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ABSTRACT

This paper investigates whether the overpricing of out-of-the money single stock calls can be
explained by Tversky and Kahneman’s (1992) cumulative prospect theory (CPT). We hypoth-
esize that these options are overpriced because investors overweight small probability events
and overpay for positively skewed securities, i.e, lottery tickets. We find that overweighting
of small probabilities embedded in the CPT explains the richness of out-of-the money single
stock calls better than other utility functions. Nevertheless, overweighting of small probabili-
ties events is less pronounced than suggested by the CPT, is strongly time-varying and most
frequent in options of short maturity. Fluctuations in overweighting of small probabilities are
largely explained by the sentiment factor.
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1 Introduction

Barberis and Huang (2008) hypothesize that Tversky and Kahneman’s (1992) cumulative
prospect theory (CPT) explains a number of seemingly unrelated pricing puzzles. In con-
trast to previous literature, which concentrates on the CPT’s value function (see Benartzi and
Thaler, 1995; Barberis et al., 2001; Barberis and Huang, 2001), Barberis and Huang (2008)
focus on the probability weighting functions of the model. They conclude that the CPT’s over-
weighting of small probability events explains why investors prefer positively skewed returns, or
“lottery ticket” type of securities. Because of such preference, investors overpay for positively
skewed securities, turning them expensive and causing them to yield low forward returns. The
authors argue that this mechanism is the reason why IPO stocks, private equity, distressed
stocks, single segment firms and deep out-of-the money (OTM) single stock calls are overpriced
among other irrational pricing phenomena.

The proposition made by Barberis and Huang (2008) that deep OTM single stock calls
resemble overpriced lottery-like securities due to investors’ overweight of tails has not yet been
verified empirically!. Empirical studies on probability weighting functions implied by option
prices are offered by Dierkes (2009), Kliger and Levy (2009), and Polkovnichenko and Zhao
(2013)%2. The evidence provided by these papers is, however, based on the index put options
market, which behaves very differently from the single stock option market. The main buyers
of OTM index puts are institutional investors, which use them for portfolio insurance (Bates,
2003; Bollen and Whaley, 2004; Lakonishok et al., 2007; Barberis and Huang, 2008). Because
institutional investors comprise around two-thirds of the total equity market capitalization
(Blume and Keim, 2012), their option trading activity strongly impacts the pricing of put
options (Bollen and Whaley, 2004) by making them expensive. The results of Dierkes (2009)
and Polkovnichenko and Zhao (2013) reiterate this evidence and suggest that overweighting
of small probabilities partially explains the pricing puzzle present in the equity index option
market.

Contrary to the index put market, trading activity in single stock calls is concentrated among
individual investors (Bollen and Whaley, 2004; Lakonishok et al., 2007) and is speculative in
nature (Lakonishok et al., 2007; Bauer et al., 2009; Choy, 2015). Beyond that, Mitton and
Vorkink (2007); Bauer et al. (2009); Kumar (2009) provide important empirical support to
the link between preference for skewness and individual investor trading activity. The fact
that many individual investors have a substantial portion of their portfolios tied up in low risk
investments, such as pensions, social security, 401(k)s, IRAs, or are averse (or constrained)

to borrow (Frazzini and Pedersen, 2014) encourages them to buy financial instruments with

Boyer and Vorkink (2014) provide evidence that lottery-like single stock options do deliver lower forward
returns than options with lower ex-ante skewness. However, their paper does not test why these options are
overvalued, nor does it analyse the potential time-variation in ex-ante skewness and forward returns. Conrad
et al. (2013) find similar results for ex-ante skewness and subsequent stock returns.

2These studies focus on the rank-dependent expected utility (RDEU) rather than the CPT, as the RDEU
is seamlessly effective in dealing with the overweighting of probability phenomena. The RDEU’s probability
weighting functions are strictly monotonically increasing, whereas the CPT one is not. RDEU functions are
also easier to estimate because they use one less parameter than the CPT.
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implicit leverage such call options. Hence, given the very distinct clientele of these two option
markets (institutional investors vs. retail investors) and the different motivation for trading
(portfolio insurance vs. speculation), we reason that the OTM single stock calls overpricing is
a puzzle in itself, requiring an independent empirical proof from the index option market.

The first contribution of our study is to investigate whether the CPT can empirically ex-
plain the claimed overpricing of OTM single stock call options. To that purpose, we empirically
test whether tails of the CPT density function outperform the risk-neutral density and ratio-
nal subjective probability density functions on matching tails of the distribution of realized
returns. We find that our estimates for the CPT probability weighting function parameter ~
are qualitatively consistent with the ones predicated by Tversky and Kahneman (1992), partic-
ularly for short-term options. Our estimates do suggest that overweight of small probabilities
is less pronounced than suggested by the CPT though. This analysis complements the results
of Barberis and Huang (2008) and provides novel support to explain the overpricing of OTM
single stock calls. Our empirical results extend the findings of Dierkes (2009), Kliger and Levy
(2009), Polkovnichenko and Zhao (2013), because we show that investors’ overweighting of
small probabilities is not restricted to the pricing of index puts but also applies to single stock
calls.

Secondly, we provide evidence that overweighting of small probabilities is strongly time-
varying and connected to the Baker and Wurgler (2007) investor sentiment factor. These
findings contrast the CPT model, where the probability weighting parameter for gains ()
is constant at 0.61. In fact, our estimations suggest that the v parameter fluctuates widely
around that level, sometimes even reflecting underweighting of small probabilities. We show
that overweighting of small probabilities was quite strong during the dot-com bubble, which
coincided with a strong rise in investor sentiment. The strong time-variation in overweight of
tails indicates that investors have either a “bias in beliefs” or time-varying (rather than static)
skewness preferences, see Barberis (2013) for a discussion on the topic?®.

Moreover, we find that overweighting of small probabilities is largely horizon-dependent,
because this bias is mostly observed within short-term options prices (i.e., three- and six-
months) rather than in long-term ones (i.e., twelve-months). We reason that such positive
term structure of tails” overweighting exist because individual investors may speculate using the
cheapest available call at their disposal. In other words, individual investors buy the cheapest
lottery tickets that they can find. As three- and six-month options have much less time-value
than twelve-month ones, more pronounced overweighting of small probabilities within short-
term options seems sensible. This result is consistent with individual investors being the typical
buyers of OTM single stock calls and the fact that they mostly use short-term instruments to
speculate on the upside of equities (Lakonishok et al., 2007).

3We acknowledge that it is unclear whether overpicing of OTM calls is caused by overweighting of small
probablities (i.e., a matter of preferences), or rather by biased beliefs. Barberis (2013) eloquently discusses how
both phenomena are distinctly different and how both (individually or jointly) may explain the overpricing in
OTM options. In this paper we take a myopic view and use only the first explanation, for ease of exposition.
Disentangling the two (beliefs and preferences) would potentially be very interesting, but we deem it to be
outside the scope of this paper.



In our analysis of probability weighting functions, we focus on the outmost tails of RNDs?.
We argue that, as distribution tails (mostly estimated from OTM options) are the sections of
the distribution that reflect low probability events, we may analyze these locally, thus, isolated
from the distribution’s body. To this purpose, we use extreme value theory (EVT) and Kupiec’s
test (as a robustness check), which are especially suited for the analysis of tail probabilities
and, so far, have not been employed yet to the evaluation of overpricing of OTM options. As
an additional robustness check, we replace the CPT by the rank-dependent expected utility
(RDEU) function of Prelec (1998). This alteration reconfirms the presence of overweighted
small probabilities by investors within the OTM single stock call market and, at the same time,
reiterates that such bias is less pronounced than suggested by the CPT model. Time-variation
of the weighting function parameters is also observed when RDEU is applied.

The remainder of this paper is organized as follows. Section 2 describes the CPT model.
Section 3 describes the data and methodology employed in our study. Section 4 presents our

empirical analysis and Section 5 discusses our robustness tests. Section 6 concludes.

2 Cumulative Prospect Theory

The Prospect theory (PT) of Kahneman and Tversky (1979) incorporates behavioral biases
into the standard utility theory (von Neumann and Morgenstern, 1947), which presumes that
individuals are rational®. Such behavioral anomalies are i) loss aversion, ii) risk seeking behavior

6. The CPT is described in terms of a value function (v) and

and iii) non-linear preferences
a probability distortion function (7). The value function is analogous to the utility function
in the standard utility theory and it is defined relative to a reference point zero. Therefore,
positive values within the value function are considered as gains and negative values are losses,

which leads to:

) ifr>=0
v(@) = ~A—=2z)? ,ifx<0 1)

where A > 1, 0 < 8 < 1,0 < a <1, and x are gains or losses. Thus, along the dominium

4Per contrast, Dierkes (2009) and Polkovnichenko and Zhao (2013) explore the relation between overweight-
ing of small probabilities and options prices by analyzing the full RND from options. Dierkes (2009) applies
Berkowitz’s tests, whereas Polkovnichenko and Zhao (2013) estimate an empirical weighting function via poly-
nomial regressions.

®The expected utility theory of von Neumann and Morgenstern (1947) is the standard economics framework
on decision making under risk. Their theory assumes that decision-makers behave as if they maximize the
expected value of some function defined over the potential (probabilitistic) outcomes. Individuals are assumed
to have stable and rational preferences; i.e., not influenced by the context or framing.

6Loss aversion is the property in which people are more sensitive to (or affected by) losses than gains. For
details, see Kahneman and Tversky (1979), Tversky and Kahneman (1992) and Barberis and Huang (2001).
Risk-seeking behavior happens when individuals are attracted by gambles with unfair prospects. In other words,
the risk-seeking individual is the one that chooses for a gamble versus a sure thing even though the two outcomes
have the same expected value. For details, see Kahneman and Tversky (1979). Non-linear preferences occur
when preferences between risky prospects are not linear in the probabilities, thus, equally probable prospects
are more heavily weighted by agents than others. For details, see Tversky and Kahneman (1992), Fox et al.
(1996), Wu and Gonzalez (1996), Prelec (1998) and Hsu et al. (2009).
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of x, the CPT’s value function is asymmetrically S-shaped (see Figure 1A) with diminishing
sensitivity as x — Fo00.

The value function is, thus, concave over gains and convex over losses, differently from
the traditional utility function used by standard utility theory. Such a shape of the value
function implies diminishing marginal values as gains or losses increase, which means that any
additional unit of gain (loss) becomes less relevant when wealth increases (decreases). As «
and [ increase, the effect of diminishing sensitivity decreases, and as A increases the degree of
loss aversion increases. We also note in Figure 1A that the value function has a kink at the
reference point, which implies loss aversion, as the function is steeper for losses than for gains.

[Please insert Figure 1 about here]

The use of a probability distortion function or decision weight function is the adjustment
made to the PT to address nonlinear preferences. This function takes probabilities and weights
them nonlinearly, so that the difference between probabilities at high percentiles, e.g., between
99 percent and 100 percent, has more impact on preferences than the difference between prob-
abilities at small percentiles, e.g., between 10 percent and 11 percent. This is the main advance
of the CPT over the original PT. The CPT applies probability distortions to the cumulative
probabilities (i.e., the CDF), whereas the PT applies them to individual probabilities (i.e.,
the PDF). The enhancement brought by this new formulation satisfies stochastic dominance
conditions not achieved by the PT, which renders the CPT applicable to a wider number of
experiments. The probability distortion functions suggested by Tversky and Kahneman (1992),

respectively, for gains (7") and losses (7-,,) are:

Ty =w"(pn) (2a)

mr = w (pi+ .+ pn) —w (P + A pn) , for 0 <i<n-—1 (2b)
T = W (P-m) (2¢)

T =W (pom t ot pi) =W (Pt pica) , for 1—m <i<0 (2d)

where p are objective probabilities of outcomes, which are ranked for gains from the reference
point 7 = 0 to ¢ = n, the largest gain, and for losses from the largest loss : = —m to ¢ = 0, the
reference point. Further, w* and w™, the parametric form of the decision weighting functions,

are given by:

_ P .

U}+(p) - (p,y + (1 _p),y)l/,y (3 )
o P’

wp) = (P° + (L —p)°)/° (30)

where parameters v and § define the curvature of the weighting function for gains and losses,
which leads the probability distortion functions to assume inverse S-shapes. Figure 1B depicts

how low probability events are overweighted at the cost of moderate and high probabilities
5



within the CPT probability distortion functions. Tversky and Kahneman (1992) indicate that
the weighting functions for gains are slightly more curved than for losses (i.e., 7 < §). The

parameters estimated by the authors for the CPT model, which are discussed in our empirical
analysis below, are A = 2.25; § = 0.88; a = 0.88; v = 0.61; 6 = 0.69.

3 Data and Methodology

In this section, we first describe the theoretical background that allows us to relate empirical
density functions (EDF), RND, and subjective density functions. This is a key step for testing
the hypothesis that the CPT helps to explain overpricing of OTM options, because we build on
the assumption that investors’ subjective density estimates should correspond, on average’, to
the distribution of realizations (see Bliss and Panigirtzoglou, 2004). Thus, testing whether the
CPT’s weighting function explains the overpricing of OTM options, ultimately, relates to how
the subjective density function produced by CPT’s preferences matches empirical returns. Be-
cause the representative agent is not observable, subjective density functions are not estimable
like EDF and RND are. As such, we build on the following theory to derive subjective density
functions from RNDs.

In our empirical exercise, we first derive subjective density functions for (a) the power
and (b) exponential utility functions. Because the CPT model contains not only a utility
function (the value function) but also a probability weighting scheme (the weighting function),
we produce two density functions: (c) the hereafter called partial CPT density function (PCPT),
where only the value function is taken into account, and (d) the CPT density function, where
the value and the weighting functions are considered. Lastly, we also calibrate v to market data
and are, then, able to compute (e) the estimated CPT density (ECPT). We provide details on
estimation methods for our five subjective density functions, (a) to (e), in Section 3.1, and for
the RND and EDF in Section 3.4.

Once all five subjective density functions are obtained, we distinguish four analyses in our
empirical analysis section: 1) the estimation of long-term CPT value and weighting function
parameters (from which we can produce the ECPT density) (Section 4.1); 2) EVT-based tests of
consistency between tails of the EDF, the RND and our five subjective probability distributions
(Section 4.2); 3) the estimation of time-varying v parameter (Section 4.3); and 4) a regression
linking the CPT time-varying probability weighting parameter (y) to sentiment measures as
well as numerous control variables (Section 4.4).

We use single stock weighted average IV data used for the largest 100 stocks of the S&P
500 index within our RND estimations. Appendix A.2 shows how single stock weighted average
IV are computed. Weights applied are the S&P 500 index weights normalized by the sum of
weights of stocks for which I'Vs are available. Following the S&P 500 index methodology and the

"This implies that investors are somewhat rational. This assumption is not inconsistent with the CPT
assumption that the representative agent is less than fully rational. The CPT suggests that investors are
biased, not that decision makers are utterly irrational to the point that their subjective density forecast should
not correspond, on average, to the realized return distribution.
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unavailability of IV information for every stock in all days in our sample, stocks weights in this
basket change on a daily basis. The sum of weights is, on average, 58 percent of the total S&P
500 index capitalization and it fluctuates between 46 and 65 percent. The IV data comes from
closing mid-option prices from January 2, 1998 to March 19, 2013 for fixed maturities for five
moneyness levels, i.e., 80, 90, 100, 110, and 120, at the three-, six- and twelve-month maturity.
Continuously compounded stock market returns are calculated throughout our analysis from
the basket of stocks weighted with the same daily-varying loadings used for aggregating the IV
data. IV data and stock weights are kindly provided by Barclays®. Single stock returns are
downloaded via Bloomberg.

We take the perspective of end-users of single stock OTM call options”. Hence, we assume
that supply imbalances are minimal and do not impact implied volatilities. We think this
assumption is reasonable because 1) option markets for the largest 100 U.S. stocks are liquid;
2) any un-hedged risk run by market makers can be easily hedged by purchasing the stock;
and 3) unhedged risk by market makers is likely much smaller when supplying call options
relative to put options. Market makers run little unhedged risk when supplying call options
vis-a-vis supplying puts because stocks returns are negatively skewed, making gap and jump
risk much lower on the upside than on the downside. Garleanu et al. (2009) have shown that
this condition is different for the index option market, where market makers mostly provide
put options for portfolio insurance programs. As the authors suggest, put sellers become more
risk-sensitive following equity market declines, as their un-hedged risk increases, which makes
them unwilling to write additional puts to the market. Our implied volatility data show no
indication of an increase in the implied volatility skew from 120 percent moneyness options, nor
from at-the-money options around moments of market stress (e.g., the 2008-09 global financial
crisis). Hence, we find no evidence of the presence of supply imbalances in the OTM calls in

our sample.

3.1 Subjective density functions

Standard utility theory tells us that since the representative agent does not have risk-neutral
preferences, RNDs are inconsistent with subjective and EDF!, thus both “real-world” proba-
bilities. Hence, if investors are risk-averse or risk seeking, their subjective probability function

should differ from the one implied by option prices. The relation between the RND fo(St),

8We thank Barclays for providing the implied volatility data. Barclays disclaimer: ”Any analysis that utilizes
any data of Barclays, including all opinions and/or hypotheses therein, is solely the opinion of the author and
not of Barclays. Barclays has not sponsored, approved or otherwise been involved in the making or preparation
of this Report, nor in any analysis or conclusions presented herein. Any use of any data of Barclays used herein
s pursuant to a license.”

9We implicitly assume that end-users of single stock OTM call options have the same preferences across un-
derlyings. This assumption is supported by the evidence provided by Bollen and Whaley (2004) and Lakonishok
et al. (2007) that trading activity in equity calls is concentrated among individual investors and is speculative
in nature.

10 Anagnou et al. (2002) and Bliss and Panigirtzoglou (2004) have tested the consistency between RNDs and
physical densities estimated from historical data and found that such distributions are inconsistent, i.e., RNDs
are poor forecasters of the distribution of realizations.



and “real-world” probability distributions, fp(S7), with Sy being wealth or consumption!!, is

described by ¢(Sr), the pricing kernel or the marginal rate of substitution (of consumption at

time T for consumption at time ¢)'%:

fe(Sr) U (Sr) _
fatsr) ~ TSy T (4)

where A is the subjective discount factor (the time-preference constant) U(-) is the representa-

tive investor utility function. As U(St) is a random variable, the pricing kernel is also called the
stochastic discount factor. Thus, Eq. (4) tell us that the “real-world” distribution equates to
the RND when adjusted by the pricing kernel. The intuition behind Eq. (4) is that a real-world
or risk-adjusted probability distribution can be obtained from the RND, once the risk trade-off
embedded in the representative investor utility function is considered.

Since CPT-biased investors price options as if the data-generating process has a cumulative
distribution F5(Sr) = w(Fp(St))", where w is the weighting function, its density function
becomes f5(S7) = w'(Fp(Sr)) - fr(Sr) (see Dierkes, 2009; Polkovnichenko and Zhao, 2013).
Thus, CPT-biased agents assess probability distributions as if their tails would contain more
weight than in reality they do, i.e., they have a preference for skewness or “bias in beliefs”,
as Barberis (2013) argues. Consequently, evaluating whether the CPT’s propositions apply is
equivalent to testing whether Eq. (4) still holds if fp(St) is replaced by f5(Sr), leading to:

w(Fp(Se) - SolS1) _ g 5
fo(S1)

We, then, further manipulate Eq. (5) so to directly relate the original EDF to the CPT
subjective density function, by “undoing” the effect of the CP'T probability distortion functions
within the PCPT density function. The relation between EDF and the CPT density function
is given by Eq. (6) and its derivation, from Eq. (5), is provide in Appendix A.1:

fQ((SST))

V(ST —1y/

fP(ST) - f fo(z) (w ) (FP(ST)) (6)
EDF J Vi) ,

TV
CPT density function

where 1/(S7) is the CPT’s marginal utility function.
This result allows us to obtain a clear representation of the CPT subjective density function,
thus, where the value and the weighting function are simultaneously taken into account. At

this stage, as we can produce RND and the set of subjective densities of our interest, including

"Note that, as the value function within the CPT measures utility versus a reference point, St is not strictly
positive in this model. A negative St denotes a loss of wealth or consumption, whereas a positive St represents
a gain.

12The condition necessary for Eq. (4) to hold is that markets are complete and frictionless and a single risky
asset is traded.

13Similarly, if investors are rational, their subjective density functions should be consistent, on average, with
the empirical density function. Bliss and Panigirtzoglou (2004) find that subjective density functions, produced
from RND adjusted by two types of representative investors’ utility functions (power and exponential) with
plausible relative risk aversion parameters, outperform RND on forecasting density functions.

8



the CPT density, one can evaluate how consistent with realizations their tails are.

3.2 Estimating CPT parameters

We start evaluating the empirical validity of the CPT for single stock call options by comparing
EDF to the CPT density function parameterized by Tversky and Kahneman (1992). Subse-
quently, we estimate CPT weighting function parameters A and 7 with the same goal. We
only estimate v within the probability weighting function, and not §, because we are interested
in the gains-side of the distribution, which is extracted from call options. We estimate these
parameters non-parametrically, by minimizing the weighted squared distance between physical
distribution and the partial CPT density function for every bin above the median of the two

distributions, as follows:

prob prob

B
v(\) = Miny Wy(EDEF},,, — CPT},,)*, (7)
b=1

where, EDFIfmb and CPT, é’mb are, respectively, the probability within bin 0 in the empirical and
CPT density functions and W), are weights given by —- foo_; 67712 dr = 1, the reciprocal of the
normalized normal probability distribution (above its gedian), split in the same total number
of bins (B) used for the EDF and CPT. The loss aversion parameter, A, in Eq. (7) is optimized
using multiple constraint intervals: [0,3], [0,5] and [0,10]. Once the optimal X is known, we

minimize Eq. (8) using its estimate and the CPT A:

prob prob

B
wh(y,6 =v) = Min Y _Wy(EDE},,, — CPT,,,)*, (8)
b=1

where v, the probability weighting parameter for gains, is constrained by the permutation
of the following upper bounds (1.2, 1.35, 1.5, 1.75 and 2) and lower bounds (-0.25, 0 and
0.28). Weights applied in these optimizations are due to the higher importance of matching
probabilities tails in our analysis than the body of the distributions.

Our non-linear bounded optimization is a single parameter one, where we first estimate
optimal v (which we impose to equal §) across all permutations of upper and lower bounds
to select the bounds that produce the lowest residual sum of square (RSS). Subsequently,
we estimate A and v as suggested by the sequence of optimizations described by Eqs. (7)
and (8). This method resembles the ones of Kliger and Levy (2009), Dierkes (2009), Chabi-
Yo and Song (2013), and Polkovnichenko and Zhao (2013). Once optimal parameters A and
~ are estimated, we can produce another long-term subjective density function: the ECPT,
which stands for estimated CPT, where we apply the optimal v for the characterization of
its probability weighting function. Finally, we also estimate time-varying ~ using different

assumptions of A\, so to evaluate the sensitivity of v to changes in \.



3.3 Density function tails’ consistency test

We check for tail consistency of our set of five subjective density functions (CPT, PCPT, ECPT,
power and exponential), RND, and the EDF by applying extreme value theory (EVT). EVT
allows us to estimate the shape of the tails of these eight PDFs and to extract the returns
implied by an extreme quantile within our PDFs. We estimate the tail shape estimator (¢) by
means of the Hill (1975) estimator:

1 1

5 k Z_: $k+1 ) ©)
where k is the number of extreme returns used in the tail estimation, and xy; is the tail cut-off
point. The tail shape estimator ¢ measures the curvature, i.e., the fatness of the tails of the
return distribution: a high (low) ¢ indicates that the tail is fat (thin). The inverse of ¢ is the
tail index (6), which determine the tail probability’s rate of decay. A high (low) 6 indicates that
the tail decays quickly (slowly) and, therefore, is thin (fat). Such tail shape estimator and tail
index give us a good representation of the curvature of the tails, but since tails may have the
same shape while estimating diverse extreme observations, we also employ the semi-parametric

extreme quantile estimator from De Haan et al. (1994):

R k
qp = xkﬂ(pn) ) (10)

=

where n the sample size, p is a corresponding exceedance probability, which means the likelihood
that a return x; exceeds the tail value ¢, and x4, is the tail cut-off point. We note that one
of the input of ¢, is the tail shape estimator ¢. Similar to value-at-risk (VaR) modeling, the
g, statistic indicates the level of the worst return occurring with probability p, which is small.
This is the reason why we call §, extreme quantile return (EQR). As we are interested only in
the upside returns with a p probability estimated from calls, we only compute cj; by applying
the same methodology to the right side of the RND obtained from the single stock option
market!?.

In addition to the EQR, we also evaluate the density function tails using expected shortfall
(ES), which captures the average loss beyond the tail cut-off point. As we are interested in
the upside of the distribution, we call such measure expected upside (EU) as the average gain
beyond the tail cut-off point. We evaluate the EU following Danielsson et al. (2006) formulae

for the ES, which relates the EQR (i.e., the VaR) to the ES (i.e., the CVaR) as described below:

_ ) k
EU = = . —)é 11
q(p) 0 1 xk-i—l(pn) ) ( )

S

where 6 is the tail index.
De Haan et al. (1994) show that the tail shape estimator statistic Vk(¢(k) — @) and the

=

tail quantile statistic In(E )[ln%] are asymptotically normally distributed. Hence, according
"ok

3

1Our EQR measure is closely connected to the risk-neutral tail loss measure of Vilkov and Xiao (2013).
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to Hartmann et al. (2004) and Straetmans et al. (2008), the t-statistics for such estimators are

given by:
Y1 — Pa
T, = — N O, 1 5 12a
= Sl = 5] (0,1) (12a)
and

o (G — G2
where the denominators are calculated as the bootstrapped difference between the estimated
shape parameters ¢ and the quantile parameters ¢, using 1000 bootstraps. The null hypothesis
of this test is that ¢ and ¢, parameters do not come from independent samples of normal
distributions, therefore, ¢1 = 2 and ¢ = ¢2. The alternative hypothesis is that ¢ and ¢, have
unequal means. Such t-test is also applied to our EU analysis, as the distribution of EU follows
ﬁ [lnd(p)

the same distribution of the tail quantile statistic (L @]’ given that EU is the extreme
pk

quantile estimator multiplied by a constant.

3.4 Estimating RND and EDF

For the estimation of the RND, the first step taken is the application of the Black-Scholes
model to our IV data to obtain options prices (C) for the S&P 500 index. Once our data
is normalized so strikes are expressed in terms of percentage moneyness, the instantaneous
price level of the S&P 500 index (Sp) equals 100 for every period for which we would like to
obtain implied returns. Contemporaneous dividend yields for the S&P 500 index are used for
the calculation of P as well as the risk-free rate from three-, six-, and twelve-month T-bills.
Because we have IV data for five levels of moneyness, we implement a modified Figlewski (2010)
method for extracting our RND structure, as in Felix et al. (2016). The main advantage of
this method over other techniques is that it extracts the body and tails of the distribution
separately, thereby allowing for fat tails.

The Figlewski (2010) method is close to the one employed by Bliss and Panigirtzoglou
(2004), where body and tails are also extracted separately. Bliss and Panigirtzoglou (2004)
use a weighted natural spline algorithm for interpolation, which has the same decreasing-noise
effect in RNDs of using splines in the absence of knots, as done in Figlewski (2010). The
extrapolation in Bliss and Panigirtzoglou (2004) is done by the introduction of a pseudo-data
point, which has the effect of pasting lognormal tails into the RND. One advantage of these two
approaches is that the extrapolation does not result in negative probabilities, which is possible
when splines is applied in such case. Nevertheless, we favor Figlewski’s (2010) approach as
the lognormal tails employed by Bliss and Panigirtzoglou (2004) assume that IV is constant
beyond the observable strikes, resembling the Black-Scholes model. The modification made to
the Figlewski (2010) method by Felix et al. (2016) entailed having flexible inner anchor points
(as opposed to having fixed anchor points) for fitting tails to the risk neutral density. The aim

of this modification is to prevent the method to estimate distribution density functions with
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implausible shapes.

We estimate the EDF in two different ways. First, using the entire sample of realized returns
(r), we estimate long-term EDFs non-parametrically, where r = in(Sr/S;) and S; is the realized
return index at time t and Sr is the forward level of the same index three-, six- or twelve-
months forward, i.e., respectively 21, 63 and 252-days forward. Because of overlapping periods,
we initially estimate our empirical distribution from non-overlapping returns for these three
maturities by using distinct starting points. This methodology is also applied by Jackwerth
(2000) and Ait-Sahalia and Lo (2000). However, because the length of the overlapping periods is
relatively large compared to our total sample, especially for the twelve-month forward returns,
we average the distribution with distinct starting points to smooth the shape of our multiple-
horizon distributions®.

In a second step, we estimate time-varying EDFs built from an invariant component, the
standardized innovation density, and a time-varying part, the conditional variance (0t2| +_1) Dro-
duced by an EGARCH model (see Nelson, 1991). We first define the standardized innovation,
being the ratio of empirical returns and their conditional standard deviation (In(S¢/S;—1)/04i-1)
produced by the EGARCH model. From the set of standardized innovations produced, we can
then estimate a density shape, i.e., the standardized innovation density. The advantage of
such a density shape versus a parametric one is that it may include, the typically observed,
fat-tails and negative skewness, which are not incorporated in simple parametric models, e.g.,
the normal. As mentioned, such density shape is invariant and it is turned time-varying by
multiplication of each standardized innovation by the EGARCH conditional standard deviation

at time t, which is specified as follows:

In(Sy/Si—1) =+ e, e ~ f(0, 0t2|t_1) (13a)

and

af‘tfl =w +ae |+ 603,1”,2 +IMax|0, —e_1]%, (13b)

where « captures the sensitivity of conditional variance to lagged squared innovations (e%;_1),
B captures the sensitivity of conditional variance to the conditional variance (02,5_1‘75_2), and 1
allows for the asymmetric impact of lagged returns (Y Maz[0, —¢;_1]*). The model is estimated
using maximum log-likelihood where innovations are assumed to be normally distributed.

Up to this point, we managed to produce a one-day horizon EDF for every day in our
sample but we still lack time-varying EDFs for the three-, six-, and twelve-month horizons.

Thus, we use bootstrapping to draw 1,000 paths towards these desired horizons by randomly

15 As a robustness check to this approach, we compare our three-, six- and twelve-month empirical distributions
with the ones calculated from non-overlapping returns. We use data since 1871 for the US equity price index,
made available by Welch and Goyal (2008), who use S&P 500 data since 1926, and data from Robert Shiller’s
website for the preceding period. Our empirical distributions are quite similar to the ones estimated from the
longer data set, suggesting that they are, indeed suitable as long-term distributions. The use of overlapping
returns is less problematic in our calculations than in regression estimation, where statistical inferences on
parameter estimates can be strongly affected by overlapping returns’ serial correlation.
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selecting single innovations (€;y1) from the one-day horizon EDFs available for each day in
our sample. We note that once the first return is drawn, the conditional variance is updated
(Uf_l‘ o) affecting the subsequent innovation drawings of a path. This sequential exercise
continues through time until the desired horizon is reached. In order to account for drift in
the simulated paths, we add the daily drift estimated from the long-term EDF plus the risk-
free rate to drawn innovations, thus the one-period simulated returns is ¢;.1 + 4 + Rf. The
density functions produced by the collection of returns implied by the terminal values of every
path and their starting points are our three-, six-, and twelve-month EDFs. These simulated
paths contain, respectively, 63, 126, and 252 daily returns. We note that by drawing returns
from stylized distributions with fat-tails and excess skewness, our EDF's for the three relevant
horizons also imbed such features. Finally, once these three time-varying EDF's are estimated
for all days in our sample, we estimate 7 for each of these days using Eq. (8)°.

Our approach for estimating both the long-term EDF and the time-varying EDF is closely
connected to the method applied by Polkovnichenko and Zhao (2013). The time-varying method
used by these authors is based on Rosenberg and Engle (2002). The choice for an EGARCH
approach versus the standard GARCH model is due to the asymmetric feature of the former

model that imbeds the “leverage effect”!.

4 Empirical analysis and results

In this section, we present our results of the empirical analysis described in section 3. We note
that since we estimate EDF in the two ways described (the long-term and time-varying EDF's),
we are able to estimate long-term 7’s and time-varying +’s by minimizing Eq. (8). We use our
long-term 7 estimates to compute the ECPT with the aim to compare it to the other subjective
density functions using the tests described in Section 3.3. The time-varying estimates of v are
analyzed in Sections 4.3 and 4.4 with the use of a regression model. We describe this regression
together with its results in Section 4.4. Finally, in Section 5, we perform robustness tests on
our results by using an alternative weighting function to the CPT, the one imbedded in the

Prelec (1998) model, and we apply Kupiec’s test to probability tails, among other checks.

4.1 Estimated CPT long-term parameters

We report the estimated CPT parameters (A and 7) extracted from long-term density functions
in Table 1, Panel A. Our first finding is that )\, the parameter of loss aversion, which is 2.25 in
the CPT, fluctuates around that number for six- and twelve-month options but shows a quite

different outcome for three-month options. Our estimation of A from three-month options is

Due to drift, the model of time-varying EDF for the twelve-month horizon occasionally does not match the
one of the PCPT model. This difference is challenging to estimation of v (Eq. (8)), as a large amount of ~y
estimates produce unreasonable PDFs such as non-monotonic CDFs. Therefore, to perform the optimizations
given by Eq. (8), we neutralize the impact of the drift by forcing the mode of the simulated EDF to match the
one of the PCPT.

"The leverage effect is the negative correlation between an asset’s returns and changes in its volatility. For
a comparison between alternative GARCH approaches, see Bollerslev et al. (2009).
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1.02, which indicates no loss aversion. For the six- and twelve-month options A is 2.66 and 3.00,
respectively. This finding suggests that loss aversion is more pronounced at longer maturities
than suggested by the CPT. Apart from that, twelve-month A estimates are highly variant
across the different optimization upper bounds used (i.e. 3, 5 and 10), always matching the
bound value, whereas estimates from three- and six option maturities are very stable across
upper bounds.

[Please insert Table 1 about here]

The estimated probability weighting function parameter ~ is slightly higher than the one
suggested by the CPT (i.e., 0.61) at the three- and six-month horizons, respectively, at 0.75 and
0.81. For twelve-month options, v is around 1.09. These results suggest that overweighting of
small probabilities occurs in short-term options (up to six-months), while twelve-month options
seem to behave more rationally. These findings support our hypothesis that individual investors
are, on average, biased when purchasing single stock call options, as suggested by Barberis and
Huang (2008).

4.2 Density functions tails’ consistency test results

As specified in section 3.3, we test the empirical consistency of density function tails among a
set of five subjective distributions (CPT, PCPT, ECPT, power, exponential), the RND, and
the EDF. We perform these tests by employing EVT through the application of Eqgs. (9) to
(12b). For such purpose, we require return streams (z,), which are only available for the long-
term EDF. Thus, we apply an inversion transform sampling technique to our other PDFs to
obtain sampled returns for them. Such method, also known as the Smirnov method, entails
drawing n random numbers from a uniformly distributed variable U = (uy, ug, ..., u,) bounded
at interval [0, 1] and, subsequently, computing z; - F~*(u;), where F are the CDF's of interest
(see Devroye, 1986, p.28). Hence, the Smirnov method simulates returns that resemble the
ones of the inverse CDF by randomly drawing probabilities along such function.

Once we obtain returns for all five PDF's, the next step is to set k£ as the optimal number
of observations used for estimation of ¢ by Eq. (9), the Hill-estimator. For this purpose, we
produce Hill-plots for the right tail of our distributions, which depict the relationship between
k and ¢ as a curve (see Straetmans et al., 2008). Picking the optimal k£ is done by observing
the interval in this curve where the value of ¢ stabilizes while k£ changes. This area suggests a
stable trade-off between a good approximation of the tail shape by the Pareto distribution and
the uncertainty of such approximation (by the use of fewer observations). The interval that
corresponds to roughly four to seven percent of observations seems to be a stable region across
the Hill-plots of the tails of the EDF and the CPT. As an increase in k increases the statistical
power of the estimator but may distort the shape of the tail, we decide to set k as chosen from
the Hill-plots for EDF and CPT tails equal to four percent.

We examine whether the tail shape parameter (¢), computed via the Hill (1975) estimator,
for the RND and for our subjective density functions (i.e., power, exponential, PCPT, CPT

and ECPT) matches the one for the EDF. The outcomes from the statistical tests performed
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to compare tail shape parameters (Eq. (12a)) are provided in Table 1, Panel B. Results suggest
that for the three-month maturity options, ¢ for the RND, CPT and ECPT (at 0.20) are the
closest to the EDF parameter (at 0.29) but they are not statistically equal. The ¢ estimate
for the power, exponential, and PCPT density functions do not match the one for the EDF, as
they are all around 0.17 and, thus, exhibit fatter tails than the EDF.

We observe that the results for the six- and twelve-month options are very similar to the
ones obtained for the three-month expiry. The parameter estimate ¢ of the EDF is statistically
equal to the RND and CPT. Parameter ¢ ranges from 0.18 to 0.19 for the CPT, ECPT, and
RND for the six- and twelve-month maturities, whereas it is 0.23 for the EDF. The estimate of
¢ for the RND (0.19 and 0.22 for the six- and twelve-month maturities, respectively) somewhat
matches the one for the EDF at the six-month maturity but it is off at the twelve-month
maturity. The parameter estimates ¢ for the power, exponential, and PCPT density functions
match the EDF’s ¢ at the twelve-month maturity only. Generally, the parameter estimates ¢
for these subjective density functions are too small in comparison to the one of the EDF. This
means that these six- and twelve-month maturity subjective density functions have fatter tails
than the EDF, the other subjective densities (CPT and ECPT), and the RND. These results
suggest that the shape of the CPT density function is a good match to the shape of realized
tails.

After k is chosen and the shape estimator ¢ for the EDF, RND, power, exponential, PCPT,
CPT, and ECPT is computed, extreme quantile returns (EQR) can also be estimated via Eq.
(10). Subsequently, the t-test in Eq. (12b) is applied using the one, five and ten percent
statistical significance levels. This test evaluates whether the EQRs estimated from a set of
two distributions (RND, power, exponential, PCPT, and CPT versus EDF) have equal means
(the null hypothesis). The results of this test are shown in Table 2, Panel A.

[Please insert Table 2 about here]

Analyzing the density functions derived from the three-month option maturity, we find that
the EQR implied by the CPT is the only one that matches the realized EQR and at the first
quantile solely at 21 percent. The EQR implied by the ECPT is almost the same as implied
by the CPT, thus, it also statistically matches the EDF. Per contrast, the EQRs for the RND,
power, exponential, and PCPT densities always overshoot the one for the EDF. All comparisons
between these distributions’ EQR at the three-month maturity reject the null hypothesis that
returns at the same quantile are equal. This pattern is observed across all quantiles analyzed,
i.e., at the tenth, fifth, and first quantiles. This empirical finding indicates that the equity
market upside implied in option markets (i.e., the RND) and the power, exponential and PCPT
densities are always higher than the ones realized by the equity market. The results for the
PCPT resemble the ones for the RND. The EQRs from the CPT and the ECPT are clearly the
best matches for the EDF.

For the six-month maturity, upside returns priced by the RND and ECPT best match the
EQR. The EQRs for the EDF are roughly 18, 22, and 32 percent for the tenth, fifth, and first
quantile of returns, respectively, whereas the EQRs for the ECPT are 19, 21, and 28 percent.
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For the RND, such extreme upside return estimates are 19, 22, and 30 percent. Thus, the ECPT
statistically matches the realized EQR best at the tenth and fifth quantile, whereas the RND
is the best match for the third quantile. No rational subjective density function consistently
matches the EQR of the EDF. The power, exponential, and PCPT densities almost always
overshoot the EQR of realized returns. Per contrast, the CPT density always undershoots the
EDF’s extreme returns. Despite always overshooting the EQR of the EDF, the PCPT is the
only other subjective density (apart from the ECPT) that has EQR statistically equal to the
EDF, which happens only at the first quantile EQR.

In contrast to the three- and six-month maturities, the EQRs from the RND for the twelve-
month maturity all underestimate the EQRs from realized returns. The EQRs of realized
returns are 32, 35, and 44 percent for the tenth, fifth and first quantiles, respectively, whereas
for the RND these are 22, 26, and 37 percent, respectively. The same underestimation is
documented for the densities linked to the CPT (i.e., PCPT, CPT and ECPT) as tail returns
are largely out of sync with realized ones, especially for the CPT in which overweight of tails
will force EQRs further away from EDF ones (vis-a-vis the PCPT EQRs). The EQRs of the
exponential densities continue to largely overshoot the ones for the EDF. However, the power
utility function density successfully matches the EQR returns across all EQR values and with
strong statistical significance.

In line with these results for the EQR, Table 2, Panel B, shows that the expected upside (EU)
for the EDF is more closely matched within the three-month horizon by the CPT and ECPT
density functions for the tenth, fifth and first quantiles. The three-month horizon EUs estimated
from the realized returns are 15, 19, and 30 percent for the mentioned quantiles. The ECPT
EUs for the same horizon are 18, 21, and 28 percent, respectively. For the CPT, EUs are 16, 19
and 26 percent. Thus, estimates from these two density functions are mostly statistically equal
to the realized returns. Similarly to our analysis on the EQR, for the other subjective densities,
the EUs for all quantiles are also much larger than the EDF expected upside. The exponential
density has the highest expected upside across the different quantiles, being the furthest away
from the realized returns. The RND-implied expected upside is somewhat conservative and
relatively closer to the realized ones but only statistically significant at the one percent quantile.

For the six-months maturity, the expected upsides for the CPT and ECPT density functions
are no longer that close to each other nor to the realized ones. The EDF expected upside always
exceeds the ones for the CPT and ECPT. Only at the tenth quantile, the expected upside of the
ECPT density function equals the realized one. The densities which better match the expected
upside of the EDFs are the PCPT and the RND.

For the twelve-month horizon, the expected upside for the realized returns is 37, 40, and 51
percent for the tenth, fifth and first quantiles. In line with the results from our EQR analysis,
the power density again best matches realized EUs, as estimates are statistically equal across
all maturities. Second best performers are the PCPT and ECPT densities, which match the
realized EU at the one percent quantile level.

In summary, across the three EVT tests performed (i.e., on tail shape, EQR and EU), the
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three option maturities and the three quantiles evaluated, we observe that the success rate of
the CPT subjective density functions on matching the EDF tails is 57 percent. In contrast,
this success rate is 38 percent for the power utility, 33 percent for the RND and only 10
percent for the exponential utility density function. These results suggest that CPT-related
distributions, although not always matching the EQRs and ES of the EDF, seem to best match
the EQR of the EDF, especially at the short maturities. More specifically, the ECPT seems
to have some advantage over the other methods for the three- and six-month maturities. This
results is consistent with the findings of Kang and Kim (2006), who find that more flexible
utility functions generally increases the forecasting ability of subjective PDFs. In the case of
the CPT, the fact that its weighting function can assume different shapes does entails extra
flexibility to match the data relative to traditional utility functions. Thus, if our findings
suggest that the CPT does not fully explain single stock options pricing, its overweighting of
small probabilities feature goes very far in explaining such market data, with the exception of
twelve-month options.

These findings reiterate our takeaway from Section 4.1, in which a positive term structure
of overweight of tails appears to play a substantial role: twelve-month options are priced more
rationally than shorter term ones, which seem to be priced as a result of lottery buying by
individual investors. Figure 2 compares the CDF's from six of our equity return densities: the
EDF, the RND, the CPT, the PCPT, the exponential- and the power-utility density'®. We
focus on the right tails of these distributions as we are interested in how closely the RND from
call options and derived subjective density functions match the tails of the EDF. The plots
display the cumulative probabilities on the y-axis and the terminal price levels on the x-axis,
given an initial price level of 100.

[Please insert Figure 2 about here]

In Figure Figure 2, we see that the tails implied by option prices (RND, in red) seem fatter
than the tails from the CPT (in dark blue) and EDF (in green) density functions over the
three-month horizon. The tails for the CPT and the EDF are almost identical above the 120
terminal level, i.e., at the 20 percent return. The right tail of the RND distribution is clearly
much fatter than the ones of the CPT and EDF, but it is still thinner than the ones of the
PCPT, the exponential- and the power-utility densities. Thus, the upside risk implied from
options is much higher than the one realized by the EDF, a sign of a potentially biased behavior
by investors in such options. This observation is confirmed by the tail shape parameter (),
the EQRs and the EU estimated across the different quantiles, which in all cases report higher
upside in the RND than in the EDF and the CPT. Figure 2 also suggests that the upside risk of
the RND is more consistent with the PCPT density, whereas the CPT tails seem very distinct
from the PCPT, which is in line with our earlier findings.

The plot in column B, which depicts the CDF for our studied densities at the six-month
horizon, suggests that the RND and the EDF are closer than at the three-month horizon.

18We omit the ECPT for better visualization as its CDFs are very similar to the CPT ones. The similarity
is caused by the ECPT left tail weighting function parameter (0) being the same for the CPT and because the
estimated long-term +y for the three maturities are close to the Tversky and Kahneman (1992) one.

17



At the same time, the CPT density seems more disconnected from the EDF. This finding
matches our results from the EQR and the expected upside comparisons. The PCPT tail is,
at this horizon, higher than the EDF, CPT, and RND ones and closer to the EDF one than
to the CPT one, especially at its very extreme. This finding is also confirmed by our EQR
and expected upside tests, as the PCPT is statistically equal to the EDF at the one percent
quantile. The exponential and power utility densities have right tails that are much fatter than
the other densities, including the EDF.

Figure 2 shows that at the twelve-months horizon the CPT’s CDF tails seem completely
disconnected from the EDF. The EDF tails are much fatter than the CPT ones and slightly
fatter than the RND ones. In fact, the RND seems to match the EDF for terminal levels above
120. This finding suggests that long-term options trade in a much less CPT-biased manner
than short-term options.

Overall, the visual inspection of our density function CDFs confirms our hypothesis that
end-users of OTM single stock calls are likely biased and behave as buying lottery tickets
when trading short-term options. These results strengthen the evidence provided by Ilmanen
(2012), Barberis (2013), Conrad et al. (2013), Boyer and Vorkink (2014) and Choy (2015)
that investors push single stock options prices to extreme valuation levels. Investors seem to
overweight small probabilities especially at short-term horizons. Next, we analyze the time-
variation in overweight of small probabilities to better understand the underlying reasons for

our findings.

4.3 Estimated CPT time-varying parameters

To investigate time-variation in the CPT’s overweighting of small probabilities in single stock
options, we apply Eq.(8) to each day in the sample to estimate the empirical v (weighting
function) parameter. Lower and upper bounds of -0.25 and 1.75 were used in this optimization
as they produced the lowest RSS across permutation of all bounds when  was optimized using
the CPT parameterization. We estimate v under four different assumptions about A, the loss
aversion parameter: 1) A equals 2.25, the CPT parameterization; 2) no loss aversion, A\ equals
1; 3) augmented loss aversion, A equals 3; and 4) optimal A, as estimated by Eq.(7).

Table 3, Panel A reports the statistics when A equals 2.25. We find that the median and
the mean time-varying values of 7, estimated from the three-month options are above its CPT
value of 0.61 but still reflect overweight of small probabilities. This suggests that overweighting
of small probabilities is present within the pricing of three-month call options as suggested by
the theory. The distribution of 7 is skewed to the right and overweight of small probabilities
is present 64 percent of times within three-month maturity. The 25" percentile of v is 0.74,
clearly suggesting a less pronounced overweight of small probabilities than suggested by the
CPT. The estimates of v range from 0 to 1.75 (i.e., an underweighting of small probabilities)
and are volatile, with a standard deviation of 0.23. Interestingly, when we split the sample
in three parts (as shown in Table 3), we observe that overweight of small probabilities is very

present at the beginning of our sample, in 97 percent of the days from 1998-01-05 to 2003-01-30,
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but that has faded since 2003. During the period from 2003-01-31 to 2008-02-21, underweight of
small probabilities is present in 65 percent of the days, whereas such condition is less pervasive
from 2008-02-22 onwards, i.e., until 2013-03-19. This finding suggests that overpricing of single
stock options is sample specific and not structural. Even if sample specific, overweight of small
probabilities seems, in general, much less pronounced than the 0.61 parameter offered by the
CPT. These results seem to only partially confirm our hypothesis that the CPT can empirically
explain the overpricing of OTM single stock call options.
[Please insert Table 3 about here]

At the six-month maturity, overweighting of small probabilities is less frequent than in three-
month tenor. The median ~ for such maturity is 0.99, implying roughly neutral probability
weighting. The long-term v equals 0.81 and is somewhat out-of-sync with the time-varying
estimates. Similarly to the three-month maturity, the distribution of + is also slightly skewed to
the right. The 75" quantile of v equals 1.14 and suggests an underweighting of tail probabilities.
However, probability weighting is largely sample dependent as within the overall sample, 52
percent of all observations reflect overweight of small probabilities but, between 1998 and 2003,
its occurrence is 92 percent.

Differently from the other maturities, v estimates for the twelve-month maturity tend to-
wards underweight of tail probabilities. The median ~ is 1.03, whereas the mean v is 1.01.
Time variation and sample dependence are present as for the other maturities but, at the
twelve-month maturity, the percentage of days with overweight of tails is smaller, 41 percent
in the full sample but still 83 percent for the 1998-2003 sample.

In summary, the statistics in Table 3, Panel A, indicate that the weighting function param-
eters v for the three maturities evaluated are time-varying and sample specific. Overweight of
small probabilities holds for the three-month maturity, less convincingly so for the six-month
maturity, and not at all for the twelve-month maturity, in which neutral probabilities and
underweight of tails respectively prevails.

Because the loss-aversion parameter A is of high importance in the CPT model, we estimate
~ under different A parameterizations, more specifically, for 1) A equals 1, 2) A equals 3 and
optimal A, as estimated from the long-term empirical distribution (see Table 1).

We report the summary statistics of the new ~ estimates in Panel B of Table 3, when we
assume A equals 1. The new median and mean estimates for v are 0.66 and 0.67 for the three-
month maturity, respectively, and, thus, lower than when v was estimated under the CPT loss
aversion calibration (A\=2.25). The 75" percentile of v also decreases, from 1.14 to 0.80. At the
six-month horizon, the difference between v with A equals 2.25 and with A equals 1 is also large.
The median ~ for the CPT X is 0.99, whereas for when A equals 1 it is 0.71. The means are 0.96
and 0.72, respectively. At the 75" percentile using A equals 1, v becomes 0.87. For the twelve-
month maturity, we observe a similar effect. The median v for when X equals 1 is 0.83, whereas
for when A equals 2.25 it is 1.03. In brief, a lower loss aversion parameter consistently gives
rise to higher v estimates, across the different options’ maturities and quantiles. The opposite
effect is observed when the A is increased from 2.25 to 3, as shown by Table 3, Panel C. The
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median and mean v when A equals 3 becomes 0.96 and 0.98 for the three-month maturity, in
comparison to 0.91 and 0.89 when A equals 2.25. Such rise in central tendency of v estimates
is also observed within the six- and twelve-month maturities and across the 25 and 75 percent
quantiles. Table 3, Panel D, which reports v estimates when optimized A\ parameters are used,
shows distinct results for the three-month maturity versus the six- and twelve-month maturity.
For the three-month maturity, we observe a downward shift to v estimates, whereas for six-
and twelve-month maturities, an upward movement in estimates occurs. However, this initially
opposite effect in estimates is, in fact, qualitatively equal to the result just described when we
use A as 1 or 3, as the optimal \ parameters estimated for the three-, six and twelve-month
maturities are, respectively, 1.02, 2.66 and 3.00 (i.e., it decreases for the three-month maturity
and increases for the six- and twelve-month maturity vis-a-vis the CPT parameterization).
The reason why a lower (higher) loss aversion gives rise to a decreased (increased) - is that it
increases (decreases) the probability on the left side of distribution, influencing the probabilities
and the shape of the right side of the CPT distribution. High values of A push the CPT density
to have more probability on the right side of the distribution, which is spread proportionally to
the probabilities originally observed in the right-side bins (i.e., creating a bump into the center-
right side of the distribution), all else equal. Thus, the impact of such probability shift fades as
the tail approaches. Nevertheless, the right tail of the CPT density does turn fatter (and the
~ parameter higher) as A is made higher. The opposite occurs if low values of A are assumed:
the right tail of the CPT density becomes thinner, causing 7 estimates to be low (which more
forcefully can turn the RND right tail into such thin CPT tail). One important finding from
our experimentation with different A\ parameters is that the time variation observed when A
equals 2.25 is unchanged. The standard deviation and range of v estimates across the use of the
different A values are somewhat the same. Though, the percentage of days that overweight of
tails is observed in the different samples studied dramatically changes towards a more frequent
presence of overweight of small probabilities, as low levels of A are used (and vice-versa). The
large difference in the presence of overweight of small probabilities across samples remains.
We interpret our finding that ~ is strongly time-varying and sample dependent across all
maturities and under different A assumptions as a strong evidence that single stock options are
not overvalued due to a structural skewness preference, as Barberis (2013) may suggest. We
reckon that, if static skewness preferences would drive overweight of small probabilities, param-
eter v would be relatively stable throughout our sample. Given that the 7 is largely volatile,
we support the view that investors experience (time-varying) “bias in beliefs” or, alternatively,
time-varying preferences (see Barberis, 2013)'%. Our results are in line with Green and Hwang

(2011), Chen et al. (2015) and Jiao (2016), who report similar time-varying effects in the over-

9Barberis (2013) distinguishes investors’ time-varying beliefs from skewness preferences as he argues that
investors with biased beliefs mistakenly overestimate tail events, whereas preference for skewness leads to over-
weight of tails, which is less likely to be a mistake. As an example, the author suggests that investors that
overweight small probabilities events correctly anticipate the distribution of a stock’s future returns but over-
weight the state of the world in which a stock turns out to be “the next Google”. In the example, overestimation
of tail events would occur when the investor attributes a higher chance to the stock being the next Google.
As we do not attempt to distinguish between biased believes and time-varying preferences, we use the term
overweight of small probabilities throughout our paper.
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pricing, skewness effects and returns for IPOs and lottery-like stocks. These papers also report
that, beyond time-varying effects, stronger skewness preferences are associated with higher par-
ticipation of individual investor (trading in IPOs, trading around earnings announcements and

owning stocks) in detriment of institutional investors.

4.4 Time variation in probability weighting parameter and investors’

sentiment

As observed in section 4.3, the probability weighting parameter - is clearly time-varying. In the
following, we investigate which factors may explain this time-variation of v. Our main hypoth-
esis is that it is linked to investor sentiment. The link between sentiment and overweighting
of small probabilities or lottery buying in OTM single stock calls originates from the fact that
individual investors are highly influenced by market sentiment and attention-grabbing stocks
(Barberis et al., 1998; Barber and Odean, 2008; Berger and Turtle, 2015), and that OTM single
stock calls trading is speculative in nature and mostly done by individual investors (Lakonishok
et al., 2007). For instance, Lakonishok et al. (2007) argue that the I'T bubble of 2000, a period
of high variation of 7, is linked to elevated investor sentiment, when the least sophisticated
investors were the ones most inclined to purchase calls on growth and IT stocks. Figure 3 de-
picts time-varying +’s and the Baker and Wurgler (2007) sentiment factor. It provides evidence
that these measures move in tandem at times. For example, during the I'T bubble, the level
of v seems quite connected with the level of sentiment, especially for the three- and six-month
options.

[Please insert Figure 3 about here]

To formally test our hypothesis that time variation of 7 is linked to investor sentiment,
we design a regression model. In Eq. (14) the explained variables are « for the three-, six-,
and twelve-month horizons and the explanatory variables are the Baker and Wurgler (2007)
sentiment measure?’; the percentage of bullish investors minus the percentage of bearish in-
vestors given by the survey of the American Association of Individual Investors (AAII), used as
a proxy for individual investor sentiment by Han (2008); and a set of control variables among
the ones tested by Welch and Goyal (2008)2! as potential forecasters of the equity market. The
data frequency used in the regression is monthly as this is the highest frequency available from
the sentiment data and from the Welch and Goyal (2008) data set??. Our regression sample

starts in January 1998 and ends in December 2010%. Our OLS regression model is specified as

20 Available at http://people.stern.nyu.edu/jwurgler/.

21The complete set and description of variables suggested by Welch and Goyal (2008) is provided in Appendix
B. From the complete set of variables used by Welch and Goyal (2008), we select a smaller set using the cross-
correlation between them to avoid multicollinearity in our regression analysis. Because we run a multivariate
model, using the full set of variables is undesirable as some of them correlate 80 percent with each other. We
exclude variables that correlate more than 40 percent with each other.

22Given the fact that v is estimated on a daily basis, we average « throughout each month.

23This regression sample is only possible because Welch and Goyal (2008) updated their dataset after the
paper publication. The regression sample however, could not be extended further than December 2010 because
the sentiment measure of Baker and Wurgler (2007) is not available after that date.
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follows:

Ve = ¢+ )y - Senty + 1o - [1Sent, + 3 - E12, + 1y - B/my + 15 - Ntis;+

(14)
Ve - Rfree; + 7 - Infly + g - Corpry + g - Svar; + 119 - CSP; + ¢,

where Sent is the Baker and Wurgler (2007) sentiment measure, /1Sent is the AAII individual
investor sentiment measure, F12 is the twelve-month moving sum of earnings on the S&P5000
index, B/m is the book-to-market ratio, Ntis is the net equity expansion, R free is the risk-free
rate, Infl is the annual inflation rate, Corpr is the corporate spread, Svar is the stock market
variance and, C'SP is the cross-sectional premium.

Additionally, we run univariate models for each explanatory factor to understand the indi-

vidual relation between v and the control variables:

Ve = Ci + Vi Tig + €, (15)

where x replaces the n explanatory variable earlier specified, given ¢ = 1...n.
[Please insert Table 4 about here]

Table 4, Panel A presents the estimates of Eq. (14). We note the high explanatory power of
the multivariate regression, ranging from 68 to 71 percent. As expected, we observe that Sent
is consistently negative and statistically significant across the three different horizons studied.
On average, each one-unit difference in Sent is linked to roughly -0.1 difference in ~, all else
being equal. The univariate regressions of Sent confirm the negative link between sentiment
and ~y. For all option maturities, a negative relation between the Baker and Wurgler (2007)
sentiment measure and + is clearly found. The explanatory power of the variable Sent in the
univariate setting is also high, between 22 and 29 percent. These findings altogether support
our hypothesis that overweighting of small probabilities increases at higher levels of sentiment
and that sentiment strongly impacts the probability weighting bias of call option investors.

In contrast with the variable Sent, the coefficients for the individual investor sentiment
(11Sent) are positive but not statistically significant either on the multivariate setting or on the
univariate one (see Table 4). The univariate regressions run on 7 have rather low explanatory
power. The positive relationship between I/Sent and v at the three-month maturity may
be attributed to potential capitulations in individual investor sentiment, as such indicator is
strongly mean-reverting.

The nine Welch and Goyal (2008) control variables used in our multivariate regression are
linked to v in very distinct manners. First, it is fair to say that they add substantial explanatory
power to our multivariate regressions. The three-, six-, and twelve-month multivariate models
explain, respectively, 71, 68, and 67 percent of the level of v. Most of these relations are stable,
because the coefficient signs change only rarely. The control variables that are statistically
significant in our multivariate setting are E12, B/m, Rfree, Infl, Svar, and CSP (Table 4).

We observe that v is positively linked to £12, the twelve-month moving sum of earnings on the
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S&P 500 index, as well as to B/m, the book to market ratio, in both multivariate and univariate
regressions. The positive relation between E12, B/m and ~ could be explained by mean-
reversion of earnings and valuation being linked to a greater overweighting of small probabilities,
which could be justified by the higher investor sentiment outweighing earning downgrades and
rising valuations in a rallying market. These two variables have high explanatory power of
v, respectively, 37 and 31 percent for the three-month horizon. The significance of Rfree
is, however, somewhat unstable. At the three- and six-month maturity at the multivariate
regression R free is significant but not at the univariate regression. Further, the stock market
variance, Swvar, is negatively linked to . Apparently, the higher the risk environment, the
higher the overweighting of small probabilities is. In a univariate setting (at the three-month
horizon), the explanatory power of such univariate regression is 18 percent, thus relatively high.
Table 4, Panel B indicates that the cross-sectional premium CSP is positive and statistically
significant in the univariate setting for the three-month horizon, despite being negative and not
significant in the multivariate regressions.

To reiterate our results, we also apply the Least Absolute Shrinkage and Selection Operator
(Lasso) methodology to our main multivariate regressions (see Tibshirani, 1996, and Appendix
A.3). We apply Lasso to select the regressors that are most relevant for the overall fit of the
by our sentiment and control variables. The coefficients that shrink to zero via the Lasso are
identified in Table 4 (Panel A) with a dagger (). Model selection via the Lasso confirms that
Sent and [1Sent are more relevant for the overall fit of v than some of the fundamental factors
used, namely, Ntis, Infl, Corpr and CSP.

The results provided by our OLS regression and by the Lasso indicate that supportive
fundamental data for equity markets do not necessarily intensify biased behavior of single stock
call option investors. This is an interesting takeaway, especially considering the notion that
sentiment does appear to affect such behavior: single stock option investors seem to overweight
small probabilities when sentiment is exuberant, not necessarily when stock fundamentals are
exuberant.

More importantly, these results support our earlier findings that overweight of small proba-
bilities is strongly time-varying and linked to sentiment. Therefore, overweight of small proba-
bilities is unlikely to result from (static) investor preferences but from investors’ bias-in-beliefs
or time-varying preferences, which seem conditional on sentiment levels. Furthermore, we also
run our regression models (Egs. (14) and (15)) using different assumptions about the value of
A, the loss aversion parameter. In this exercise we set A to imply 1) no loss aversion (A=1),
2) augmented loss aversion (A=3) and 3) optimal loss aversion, where A assumes the estimated
value by Eq. (7) and reported in Table 1, Panel A.

Table 5 indicates that the results for Sent are similar to the ones obtained in our main
regressions: Sent is negatively linked to v and statistically significant at all horizons but with
less statistical significance, explanatory power and magnitude at the twelve-month horizon.
This result applies to the multivariate regression model only. Across all options maturities,

the Sent coefficients become larger when A\ equals 3 and they shrink when A equals 1. The
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relation between changes in A and Sent observed is intuitive. We argue that as A\ increases, the
probabilities on the left side of the CPT distribution increase, favoring a thinner tail on the
right side of the PCPT distribution, which, then, requires less overweight of tail adjustment
(through a higher ) for the PCPT to match the EDF. As a higher ~ is obtained by such
increase in A, the coefficient of v with the given sentiment factor also increases in magnitude.
The explanatory power of these regressions are, once again, high, as R? ranges from 62 to
73 percent in the multivariate models. The explanatory power of Sent ranges from 16 to 24
percent in the univariate setting. Table 5 reiterates the relation between IlSent, the AAII
individual investor sentiment measure, the Welch and Goyal (2008) control variables and v in
our main regressions. [ISent is rarely significantly linked to . The control variables that are
robustly linked to 7 in our main regression (E12, B/m and Swvar) remain strongly connected
to it within these auxiliary regressions. Applying the Lasso model selection technique to these
regressions gives results that are analogous to these ones. Sent, I[1Sent, E12, B/m, Svar and
R free always survive the Lasso variable selection procedure, whereas Ntis, Infl, Corp and
CSP coeflicient often shrink to zero (as in our main regression, these coefficients are identified
with a dagger (1) in Table 5, Panel A).
[Please insert Table 5 about here]

The robustness of the relation between v and Sent suggests that changes in the overweight-
ing of tails are not conditional on the level of the loss aversion parameter. In other words, levels
of loss aversion do not drive investors to overweight upside tail events, as one could hypothesize
when associating upside speculation with a state of low loss aversion. Thus, our results suggest
that overweighting of small probabilities is a phenomenon stably linked to sentiment, rather
than positive fundamentals or loss aversion levels. Our results tie closely with the findings of
Green and Hwang (2011), who investigate the relation between IPOs expected skewness and
returns. They find that the skewness effect is stronger during period of high investor senti-
ment. In the same line, Chen et al. (2015) conclude that when gambling sentiment is high,
stocks with lottery-like characteristics earn positive abnormal returns in the short-run followed

by underperformance in the long run.

5 Robustness tests

5.1 Kupiec’s test for tail comparison

We employ Kupiec’s (1995) test to compare the tails of the EDF with the ones of the subjective
density functions and of the RND as a robustness test to the EVT methods applied. Kupiec’s
test was originally designed to evaluate the accuracy of Value-at-risk (VaR) models, where the
estimated VaR were compared with realized ones. Because the VaR is no different from the
EQR on the downside, i.e., the g, statistic, we can also make use of Kupiec’s method to test the
accuracy of the cj; statistic for subjective densities and the RND on matching realized EQRs.

Kupiec’s method computes a proportion of failure (POF) statistic that evaluates how often a
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VaR level is violated over a specified time span. Thus, if the number of realized violations
is significantly higher than the number of violations implied by the level of confidence of the
VaR, then such a risk model or consistency of tails is challenged. Kupiec’s POF test, which is

designed as a log-likelihood ratio test, is defined as:

LRpor = —2log[(1 = p*)" " (p*)°] + 2log[(1 — [2) " (2)"] ~ x*(1), (16)

where p* is the POF under the null hypothesis, n is the sample size, and v is the number of
violations in the sample. The null hypothesis of such test is © = p*, i.e., the realized probability
of failure matches the predicted one. Thus if the LR exceeds the critical value, x? (1)=3.841, the
hypothesis is rejected at the five percent level. In our empirical problem, p* equals the assumed
probability that the EQR of the subjective and risk-neutral densities will violate the EQR of
the realized returns, whereas 7 is the realized number of violations. Because we apply Kupiec’s
test to upside returns, violations mean that returns are higher than a positive threshold.

The first step in applying Kupiec’s test to our data set is outlining the expected percentage
of failure (p*) between the EQR from the EDF and from the subjective and risk-neutral den-
sities. We pick p* as being five and ten percent. The percentages can be seen as the expected
frequency that the tails of the subjective and of the RND distributions overstate the tails of
the distribution of the realized returns. As a fatter tail is a symptom of an overweighting of
small probabilities, we expect that densities that do not adjust for the CPT weighting function
will deliver a higher frequency of failures than the CPT density function. The Kupiec’s test
results are reported in Table 6.

[Please insert Table 6 about here]

Panel A in Table 6 suggests that the probability of failure for the RND, power, exponential,
and PCPT densities is particularly high at the three-month horizon, with more than 99 percent
for the EQR at 90 and 95 percent and for p* equal to five and ten percent. These densities often
contain fatter tails than the EDF. For the CPT density, the POF is much lower across the two
values of p* used and the 90 and 95 percent EQR. The POF for the 90 percent EQR is roughly
58 percent for the CPT, irrespective of p*. At the 95 percent EQR, the POF is 46 percent
for the CPT. These findings suggest that at the 90 and 95 percent EQR, the CPT densities
overstate less frequently the EDF tails than other densities. The violations of the EDF tails are,
however, still significant as they occur between 41 and 52 percent of times. Nevertheless, when
we analyze the 99 percent EQR, we find that the POF for all densities decreases considerably
and, for the CPT, it becomes 16 percent.

Panel B of Table 6 depicts a very similar pattern of the POF for the probability densities
derived from the six-month options as we find for the three-month options. The POF is very
close to 100 percent for all densities apart from the CPT at the 90 and 95 percent EQR, while
at the 99 percent EQR violations fall substantially, even more than what we observed for the
three-month options. Nevertheless, the CPT remains the best approximation for the EDF| as
its POF is the lowest. The Kupiec’s test result suggests that the CPT density is statistically
equal to the EDF, whereas the RND also equals the empirical returns at the ten percent level.
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The results for p* at the five or ten percent are very similar. Panel C presents the POF for
the twelve-month maturity. We find once again that the CPT tails are the ones that violate
the EDF tails the least. The POF for these densities are about 29 percent for the 90 percent
EQR, seven percent for the 95 percent EQR, and four percent for the 99 percent EQR. These
findings suggest that the tails of the CPT closely match the EDF ones, especially far out in the
tail, i.e., at the 95 and 99 percent EQR. The RND, power, exponential, and PCPT densities
record POF's that are much smaller than for the three- and six-month maturities but that are
still high in comparison to the CPT.

We note that results for the PCPT and the CPT are quite distinct, whereas results for the
PCPT are somewhat closer to the ones of the RND. This suggests that the weighting function
is the component within the CPT density function that more forcefully causes the RND to
approximate the EDF, so not the value function. Overall, our analysis using Kupiec’s test
leads to similar results as the ones reached within our EVT analysis and further evidences that

the CPT model is superior in matching realized returns.

5.2 Prelec’s weighting function parameter

As another robustness check, we estimate the weighting function parameter w of the RDEU
model suggested by Prelec (1998) in order to test whether our conclusions are robust to other
weighted functions formulations?*. The Prelec weighting function w;r ~ is given by Eq. 17

wy™ (p) = exp(—(~log(p))*), (17)

where the parameter w defines the curvature of the weighting function for both gains and
losses, which also leads to S-shaped probability distortion functions. We note that according
to Prelec (1998) the standard w parameter value equals 0.65. Our time-varying and long-term
(LT) estimates for w are presented in Table 7, Panel A.

The long-term estimates of w are somewhat in line with the one suggested by the RDEU
but less so for the twelve-month horizon: w estimated from the three-, six-, and twelve-months
are 0.46, 0.67, and 1.11, respectively. These parameters are somewhat consistent with our long-
term estimates for v being, 0.75, 0.81, and 1.09 (see Table 1), as they suggest overweighting
of small probabilities that fades with the increase in the option horizon. Similarly, time-
varying estimates of w also indicate more overweight of small probabilities than suggested
by 7 estimations. We find the mean (0.95) and median (0.93) for time-varying estimates of
w from three-month options to be higher than the ones suggested by Prelec (1998). This
outcome means that overweighting of small probabilities within the single stock option markets
is less than suggested by RDEU (similar to our conclusion concerning CPT parameters) and
that estimated Prelec parameters imply a less pronounced overweight of tails than suggested
by our CPT parameter estimations. In line with our results for the CPT, for the six- and

twelve-month maturities, underweight of small probabilities is, however, more frequent than an

24 A major advance of Prelec’s (1998) weighting function vis-a-vis the CPT is that it is monotonic for any
value of w, whereas the CPT can have a non-monotonic probability weighting for low levels of ~.
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overweight. The average w for the six-month options is 1.02 (median being 0.99), and for the
twelve-months options is 1.05 (median being 1.07). The fact that investors tend to overweight
small probabilities to a much lesser extent in the short-term and that estimates are higher than
suggested by their respective lab-based estimates confirms our main findings.

[Please insert Table 7 about here]

The sample dependence observed in our main results is confirmed by the usage of Prelec’s
weighting function as overweight of tails is pervasive mostly in the 1998-2003 sample. Overall,
the robustness checks following Prelec (1998) confirm our main findings regarding time-variation

and sample dependence of overweighting of small probabilities, and reiterate our conclusion.

5.3 Estimating time-varying v under different assumptions for ¢ , «
and [

As an additional robustness test to our time-varying estimates of v, we also run optimizations
where we fix parameter § instead of jointly optimizing it with v. We impose § = 1 (no overweight
of small probabilities on the left-side of the distribution) or 0.69, the value of § within the CPT.
In line with our previous robustness test, Table 7, Panels B and C, suggests that results from
optimizations with different values for ¢ are qualitatively the same to our main results, i.e., a
positive term structure and sample dependency of overweight of small probabilities. Unreported
results also indicate a negative correlation between v and sentiment and high explanatory power
of regressions. R? is between 13 and 21 percent for three- and six-month options and between
0 to 3 percent for twelve-month options. Though, neutral probability weighting on the left side
of the distribution (6=1) adjusts v downwards when compared to our main results. Conversely,
when ¢ is 0.69, an upwards adjustment to ~ estimates occurs.

Similarly, we also estimate v under different assumptions for & and 5. We assumed a==1
(no diminishing sensitivity to gains and losses) and a=£=0.75 (more pronounced diminishing
sensitivity to gains and losses) instead of the CPT parameterization a=£=0.88. Our results,
reported in Table 7, Panels D and E, suggest that lower sensitivity to gains and losses (higher
a and () leads to a decrease in overweight of small probabilities (higher v estimates), whereas
higher sensitivity to gains and losses (lower a and /) leads to an increase in overweight of tails
(lower « estimates). This effect is similar to the one observed by changes in A (described in
Section 4.3), which also magnifies the sensitivity for losses when increased.

As indicated in Section 3.2, we have also estimated time-varying ~ using different lower
(-0.25, 0 and 0.28) and upper bounds (1.2, 1.35, 1.5, 1.75 and 2). Results across bounds used
differ to the extent that higher bounds produce upward shifts in the estimated = across all
quantiles, median and averages to the extent that overweight of small probabilities becomes
less pronounced but remain present. The time-variation pattern observed in Figure 3 and, more
importantly, the strong negative relationship with sentiment reported in Table 4 are, though,
extremely robust to changes in lower and upper optimization bounds. This result strengthens

our conclusion that overweight of small probabilities is largely time varying and reflects investor
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sentiment.

5.4 Overweight of (right) tails driven by IV of single stock options

Finally, given that overweight of small probabilities by single stock call investors was most
evident during the IT bubble period (as Table 3 suggests), we hereby evaluate whether this
finding may have been driven by movements in the IV of index options rather than changes in the
IV of single stock options. We perform such analysis because our methodology for calculation
of average weighted stock IV volatilities partly relies on the IV on index options (as it depends
on implied correlations), as Eqs. A.8i and A.8k in Appendix A.2 suggest. Essentially, we want
to ensure that the overweight of small probabilities observed from our single stock options data
is not caused by a rise in index options’ IV. As overweight of small probabilities is a corollary of
high IV skew?®, we examine the IV skews (120 percent moneyness versus at-the-money, ATM)
from both index options and from single stock options within our sample using a k-Nearest-
Neighbors (KNN) algorithm (see Appendix A.4 for detail). Figure 4 depicts a scatter plot
that relates single stock IV skews (on the y-axis) with index option IV skew (on the x-axis)
overlaid with the decision boundary between overweight of tails (in red) and its absence (in
blue), produced by the application of the KNN algorithm to our full data sample. The picture
suggests that that overweight of small probabilities is almost never caused by positive index
IV skews, whereas positive single stock IV skews very often produce overweight of tails rather
than underweights. Overweight of tails are mostly caused by situation where single stock IV
skew are higher than index IV skew, which suggest that either high single stock IV skews or
low implied correlation are responsible for overweight of tails, not index options’ IV. These
conditions can be anecdotally confirmed by our observation of IV skews during the 2000’s I'T
bubble. During that period, when overweight of tails was pervasive, IV skew from single options
was quite high, close to +10 volatility points, whereas the same IV skew from index options
reached extreme low levels such as -15 volatility points. This disconnect between the two IV
markets, which drove the implied correlation to 2.8 percent (an extreme low level), suggests
that the index options’ IV was not the driver for overweight of tails during the IT bubble.
These findings reiterate our suggestions that overweight of small probabilities observed in our
sample is caused by trading in single stock options by retail investors, rather than activity in

the index option market.

6 Conclusion

Single stock OTM call options are deemed overpriced because investors overpay for positively
skewed securities, resembling lottery tickets. The CPT’s probability weighting function of
Tversky and Kahneman (1992) theoretical model provides an appealing explanation why these

options are expensive: investors’ preferences for positively skewed securities. In our empirical

Z5While this relation is widely acknowledged, Jarrow and Rudd (1982), Corrado and Su (1997) and Longstaff
(1995) provide a formal theorem for the link between IV skew and risk-neutral.
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analysis, we find that the CPT subjective density function implied by single stock options
outperforms the RND and two rational densities functions (from the power and exponential
utilities) in matching the tails of realized equity returns. We estimate the CPT probability
weighting function parameter v and find that they are qualitatively consistent with the one
predicated by Tversky and Kahneman (1992), particularly for short-term options. This outcome
endorses our hypothesis that investors in single stock call options are biased.

Our analysis provides detailed insights into the behavior of single stock option investors.
Our empirical findings suggest that overweight of small probabilities is less pronounced than
proposed by the CPT. We find the presence of a positive term structure of overweighting of
tails, because it becomes less pronounced as the option maturity increases. Investors in single
stock calls are more biased when trading short-term contracts, whereas they seem to be more
rational (less biased) when trading long-term calls. This result is consistent with individual
investors being the typical buyers of OTM single stock calls and the fact that they mostly use
short-term options to speculate on the upside of equities.

We also find that investors overweighting of small probabilities is largely time-varying and
sample dependent. Time-variation in +’s remains strong even when we account for different
levels of loss aversion, different diminishing sensitivities to gains and losses, different degrees
of overweighting of the left tail and an alternative (Prelec’s) weighting function. The strong
time-variation and sample dependency of suggest that investors do not have a static preference
for skewness, but rather time-varying preferences or “bias in beliefs” (see Barberis, 2013).

Such time-variation in 7 is also confirmed by overweighting of tails to be pronounced in
periods in which sentiment is high, for instance, the I'T bubble period. This finding is consistent
with the Baker and Wurgler (2007) sentiment measure being the main explanatory variable of
overweighting of small probabilities. Our results challenge the view that single stock call options
are structurally overpriced and offer the insight that overweight of tail events implied in these
options are conditional on sentiment levels and option maturity rather than positive stock
fundamentals, loss aversion levels or investor preferences for skewness.

Our findings have several important practical implications. First, the understanding of
time-variation in investors’ overweighting of small probabilities could be used in the develop-
ment of behavioral option pricing models, which remains in its infancy . To the extent that
overweighting of small probabilities is a latent variable or, simply, not trivial to estimate, we
contemplate that future option pricing models should be more sentiment-aware than current
ones. Second, of importance for such next generation option-pricing models is the inclusion of
a positive term structure of tails’ overweighting. Such potential modifications on options’ pric-
ing have large and direct consequences to risk-management, hedging and arbitrage activities.
Third, from a financial stability point of view, investors’ overweighting of small probabilities in
single stock options could be of use to regulators for triangulating the presence of speculative

equity markets bubbles.
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A Appendix

A.1 Subject density function estimation

We hereby present the derivations required to achieve Eq. (6) in the main text, Eq. (A.7) here,
from Eq. (5), called here Eq. (A.1):

w'(Fp(St)) - fp(ST)
fo(Sr)

where fp(Sr) is the “real-world” probability distribution, fo(Sr) is the RND, ¢(S7) is the

pricing kernel, w is the weighting function and Fp(S7) is the “real-world” cumulative density

= ¢(S7). (A1)

function.

The first step of our derivation entails re-arranging Eq. (A.1) into (A.2b) via Eq. (A.2a),
which demonstrates that for the CPT to hold, the subjective density function should be con-
sistent with the probability weighted EDF:

fo(St) = w'(Fp(S7)) - fP(ST)- <(S7) (A.2a)
N—— ———— —— ——
RND probability weighing EDF pricing kernel
fo(S7) = /5(57) - s(51) (A.2b)
—— —— ——
RND probability weighted EDF  pricing kernel
fo(Sr) _ fo(ST)
)\U’,(ST) g(ST) fP( T) ( )
N U'(5) _ probability weighted EDF

~
Subjective density

Following Ait-Sahalia and Lo (2000) and Bliss and Panigirtzoglou (2004), Eq. (A.3) can be
manipulated so that the time-preference constant A of the pricing kernel vanishes, producing
Eq. (A.4), which directly relates the probability weighted EDF, the RND, and the marginal
utility, U'(S7):

)\U/(ST)Q(ST) fQ(ST)

T7(5,) U750
/5(57) =5 = (A.4)
"(St) fo(z)
—— ; d @ d
probability weighted EDF o U'(*) Q)de [y (z) :v/

~
Generic subjective density function

where [ g,((?) dx normalizes the resulting subjective density function to integrate to one. Once
the utility function is estimated, Eq. (A.4) allows us to convert RND into the probability
weighted EDF. Eq. (A.4) can also be used to estimate the subjective density function for an
(rational) investor that has power or exponential utility function, by disregarding the weighting
function W (-), so the left-hand side of the equation becomes f,(Sr). In the remainder of the
paper we call these subjective distributions power and exponential density functions. As we
hypothesize that the representative investor has a CP'T utility function, its marginal utility func-
tion is U'(Sy) = v/(S7), and, thus, v'(Sr) = aS3™" for Sy >= 0, and v'(Sy) = —AB(—S7)?~!
for S < 0, leading to Eq. (A.5):
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fQ(St)

OéSa71
f3(S7) = —"— for Sr>0, and (A.5)
" J &2 de
fQ(ST)ﬁ
— — —1
f5(S7) = /\BJEQ(iT)) y for Sp<0, and (A.6)
~—
probability weighted EDF J DBapT 4T

~
Partial CPT density function

Egs. (A.5) and (A.6), hence, relate the EDF where probabilities are weighted according
to the CPT probability distortion functions, on the LHS, to the subjective density function
derived from the CPT value function, on the RHS, separately for gains and losses, i.e., the
PCPT density function. The relationships specified by Egs. (A.5) and (A.6) fully state the
relation we would like to depict, although one additional manipulation is convenient for our
argumentation. Assuming that the function w(Fp(Sr)) is strictly increasing over the domain
[0,1], there is a one-to-one relationship between w(Fp(Sr)) and a unique inverse w1 (Fp(Sr)).
So, result f5(Sr) = w'(Fp(St))fp(St) also implies f5(S7).(w™!) (Fp(Sr)) = fp(Sr)*°. This
outcome allows us to directly relate the original EDF to the CPT subjective density function,
by “undoing” the effect of the CPT probability distortion functions within the PCPT density

function:

fc,g((gT))
fp(Sr) = W(w_l)/(ﬂv(sﬂ) (A7)

EDF

s

CPT dens;try function
Thus, once the relation between the probability weighting function of EDF and the PCPT
density is established, as in Egs. (A.5) and (A.6), one can eliminate the weighting scheme
affecting returns by applying the inverse of such weightings to the subjective density function

without endangering such equalities, as in Eq. (A.7), numbered Eq. (6) in the main text.

A.2 Single stock weighted average implied volatilities

Starting from the portfolio variance formula, Eq. A.8a, we hereby provide the derivation of our

single stock weighted-average implied volatility, given in Eq. A.8k:

O'? = Z W;W;P;50;0 5, (A8a)
i,j=1
where,
p, if i#]
pij(x) = e (A.8b)
Loif i=

26 A drawback of the CPT model is that it allows for non-strictly increasing functions, which would not allow
invertibility. This is the reason why the newer literature on probability distortions functions favors other strictly
monotonic functions, such as Prelec’s (1998) w(p) = e~ (=In(P)° as the weighting functions. Nevertheless,
because the CPT parameters of our interest (v = 0.61; § = 0.69) impose strict monotonicity, we can obtain the
inverse of the probability function, w~!(p) numerically.
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and where o7 is the equity index option implied variance and i and j are indexes for the

constituents of such equity index, then:

o} = ﬁzwiwjpijaﬂj +Zwi20i2’ (A.8c)
i i=1
=p ) wiwpyoo; + (1= p) Y wio}, (A.8d)
i,j=1 i=1
n 2 n
=P (Z wz’ffz‘) +(1=p)) wid}, (A.8e)
i=1 i=1

n 2 n n
=p w,;a,-) + Z wio? — ﬁz w?o?, (A.8f)
- ,

n 2 n n
= (Zwm) =Y wiol | +) widt, (A.8g)

(A.8h)

As 77 wio} is relatively small, we can simplify A.8h into A.8i, the implied correlation:

2
o7

PR = 3
(Zi:l w;o;)?

To obtain the single stock weighted average implied volatility (Eq. A.8k, we then square

(A.8i)

root both sides of the approximation and re-arrange its terms:

o1

VR ST )

(A.8)

n o
; 7 (A-8k)

A.3 Least Absolute Shrinkage and Selection Operator (Lasso)

The regression coefficients obtained by the Lasso methodology applied (35) are estimated by

minimizing the quantity:

n

D —Bo— > Biwy)* + £ |B|= RIS+ x|l (A.9)
=1 j=1 j=1

i=1
where k is the tuning parameter, which is estimated via cross-validation. The cross-validation

applied by us uses ten equal-size splits of our overall data set.

32



A.4 k-Nearest-Neighbor classifier

The k-Nearest-Neighbor (KNN) classifier is one of the approaches in machine learning that
attempts to estimate the conditional distribution of the explained variable (Y) given the ex-
planatory variables (X) and, subsequently, classify new observations to the class with highest
estimated probability. The KNN classifier uses the Euclidean distance to first identify the clos-
est k™ observations within the training data (in-sample data) to a new test (out-of-sample)
observation provided (zg). Such neighborhood of points around the test observation xq is de-
fined as Ny. KNN, then, estimates the conditional probability of xy to belong to a class j as

the percentage of old observations (y;) in the neighborhood Ny whose class is also j:

Pr(Y = jIX =) = 1 3 T =) (A.10)

1€Ng
In a third step, KNN applies the Bayes rule to perform out-of-sample classification (in test
data) of xq to the class with the largest probability. For further details, see Hastie et al. (2008).
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B

Appendix

B.1 Welch and Goyal (2008) equity market predictors

The complete set and summarized descriptions of variables provided by Welch and Goyal

(2008)27 that are used in our study is given as:

1.

10.

11.

12.

13.

14.

15.

16.

Dividendprice ratio (log), D/P: Difference between the log of dividends paid on the
S&P 500 index and the log of stock prices (S&P 500 index).

Dividend yield (log), D/Y: Difference between the log of dividends and the log of
lagged stock prices.

Earnings, E12: 12-month moving sum of earnings on teh S&P500 index.

Earnings-price ratio (log), E/P: Difference between the log of earnings on the S&P
500 index and the log of stock prices.

Dividend-payout ratio (log), D/E: Difference between the log of dividends and the

log of earnings.
Stock variance, SVAR: Sum of squared daily returns on the S&P 500 index.

Book-to-market ratio, B/M: Ratio of book value to market value for the Dow Jones

Industrial Average.

Net equity expansion, NTIS: Ratio of twelve-month moving sums of net issues by
NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks.

Treasury bill rate, TBL: Interest rate on a three-month Treasury bill.

Long-term yield, LTY: Long-term government bond yield.

Long-term return, LTR: Return on long-term government bonds.

Term spread, TMS: Difference between the long-term yield and the Treasury bill rate.

Default yield spread, DFY: Difference between BAA- and AAA-rated corporate bond
yields.

Default return spread, DFR: Difference between returns of long-term corporate and

government bonds.

Cross-sectional premium, CSP: measures the relative valuation of high- and low-beta

stocks.

Inflation, INFL: Calculated from the CPI (all urban consumers) using ¢ — 1 information

due to the publication lag of inflation numbers.

27 Available at http://www.hec.unil.ch/agoyal/.
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Table 6: Robustness checks: Kupiec’s test

This table reports the results from Kupiec’s (1995) percentage of failure (POF) test for violations of the
extreme quantile returns (EQR) from the empirical density function (EDF) by the EQR of a set of RND and
subjective density functions. The test is performed as a robustness check to the extreme value theory
(EVT)-based tests performed on the EQR and on the expected upside returns. The null hypothesis, which is
designed as a log-likelihood ratio test (Eq. (16)), is that the realized probability of failure () matches the
predicted one p*. Thus if the LR exceeds the critical value, x? (1)=3.841, such a hypothesis is rejected at the
five percent level. Translating the methodology to our empirical problem, (p*) becomes the assumed
probability that the EQR of the subjective and of the risk-neutral densities will violate the EQR of the
realized returns, where - is the realized number of violations. We note that because we apply Kupiecs test to

the upside returns, violations mean that returns are higher than a positive threshold.

Panel A - Three-month calls

| EQR 90% | EQR 95% | EQR 99%

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat
RND vs EDF 99.9% 0.0000 00 99.2% 0.0000 00 50.5%  0.0000 414.8
Power vs EDF  100.0%  0.0000 00 100.0%  0.0000 00 84.7%  0.0000 00
Expo vs EDF 100.0%  0.0000 00 100.0%  0.0000 00 86.8%  0.0000 00
PCPT vs EDF  100.0%  0.0000 00 100.0%  0.0000 00 67.2%  0.0000 752.0
CPT vs EDF 58.2% 0.0000 559.6 45.7% 0.0000 333.3 16.0%  0.0002 13.6

p=5% POF p-value LR-stat POF p-value LR-stat POF p-value  LR-stat
RND vs EDF 99.9% 0.0000 00 99.2% 0.0000 00 50.5%  0.0000 671.5
Power vs EDF  100.0%  0.0000 00 100.0%  0.0000 00 84.7%  0.0000 00
Expo vs EDF  100.0%  0.0000 00 100.0%  0.0000 0o 86.8%  0.0000 00
PCPT vs EDF  100.0%  0.0000 00 100.0%  0.0000 00 67.2%  0.0000 00

CPT vs EDF 58.2% 0.0000 861.9 45.7% 0.0000 561.3 16.0%  0.0000 65.5

Panel B - Six-month calls

\ EQR 90% \ EQR 95% \ EQR 99%

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat
RND vs EDF 99.9% 0.0000 0 93.3% 0.0000 00 13.8%  0.0160 5.8
Power vs EDF 99.9% 0.0000 00 97.7% 0.0000 00 22.1%  0.0000 49.7
Expo vs EDF 99.9% 0.0000 00 97.8% 0.0000 00 23.0%  0.0000 56.4
PCPT vs EDF  99.9% 0.0000 0 97.3% 0.0000 00 17.0%  0.0000 18.2
CPT vs EDF 62.4% 0.0000 647.0 36.3% 0.0000 197.3 5.7% 0.0019 9.6

p=5% POF p-value LR-stat POF p-value  LR-stat POF p-value  LR-stat
RND vs EDF 99.9% 0.0000 00 93.3% 0.0000 00 13.8%  0.0000 44.8
Power vs EDF 99.9% 0.0000 00 97.7% 0.0000 00 22.1%  0.0000 137.7
Expo vs EDF 99.9% 0.0000 0 97.8% 0.0000 00 23.0%  0.0000 149.7
PCPT vs EDF  99.9% 0.0000 00 97.3% 0.0000 00 17.0%  0.0000 76.0
CPT vs EDF 62.4% 0.0000 0 36.3% 0.0000 369.9 5.7% 0.5474 0.4

Panel C - Twleve-month calls

| EQR 90% | EQR 95% | EQR 99%

p = 10% POF p-value LR-stat POF p-value LR-stat POF p-value LR-stat
RND vs EDF 62.8% 0.0000 655.1 25.0% 0.0000 72.9 20.3%  0.0000 37.0
Power vs EDF 93.5% 0.0000 00 42.5% 0.0000 283.5 29.3%  0.0000 114.7
Expo vs EDF 94.6% 0.0000 00 43.1% 0.0000 292.7 30.4%  0.0000 126.2
PCPT vs EDF  79.5% 0.0000 1067.2 36.1% 0.0000 194.7 24.4%  0.0000 68.3
CPT vs EDF 29.4% 0.0000 115.2 7.2% 0.0480 3.9 8.4% 0.2666 1.2

p=5% POF p-value  LR-stat POF p-value  LR-stat POF p-value LR-stat
RND vs EDF 62.8% 0.0000 0o 25.0% 0.0000 177.9 20.3% 0.0000 114.2
Power vs EDF 93.5% 0.0000 00 42.5% 0.0000 492.6 29.3%  0.0000 245.6
Expo vs EDF 94.6% 0.0000 0 43.1% 0.0000 505.3 30.4%  0.0000 263.6
PCPT vs EDF  79.5% 0.0000 00 36.1% 0.0000 366.1 24.4%  0.0000 170.2
CPT vs EDF 29.4% 0.0000 246.4 7.2% 0.0631 3.5 8.4% 0.0048 8.0
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