments of market stress (e.g., the 2008-09 global financial

crisis). Hence, we find no evidence of the presence of supply imbalances in the OTM calls in

our sample.

3.1 Subjective density functions

Standard utility theory tells us that since the representative agent does not have risk-neutral

preferences, RNDs are inconsistent with subjective and EDF10, thus both “real-world” proba-

bilities. Hence, if investors are risk-averse or risk seeking, their subjective probability function

should differ from the one implied by option prices. The relation between the RND fQ(ST ),

8We thank Barclays for providing the implied volatility data. Barclays disclaimer: ”Any analysis that utilizes
any data of Barclays, including all opinions and/or hypotheses therein, is solely the opinion of the author and
not of Barclays. Barclays has not sponsored, approved or otherwise been involved in the making or preparation
of this Report, nor in any analysis or conclusions presented herein. Any use of any data of Barclays used herein
is pursuant to a license.”

9We implicitly assume that end-users of single stock OTM call options have the same preferences across un-
derlyings. This assumption is supported by the evidence provided by Bollen and Whaley (2004) and Lakonishok
et al. (2007) that trading activity in equity calls is concentrated among individual investors and is speculative
in nature.

10Anagnou et al. (2002) and Bliss and Panigirtzoglou (2004) have tested the consistency between RNDs and
physical densities estimated from historical data and found that such distributions are inconsistent, i.e., RNDs
are poor forecasters of the distribution of realizations.
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and “real-world” probability distributions, fP (ST ), with ST being wealth or consumption11, is

described by ς(ST ), the pricing kernel or the marginal rate of substitution (of consumption at

time T for consumption at time t)12:

fP (ST )

fQ(ST )
= Λ

U
′
(ST )

U ′(St)
≡ ς(ST ), (4)

where Λ is the subjective discount factor (the time-preference constant) U(·) is the representa-

tive investor utility function. As U(ST ) is a random variable, the pricing kernel is also called the

stochastic discount factor. Thus, Eq. (4) tell us that the “real-world” distribution equates to

the RND when adjusted by the pricing kernel. The intuition behind Eq. (4) is that a real-world

or risk-adjusted probability distribution can be obtained from the RND, once the risk trade-off

embedded in the representative investor utility function is considered.

Since CPT-biased investors price options as if the data-generating process has a cumulative

distribution FP̃ (ST ) = w(FP (ST ))13, where w is the weighting function, its density function

becomes fP̃ (ST ) = w′(FP (ST )) · fP (ST ) (see Dierkes, 2009; Polkovnichenko and Zhao, 2013).

Thus, CPT-biased agents assess probability distributions as if their tails would contain more

weight than in reality they do, i.e., they have a preference for skewness or “bias in beliefs”,

as Barberis (2013) argues. Consequently, evaluating whether the CPT’s propositions apply is

equivalent to testing whether Eq. (4) still holds if fP (ST ) is replaced by fP̃ (ST ), leading to:

w′(FP (ST )) · fP (ST )

fQ(ST )
= ς(ST ). (5)

We, then, further manipulate Eq. (5) so to directly relate the original EDF to the CPT

subjective density function, by “undoing” the effect of the CPT probability distortion functions

within the PCPT density function. The relation between EDF and the CPT density function

is given by Eq. (6) and its derivation, from Eq. (5), is provide in Appendix A.1:

fP (ST )︸ ︷︷ ︸
EDF

=

fQ(ST )

ν′(ST )∫ fQ(x)

ν′(x)
dx

(w−1)′(FP (ST ))︸ ︷︷ ︸
CPT density function

(6)

where ν ′(ST ) is the CPT’s marginal utility function.

This result allows us to obtain a clear representation of the CPT subjective density function,

thus, where the value and the weighting function are simultaneously taken into account. At

this stage, as we can produce RND and the set of subjective densities of our interest, including

11Note that, as the value function within the CPT measures utility versus a reference point, ST is not strictly
positive in this model. A negative ST denotes a loss of wealth or consumption, whereas a positive ST represents
a gain.

12The condition necessary for Eq. (4) to hold is that markets are complete and frictionless and a single risky
asset is traded.

13Similarly, if investors are rational, their subjective density functions should be consistent, on average, with
the empirical density function. Bliss and Panigirtzoglou (2004) find that subjective density functions, produced
from RND adjusted by two types of representative investors’ utility functions (power and exponential) with
plausible relative risk aversion parameters, outperform RND on forecasting density functions.
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the CPT density, one can evaluate how consistent with realizations their tails are.

3.2 Estimating CPT parameters

We start evaluating the empirical validity of the CPT for single stock call options by comparing

EDF to the CPT density function parameterized by Tversky and Kahneman (1992). Subse-

quently, we estimate CPT weighting function parameters λ and γ with the same goal. We

only estimate γ within the probability weighting function, and not δ, because we are interested

in the gains-side of the distribution, which is extracted from call options. We estimate these

parameters non-parametrically, by minimizing the weighted squared distance between physical

distribution and the partial CPT density function for every bin above the median of the two

distributions, as follows:

υ(λ) = Min

B∑
b=1

Wb(EDF
b
prob − CPT bprob)2, (7)

where, EDF b
prob and CPT bprob are, respectively, the probability within bin b in the empirical and

CPT density functions and Wb are weights given by 1
1√
2

∫∞
0.5
e
−x2
2 dx = 1, the reciprocal of the

normalized normal probability distribution (above its median), split in the same total number

of bins (B) used for the EDF and CPT. The loss aversion parameter, λ, in Eq. (7) is optimized

using multiple constraint intervals: [0,3], [0,5] and [0,10]. Once the optimal λ is known, we

minimize Eq. (8) using its estimate and the CPT λ:

w+(γ, δ = γ) = Min
B∑
b=1

Wb(EDF
b
prob − CPT bprob)2, (8)

where γ, the probability weighting parameter for gains, is constrained by the permutation

of the following upper bounds (1.2, 1.35, 1.5, 1.75 and 2) and lower bounds (-0.25, 0 and

0.28). Weights applied in these optimizations are due to the higher importance of matching

probabilities tails in our analysis than the body of the distributions.

Our non-linear bounded optimization is a single parameter one, where we first estimate

optimal γ (which we impose to equal δ) across all permutations of upper and lower bounds

to select the bounds that produce the lowest residual sum of square (RSS). Subsequently,

we estimate λ and γ as suggested by the sequence of optimizations described by Eqs. (7)

and (8). This method resembles the ones of Kliger and Levy (2009), Dierkes (2009), Chabi-

Yo and Song (2013), and Polkovnichenko and Zhao (2013). Once optimal parameters λ and

γ are estimated, we can produce another long-term subjective density function: the ECPT,

which stands for estimated CPT, where we apply the optimal γ for the characterization of

its probability weighting function. Finally, we also estimate time-varying γ using different

assumptions of λ, so to evaluate the sensitivity of γ to changes in λ.

9



3.3 Density function tails’ consistency test

We check for tail consistency of our set of five subjective density functions (CPT, PCPT, ECPT,

power and exponential), RND, and the EDF by applying extreme value theory (EVT). EVT

allows us to estimate the shape of the tails of these eight PDFs and to extract the returns

implied by an extreme quantile within our PDFs. We estimate the tail shape estimator (ϕ) by

means of the Hill (1975) estimator:

ϕ̂ =
1

θ̂
=

1

k

K∑
j=1

ln(
xj
xk+1

), (9)

where k is the number of extreme returns used in the tail estimation, and xk+1 is the tail cut-off

point. The tail shape estimator ϕ measures the curvature, i.e., the fatness of the tails of the

return distribution: a high (low) ϕ indicates that the tail is fat (thin). The inverse of ϕ is the

tail index (θ), which determine the tail probability’s rate of decay. A high (low) θ indicates that

the tail decays quickly (slowly) and, therefore, is thin (fat). Such tail shape estimator and tail

index give us a good representation of the curvature of the tails, but since tails may have the

same shape while estimating diverse extreme observations, we also employ the semi-parametric

extreme quantile estimator from De Haan et al. (1994):

q̂p = xk+1(
k

pn
)
1

θ̂ , (10)

where n the sample size, p is a corresponding exceedance probability, which means the likelihood

that a return xj exceeds the tail value q, and xk+1 is the tail cut-off point. We note that one

of the input of q̂p is the tail shape estimator ϕ. Similar to value-at-risk (VaR) modeling, the

q̂−p statistic indicates the level of the worst return occurring with probability p, which is small.

This is the reason why we call q̂p extreme quantile return (EQR). As we are interested only in

the upside returns with a p probability estimated from calls, we only compute q̂+p by applying

the same methodology to the right side of the RND obtained from the single stock option

market14.

In addition to the EQR, we also evaluate the density function tails using expected shortfall

(ES), which captures the average loss beyond the tail cut-off point. As we are interested in

the upside of the distribution, we call such measure expected upside (EU) as the average gain

beyond the tail cut-off point. We evaluate the EU following Danielsson et al. (2006) formulae

for the ES, which relates the EQR (i.e., the VaR) to the ES (i.e., the CVaR) as described below:

ÊU q(p) =
θ̂

θ̂ − 1
· xk+1(

k

pn
)
1

θ̂ , (11)

where θ is the tail index.

De Haan et al. (1994) show that the tail shape estimator statistic
√
k(ϕ̂(k) − ϕ) and the

tail quantile statistic

√
k

ln( k
pk

)
[ln q̂(p)

q(p)
] are asymptotically normally distributed. Hence, according

14Our EQR measure is closely connected to the risk-neutral tail loss measure of Vilkov and Xiao (2013).
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to Hartmann et al. (2004) and Straetmans et al. (2008), the t-statistics for such estimators are

given by:

Tϕ =
ϕ̂1 − ϕ̂2

σ[ϕ̂1 − ϕ̂2]
∼ N(0, 1), (12a)

and

Tq =
q̂1 − q̂2
σ[q̂1 − q̂2]

∼ N(0, 1), (12b)

where the denominators are calculated as the bootstrapped difference between the estimated

shape parameters ϕ and the quantile parameters q̂p using 1000 bootstraps. The null hypothesis

of this test is that ϕ̂ and q̂p parameters do not come from independent samples of normal

distributions, therefore, ϕ̂1 = ϕ̂2 and q̂1 = q̂2. The alternative hypothesis is that ϕ̂ and q̂p have

unequal means. Such t-test is also applied to our EU analysis, as the distribution of EU follows

the same distribution of the tail quantile statistic

√
k

ln( k
pk

)
[ln q̂(p)

q(p)
], given that EU is the extreme

quantile estimator multiplied by a constant.

3.4 Estimating RND and EDF

For the estimation of the RND, the first step taken is the application of the Black-Scholes

model to our IV data to obtain options prices (C) for the S&P 500 index. Once our data

is normalized so strikes are expressed in terms of percentage moneyness, the instantaneous

price level of the S&P 500 index (S0) equals 100 for every period for which we would like to

obtain implied returns. Contemporaneous dividend yields for the S&P 500 index are used for

the calculation of P as well as the risk-free rate from three-, six-, and twelve-month T-bills.

Because we have IV data for five levels of moneyness, we implement a modified Figlewski (2010)

method for extracting our RND structure, as in Felix et al. (2016). The main advantage of

this method over other techniques is that it extracts the body and tails of the distribution

separately, thereby allowing for fat tails.

The Figlewski (2010) method is close to the one employed by Bliss and Panigirtzoglou

(2004), where body and tails are also extracted separately. Bliss and Panigirtzoglou (2004)

use a weighted natural spline algorithm for interpolation, which has the same decreasing-noise

effect in RNDs of using splines in the absence of knots, as done in Figlewski (2010). The

extrapolation in Bliss and Panigirtzoglou (2004) is done by the introduction of a pseudo-data

point, which has the effect of pasting lognormal tails into the RND. One advantage of these two

approaches is that the extrapolation does not result in negative probabilities, which is possible

when splines is applied in such case. Nevertheless, we favor Figlewski’s (2010) approach as

the lognormal tails employed by Bliss and Panigirtzoglou (2004) assume that IV is constant

beyond the observable strikes, resembling the Black-Scholes model. The modification made to

the Figlewski (2010) method by Felix et al. (2016) entailed having flexible inner anchor points

(as opposed to having fixed anchor points) for fitting tails to the risk neutral density. The aim

of this modification is to prevent the method to estimate distribution density functions with
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implausible shapes.

We estimate the EDF in two different ways. First, using the entire sample of realized returns

(r), we estimate long-term EDFs non-parametrically, where r = ln(ST/St) and St is the realized

return index at time t and ST is the forward level of the same index three-, six- or twelve-

months forward, i.e., respectively 21, 63 and 252-days forward. Because of overlapping periods,

we initially estimate our empirical distribution from non-overlapping returns for these three

maturities by using distinct starting points. This methodology is also applied by Jackwerth

(2000) and Ait-Sahalia and Lo (2000). However, because the length of the overlapping periods is

relatively large compared to our total sample, especially for the twelve-month forward returns,

we average the distribution with distinct starting points to smooth the shape of our multiple-

horizon distributions15.

In a second step, we estimate time-varying EDFs built from an invariant component, the

standardized innovation density, and a time-varying part, the conditional variance (σ2
t|t−1) pro-

duced by an EGARCH model (see Nelson, 1991). We first define the standardized innovation,

being the ratio of empirical returns and their conditional standard deviation (ln(St/St−1)/σt|t−1)

produced by the EGARCH model. From the set of standardized innovations produced, we can

then estimate a density shape, i.e., the standardized innovation density. The advantage of

such a density shape versus a parametric one is that it may include, the typically observed,

fat-tails and negative skewness, which are not incorporated in simple parametric models, e.g.,

the normal. As mentioned, such density shape is invariant and it is turned time-varying by

multiplication of each standardized innovation by the EGARCH conditional standard deviation

at time t, which is specified as follows:

ln(St/St−1) = µ+ εt, ε ∼ f(0, σ2
t|t−1) (13a)

and

σ2
t|t−1 = ω1 + αε2t−1 + βσ2

t−1|t−2 + ϑMax[0,−εt−1]2, (13b)

where α captures the sensitivity of conditional variance to lagged squared innovations (ε2t−1),

β captures the sensitivity of conditional variance to the conditional variance (σ2
t−1|t−2), and ϑ

allows for the asymmetric impact of lagged returns (ϑMax[0,−εt−1]2). The model is estimated

using maximum log-likelihood where innovations are assumed to be normally distributed.

Up to this point, we managed to produce a one-day horizon EDF for every day in our

sample but we still lack time-varying EDFs for the three-, six-, and twelve-month horizons.

Thus, we use bootstrapping to draw 1,000 paths towards these desired horizons by randomly

15As a robustness check to this approach, we compare our three-, six- and twelve-month empirical distributions
with the ones calculated from non-overlapping returns. We use data since 1871 for the US equity price index,
made available by Welch and Goyal (2008), who use S&P 500 data since 1926, and data from Robert Shiller’s
website for the preceding period. Our empirical distributions are quite similar to the ones estimated from the
longer data set, suggesting that they are, indeed suitable as long-term distributions. The use of overlapping
returns is less problematic in our calculations than in regression estimation, where statistical inferences on
parameter estimates can be strongly affected by overlapping returns’ serial correlation.
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selecting single innovations (εt+1) from the one-day horizon EDFs available for each day in

our sample. We note that once the first return is drawn, the conditional variance is updated

(σ2
t−1|t−2) affecting the subsequent innovation drawings of a path. This sequential exercise

continues through time until the desired horizon is reached. In order to account for drift in

the simulated paths, we add the daily drift estimated from the long-term EDF plus the risk-

free rate to drawn innovations, thus the one-period simulated returns is εt+1 + µ + Rf . The

density functions produced by the collection of returns implied by the terminal values of every

path and their starting points are our three-, six-, and twelve-month EDFs. These simulated

paths contain, respectively, 63, 126, and 252 daily returns. We note that by drawing returns

from stylized distributions with fat-tails and excess skewness, our EDFs for the three relevant

horizons also imbed such features. Finally, once these three time-varying EDFs are estimated

for all days in our sample, we estimate γ for each of these days using Eq. (8)16.

Our approach for estimating both the long-term EDF and the time-varying EDF is closely

connected to the method applied by Polkovnichenko and Zhao (2013). The time-varying method

used by these authors is based on Rosenberg and Engle (2002). The choice for an EGARCH

approach versus the standard GARCH model is due to the asymmetric feature of the former

model that imbeds the “leverage effect”17.

4 Empirical analysis and results

In this section, we present our results of the empirical analysis described in section 3. We note

that since we estimate EDF in the two ways described (the long-term and time-varying EDFs),

we are able to estimate long-term γ’s and time-varying γ’s by minimizing Eq. (8). We use our

long-term γ estimates to compute the ECPT with the aim to compare it to the other subjective

density functions using the tests described in Section 3.3. The time-varying estimates of γ are

analyzed in Sections 4.3 and 4.4 with the use of a regression model. We describe this regression

together with its results in Section 4.4. Finally, in Section 5, we perform robustness tests on

our results by using an alternative weighting function to the CPT, the one imbedded in the

Prelec (1998) model, and we apply Kupiec’s test to probability tails, among other checks.

4.1 Estimated CPT long-term parameters

We report the estimated CPT parameters (λ and γ) extracted from long-term density functions

in Table 1, Panel A. Our first finding is that λ, the parameter of loss aversion, which is 2.25 in

the CPT, fluctuates around that number for six- and twelve-month options but shows a quite

different outcome for three-month options. Our estimation of λ from three-month options is

16Due to drift, the model of time-varying EDF for the twelve-month horizon occasionally does not match the
one of the PCPT model. This difference is challenging to estimation of γ (Eq. (8)), as a large amount of γ
estimates produce unreasonable PDFs such as non-monotonic CDFs. Therefore, to perform the optimizations
given by Eq. (8), we neutralize the impact of the drift by forcing the mode of the simulated EDF to match the
one of the PCPT.

17The leverage effect is the negative correlation between an asset’s returns and changes in its volatility. For
a comparison between alternative GARCH approaches, see Bollerslev et al. (2009).
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1.02, which indicates no loss aversion. For the six- and twelve-month options λ is 2.66 and 3.00,

respectively. This finding suggests that loss aversion is more pronounced at longer maturities

than suggested by the CPT. Apart from that, twelve-month λ estimates are highly variant

across the different optimization upper bounds used (i.e. 3, 5 and 10), always matching the

bound value, whereas estimates from three- and six option maturities are very stable across

upper bounds.

[Please insert Table 1 about here]

The estimated probability weighting function parameter γ is slightly higher than the one

suggested by the CPT (i.e., 0.61) at the three- and six-month horizons, respectively, at 0.75 and

0.81. For twelve-month options, γ is around 1.09. These results suggest that overweighting of

small probabilities occurs in short-term options (up to six-months), while twelve-month options

seem to behave more rationally. These findings support our hypothesis that individual investors

are, on average, biased when purchasing single stock call options, as suggested by Barberis and

Huang (2008).

4.2 Density functions tails’ consistency test results

As specified in section 3.3, we test the empirical consistency of density function tails among a

set of five subjective distributions (CPT, PCPT, ECPT, power, exponential), the RND, and

the EDF. We perform these tests by employing EVT through the application of Eqs. (9) to

(12b). For such purpose, we require return streams (xj), which are only available for the long-

term EDF. Thus, we apply an inversion transform sampling technique to our other PDFs to

obtain sampled returns for them. Such method, also known as the Smirnov method, entails

drawing n random numbers from a uniformly distributed variable U = (u1, u2, ..., un) bounded

at interval [0, 1] and, subsequently, computing xj ← F−1(uj), where F are the CDFs of interest

(see Devroye, 1986, p.28). Hence, the Smirnov method simulates returns that resemble the

ones of the inverse CDF by randomly drawing probabilities along such function.

Once we obtain returns for all five PDFs, the next step is to set k as the optimal number

of observations used for estimation of ϕ by Eq. (9), the Hill-estimator. For this purpose, we

produce Hill-plots for the right tail of our distributions, which depict the relationship between

k and ϕ as a curve (see Straetmans et al., 2008). Picking the optimal k is done by observing

the interval in this curve where the value of ϕ stabilizes while k changes. This area suggests a

stable trade-off between a good approximation of the tail shape by the Pareto distribution and

the uncertainty of such approximation (by the use of fewer observations). The interval that

corresponds to roughly four to seven percent of observations seems to be a stable region across

the Hill-plots of the tails of the EDF and the CPT. As an increase in k increases the statistical

power of the estimator but may distort the shape of the tail, we decide to set k as chosen from

the Hill-plots for EDF and CPT tails equal to four percent.

We examine whether the tail shape parameter (ϕ), computed via the Hill (1975) estimator,

for the RND and for our subjective density functions (i.e., power, exponential, PCPT, CPT

and ECPT) matches the one for the EDF. The outcomes from the statistical tests performed
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to compare tail shape parameters (Eq. (12a)) are provided in Table 1, Panel B. Results suggest

that for the three-month maturity options, ϕ for the RND, CPT and ECPT (at 0.20) are the

closest to the EDF parameter (at 0.29) but they are not statistically equal. The ϕ estimate

for the power, exponential, and PCPT density functions do not match the one for the EDF, as

they are all around 0.17 and, thus, exhibit fatter tails than the EDF.

We observe that the results for the six- and twelve-month options are very similar to the

ones obtained for the three-month expiry. The parameter estimate ϕ of the EDF is statistically

equal to the RND and CPT. Parameter ϕ ranges from 0.18 to 0.19 for the CPT, ECPT, and

RND for the six- and twelve-month maturities, whereas it is 0.23 for the EDF. The estimate of

ϕ for the RND (0.19 and 0.22 for the six- and twelve-month maturities, respectively) somewhat

matches the one for the EDF at the six-month maturity but it is off at the twelve-month

maturity. The parameter estimates ϕ for the power, exponential, and PCPT density functions

match the EDF’s ϕ at the twelve-month maturity only. Generally, the parameter estimates ϕ

for these subjective density functions are too small in comparison to the one of the EDF. This

means that these six- and twelve-month maturity subjective density functions have fatter tails

than the EDF, the other subjective densities (CPT and ECPT), and the RND. These results

suggest that the shape of the CPT density function is a good match to the shape of realized

tails.

After k is chosen and the shape estimator ϕ for the EDF, RND, power, exponential, PCPT,

CPT, and ECPT is computed, extreme quantile returns (EQR) can also be estimated via Eq.

(10). Subsequently, the t-test in Eq. (12b) is applied using the one, five and ten percent

statistical significance levels. This test evaluates whether the EQRs estimated from a set of

two distributions (RND, power, exponential, PCPT, and CPT versus EDF) have equal means

(the null hypothesis). The results of this test are shown in Table 2, Panel A.

[Please insert Table 2 about here]

Analyzing the density functions derived from the three-month option maturity, we find that

the EQR implied by the CPT is the only one that matches the realized EQR and at the first

quantile solely at 21 percent. The EQR implied by the ECPT is almost the same as implied

by the CPT, thus, it also statistically matches the EDF. Per contrast, the EQRs for the RND,

power, exponential, and PCPT densities always overshoot the one for the EDF. All comparisons

between these distributions’ EQR at the three-month maturity reject the null hypothesis that

returns at the same quantile are equal. This pattern is observed across all quantiles analyzed,

i.e., at the tenth, fifth, and first quantiles. This empirical finding indicates that the equity

market upside implied in option markets (i.e., the RND) and the power, exponential and PCPT

densities are always higher than the ones realized by the equity market. The results for the

PCPT resemble the ones for the RND. The EQRs from the CPT and the ECPT are clearly the

best matches for the EDF.

For the six-month maturity, upside returns priced by the RND and ECPT best match the

EQR. The EQRs for the EDF are roughly 18, 22, and 32 percent for the tenth, fifth, and first

quantile of returns, respectively, whereas the EQRs for the ECPT are 19, 21, and 28 percent.
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For the RND, such extreme upside return estimates are 19, 22, and 30 percent. Thus, the ECPT

statistically matches the realized EQR best at the tenth and fifth quantile, whereas the RND

is the best match for the third quantile. No rational subjective density function consistently

matches the EQR of the EDF. The power, exponential, and PCPT densities almost always

overshoot the EQR of realized returns. Per contrast, the CPT density always undershoots the

EDF’s extreme returns. Despite always overshooting the EQR of the EDF, the PCPT is the

only other subjective density (apart from the ECPT) that has EQR statistically equal to the

EDF, which happens only at the first quantile EQR.

In contrast to the three- and six-month maturities, the EQRs from the RND for the twelve-

month maturity all underestimate the EQRs from realized returns. The EQRs of realized

returns are 32, 35, and 44 percent for the tenth, fifth and first quantiles, respectively, whereas

for the RND these are 22, 26, and 37 percent, respectively. The same underestimation is

documented for the densities linked to the CPT (i.e., PCPT, CPT and ECPT) as tail returns

are largely out of sync with realized ones, especially for the CPT in which overweight of tails

will force EQRs further away from EDF ones (vis-à-vis the PCPT EQRs). The EQRs of the

exponential densities continue to largely overshoot the ones for the EDF. However, the power

utility function density successfully matches the EQR returns across all EQR values and with

strong statistical significance.

In line with these results for the EQR, Table 2, Panel B, shows that the expected upside (EU)

for the EDF is more closely matched within the three-month horizon by the CPT and ECPT

density functions for the tenth, fifth and first quantiles. The three-month horizon EUs estimated

from the realized returns are 15, 19, and 30 percent for the mentioned quantiles. The ECPT

EUs for the same horizon are 18, 21, and 28 percent, respectively. For the CPT, EUs are 16, 19

and 26 percent. Thus, estimates from these two density functions are mostly statistically equal

to the realized returns. Similarly to our analysis on the EQR, for the other subjective densities,

the EUs for all quantiles are also much larger than the EDF expected upside. The exponential

density has the highest expected upside across the different quantiles, being the furthest away

from the realized returns. The RND-implied expected upside is somewhat conservative and

relatively closer to the realized ones but only statistically significant at the one percent quantile.

For the six-months maturity, the expected upsides for the CPT and ECPT density functions

are no longer that close to each other nor to the realized ones. The EDF expected upside always

exceeds the ones for the CPT and ECPT. Only at the tenth quantile, the expected upside of the

ECPT density function equals the realized one. The densities which better match the expected

upside of the EDFs are the PCPT and the RND.

For the twelve-month horizon, the expected upside for the realized returns is 37, 40, and 51

percent for the tenth, fifth and first quantiles. In line with the results from our EQR analysis,

the power density again best matches realized EUs, as estimates are statistically equal across

all maturities. Second best performers are the PCPT and ECPT densities, which match the

realized EU at the one percent quantile level.

In summary, across the three EVT tests performed (i.e., on tail shape, EQR and EU), the
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three option maturities and the three quantiles evaluated, we observe that the success rate of

the CPT subjective density functions on matching the EDF tails is 57 percent. In contrast,

this success rate is 38 percent for the power utility, 33 percent for the RND and only 10

percent for the exponential utility density function. These results suggest that CPT-related

distributions, although not always matching the EQRs and ES of the EDF, seem to best match

the EQR of the EDF, especially at the short maturities. More specifically, the ECPT seems

to have some advantage over the other methods for the three- and six-month maturities. This

results is consistent with the findings of Kang and Kim (2006), who find that more flexible

utility functions generally increases the forecasting ability of subjective PDFs. In the case of

the CPT, the fact that its weighting function can assume different shapes does entails extra

flexibility to match the data relative to traditional utility functions. Thus, if our findings

suggest that the CPT does not fully explain single stock options pricing, its overweighting of

small probabilities feature goes very far in explaining such market data, with the exception of

twelve-month options.

These findings reiterate our takeaway from Section 4.1, in which a positive term structure

of overweight of tails appears to play a substantial role: twelve-month options are priced more

rationally than shorter term ones, which seem to be priced as a result of lottery buying by

individual investors. Figure 2 compares the CDFs from six of our equity return densities: the

EDF, the RND, the CPT, the PCPT, the exponential- and the power-utility density18. We

focus on the right tails of these distributions as we are interested in how closely the RND from

call options and derived subjective density functions match the tails of the EDF. The plots

display the cumulative probabilities on the y-axis and the terminal price levels on the x-axis,

given an initial price level of 100.

[Please insert Figure 2 about here]

In Figure Figure 2, we see that the tails implied by option prices (RND, in red) seem fatter

than the tails from the CPT (in dark blue) and EDF (in green) density functions over the

three-month horizon. The tails for the CPT and the EDF are almost identical above the 120

terminal level, i.e., at the 20 percent return. The right tail of the RND distribution is clearly

much fatter than the ones of the CPT and EDF, but it is still thinner than the ones of the

PCPT, the exponential- and the power-utility densities. Thus, the upside risk implied from

options is much higher than the one realized by the EDF, a sign of a potentially biased behavior

by investors in such options. This observation is confirmed by the tail shape parameter (ϕ),

the EQRs and the EU estimated across the different quantiles, which in all cases report higher

upside in the RND than in the EDF and the CPT. Figure 2 also suggests that the upside risk of

the RND is more consistent with the PCPT density, whereas the CPT tails seem very distinct

from the PCPT, which is in line with our earlier findings.

The plot in column B, which depicts the CDF for our studied densities at the six-month

horizon, suggests that the RND and the EDF are closer than at the three-month horizon.

18We omit the ECPT for better visualization as its CDFs are very similar to the CPT ones. The similarity
is caused by the ECPT left tail weighting function parameter (δ) being the same for the CPT and because the
estimated long-term γ for the three maturities are close to the Tversky and Kahneman (1992) one.
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At the same time, the CPT density seems more disconnected from the EDF. This finding

matches our results from the EQR and the expected upside comparisons. The PCPT tail is,

at this horizon, higher than the EDF, CPT, and RND ones and closer to the EDF one than

to the CPT one, especially at its very extreme. This finding is also confirmed by our EQR

and expected upside tests, as the PCPT is statistically equal to the EDF at the one percent

quantile. The exponential and power utility densities have right tails that are much fatter than

the other densities, including the EDF.

Figure 2 shows that at the twelve-months horizon the CPT’s CDF tails seem completely

disconnected from the EDF. The EDF tails are much fatter than the CPT ones and slightly

fatter than the RND ones. In fact, the RND seems to match the EDF for terminal levels above

120. This finding suggests that long-term options trade in a much less CPT-biased manner

than short-term options.

Overall, the visual inspection of our density function CDFs confirms our hypothesis that

end-users of OTM single stock calls are likely biased and behave as buying lottery tickets

when trading short-term options. These results strengthen the evidence provided by Ilmanen

(2012), Barberis (2013), Conrad et al. (2013), Boyer and Vorkink (2014) and Choy (2015)

that investors push single stock options prices to extreme valuation levels. Investors seem to

overweight small probabilities especially at short-term horizons. Next, we analyze the time-

variation in overweight of small probabilities to better understand the underlying reasons for

our findings.

4.3 Estimated CPT time-varying parameters

To investigate time-variation in the CPT’s overweighting of small probabilities in single stock

options, we apply Eq.(8) to each day in the sample to estimate the empirical γ (weighting

function) parameter. Lower and upper bounds of -0.25 and 1.75 were used in this optimization

as they produced the lowest RSS across permutation of all bounds when γ was optimized using

the CPT parameterization. We estimate γ under four different assumptions about λ, the loss

aversion parameter: 1) λ equals 2.25, the CPT parameterization; 2) no loss aversion, λ equals

1; 3) augmented loss aversion, λ equals 3; and 4) optimal λ, as estimated by Eq.(7).

Table 3, Panel A reports the statistics when λ equals 2.25. We find that the median and

the mean time-varying values of γ, estimated from the three-month options are above its CPT

value of 0.61 but still reflect overweight of small probabilities. This suggests that overweighting

of small probabilities is present within the pricing of three-month call options as suggested by

the theory. The distribution of γ is skewed to the right and overweight of small probabilities

is present 64 percent of times within three-month maturity. The 25th percentile of γ is 0.74,

clearly suggesting a less pronounced overweight of small probabilities than suggested by the

CPT. The estimates of γ range from 0 to 1.75 (i.e., an underweighting of small probabilities)

and are volatile, with a standard deviation of 0.23. Interestingly, when we split the sample

in three parts (as shown in Table 3), we observe that overweight of small probabilities is very

present at the beginning of our sample, in 97 percent of the days from 1998-01-05 to 2003-01-30,
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but that has faded since 2003. During the period from 2003-01-31 to 2008-02-21, underweight of

small probabilities is present in 65 percent of the days, whereas such condition is less pervasive

from 2008-02-22 onwards, i.e., until 2013-03-19. This finding suggests that overpricing of single

stock options is sample specific and not structural. Even if sample specific, overweight of small

probabilities seems, in general, much less pronounced than the 0.61 parameter offered by the

CPT. These results seem to only partially confirm our hypothesis that the CPT can empirically

explain the overpricing of OTM single stock call options.

[Please insert Table 3 about here]

At the six-month maturity, overweighting of small probabilities is less frequent than in three-

month tenor. The median γ for such maturity is 0.99, implying roughly neutral probability

weighting. The long-term γ equals 0.81 and is somewhat out-of-sync with the time-varying

estimates. Similarly to the three-month maturity, the distribution of γ is also slightly skewed to

the right. The 75th quantile of γ equals 1.14 and suggests an underweighting of tail probabilities.

However, probability weighting is largely sample dependent as within the overall sample, 52

percent of all observations reflect overweight of small probabilities but, between 1998 and 2003,

its occurrence is 92 percent.

Differently from the other maturities, γ estimates for the twelve-month maturity tend to-

wards underweight of tail probabilities. The median γ is 1.03, whereas the mean γ is 1.01.

Time variation and sample dependence are present as for the other maturities but, at the

twelve-month maturity, the percentage of days with overweight of tails is smaller, 41 percent

in the full sample but still 83 percent for the 1998-2003 sample.

In summary, the statistics in Table 3, Panel A, indicate that the weighting function param-

eters γ for the three maturities evaluated are time-varying and sample specific. Overweight of

small probabilities holds for the three-month maturity, less convincingly so for the six-month

maturity, and not at all for the twelve-month maturity, in which neutral probabilities and

underweight of tails respectively prevails.

Because the loss-aversion parameter λ is of high importance in the CPT model, we estimate

γ under different λ parameterizations, more specifically, for 1) λ equals 1, 2) λ equals 3 and

optimal λ, as estimated from the long-term empirical distribution (see Table 1).

We report the summary statistics of the new γ estimates in Panel B of Table 3, when we

assume λ equals 1. The new median and mean estimates for γ are 0.66 and 0.67 for the three-

month maturity, respectively, and, thus, lower than when γ was estimated under the CPT loss

aversion calibration (λ=2.25). The 75th percentile of γ also decreases, from 1.14 to 0.80. At the

six-month horizon, the difference between γ with λ equals 2.25 and with λ equals 1 is also large.

The median γ for the CPT λ is 0.99, whereas for when λ equals 1 it is 0.71. The means are 0.96

and 0.72, respectively. At the 75th percentile using λ equals 1, γ becomes 0.87. For the twelve-

month maturity, we observe a similar effect. The median γ for when λ equals 1 is 0.83, whereas

for when λ equals 2.25 it is 1.03. In brief, a lower loss aversion parameter consistently gives

rise to higher γ estimates, across the different options’ maturities and quantiles. The opposite

effect is observed when the λ is increased from 2.25 to 3, as shown by Table 3, Panel C. The
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median and mean γ when λ equals 3 becomes 0.96 and 0.98 for the three-month maturity, in

comparison to 0.91 and 0.89 when λ equals 2.25. Such rise in central tendency of γ estimates

is also observed within the six- and twelve-month maturities and across the 25 and 75 percent

quantiles. Table 3, Panel D, which reports γ estimates when optimized λ parameters are used,

shows distinct results for the three-month maturity versus the six- and twelve-month maturity.

For the three-month maturity, we observe a downward shift to γ estimates, whereas for six-

and twelve-month maturities, an upward movement in estimates occurs. However, this initially

opposite effect in estimates is, in fact, qualitatively equal to the result just described when we

use λ as 1 or 3, as the optimal λ parameters estimated for the three-, six and twelve-month

maturities are, respectively, 1.02, 2.66 and 3.00 (i.e., it decreases for the three-month maturity

and increases for the six- and twelve-month maturity vis-à-vis the CPT parameterization).

The reason why a lower (higher) loss aversion gives rise to a decreased (increased) γ is that it

increases (decreases) the probability on the left side of distribution, influencing the probabilities

and the shape of the right side of the CPT distribution. High values of λ push the CPT density

to have more probability on the right side of the distribution, which is spread proportionally to

the probabilities originally observed in the right-side bins (i.e., creating a bump into the center-

right side of the distribution), all else equal. Thus, the impact of such probability shift fades as

the tail approaches. Nevertheless, the right tail of the CPT density does turn fatter (and the

γ parameter higher) as λ is made higher. The opposite occurs if low values of λ are assumed:

the right tail of the CPT density becomes thinner, causing γ estimates to be low (which more

forcefully can turn the RND right tail into such thin CPT tail). One important finding from

our experimentation with different λ parameters is that the time variation observed when λ

equals 2.25 is unchanged. The standard deviation and range of γ estimates across the use of the

different λ values are somewhat the same. Though, the percentage of days that overweight of

tails is observed in the different samples studied dramatically changes towards a more frequent

presence of overweight of small probabilities, as low levels of λ are used (and vice-versa). The

large difference in the presence of overweight of small probabilities across samples remains.

We interpret our finding that γ is strongly time-varying and sample dependent across all

maturities and under different λ assumptions as a strong evidence that single stock options are

not overvalued due to a structural skewness preference, as Barberis (2013) may suggest. We

reckon that, if static skewness preferences would drive overweight of small probabilities, param-

eter γ would be relatively stable throughout our sample. Given that the γ is largely volatile,

we support the view that investors experience (time-varying) “bias in beliefs” or, alternatively,

time-varying preferences (see Barberis, 2013)19. Our results are in line with Green and Hwang

(2011), Chen et al. (2015) and Jiao (2016), who report similar time-varying effects in the over-

19Barberis (2013) distinguishes investors’ time-varying beliefs from skewness preferences as he argues that
investors with biased beliefs mistakenly overestimate tail events, whereas preference for skewness leads to over-
weight of tails, which is less likely to be a mistake. As an example, the author suggests that investors that
overweight small probabilities events correctly anticipate the distribution of a stock’s future returns but over-
weight the state of the world in which a stock turns out to be “the next Google”. In the example, overestimation
of tail events would occur when the investor attributes a higher chance to the stock being the next Google.
As we do not attempt to distinguish between biased believes and time-varying preferences, we use the term
overweight of small probabilities throughout our paper.
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pricing, skewness effects and returns for IPOs and lottery-like stocks. These papers also report

that, beyond time-varying effects, stronger skewness preferences are associated with higher par-

ticipation of individual investor (trading in IPOs, trading around earnings announcements and

owning stocks) in detriment of institutional investors.

4.4 Time variation in probability weighting parameter and investors’

sentiment

As observed in section 4.3, the probability weighting parameter γ is clearly time-varying. In the

following, we investigate which factors may explain this time-variation of γ. Our main hypoth-

esis is that it is linked to investor sentiment. The link between sentiment and overweighting

of small probabilities or lottery buying in OTM single stock calls originates from the fact that

individual investors are highly influenced by market sentiment and attention-grabbing stocks

(Barberis et al., 1998; Barber and Odean, 2008; Berger and Turtle, 2015), and that OTM single

stock calls trading is speculative in nature and mostly done by individual investors (Lakonishok

et al., 2007). For instance, Lakonishok et al. (2007) argue that the IT bubble of 2000, a period

of high variation of γ, is linked to elevated investor sentiment, when the least sophisticated

investors were the ones most inclined to purchase calls on growth and IT stocks. Figure 3 de-

picts time-varying γ’s and the Baker and Wurgler (2007) sentiment factor. It provides evidence

that these measures move in tandem at times. For example, during the IT bubble, the level

of γ seems quite connected with the level of sentiment, especially for the three- and six-month

options.

[Please insert Figure 3 about here]

To formally test our hypothesis that time variation of γ is linked to investor sentiment,

we design a regression model. In Eq. (14) the explained variables are γ for the three-, six-,

and twelve-month horizons and the explanatory variables are the Baker and Wurgler (2007)

sentiment measure20; the percentage of bullish investors minus the percentage of bearish in-

vestors given by the survey of the American Association of Individual Investors (AAII), used as

a proxy for individual investor sentiment by Han (2008); and a set of control variables among

the ones tested by Welch and Goyal (2008)21 as potential forecasters of the equity market. The

data frequency used in the regression is monthly as this is the highest frequency available from

the sentiment data and from the Welch and Goyal (2008) data set22. Our regression sample

starts in January 1998 and ends in December 201023. Our OLS regression model is specified as

20Available at http://people.stern.nyu.edu/jwurgler/.
21The complete set and description of variables suggested by Welch and Goyal (2008) is provided in Appendix

B. From the complete set of variables used by Welch and Goyal (2008), we select a smaller set using the cross-
correlation between them to avoid multicollinearity in our regression analysis. Because we run a multivariate
model, using the full set of variables is undesirable as some of them correlate 80 percent with each other. We
exclude variables that correlate more than 40 percent with each other.

22Given the fact that γ is estimated on a daily basis, we average γ throughout each month.
23This regression sample is only possible because Welch and Goyal (2008) updated their dataset after the

paper publication. The regression sample however, could not be extended further than December 2010 because
the sentiment measure of Baker and Wurgler (2007) is not available after that date.
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follows:

γt = c+ ψ1 · Sentt + ψ2 · IISentt + ψ3 · E12t + ψ4 ·B/mt + ψ5 ·Ntist+

ψ6 ·Rfreet + ψ7 · Inflt + ψ8 · Corprt + ψ9 · Svart + ψ10 · CSPt + εt,
(14)

where Sent is the Baker and Wurgler (2007) sentiment measure, IISent is the AAII individual

investor sentiment measure, E12 is the twelve-month moving sum of earnings on the S&P5000

index, B/m is the book-to-market ratio, Ntis is the net equity expansion, Rfree is the risk-free

rate, Infl is the annual inflation rate, Corpr is the corporate spread, Svar is the stock market

variance and, CSP is the cross-sectional premium.

Additionally, we run univariate models for each explanatory factor to understand the indi-

vidual relation between γ and the control variables:

γt = ci + ψi · xi,t + εt, (15)

where x replaces the n explanatory variable earlier specified, given i = 1...n.

[Please insert Table 4 about here]

Table 4, Panel A presents the estimates of Eq. (14). We note the high explanatory power of

the multivariate regression, ranging from 68 to 71 percent. As expected, we observe that Sent

is consistently negative and statistically significant across the three different horizons studied.

On average, each one-unit difference in Sent is linked to roughly -0.1 difference in γ, all else

being equal. The univariate regressions of Sent confirm the negative link between sentiment

and γ. For all option maturities, a negative relation between the Baker and Wurgler (2007)

sentiment measure and γ is clearly found. The explanatory power of the variable Sent in the

univariate setting is also high, between 22 and 29 percent. These findings altogether support

our hypothesis that overweighting of small probabilities increases at higher levels of sentiment

and that sentiment strongly impacts the probability weighting bias of call option investors.

In contrast with the variable Sent, the coefficients for the individual investor sentiment

(IISent) are positive but not statistically significant either on the multivariate setting or on the

univariate one (see Table 4). The univariate regressions run on γ have rather low explanatory

power. The positive relationship between IISent and γ at the three-month maturity may

be attributed to potential capitulations in individual investor sentiment, as such indicator is

strongly mean-reverting.

The nine Welch and Goyal (2008) control variables used in our multivariate regression are

linked to γ in very distinct manners. First, it is fair to say that they add substantial explanatory

power to our multivariate regressions. The three-, six-, and twelve-month multivariate models

explain, respectively, 71, 68, and 67 percent of the level of γ. Most of these relations are stable,

because the coefficient signs change only rarely. The control variables that are statistically

significant in our multivariate setting are E12, B/m, Rfree, Infl, Svar, and CSP (Table 4).

We observe that γ is positively linked to E12, the twelve-month moving sum of earnings on the
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S&P 500 index, as well as to B/m, the book to market ratio, in both multivariate and univariate

regressions. The positive relation between E12, B/m and γ could be explained by mean-

reversion of earnings and valuation being linked to a greater overweighting of small probabilities,

which could be justified by the higher investor sentiment outweighing earning downgrades and

rising valuations in a rallying market. These two variables have high explanatory power of

γ, respectively, 37 and 31 percent for the three-month horizon. The significance of Rfree

is, however, somewhat unstable. At the three- and six-month maturity at the multivariate

regression Rfree is significant but not at the univariate regression. Further, the stock market

variance, Svar, is negatively linked to γ. Apparently, the higher the risk environment, the

higher the overweighting of small probabilities is. In a univariate setting (at the three-month

horizon), the explanatory power of such univariate regression is 18 percent, thus relatively high.

Table 4, Panel B indicates that the cross-sectional premium CSP is positive and statistically

significant in the univariate setting for the three-month horizon, despite being negative and not

significant in the multivariate regressions.

To reiterate our results, we also apply the Least Absolute Shrinkage and Selection Operator

(Lasso) methodology to our main multivariate regressions (see Tibshirani, 1996, and Appendix

A.3). We apply Lasso to select the regressors that are most relevant for the overall fit of the γ

by our sentiment and control variables. The coefficients that shrink to zero via the Lasso are

identified in Table 4 (Panel A) with a dagger (†). Model selection via the Lasso confirms that

Sent and IISent are more relevant for the overall fit of γ than some of the fundamental factors

used, namely, Ntis, Infl, Corpr and CSP .

The results provided by our OLS regression and by the Lasso indicate that supportive

fundamental data for equity markets do not necessarily intensify biased behavior of single stock

call option investors. This is an interesting takeaway, especially considering the notion that

sentiment does appear to affect such behavior: single stock option investors seem to overweight

small probabilities when sentiment is exuberant, not necessarily when stock fundamentals are

exuberant.

More importantly, these results support our earlier findings that overweight of small proba-

bilities is strongly time-varying and linked to sentiment. Therefore, overweight of small proba-

bilities is unlikely to result from (static) investor preferences but from investors’ bias-in-beliefs

or time-varying preferences, which seem conditional on sentiment levels. Furthermore, we also

run our regression models (Eqs. (14) and (15)) using different assumptions about the value of

λ, the loss aversion parameter. In this exercise we set λ to imply 1) no loss aversion (λ=1),

2) augmented loss aversion (λ=3) and 3) optimal loss aversion, where λ assumes the estimated

value by Eq. (7) and reported in Table 1, Panel A.

Table 5 indicates that the results for Sent are similar to the ones obtained in our main

regressions: Sent is negatively linked to γ and statistically significant at all horizons but with

less statistical significance, explanatory power and magnitude at the twelve-month horizon.

This result applies to the multivariate regression model only. Across all options maturities,

the Sent coefficients become larger when λ equals 3 and they shrink when λ equals 1. The
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relation between changes in λ and Sent observed is intuitive. We argue that as λ increases, the

probabilities on the left side of the CPT distribution increase, favoring a thinner tail on the

right side of the PCPT distribution, which, then, requires less overweight of tail adjustment

(through a higher γ) for the PCPT to match the EDF. As a higher γ is obtained by such

increase in λ, the coefficient of γ with the given sentiment factor also increases in magnitude.

The explanatory power of these regressions are, once again, high, as R2 ranges from 62 to

73 percent in the multivariate models. The explanatory power of Sent ranges from 16 to 24

percent in the univariate setting. Table 5 reiterates the relation between IISent, the AAII

individual investor sentiment measure, the Welch and Goyal (2008) control variables and γ in

our main regressions. IISent is rarely significantly linked to γ. The control variables that are

robustly linked to γ in our main regression (E12, B/m and Svar) remain strongly connected

to it within these auxiliary regressions. Applying the Lasso model selection technique to these

regressions gives results that are analogous to these ones. Sent, IISent, E12, B/m, Svar and

Rfree always survive the Lasso variable selection procedure, whereas Ntis, Infl, Corp and

CSP coefficient often shrink to zero (as in our main regression, these coefficients are identified

with a dagger (†) in Table 5, Panel A).

[Please insert Table 5 about here]

The robustness of the relation between γ and Sent suggests that changes in the overweight-

ing of tails are not conditional on the level of the loss aversion parameter. In other words, levels

of loss aversion do not drive investors to overweight upside tail events, as one could hypothesize

when associating upside speculation with a state of low loss aversion. Thus, our results suggest

that overweighting of small probabilities is a phenomenon stably linked to sentiment, rather

than positive fundamentals or loss aversion levels. Our results tie closely with the findings of

Green and Hwang (2011), who investigate the relation between IPOs expected skewness and

returns. They find that the skewness effect is stronger during period of high investor senti-

ment. In the same line, Chen et al. (2015) conclude that when gambling sentiment is high,

stocks with lottery-like characteristics earn positive abnormal returns in the short-run followed

by underperformance in the long run.

5 Robustness tests

5.1 Kupiec’s test for tail comparison

We employ Kupiec’s (1995) test to compare the tails of the EDF with the ones of the subjective

density functions and of the RND as a robustness test to the EVT methods applied. Kupiec’s

test was originally designed to evaluate the accuracy of Value-at-risk (VaR) models, where the

estimated VaR were compared with realized ones. Because the VaR is no different from the

EQR on the downside, i.e., the q̂−p statistic, we can also make use of Kupiec’s method to test the

accuracy of the q̂+p statistic for subjective densities and the RND on matching realized EQRs.

Kupiec’s method computes a proportion of failure (POF) statistic that evaluates how often a
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VaR level is violated over a specified time span. Thus, if the number of realized violations

is significantly higher than the number of violations implied by the level of confidence of the

VaR, then such a risk model or consistency of tails is challenged. Kupiec’s POF test, which is

designed as a log-likelihood ratio test, is defined as:

LRPOF = −2log[(1− p∗)(n−v)(p∗)v] + 2log[(1− [ v
n
])(n−v)( v

n
)v] ∼ χ2(1), (16)

where p∗ is the POF under the null hypothesis, n is the sample size, and v is the number of

violations in the sample. The null hypothesis of such test is v
n

= p∗, i.e., the realized probability

of failure matches the predicted one. Thus if the LR exceeds the critical value, χ2 (1)=3.841, the

hypothesis is rejected at the five percent level. In our empirical problem, p∗ equals the assumed

probability that the EQR of the subjective and risk-neutral densities will violate the EQR of

the realized returns, whereas v
n

is the realized number of violations. Because we apply Kupiec’s

test to upside returns, violations mean that returns are higher than a positive threshold.

The first step in applying Kupiec’s test to our data set is outlining the expected percentage

of failure (p∗) between the EQR from the EDF and from the subjective and risk-neutral den-

sities. We pick p∗ as being five and ten percent. The percentages can be seen as the expected

frequency that the tails of the subjective and of the RND distributions overstate the tails of

the distribution of the realized returns. As a fatter tail is a symptom of an overweighting of

small probabilities, we expect that densities that do not adjust for the CPT weighting function

will deliver a higher frequency of failures than the CPT density function. The Kupiec’s test

results are reported in Table 6.

[Please insert Table 6 about here]

Panel A in Table 6 suggests that the probability of failure for the RND, power, exponential,

and PCPT densities is particularly high at the three-month horizon, with more than 99 percent

for the EQR at 90 and 95 percent and for p∗ equal to five and ten percent. These densities often

contain fatter tails than the EDF. For the CPT density, the POF is much lower across the two

values of p∗ used and the 90 and 95 percent EQR. The POF for the 90 percent EQR is roughly

58 percent for the CPT, irrespective of p∗. At the 95 percent EQR, the POF is 46 percent

for the CPT. These findings suggest that at the 90 and 95 percent EQR, the CPT densities

overstate less frequently the EDF tails than other densities. The violations of the EDF tails are,

however, still significant as they occur between 41 and 52 percent of times. Nevertheless, when

we analyze the 99 percent EQR, we find that the POF for all densities decreases considerably

and, for the CPT, it becomes 16 percent.

Panel B of Table 6 depicts a very similar pattern of the POF for the probability densities

derived from the six-month options as we find for the three-month options. The POF is very

close to 100 percent for all densities apart from the CPT at the 90 and 95 percent EQR, while

at the 99 percent EQR violations fall substantially, even more than what we observed for the

three-month options. Nevertheless, the CPT remains the best approximation for the EDF, as

its POF is the lowest. The Kupiec’s test result suggests that the CPT density is statistically

equal to the EDF, whereas the RND also equals the empirical returns at the ten percent level.
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The results for p∗ at the five or ten percent are very similar. Panel C presents the POF for

the twelve-month maturity. We find once again that the CPT tails are the ones that violate

the EDF tails the least. The POF for these densities are about 29 percent for the 90 percent

EQR, seven percent for the 95 percent EQR, and four percent for the 99 percent EQR. These

findings suggest that the tails of the CPT closely match the EDF ones, especially far out in the

tail, i.e., at the 95 and 99 percent EQR. The RND, power, exponential, and PCPT densities

record POFs that are much smaller than for the three- and six-month maturities but that are

still high in comparison to the CPT.

We note that results for the PCPT and the CPT are quite distinct, whereas results for the

PCPT are somewhat closer to the ones of the RND. This suggests that the weighting function

is the component within the CPT density function that more forcefully causes the RND to

approximate the EDF, so not the value function. Overall, our analysis using Kupiec’s test

leads to similar results as the ones reached within our EVT analysis and further evidences that

the CPT model is superior in matching realized returns.

5.2 Prelec’s weighting function parameter

As another robustness check, we estimate the weighting function parameter ω of the RDEU

model suggested by Prelec (1998) in order to test whether our conclusions are robust to other

weighted functions formulations24. The Prelec weighting function w+−
p is given by Eq. 17

w+−
p (p) = exp(−(−log(p))ω), (17)

where the parameter ω defines the curvature of the weighting function for both gains and

losses, which also leads to S-shaped probability distortion functions. We note that according

to Prelec (1998) the standard ω parameter value equals 0.65. Our time-varying and long-term

(LT) estimates for ω are presented in Table 7, Panel A.

The long-term estimates of ω are somewhat in line with the one suggested by the RDEU

but less so for the twelve-month horizon: ω estimated from the three-, six-, and twelve-months

are 0.46, 0.67, and 1.11, respectively. These parameters are somewhat consistent with our long-

term estimates for γ being, 0.75, 0.81, and 1.09 (see Table 1), as they suggest overweighting

of small probabilities that fades with the increase in the option horizon. Similarly, time-

varying estimates of ω also indicate more overweight of small probabilities than suggested

by γ estimations. We find the mean (0.95) and median (0.93) for time-varying estimates of

ω from three-month options to be higher than the ones suggested by Prelec (1998). This

outcome means that overweighting of small probabilities within the single stock option markets

is less than suggested by RDEU (similar to our conclusion concerning CPT parameters) and

that estimated Prelec parameters imply a less pronounced overweight of tails than suggested

by our CPT parameter estimations. In line with our results for the CPT, for the six- and

twelve-month maturities, underweight of small probabilities is, however, more frequent than an

24A major advance of Prelec’s (1998) weighting function vis-à-vis the CPT is that it is monotonic for any
value of ω, whereas the CPT can have a non-monotonic probability weighting for low levels of γ.
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overweight. The average ω for the six-month options is 1.02 (median being 0.99), and for the

twelve-months options is 1.05 (median being 1.07). The fact that investors tend to overweight

small probabilities to a much lesser extent in the short-term and that estimates are higher than

suggested by their respective lab-based estimates confirms our main findings.

[Please insert Table 7 about here]

The sample dependence observed in our main results is confirmed by the usage of Prelec’s

weighting function as overweight of tails is pervasive mostly in the 1998-2003 sample. Overall,

the robustness checks following Prelec (1998) confirm our main findings regarding time-variation

and sample dependence of overweighting of small probabilities, and reiterate our conclusion.

5.3 Estimating time-varying γ under different assumptions for δ , α

and β

As an additional robustness test to our time-varying estimates of γ, we also run optimizations

where we fix parameter δ instead of jointly optimizing it with γ. We impose δ = 1 (no overweight

of small probabilities on the left-side of the distribution) or 0.69, the value of δ within the CPT.

In line with our previous robustness test, Table 7, Panels B and C, suggests that results from

optimizations with different values for δ are qualitatively the same to our main results, i.e., a

positive term structure and sample dependency of overweight of small probabilities. Unreported

results also indicate a negative correlation between γ and sentiment and high explanatory power

of regressions. R2 is between 13 and 21 percent for three- and six-month options and between

0 to 3 percent for twelve-month options. Though, neutral probability weighting on the left side

of the distribution (δ=1) adjusts γ downwards when compared to our main results. Conversely,

when δ is 0.69, an upwards adjustment to γ estimates occurs.

Similarly, we also estimate γ under different assumptions for α and β. We assumed α=β=1

(no diminishing sensitivity to gains and losses) and α=β=0.75 (more pronounced diminishing

sensitivity to gains and losses) instead of the CPT parameterization α=β=0.88. Our results,

reported in Table 7, Panels D and E, suggest that lower sensitivity to gains and losses (higher

α and β) leads to a decrease in overweight of small probabilities (higher γ estimates), whereas

higher sensitivity to gains and losses (lower α and β) leads to an increase in overweight of tails

(lower γ estimates). This effect is similar to the one observed by changes in λ (described in

Section 4.3), which also magnifies the sensitivity for losses when increased.

As indicated in Section 3.2, we have also estimated time-varying γ using different lower

(-0.25, 0 and 0.28) and upper bounds (1.2, 1.35, 1.5, 1.75 and 2). Results across bounds used

differ to the extent that higher bounds produce upward shifts in the estimated γ across all

quantiles, median and averages to the extent that overweight of small probabilities becomes

less pronounced but remain present. The time-variation pattern observed in Figure 3 and, more

importantly, the strong negative relationship with sentiment reported in Table 4 are, though,

extremely robust to changes in lower and upper optimization bounds. This result strengthens

our conclusion that overweight of small probabilities is largely time varying and reflects investor
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sentiment.

5.4 Overweight of (right) tails driven by IV of single stock options

Finally, given that overweight of small probabilities by single stock call investors was most

evident during the IT bubble period (as Table 3 suggests), we hereby evaluate whether this

finding may have been driven by movements in the IV of index options rather than changes in the

IV of single stock options. We perform such analysis because our methodology for calculation

of average weighted stock IV volatilities partly relies on the IV on index options (as it depends

on implied correlations), as Eqs. A.8i and A.8k in Appendix A.2 suggest. Essentially, we want

to ensure that the overweight of small probabilities observed from our single stock options data

is not caused by a rise in index options’ IV. As overweight of small probabilities is a corollary of

high IV skew25, we examine the IV skews (120 percent moneyness versus at-the-money, ATM)

from both index options and from single stock options within our sample using a k-Nearest-

Neighbors (KNN) algorithm (see Appendix A.4 for detail). Figure 4 depicts a scatter plot

that relates single stock IV skews (on the y-axis) with index option IV skew (on the x-axis)

overlaid with the decision boundary between overweight of tails (in red) and its absence (in

blue), produced by the application of the KNN algorithm to our full data sample. The picture

suggests that that overweight of small probabilities is almost never caused by positive index

IV skews, whereas positive single stock IV skews very often produce overweight of tails rather

than underweights. Overweight of tails are mostly caused by situation where single stock IV

skew are higher than index IV skew, which suggest that either high single stock IV skews or

low implied correlation are responsible for overweight of tails, not index options’ IV. These

conditions can be anecdotally confirmed by our observation of IV skews during the 2000’s IT

bubble. During that period, when overweight of tails was pervasive, IV skew from single options

was quite high, close to +10 volatility points, whereas the same IV skew from index options

reached extreme low levels such as -15 volatility points. This disconnect between the two IV

markets, which drove the implied correlation to 2.8 percent (an extreme low level), suggests

that the index options’ IV was not the driver for overweight of tails during the IT bubble.

These findings reiterate our suggestions that overweight of small probabilities observed in our

sample is caused by trading in single stock options by retail investors, rather than activity in

the index option market.

6 Conclusion

Single stock OTM call options are deemed overpriced because investors overpay for positively

skewed securities, resembling lottery tickets. The CPT’s probability weighting function of

Tversky and Kahneman (1992) theoretical model provides an appealing explanation why these

options are expensive: investors’ preferences for positively skewed securities. In our empirical

25While this relation is widely acknowledged, Jarrow and Rudd (1982), Corrado and Su (1997) and Longstaff
(1995) provide a formal theorem for the link between IV skew and risk-neutral.

28



analysis, we find that the CPT subjective density function implied by single stock options

outperforms the RND and two rational densities functions (from the power and exponential

utilities) in matching the tails of realized equity returns. We estimate the CPT probability

weighting function parameter γ and find that they are qualitatively consistent with the one

predicated by Tversky and Kahneman (1992), particularly for short-term options. This outcome

endorses our hypothesis that investors in single stock call options are biased.

Our analysis provides detailed insights into the behavior of single stock option investors.

Our empirical findings suggest that overweight of small probabilities is less pronounced than

proposed by the CPT. We find the presence of a positive term structure of overweighting of

tails, because it becomes less pronounced as the option maturity increases. Investors in single

stock calls are more biased when trading short-term contracts, whereas they seem to be more

rational (less biased) when trading long-term calls. This result is consistent with individual

investors being the typical buyers of OTM single stock calls and the fact that they mostly use

short-term options to speculate on the upside of equities.

We also find that investors overweighting of small probabilities is largely time-varying and

sample dependent. Time-variation in γ’s remains strong even when we account for different

levels of loss aversion, different diminishing sensitivities to gains and losses, different degrees

of overweighting of the left tail and an alternative (Prelec’s) weighting function. The strong

time-variation and sample dependency of suggest that investors do not have a static preference

for skewness, but rather time-varying preferences or “bias in beliefs” (see Barberis, 2013).

Such time-variation in γ is also confirmed by overweighting of tails to be pronounced in

periods in which sentiment is high, for instance, the IT bubble period. This finding is consistent

with the Baker and Wurgler (2007) sentiment measure being the main explanatory variable of

overweighting of small probabilities. Our results challenge the view that single stock call options

are structurally overpriced and offer the insight that overweight of tail events implied in these

options are conditional on sentiment levels and option maturity rather than positive stock

fundamentals, loss aversion levels or investor preferences for skewness.

Our findings have several important practical implications. First, the understanding of

time-variation in investors’ overweighting of small probabilities could be used in the develop-

ment of behavioral option pricing models, which remains in its infancy . To the extent that

overweighting of small probabilities is a latent variable or, simply, not trivial to estimate, we

contemplate that future option pricing models should be more sentiment-aware than current

ones. Second, of importance for such next generation option-pricing models is the inclusion of

a positive term structure of tails’ overweighting. Such potential modifications on options’ pric-

ing have large and direct consequences to risk-management, hedging and arbitrage activities.

Third, from a financial stability point of view, investors’ overweighting of small probabilities in

single stock options could be of use to regulators for triangulating the presence of speculative

equity markets bubbles.
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A Appendix

A.1 Subject density function estimation

We hereby present the derivations required to achieve Eq. (6) in the main text, Eq. (A.7) here,

from Eq. (5), called here Eq. (A.1):

w′(FP (ST )) · fP (ST )

fQ(ST )
= ς(ST ). (A.1)

where fP (ST ) is the “real-world” probability distribution, fQ(ST ) is the RND, ς(ST ) is the

pricing kernel, w is the weighting function and FP (ST ) is the “real-world” cumulative density

function.

The first step of our derivation entails re-arranging Eq. (A.1) into (A.2b) via Eq. (A.2a),

which demonstrates that for the CPT to hold, the subjective density function should be con-

sistent with the probability weighted EDF:

fQ(ST )︸ ︷︷ ︸
RND

= w′(FP (ST ))︸ ︷︷ ︸
probability weighing

· fP (ST )︸ ︷︷ ︸
EDF

· ς(ST )︸ ︷︷ ︸
pricing kernel

(A.2a)

fQ(ST )︸ ︷︷ ︸
RND

= fP̃ (ST )︸ ︷︷ ︸
probability weighted EDF

· ς(ST )︸ ︷︷ ︸
pricing kernel

(A.2b)

fQ(ST )

λU
′(ST )
U ′(St)

=
fQ(ST )

ς(ST )︸ ︷︷ ︸
Subjective density

= fP̃ (ST )︸ ︷︷ ︸
probability weighted EDF

(A.3)

Following Ait-Sahalia and Lo (2000) and Bliss and Panigirtzoglou (2004), Eq. (A.3) can be

manipulated so that the time-preference constant Λ of the pricing kernel vanishes, producing

Eq. (A.4), which directly relates the probability weighted EDF, the RND, and the marginal

utility, U ′(ST ):

fP̃ (ST )︸ ︷︷ ︸
probability weighted EDF

=
λU
′(ST )
U ′(St)

Q(ST )∫ U ′(St)
U ′(x)

Q(x)dx
=

fQ(ST )

U ′(ST )∫ fQ(x)

U ′(x)
dx︸ ︷︷ ︸

Generic subjective density function

(A.4)

where
∫ Q(x)

U ′(x)
dx normalizes the resulting subjective density function to integrate to one. Once

the utility function is estimated, Eq. (A.4) allows us to convert RND into the probability

weighted EDF. Eq. (A.4) can also be used to estimate the subjective density function for an

(rational) investor that has power or exponential utility function, by disregarding the weighting

function W (·), so the left-hand side of the equation becomes fp(ST ). In the remainder of the

paper we call these subjective distributions power and exponential density functions. As we

hypothesize that the representative investor has a CPT utility function, its marginal utility func-

tion is U ′(ST ) = υ′(ST ), and, thus, υ′(ST ) = αSα−1T for ST >= 0, and υ′(ST ) = −λβ(−ST )β−1

for ST < 0, leading to Eq. (A.5):
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fP̃ (ST ) =

fQ(ST )

αSα−1
T∫ fQ(x)

αxα−1dx
for ST ≥ 0, and (A.5)

fP̃ (ST )︸ ︷︷ ︸
probability weighted EDF

=

fQ(ST )

−λβ(−ST )β−1∫ fQ(x)

−λβ(−x)β−1dx︸ ︷︷ ︸
Partial CPT density function

for ST < 0, and (A.6)

Eqs. (A.5) and (A.6), hence, relate the EDF where probabilities are weighted according

to the CPT probability distortion functions, on the LHS, to the subjective density function

derived from the CPT value function, on the RHS, separately for gains and losses, i.e., the

PCPT density function. The relationships specified by Eqs. (A.5) and (A.6) fully state the

relation we would like to depict, although one additional manipulation is convenient for our

argumentation. Assuming that the function w(FP (ST )) is strictly increasing over the domain

[0,1], there is a one-to-one relationship between w(FP (ST )) and a unique inverse w−1(FP (ST )).

So, result fP̃ (ST ) = w′(FP (ST ))fP (ST ) also implies fP̃ (ST ).(w−1)′(FP (ST )) = fP (ST )26. This

outcome allows us to directly relate the original EDF to the CPT subjective density function,

by “undoing” the effect of the CPT probability distortion functions within the PCPT density

function:

fP (ST )︸ ︷︷ ︸
EDF

=

fQ(ST )

ν′(ST )∫ fQ(x)

ν′(x)
dx

(w−1)′(FP (ST ))︸ ︷︷ ︸
CPT density function

(A.7)

Thus, once the relation between the probability weighting function of EDF and the PCPT

density is established, as in Eqs. (A.5) and (A.6), one can eliminate the weighting scheme

affecting returns by applying the inverse of such weightings to the subjective density function

without endangering such equalities, as in Eq. (A.7), numbered Eq. (6) in the main text.

A.2 Single stock weighted average implied volatilities

Starting from the portfolio variance formula, Eq. A.8a, we hereby provide the derivation of our

single stock weighted-average implied volatility, given in Eq. A.8k:

σ2
I =

n∑
i,j=1

wiwjρijσiσj, (A.8a)

where,

ρij(x) =

{
ρ̄, if i 6= j

1, if i = j
(A.8b)

26A drawback of the CPT model is that it allows for non-strictly increasing functions, which would not allow
invertibility. This is the reason why the newer literature on probability distortions functions favors other strictly

monotonic functions, such as Prelec’s (1998) w(p) = e−(−ln(p))
δ

, as the weighting functions. Nevertheless,
because the CPT parameters of our interest (γ = 0.61; δ = 0.69) impose strict monotonicity, we can obtain the
inverse of the probability function, w−1(p) numerically.
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and where σ2
I is the equity index option implied variance and i and j are indexes for the

constituents of such equity index, then:

σ2
I = ρ̄

n∑
i 6=j

wiwjρijσiσj +
n∑
i=1

w2
i σ

2
i , (A.8c)

= ρ̄

n∑
i,j=1

wiwjρijσiσj + (1− ρ̄)
n∑
i=1

w2
i σ

2
i , (A.8d)

= ρ̄

(
n∑
i=1

wiσi

)2

+ (1− ρ̄)
n∑
i=1

w2
i σ

2
i , (A.8e)

= ρ̄

(
n∑
i=1

wiσi

)2

+
n∑
i=1

w2
i σ

2
i − ρ̄

n∑
i=1

w2
i σ

2
i , (A.8f)

= ρ̄

( n∑
i=1

wiσi

)2

−
n∑
i=1

w2
i σ

2
i

+
n∑
i=1

w2
i σ

2
i , (A.8g)

ρ̄ ≈
σ2
I −

∑n
i,j=1w

2
i σ

2
i

(
∑n

i=1wiσi)
2 −

∑n
i,j=1w

2
i σ

2
i

. (A.8h)

As
∑n

i,j=1w
2
i σ

2
i is relatively small, we can simplify A.8h into A.8i, the implied correlation:

ρ̄ ≈ σ2
I

(
∑n

i=1wiσi)
2

(A.8i)

To obtain the single stock weighted average implied volatility (Eq. A.8k, we then square

root both sides of the approximation and re-arrange its terms:

√
ρ̄ ≈ σI

(
∑n

i=1wiσi)
(A.8j)

n∑
i=1

wiσi ≈
σI√
ρ̄

(A.8k)

A.3 Least Absolute Shrinkage and Selection Operator (Lasso)

The regression coefficients obtained by the Lasso methodology applied (βLθ ) are estimated by

minimizing the quantity:

n∑
i=1

(y1 − β0 −
p∑
j=1

βjxij)
2 + κ

p∑
j=1

|βj|= RSS + κ

p∑
j=1

|βj| (A.9)

where κ is the tuning parameter, which is estimated via cross-validation. The cross-validation

applied by us uses ten equal-size splits of our overall data set.
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A.4 k-Nearest-Neighbor classifier

The k-Nearest-Neighbor (KNN) classifier is one of the approaches in machine learning that

attempts to estimate the conditional distribution of the explained variable (Y ) given the ex-

planatory variables (X) and, subsequently, classify new observations to the class with highest

estimated probability. The KNN classifier uses the Euclidean distance to first identify the clos-

est kth observations within the training data (in-sample data) to a new test (out-of-sample)

observation provided (x0). Such neighborhood of points around the test observation x0 is de-

fined as N0. KNN, then, estimates the conditional probability of x0 to belong to a class j as

the percentage of old observations (yi) in the neighborhood N0 whose class is also j:

Pr(Y = j|X = x0) =
1

k

∑
i∈N0

I(yi = j) (A.10)

In a third step, KNN applies the Bayes rule to perform out-of-sample classification (in test

data) of x0 to the class with the largest probability. For further details, see Hastie et al. (2008).
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B Appendix

B.1 Welch and Goyal (2008) equity market predictors

The complete set and summarized descriptions of variables provided by Welch and Goyal

(2008)27 that are used in our study is given as:

1. Dividendprice ratio (log), D/P: Difference between the log of dividends paid on the

S&P 500 index and the log of stock prices (S&P 500 index).

2. Dividend yield (log), D/Y: Difference between the log of dividends and the log of

lagged stock prices.

3. Earnings, E12: 12-month moving sum of earnings on teh S&P500 index.

4. Earnings-price ratio (log), E/P: Difference between the log of earnings on the S&P

500 index and the log of stock prices.

5. Dividend-payout ratio (log), D/E: Difference between the log of dividends and the

log of earnings.

6. Stock variance, SVAR: Sum of squared daily returns on the S&P 500 index.

7. Book-to-market ratio, B/M: Ratio of book value to market value for the Dow Jones

Industrial Average.

8. Net equity expansion, NTIS: Ratio of twelve-month moving sums of net issues by

NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks.

9. Treasury bill rate, TBL: Interest rate on a three-month Treasury bill.

10. Long-term yield, LTY: Long-term government bond yield.

11. Long-term return, LTR: Return on long-term government bonds.

12. Term spread, TMS: Difference between the long-term yield and the Treasury bill rate.

13. Default yield spread, DFY: Difference between BAA- and AAA-rated corporate bond

yields.

14. Default return spread, DFR: Difference between returns of long-term corporate and

government bonds.

15. Cross-sectional premium, CSP: measures the relative valuation of high- and low-beta

stocks.

16. Inflation, INFL: Calculated from the CPI (all urban consumers) using t−1 information

due to the publication lag of inflation numbers.

27Available at http://www.hec.unil.ch/agoyal/.
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Table 6: Robustness checks: Kupiec’s test

This table reports the results from Kupiec’s (1995) percentage of failure (POF) test for violations of the

extreme quantile returns (EQR) from the empirical density function (EDF) by the EQR of a set of RND and

subjective density functions. The test is performed as a robustness check to the extreme value theory

(EVT)-based tests performed on the EQR and on the expected upside returns. The null hypothesis, which is

designed as a log-likelihood ratio test (Eq. (16)), is that the realized probability of failure ( v
n ) matches the

predicted one p∗. Thus if the LR exceeds the critical value, χ2 (1)=3.841, such a hypothesis is rejected at the

five percent level. Translating the methodology to our empirical problem, (p∗) becomes the assumed

probability that the EQR of the subjective and of the risk-neutral densities will violate the EQR of the

realized returns, where v
n is the realized number of violations. We note that because we apply Kupiecs test to

the upside returns, violations mean that returns are higher than a positive threshold.

Panel A - Three-month calls

EQR 90% EQR 95% EQR 99%

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RND vs EDF 99.9% 0.0000 ∞ 99.2% 0.0000 ∞ 50.5% 0.0000 414.8
Power vs EDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 84.7% 0.0000 ∞
Expo vs EDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 86.8% 0.0000 ∞
PCPT vs EDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 67.2% 0.0000 752.0
CPT vs EDF 58.2% 0.0000 559.6 45.7% 0.0000 333.3 16.0% 0.0002 13.6

p = 5% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RND vs EDF 99.9% 0.0000 ∞ 99.2% 0.0000 ∞ 50.5% 0.0000 671.5
Power vs EDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 84.7% 0.0000 ∞
Expo vs EDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 86.8% 0.0000 ∞
PCPT vs EDF 100.0% 0.0000 ∞ 100.0% 0.0000 ∞ 67.2% 0.0000 ∞
CPT vs EDF 58.2% 0.0000 861.9 45.7% 0.0000 561.3 16.0% 0.0000 65.5

Panel B - Six-month calls

EQR 90% EQR 95% EQR 99%

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RND vs EDF 99.9% 0.0000 ∞ 93.3% 0.0000 ∞ 13.8% 0.0160 5.8
Power vs EDF 99.9% 0.0000 ∞ 97.7% 0.0000 ∞ 22.1% 0.0000 49.7
Expo vs EDF 99.9% 0.0000 ∞ 97.8% 0.0000 ∞ 23.0% 0.0000 56.4
PCPT vs EDF 99.9% 0.0000 ∞ 97.3% 0.0000 ∞ 17.0% 0.0000 18.2
CPT vs EDF 62.4% 0.0000 647.0 36.3% 0.0000 197.3 5.7% 0.0019 9.6

p = 5% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RND vs EDF 99.9% 0.0000 ∞ 93.3% 0.0000 ∞ 13.8% 0.0000 44.8
Power vs EDF 99.9% 0.0000 ∞ 97.7% 0.0000 ∞ 22.1% 0.0000 137.7
Expo vs EDF 99.9% 0.0000 ∞ 97.8% 0.0000 ∞ 23.0% 0.0000 149.7
PCPT vs EDF 99.9% 0.0000 ∞ 97.3% 0.0000 ∞ 17.0% 0.0000 76.0
CPT vs EDF 62.4% 0.0000 ∞ 36.3% 0.0000 369.9 5.7% 0.5474 0.4

Panel C - Twleve-month calls

EQR 90% EQR 95% EQR 99%

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RND vs EDF 62.8% 0.0000 655.1 25.0% 0.0000 72.9 20.3% 0.0000 37.0
Power vs EDF 93.5% 0.0000 ∞ 42.5% 0.0000 283.5 29.3% 0.0000 114.7
Expo vs EDF 94.6% 0.0000 ∞ 43.1% 0.0000 292.7 30.4% 0.0000 126.2
PCPT vs EDF 79.5% 0.0000 1067.2 36.1% 0.0000 194.7 24.4% 0.0000 68.3
CPT vs EDF 29.4% 0.0000 115.2 7.2% 0.0480 3.9 8.4% 0.2666 1.2

p = 5% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat

RND vs EDF 62.8% 0.0000 ∞ 25.0% 0.0000 177.9 20.3% 0.0000 114.2
Power vs EDF 93.5% 0.0000 ∞ 42.5% 0.0000 492.6 29.3% 0.0000 245.6
Expo vs EDF 94.6% 0.0000 ∞ 43.1% 0.0000 505.3 30.4% 0.0000 263.6
PCPT vs EDF 79.5% 0.0000 ∞ 36.1% 0.0000 366.1 24.4% 0.0000 170.2
CPT vs EDF 29.4% 0.0000 246.4 7.2% 0.0631 3.5 8.4% 0.0048 8.0
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