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Abstract

A common assumption in the analysis of symmetric auctions is that the bidders’
value estimates exhibit positive informational externalities (PIE). This assumption
implies upward drifting price sequences at sequential auctions, which is challenged
by an empirical regularity, known as the “declining price anomaly,” that observed
price sequences at real sequential auctions tend to be downward-drifting. This pa-
per extends the existing analysis to a generalized interdependent values environment,
in which the bidders’ values can exhibit both PIE and NIE (negative informational
externalities). The case of NIE can arise naturally when competing bidders are also
competitors in the same product market. If a bidder’s type is related to his or his
firm’s ensuing competitive advantage, then an increase of a bidder’s type increases his
own but may decrease other bidders’ expected values.

We consider a general sequential auction mechanism that sells m identical ob-
jects through K (< m) consecutive rounds, each round involving possibly a different
number of objects for sale and a different payment rule. For risk neutral bidders
having unit demand and independent types, we obtain two major results. First, the
direct sequentially incentive compatible auction mechanisms, which implement the
performance of essentially all standard auctions, are feasible under both PIE and
NIE. Second, while the total expected revenue is invariant to sequencing and pay-
ment rules, the expected selling prices from different rounds of the auction are not the
same. In a PIE environment the expected price sequence tends to be upward drifting,
whereas in an NIE environment the expected price sequence is strongly downward
drifting: the expected lowest price in round k exceeds the expected highest price in
round k£ + 1. The declining price “anomaly” could, therefore, be evidence of bidders’
values featuring NIE or post-auction competition.

Key words. Sequential auction, generalized interdependent values, declining

price anomaly, informational externalities, revenue equivalence

JEL classification. D44, D82



1 Introduction

One of the most interesting questions to ask about a sequential auction is: Does the
equilibrium price sequence of selling multiple, identical objects entails any predictable
trend? A good number of empirical studies have reported downward drifting patterns
of the realized prices[T| This empirical regularity, known as the “declining price anom-
aly,” poses a serious challenge to the standard auction theory which predicts, instead,
flat (martingale) or increasing (submartingale) price trends at sequential auctions
(e.g., Weber, 1983; Milgrom and Weber, 2000). While risk aversion provides a plau-
sible explanation for declining prices, this conclusion has been derived only for the
private values case (e.g., McAfee and Vincent, 1993; Mezzetti, 2011; Hu and Zou,
2015).E] Risk aversion does not necessarily imply declining prices under positive infor-
mational externalities (PIE) such that all bidders’ values are nondecreasing functions
of every other bidder’s type or signal (e.g., Mezzetti, 2011).

In this paper, we present a sequential auction model with generalized interde-
pendent values. The model allows for negative informational externalities (NIE) such
that an increase of any bidder’s type increases his own but decreases other bidders’
valuesf| Casual observations suggest that competing bidders at a sequential auction
are, typically, businesspersons or firms that are also competitors in the same prod-

uct /service market. Apart from systematic factors or news that affect bidders’ values

'For example, see Ashenfelter (1989), Ashenfelter and Genesove (1992); Beggs and Graddy (1997);
McAfee and Vincent (1993); Milgrom and Weber (2000); Van den Berg, van Ours and Pradhan

(2001); among others.
2There is also a voluminous literature seeking various institutional details that may rationalize

the declining price phenomenon. E.g., Black and De Meza (1992); McAfee and Vincent (1993, 1997);
Bernhardt and Scoones (1994); Engelbrecht-Wiggans (1994); Gale and Hausch (1994); Menezes and
Monteiro (2003); Von der Fehr (1994); Jeitschko (1999); Gale and Stegeman (2001); Pitchick and
Schotter (1988); Beggs and Graddy (1997); Ginsburgh (1998); Eyster (2002); Kittsteiner et al.

(2004); and Rosato (2014), among others.
3The case with NIE has been considered in the more general asymmetric single-unit auction

models, e.g., Krishna (2003) and Hu, Matthews, and Zou (2015).



in common, a bidder’s willingness-to-pay can also be related to the private informa-
tion about his (firm’s) perceived profitability upon winning an auctioned object. The
information could, therefore, indicate a certain (anticipated) advantage in the ensu-
ing product market competitionE] For instance, bidders at sequential flower auctions
are mostly wholesalers or exporters’| When a bidder shows an exceptionally high
willingness-to-pay for, say, roses on a certain day, it could be because he has received
an unusually large buying order, or depleted his inventory sooner than usual, or ac-
quired favorable information about his future market share. In any of these situations,
it is not inconceivable that other bidders may interpret a competing bidder’s strength
as “bad news” and, as a result, reduce their own forecast profitability from buying
the same roses. Of course, we view NIE as complementary to PIE, as both situations
are possible.

Our model extends the existing literature also regarding the sequencing rules and
payment rules of sequential auctions. Given m (> 1) identical objects and n (> m)
bidders with unit demand, we allow the auctioneer to freely choose any sequencing
rule, defined by the number of rounds K (< m) and the number of objects ¢; to
be auctioned in a round k£ = 1,..., K such that Zszl b, = mﬁ We also allow the
auctioneer to freely choose any payment rule for each round of the auction so long
as the rule is feasible. Thus, different rounds can involve different payment rules.
We take a general approach of modelling sequential auctions as a sequence of direct

mechanisms in which the strategy of every bidder is simply a sequence of reports of his

4See, e.g., Goeree (2003) for an analysis of auctions with aftermarket competitions, where bidders

attempt to signal at the auction via the winning bid. We do not consider strategic signalling in this

paper.
5See, e.g., van den Berg, van Ours, and Pradhan (2001) for an excellent empirical analysis of the

Dutch flower auctions.
6This kind of general sequencing rules have been considered in Mezzetti, Peke¢ and Tsetlin (2008)

for the case of a two-round uniform sequential auction with affiliated types. Most of the sequential
auction models consider selling a single unit of the objects in a round, and many restrict attention

to the case with two rounds.



type. A feasible sequential auction is one that has the property of sequential incentive
compatibility (SIC) by which all active bidders report their types truthfully in every
round. In order to obtain clear results, we focus on the case with risk neutral bidders
and independent types[]

Under very mild conditions that the auctioned objects are valuable to all bid-
ders, and that each bidder’s valuation function increases in his own type, we show in
Proposition 1] the existence and characterization of a general class of SIC auctions. A
rather profound insight from this proposition is that essentially all standard auction
policies can be implemented via a simple bidding rule that requires active bidders to
report (or bid) their ezpected payment in each round. The formula that character-
izes the SIC auctions allows us to provide an instructive proof of Corollary [I which
states that the total expected revenue is the same under any sequencing and payment
rules. Corollaries illustrate how the characterization of the SIC auctions implies
straightforwardly the characterizations of symmetric equilibria of the sequential all-
pay, discriminatory, and uniform auctions.

In Proposition [2| we investigate how information externalities affect the price
trends in an SIC sequential auction. We find that, while the expected price sequences
in the PIE environment tend to be upward drifting (extending, e.g., Milgrom and
Weber, 2000; Mezzetti, 2011), in the NIE environment the price sequences are neces-
sarily downward drifting. An interesting observation is that when multiple units of
objects are sold in each round, the predictions of expected price trends are asymmet-
ric. Under PIE, the expected highest price in round k is predictably lower than that
in round k + 1; under NIE, the expected lowest price in round k exceeds the expected

highest price in round k+1. Thus, the downward price trends in the NIE environment

"The analysis presented in this paper can be further generalized to the case where bidders are
risk averse, in a setting similar to Hu and Zou (2015). The analysis of sequential auctions with
affiliated signals, however, remains a challenge (see Milgrom and Weber, 2000). While focusing on a
two-stage uniform auction, Mezzetti, Peke¢ and Tsetlin (2008) obtain the equilibrium existence and

some important insights where bidders’ signals are affiliated.



are much more pronounced. These theoretical predictions suggest that the declining
prices at real sequential auctions may be indeed associated with the fact that bidders
at these auctions are competitors in the same product or service market.

The rest of the paper is organized as follows. In Section [2 we introduce the
general environment with a formal definition of what we mean by PIE and NIE in this
environment. We also describe the general sequential auction as a sequence of direct
mechanisms, and characterize the conditions of sequential incentive compatibility.
Section [3] presents the main results of the paper, including a numerical example in
the end. Section [5| concludes the paper with remarks on possible extensions of the
present study. Appendix A provides the proof of Proposition[I] Appendix B discusses
the revenue equivalence result in Corollary [1] in more detail, including an instructive

proof of the result that does not take the standard envelope theorem approach.

2 Environment

There are m (> 1) identical objects for sale and n (> m) competing bidders with
unit demand. The reserve prices are zero. The sales are conducted using a general
sequential auction involving a triplet of rules: a sequencing rule, an allocation rule,
and a payment rule. The sequencing rule is defined by the number of rounds K
(1 < K <m) and the number ¢, (> 1) of the objects to be simultaneously auctioned
in round k such that 3, #x = m. In each round k € {1, ..., K}, every active bidder
i submits a sealed “bid” ¥ € R, and the allocation rule is such that the highest ¢,
bidders win. The winning bidders leave the auction upon paying according to the
payment rule, while losing bidders remain active until all m objects are sold.

The payment rule is defined, in general, by a function p* : R} — Ry for k =
1,..., K as follows. At the start of round k, let m;,_; = Zf;ll ¢; denote the total
objects sold (mg := 0), Bm,ﬁl the vector of previous winning bids, and ny = n — my_4
the number of active bidders. When bidder i bids b¥, his payment in round k will be

PE(OF; b5 by, ), where b5, = (bF,..bF_ |, bF, ... bF ). The function p* is symmetric



in its last n — 1 arguments, and satisfies p*(0; v* ,, Emkfl) = 0. It is possible that both
winners and losers pay (or receive) in each round.

Notice that p*(b¥;b* ., b, ,) can be also written as pk(b’(“i); b’j(i),gmk_l), where
(b’(“i),b'j (iy) are obtained by rearranging (b¥,b%.) in decreasing order so that bl&) >
b’(cz) > ... > b’(“nk). If several bidders are tied in any round k£ with the same smallest
winning bid b’(“mk), then all of them will buy the remaining objects for the same price
pk(bl(“mk); b* (mi)? bm,_,)- If the remaining number of objects falls short of the number of
the winning bids in any round, then the allocation to the tied bidders will be resolved
randomly, and the auction concludes.

The sequencing rule described above is completely general; as special cases, of
course, are the most studied cases of the single-round simultaneous auction (K = 1)
and the m-round sequential unit-sale auction (K = m). The payment rule is also very
general; apart from its flexibility for each round the functional form of p* can also

differ from round to round. The following are three special cases of p*:

Sequential all-pay auction. All active bidders pay their own bids regardless

of winning or losing in each round k:

pk(bi‘cv b Bmk’—l) = b (1)

—%) A

Sequential uniform auction. All winners in round k£ pay the “market-

clearing” pricefl]
_ b if bF > bf
0 if b < b’(“mk)

(2)

Sequential discriminatory auction. All winners in round & pay their own

bids:
. bF i bF > bf
pk(bfv blizv bmk—1> = ' L) . (3)
0 if bf < b,

8The market-clearing price is defined by the highest losing bid in this example. It can be defined
more generally by any specific rule that determines a price between the highest losing bid and the

lowest winning bid.



Turning to bidders’ preferences, we assume that every bidder i € N = {1,...,n}
has a private type x; € [0,1]. The type vector (zi,...,z,) is the realization of n
ii.d. random variables (Xi,...,X,) € [0,1]". We let f and F denote the density
and cumulative distribution of X; and assume that f is positive and continuous on
[0,1]. Given (zy,...,2,), the (expected) value of the auctioned object to buyer i is
v'(z1, ..., T,). We assume there is a continuously differentiable function v : [0,1]" — R,
such that v'(z1, ..., z,) = v(x;, v_;), and v is invariant to permutations of its last n — 1
arguments (e.g., Milgrom and Weber, 1982, 2000; Eso and White, 2004; Mezzetti,
2011). The function v further satisfies the following condition[]

A1l. For all (z1,...,2,) € [0,1]", 0 < v(x;,x_;) < oo and vy (z;, z_;) > 0.

This mild and commonly made assumption is fairly basic. It says that the object
is valuable to every bidder if he can acquire it free of charge, and that the bidder’s

value increases in his own type. We highlight two important cases that both satisfy

A1
Case 1 The partial derivatives vj(x;,x_;) > 0 for all j =2, ...,n.
Case 2 The partial derivatives v;(z;,z_;) <0 for all j =2,...,n.

While Case (1] is the common assumption of PIE (e.g., Milgrom and Weber,
1982, 2000; Mezzetti, 2011), Case |2 involves NIE, which has been rarely studied in
the symmetric auctions literature. One of the contributions of this paper is to show
that the basic assumption Al is, in fact, sufficient for the existence of pure strategy
equilibria for a wide class of sequential auctions. This fact allows a researcher to
analyze properties of sequential auction equilibria in environments accommodating

Case |1}, Case [2, and the full range of intermediate cases.

9Subscripts of v denote partial derivatives and, as usual, these are defined as one-sided derivatives

on the boundary of [0, 1]™.
0By symmetry, the two complementary conditions in Cases 1 and 2 can also be written as vy > 0

and vy < 0, respectively.



We assume bidders are risk neutral, so that if bidder ¢ with type z; wins an
object and pays price p, and if the type vector of other bidders is x_;, the bidder
has a payoff equal to v(z;, z_;) — p. Of course, the actual payoff is uncertain to the
bidder as it depends on variables not observable by him at the time of the auction. A
bidder’s “status-quo” payoff, i.e., his utility level without participating in the auction,
is assumed to be zero by normalization.

By symmetry, we focus w.l.o.g. on the decision of bidder 1 with type x. Define
Y = (Y,_1,..., Y1), where Y, is the kth highest type from among the n — 1 bidders
other than bidder 1. Let y; denote a realization of Y;. By symmetry of v(x;, z_;) in
x_;, the valuation function of bidder 1 can also be written as v(z,Y). To further ease

notation, we denote Y;,, = (Y,,,,..., Y1) and @, a realization of Y,,,.

3 Sequential incentive compatibility

By the revelation principle, we may perceive, as we do, a sequential auction as a se-
quence of direct mechanisms under which the bidders’ bids are simply their “reported
types.” Conforming to certain real situations (e.g., a sequential Dutch auction), we as-
sume that the mechanism (or auctioneer) announces the winning bids in each round k,
and does not “record” the losing bidders’ bids['!| We are interested in direct sequential
auctions that are sequentially incentive compatible (SIC), under which every active
bidder finds it optimal to report his type truthfully in any round of the auction—given
that other bidders report their types truthfully (with probability 1) in all rounds, and
that he plans to bid truthfully in subsequent rounds should he lose in the current
round (see Definition [1| below). Therefore, SIC implies that all active bidders are
informed of the vector of the previous winning types 4,,, , at the start of every round
k, and for bidder 1 with type z, he wins the kth round if and only it Y,,, <z <Y,,, |
(Vi :=1).

' The analysis of sequential auctions with affiliated values is more involved for the case without

winning bids announcement. For example, see Mezzetti, Peke¢ and Tsetlin (2008).



A complete description of bidder 1’s updated information should include the
observation of 0-probability reports. Suppose a winner in a round k reported z >
Ym,_,- This may happen, e.g., that the bidder, “by mistake,” overstated his type
in round £, or had understated his type in some previous rounds. In this case, we
assume that all active bidders will assess this round-k£ winner’s type to be y,,, ,. A
complete description of bidder 1’s strategies should also include the case where he
himself has made a “mistake” by not bidding truthfully in some previous rounds.
Then, truthful bidding in round k& could become suboptimal when the bidder’s type
x exceeds Y, - In this case, knowing that the highest type from among other active
bidders is less than y,,, ,, the optimal strategy of bidder 1, as will be shown in the
proof of Proposition , is to report y,,, , and to win the kth round with certainty.

To ease notation, define

uk(xaya gmk,l) =F [’U($, Y)‘?mk,l = gmk,la Ymk = y:| (4)

as the kth round conditional expected value of bidder 1 given that he is still active,
that Y., , = ¥m,_,, and that his “closest” competitor in round k has a type Y;,, equal
to y. Given any payment rule {p* : k = 1,..., K}, further define the active bidder 1’s
expected payment in round k byE

(Pk(z7gmk—1) = E [pk<z7 Y)D_/mk—l = gmk—l} (5)

when he reports z. The bidder’s kth round conditional expected payoff when his type
is  and he reports z thus equalﬁ

V2l ) 0 = B [0, Yo G ) Ve < 23] = 08(2, G,

+E |:Vk+1(x A Ymk’x’}_/mk)‘ {Ymk > Z} ,Ymk71 = gmka (6)

121n light of Proposition |1} we suppress the notational dependence of ¢* on function p*.
3The term E(:|{Yy,, < 2

so that E(:|{Yin, < z}) = E(-|Yim, < z}Pr({Yim, < z}). Note that this expectation is invariant to

) denotes the unconditional expectation under the “event” {Y,,, < z}

the tie-breaking rules since Y,,,, = z occurs with probability of zero.



where VE*1 := 0 and # Ay = min{z, y}. In (6, the first term on the right-hand side
is associated with the event of bidder 1 winning the kth round, the second term his
expected payment, and the last term the event of him losing the kth round. If the
bidder loses in any round k£ < K, his subsequent conditional expected payoff given
an updated p,, is V¥ (z A Yy, 2|Um,). The term x A'Y,,, captures the possibility
that the bidder reported a type lower than z, losing the kth round, and learned that
Z > Ym, . In this case his optimal subsequent strategy is to report y,,, instead of x in

the (k 4 1)st round, as is shown in the proof of Proposition

Definition 1 A direct sequential auction with sequencing rule {¢x, k = 1,..., K},
payment rule {p*, k =1,..., K}, and allocation rule that the highest {; bidders win in
each round k = 1, ..., K is sequentially incentive compatible (SIC) iff

VA, 2lGmy) = V(2 2],y

Vim,, € [0,1]™, V2,2 €0,1], Vk € {1,...,K}.

We say that an SIC sequential auction is feasible if V*(z,x|gm, ,) > 0 for all =
and ¥, ., k = 1,..., K. Clearly, by Al and p*(0;-) = 0, all SIC sequential auctions
are feasible.

An important aspect of our formulation of sequential incentive compatibility is
that bidders are “forward looking” in making their bidding decisions. A losing bidder
up to round k& may have well suffered certain losses already, (e.g., when the payment
rule resembles an all-pay auction), or have made certain gains (e.g., when the payment
rule resembles a “Santa Clause” auction as described in Riley and Samuelson (1981)).
We assume that these “sunk costs” or “locked-in gains” do not affect the bidders’

current and future decisions.

4 Main Results

We are now ready to investigate the major issues regarding equilibrium existence, price

trends, and expected revenue. Let F,, (-|Um,_,) denote the cumulative distribution,
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and fo, (+|9m,_,) the associated density function, of Y,,, conditional on Y,,,, | = ¥, _,-
Recall that my_q1 + ¢ = my and ng, = n — my_1, where ¢}, is the number of objects to
be sold in round k. Thus,

L (n — 1)! Fy)" % (F (Ym,_,) = F)* ' f(y)
fmk (y’ymk—l) - (nk . gk o 1)‘(£k o 1>| F(ymk,l)nk_l (7)

As a consequence of X;’s being i.i.d., the distribution F),, (+|¥m,_,) depends only on
Ym,_, SO that we will write it as F,, (+|Ym,_,)-
Our first proposition establishes the existence and characterization of the general

class of feasible sequential auctions.

Proposition 1 Suppose A1 holds. Then, under any sequencing rule {{y : k =
1,..., K} and allocation rule such that the highest () bidders win in each round k,
there exist feasible direct sequential auctions. The payment rule {p*, k =1,.... K} of
all feasible sequential auctions imply the same expected payment function ©* (-, Ypm,_,)

characterized by

(s T ) = /O (G, G VAEn (Wl ), (8)

and fork=1,... K — 1]

(pk(xv gmk71) = /0 E [SOkJrl (y7 Y Ymk*h ] Ymk71+17 gmk71>j| dka (y‘ymkfl) (9)

Moreover, all ¢"(x, Yp,_,) are positive and increasing in x on (0, Y, _,)-

Proof. See Appendix A. =

The result of this proposition is remarkably general, as it requires only the basic
assumption Al. In the characterization of the final-round bidding strategy, equa-
tion resembles that of a single-round simultaneous auction except that the active
bidders have now the updated information of the previous winning bidders’ types.

Indeed, it reduces to the characterization of incentive compatible direct mechanisms

M Note that for £ = 2, the vector (Y, 1, Ymy_141) = Ymu—1 = Ym,_,+1- And by convention,

for ¢, = 1, we interpret (Y, —1,...; Yim,_,+1) as nonexistent.
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for the simultaneous multi-unit auction when we set K = 1 (with y,,, = 1). For the
more general case, the equations in @D show that in each round k, an active bidder
equates his expected payment with the expected payment by his closest competitor,
the one with type Y,,, , in the subsequent round assuming that the competitor would
be tied with another bidder with the same type Y,,,, .

By and @, an explicit expression of the expected round-k payment can be
deduced by working backward from the last period. For k =1,..., K — 1, we have

Spk<q;’ gmkfl)
= /(; E [SokJrl(ya Y, Ymkfla ) Ymk,ﬂrla ijk,l)} dka (y|ymk,1)
J

T

E [spk_'—l(ymm Ymka Ymk—h SRT) Ymk—l-i—la gmk_1)|ymk = y} dka (y|ymk_1)

E [UK(Ym, Yo, YmK—w s Ymk—lJFl’ gmk&)‘ymk = y} dka (y’ymk—l)

E [U(Ymv Y)|Ymk =Y, Y, = gmk_J AF o, (YY) (10)

S~

where the last equation is due to . The following corollary is a direct consequence

of Proposition [I}

Corollary 1 (revenue equivalence) Under A1, (i) given any sequencing rule and
any SIC payment rule, the expected revenue from round k is the same; and (ii) any

sequencing rule of a sequential auction implies the same total expected revenue ex-ante.

Proof. (i) This is an obvious consequence of , since all payment rules imply the
same expected payment from a given round.

(ii) This follows from " (x, ¥, _,) being increasing in x, which implies that prior
to the auction, all bidders have the same probability of winning an object under any
sequencing and payment rules of an SIC auction. Since the bidder having type zero
pays and receives nothing, by the revenue equivalence theorem every bidder has the

same expected payoff prior to the auction. Hence the seller’s total expected revenue
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must be invariant to sequencing and payment rules. We provide an instructive proof

in Appendix B. m

The general characterization of the SIC auctions in Proposition [1| provides a
simple way to derive equilibria of the more specific auction policies. A rather profound
insight from Proposition [1| is that under risk neutrality, there is no loss of generality
to restrict attention to bidding rules that require bidders to submit bids equal to what
they expect to pay in each round of a sequential auction so long as they are still active.
The winner’s actual payment can be then determined according to the pre-specified
payment rules. The sequential all-pay auction as described in (1) is an immediate

corollary of this result.

Corollary 2 (sequential all-pay auction) Suppose A1 holds in the environment
described in Section |3, and the payment rules are “all pay” or “pay-your-bid” regard-
less of winning or losing in every round as in . Then, given any sequencing rule
{ly : k =1,..., K}, there exists a continuous and increasing pure strategy symmetric
equilibrium {b’zp k=1,.., K} of the sequential all-pay auction. In each round k
gien previous winners’ type vector Y, ., the equilibrium strategy of an active bidder

with type x is to bid

blﬁlP(waymkq) = /O E [U(Ym’}?)‘ymk =Y, Y, , = gmk—l] dka(y|ymk—1>

Proof. Simply define the bid function 0%, as ¢* defined in (8)-(9), or in (10), of
Proposition [I| m

The result of this corollary is new. It is perhaps surprising that the equilibrium
existence for the sequential all-pay auction, in the present model with generalized
interdependent values and sequencing rules, requires only the basic assumption Al
that bidders like the items (e.g., a price, research grant, etc.), and that every bidder’s
value increases in his own type.

As for the sequential discriminatory and uniform auctions, we invoke an addi-

tional assumption to ensure monotonicity of the bid functions in the NIE environment

(Case [2)).
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A2. F [U(Ym,?)ﬂ/} =z, Y1 =Yj-1,...,Y1 = yl] is an increasing function of x, for
all j <m and (y;-1, ..., Y1)

This assumption holds naturally in the PIE environment of Case [1] when v
is nondecreasing in all its arguments and increasing in its first argument (see, e.g.,
Milgrom and Weber, 1982, Theorem 5). In the NIE environment of Case , A2
restricts the extent to which the NIE affects bidders’ values. Roughly, A2 requires
that increasing a bidder’s own type has a dominant effect compared to increasing
any competitor’s type (in the sense of the stated condition). The following are some
simple examples in which A2 holds under NIE.

Examples. There is no loss of generality to assume, as we do here, that every
bidder’s type X; is uniformly distributed on [0, 1] (see, e.g., Milgrom, 2004, pp. 111).
On the basis of this assumption, it can be verified that the following value functions

satisfy A1-A2 for a < 1/n for arbitrary m < n (tighter conditions can be computed

as well):
(i) v(zy, ey xn) = 1 (1 —a(za+ ... +2,)) (11)
(ii)) v(z1, ., zp) = 1421 —a(ze + ... +x,) (12)
(iii) v(z1, .oy xn) = 14z —a(zy X oo X Tp) (13)

We are ready to present two more corollaries of Proposition [1}

Corollary 3 (sequential uniform auction) Suppose in the environment described
m Section@ the payment rules are uniform in each round k as defined in (@) Then,
under A1-A2, given any sequencing rule {{y : k =1, ..., K}, there exists a continuous
and increasing pure strategy symmetric equilibrium {b’f] k=1, K } of the sequen-

tial uniform auction such that
blf](x,gmk_l) =FE [U(YmaY”Ymk = I7Ymk_1 = ymk_J (14)
Proof. By the uniform payment rule defined in ,

(s Gy = / V(4 G2 )AF oy (5l (15)
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Substituting into (10), and differentiating w.r.t. 2 and cancelling terms, yields
. A2 implies that b (z, ¥, _,) is an increasing function of z. Hence the conclusion.

Corollary 4 (sequential discriminatory auction) Suppose in the environment de-
scribed in Section[d, the payment rules are discriminatory in each round k as defined
m (@) Then, under A1-A2, given any sequencing rule {{y : k =1, ..., K}, there exists
a continuous and increasing pure strateqy symmetric equilibrium {b’fj k=1, K }

of the sequential discriminatory auction such that

bkb(‘x’gmk:fl)
1 v - _
= —F— ElwvYon, Y)Y, =9, Y., = Ym,_,| dFn 1) (16
s [ B o V¥ = 0y = ] 4P 0l ) (16
= E [/U(YTVHY)’Ymk S T S ymk,laymk,l = y’mk,l]

Proof. By , the expected payment of an active bidder 1 with type z equals
(T, Umyy) = V5 (2, Yy ) By (%Y, ,) in round k. Thus, implies (16). Since
A2 implies that the integrand in increases in y, and since increasing x shifts the
conditional distribution F,,, (y|Ym,_,)/Fm,(%|Ym,_,) of y to the right, 0% (x, i, ,) is

an increasing function of z. Hence the conclusion. m

Our next proposition provides clear predictions about the expected price trends
over rounds of a sequential auction. We focus on general winners-pay sequential
auctions. Other auction formats that involve losing bidders paying or receiving money
can be investigated in terms of total proceeds, but these are of less empirical interest

given the revenue equivalence result in Corollary [I]

Proposition 2 Suppose A1 holds. Let any sequencing rule {{; : k = 1,...., K} be
given and suppose that the payment rule is such that the losing bidders in every

round pay and receive nothing. Denote by E (Pt |Um,._,) and E(pr . |Um,_,) the lowest

~k+1
Pmax

and highest expected payment in round k, and by E( |Um,,_,) the highest expected
payment in round k + 1 (under the same condition Yy, |, = Um,_,). Then, for all

k=1, ,K—1,
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(i) B Ui ,) < E@5 N Gm, ) if Casel holds;
(1) EPFinlUmi_.) = E@5 G, ,) if Case@ holds.

Proof. By @ and , bidder 1 with type x has an expected payment in round k
that equals

(pk(%gmkfl) = b [Skarl(Ymk? Ymka Ymirla ) Ymk71+1’ ngq)‘ {Ymk ST < ymk71<}1]7)

= £ [U(Ym7}7)’}7mk—1 = gmk—m {Ymk <z < ymk—1H (18)

It can be readily argued, e.g., by Theorem 5 in Milgrom and Weber (1982), that the

term in (18] is nondecreasing (nonincreasing) in every component of %, , in Case

(Case ; that is,

0 4 >0 in Caselll ,
a, ('T’gmk—1> , VE< K, Vj=1,...,mu_ (19)
dy; < 0 in Case [2

Consider part (ii) first, assuming Case [2| holds. The “event” that bidder 1
wins the kth round corresponds to the event {Y;,, <z <Y, ,}. (We ignore the
zero-probability events of z = VY, and z = Y, ,.) In round k£ + 1 and under
event {Ymk <x< Ymk—1}7 the bidder with type Y,,, will be the winner with the
highest expected payment in that round, which, conditional on the realization of

(Yono—1soes @y ooy Yoo 41, Uy, ), €Quals

E (Bt | i1 {Yomi <& < Yoy 1 })
= E "' Yo 2, Yie—1, oo, Yo 115 g ) | { Yo <2 < Yonp 1 }] (20)
< E " Yo Yigs Yoe—ts ooos Yo 11 Ui )| { Y <2 < Yo 1} (21)
= ©F(x, Um,_,) forall z such that Y, <z <Y, |, (22)

where uses the fact that ¢*(z,-) is symmetric, follows from , and
is . Since ©*(x, §im,_,) increases in z, in the event that bidder 1 has z = Y,,, 1,

(2, Um,_,) = E(PEsu|Um,_,)- Hence the conclusion of (ii).
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Now consider part (i) of Case[l] Using similar arguments the inequality in (21)

is reversed, so that

E(ﬁlk'il_;)1(|gmk—l7 {Ymk <z < Ymk—l}) > ‘Pk(xa gmk_1>

for all « such that Y,,,, <2 <Y, ,. In the event that bidder 1 has  =Y,,,, 41, his

expected payment ©*(z, ¥, ,) = E (P .i|Um,_,). Hence the conclusion of (i). m

It is interesting to observe that this proposition provides asymmetric predictions
of expected price trends. For Case [I], the maximum expected payments can be com-
pared over rounds, whereas for Case [2| the prediction of downward sloping price trend
is much more pronounced: the minimum expected payment in round k exceeds the
maximum expected payment in round k£ 4+ 1. The reason for this asymmetry is due
to equation @D, where the kth round expected payment by all types of active bidders
are related to the highest expected payment in the (k + 1)st round. Of course, for the
special sequencing rule of K = m where each round sells exactly one unit, we have
the symmetric prediction that the expected price trend increases (decreases) under
PIE (NIE).

An implication of Proposition [2] is that when there are multiple sellers, unless
they agree to share the total proceeds from the sales, their expected payoffs can be
sensitive to the rounds in which their items are allotted to, as well as to the nature
of interdependence of bidders’ values.

A Numerical Example. Consider the case of (11)), where F(z) = x on [0, 1]
and v(zy,...,z,) = 21 (1 — a(xe + ... + x,,)) with a < 1/8. Suppose n = 8, m = 4, and
the seller chooses to sell one unit in a round, so that K = 4. Suppose the seller chooses
the Dutch auction format (which corresponds to a first-price sealed-bid auction with
the winning bid announcement).

Let b% denote the equilibrium bid function in round k. By , these are given
by
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1
bp(r;a) = ~36% (67ax — 18)
1
b (x,y1;a) = T (16ay; + 5lax — 16)
1
bp(e,y2,y1;0) = —grw (May, + 1ay, + 3Tax — 14)
1
b (x, ys, Y2, Y13 a) = 5% (12ay; + 12ays + 12ays + 25ax — 12)

It is easy to verify that for a < 1/8, all b%(x,-) are increasing functions of z.
Note also that b%, are nonincreasing functions of y;, 32, ys if and only if @ > 0. From

the seller’s viewpoint, the expected revenue from different rounds are given by

E(bL) E@®bY) E@®Y) E(@®}) Total

4 4 4 4
50 g a4 5 a4 §— a4 g —ga

The table shows that the expected price trend increases for a < 0 (PIE) and
decreases for a > 0 (NIE). If the seller conducts the sale using a simultaneous dis-
criminatory auction, the total expected revenue can be computed as 16/9 — 56a/9,

confirming revenue equivalence.

5 Concluding Remarks

This paper extends the existing analysis of sequential auctions in three aspects. First,
bidders can exhibit generalized interdependent values including as polar cases posi-
tive informational externalities (PIE) and negative informational externalities (NIE).
Second, the sequencing rule to sell m identical objects is completely general: the
seller /auctioneer has the discretion to decide the number of rounds K (< m) and the
number of objects to be sold in each round k£ = 1, ..., K. And third, the payment rule
for each round £k is arbitrary, which can differ from round to round so long as the
bidder with type zero pays and receives nothing.

We take the general approach of analyzing sequential auctions as a sequence

of direct mechanisms (i.e., the Myersonian approach; see Pavan, Segal, and Toikka,
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2014). We formulate the sequentially incentive compatible (SIC) constraints that
necessarily limit the seller’s choice of sequencing and payment rules, and show that
all SIC sequential auctions that allocate the objects to the highest bidders have the
same characterization regarding an active bidder’s expected payment in each round.
The formula characterizing the general SIC auctions lends itself to the derivation of
pure strategy equilibria of the more standard sequential auctions. We show how the
formula implies straightforwardly the equilibrium existence of sequential all-pay auc-
tions and, under appropriate additional conditions, equilibrium existence of sequential
discriminatory and uniform auctions. We use the general formula to show that the
expected payoff/revenue is invariant to different payment rules in a given round and,
less obviously, that the total expected payoff/revenue is invariant also to different
sequencing rules as well.

In answering our motivating question concerning the price trends at a sequential
auction, we obtain a surprisingly strong declining price result. We show that, in an
NIE environment, all SIC sequential auctions imply that the expected lowest price
in round k exceeds the expected highest price in round k£ + 1 given any sequencing
rule. Thus, the “declining price anomaly” is not an anomaly; rather, it is a natural
consequence of a bidding environment in which increasing a bidder’s type increases the
bidder’s own value but decreases other bidders’ values. As to the environment with
PIE, we confirm the existing theoretical prediction that the price trends at sequential
auctions should be upward drifting in that the maximum expected price in round k
is lower than the maximum expected price in round k£ + 1. Since the PIE and NIE
environments can be created easily in a laboratory, the predictions of this paper are
highly amenable to experimental testing.

In order to obtain clear results, we have limited attention to situations where
bidders are risk neutral, having unit demand and independent types. The analysis
can be extended to situations where bidders are risk averse under conditions in Hu
and Zou (2015). Risk aversion will further strengthen the downward trend of prices at

sequential auctions under NIE, while blurring the price patterns under PIE (Mezzetti,
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2011). Extensions to multi-unit demand or affiliated types in the present setting with

generalized interdependent values remain important open problems.

Appendix A. Proof of Proposition

Proof. Rewrite the expected payoff in @ as

Vk(z7x|gmk_1) = / uk(a:,y, gmk—1>dka (y|gmk_1) - SOk(Za gmk—1>
0
Ymp_1 _ _
[ B A ) Yo = T = o] 4P ) (29)

where F,, (*|Ym,_,) is given in @) We analyze by backward induction bidder 1’s
optimal response, assuming that all others report truthfully their types in all rounds.

Round K. Suppose bidder 1 with type x is active in the final round K, with
updated information that Y., |, = Um,_,. By , reporting a type z leads to an
expected payoff

VE (2, 2l ) = / @ s T ) Ul ) — 05 (2 o)
0

Differentiating w.r.t. z gives

_ _ _ 9, _
‘/IK(zJ I|ymK—1) = uK(‘Tﬂ Zs ymK—l)fm(ZkymK—l) - @@K(Zv yqu) (24)

Since v; > 0, u®(x,2,Um,_,) increases in = and so does V/(z,2|Ym,_,). There-
fore, VE (2, 2|Ym,_,) satisfies the single-crossing condition of Milgrom and Shannon
(1994) (see also Athey, 2001). This implies that Vi (z, z|y,,_1) = 0 is both necessary
and sufficient for SIC to hold in round K provided z < y,,,_,. By , integrating
VE(Y, Ylmy_,) = 0 over y € [0, z] gives

O T ) = / @y s ) (o) (25)
0

The existence and uniqueness of (z, 4, ,) follows from the fact that the

right-hand side of is a well defined function of (x, ., ). This function is positive

and increasing in x because u* (y, i/, Ym,_,) is positive by Al.



20

As we do not assume that bidder 1 has followed the equilibrium strategies pre-
viously, there is also a possibility that > y,,,_,. This case is only possible if in the
preceding round the bidder has deviated from the equilibrium strategy and bid as
though his type were lower than z, for else he would have won the previous round.
Given v, < Ym,_, < 7, it does not make sense to bid above y,,,._,; it is optimal for
the bidder to bid 2 = y;,,,,_, <  and win the Kth round with probability 1. Thus, the
complete bidding strategy in the final round is to bid © A Y, , (= min{z, Ym._,}).
This, of course, will not be the case when the bidder has followed the equilibrium
strategy from the start.

Round k. Now consider £ < K. Our induction hypothesis is that given any

k+1(

Um,,, the expected payment function ¢ T, Um, ) 18 well defined, positive for x > 0,

increasing in x, and its associated payoff function
Vi (T A Yy > T|Yimy,) = max Vi (2, Z[Gm,,) (26)

for all the subsequent rounds k£ + 1 < K. Consequently, if the bidder loses the kth
round and observes Y,,, = %, , sequential rationality calls on him to bid A y,,, in
round k£ 4 1 and so on.

We focus on the case x < y,,, .. (The case with > y,,, , will result in the
bidder bidding ¥,, , and win the kth round with certainty.) Suppose the type-x
bidder 1 is active in the kth round and bid as though his type was z (< ¢, _,). Then
his expected payoff is given by . Differentiating V*(z, z|§m, ,) w.r.t. z yields

V¥ (2, 2|,y
= [uk(xu 2 gﬂ%q) - E [VkJrl(x A Z7x’Ymk)|Ymk =z, Ymk—l = gmk—l:” fmk(z’ymk—l)

0

_a(pk(zv gmk—l) (27)

Notice first from that if bidder 1 lost in round k£ and bid as though his type
were equal to the realized Y,,,, = z in the (k+ 1)st round, he will win with probability
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1. In this case his expected payoff from the (k + 1)st round equals

E [VkJrl(Z?x’Ymk”Ymk = Zvakﬂ = gmkfl]
= / E [ (@, y, Yo ) Vi, = 2] dFiia(yl2) — E [©"7 (2, Yo, Ui ) [V, =(2B)
0

By , the first term on the right-hand side of

/ E [ My, Vo ) Yo, = z] dFyi1(y]2) = v (2, 2, Gom, ) (29)
0

Therefore, ( . 28) imply that the necessary condition for bidding truthfully, V¥(z, 2|, ,) =
0, is

0 B _
& k(z7ymk—1) =F [@k+1(zvymk7ymk 1)| = ]fmk< |ymk_1) (30)

Now we argue that this condition is also sufficient. If bidder 1 bids z > x, then

E [VkJrl(w A Z?‘T|Ymk)|ymk =% Ymk* - gmk*l]

= E [VkJrl(x?m‘?mk)’Ymk =2, ¥my_, = gmk,l}

> F [Vk+1(z m|Ym )| mi 7Ymk 1 gmk—J by
But then by the assumption that other bidders bid truthfully, - imply

Vi (2, 2| )

< FE [ka+1(z’?mk7gmk—1)|ymk = Z] fmk(z|gmk—1) - k(zagmk—1) =0forz>x

0
527
Hence, the bidder has no incentive to bid higher than x. Now for z < z,

FE [Vk—H(fL‘ Nz, I|Ymk)|Ymk =% Ymk—l - ?jmk_J

= BV V) Yo = 2 Yoy = G ]

and thus by VE(2, 2|Ym,_,) = 0 for all z < 2. So, again, the bidder has no incentive
to deviate from bidding x. Consequently, integrating yields the characterization
of SIC payment rules @ Note that our induction hypotheses and imply that
©*(2, Um,_, ) is positive and increasing in z.

Finally, we argue that " is unique under any SIC payment rules p* such that

p*(0,-) = 0. For k = K, given any ¥, , the right-hand side of determines
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a unique function (-, %,,_,). Thus, all sequential auctions must have the same
round- K expected revenue. By induction, we see easily from @D that the values of all
©*(2, Ymy_,) are uniquely determined. Consequently, given the number of rounds K
and the number of ¢, objects to be sold in round k = 1, ..., K, all SIC payment rules
p* such that p*(0,-) = 0 induce the same kth round expected payment. =

Appendix B. Revenue Equivalence

In this appendix, we discuss in more detail of the revenue equivalence result of Corol-
lary [I} and provide an instructive proof of the second part of this corollary concerning
the irrelevance of the sequencing rules. In this corollary, we report two revenue equiv-
alence results. The first one is a straightforward extension of the payoff equivalence
theorem for single-round auctions, which holds that given any sequencing rule and
updated information, each active bidder’s expected payment in a given round of the
sequential auction is the same under any payment rule for this round "] Consequently,
as long as the sequencing rule is fixed, all SIC payment rules imply the same expected
revenue from each round[™] The second prediction of Corollary [1] holds that the to-
tal expected revenue is the same under any sequencing rules. In particular, revenue
equivalence holds between any sequential auction and the simultaneous multi-unit
auctionE] In light of the fact that the expected payment/revenue can, predictably,
differ across different rounds at a sequential auction, it is of interest to understand
how and why sequencing tactics do not give the seller a chance to extract more rents

from the bidders. We provide a (novel) proof of Corollary (1| here that helps make

15E.g., Vickrey (1961), Myerson (1981), Riley and Samuelson (1981) for single-unit auctions, and

Krishna and Maenner (2001) for single-period incentive compatible mechanisms, among many others.
Y6This result extends, e.g., Krishna (2010, Chapter 15) for the case with independent private

values, a single-unit sale per round, and first-price vs. second-price payment rules.
17Similar conclusions have been shown for the private values cases (e.g., Weber, 1983; Maskin and

Riley, 1989; Bulow and Klemperer, 1994). The fact that the sequencing rules do not matter in these

cases can also be seen as a consequence of the martingale property of the price sequences.
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out the logic behind the result: all sequencing and payment rules must satisfy the
SIC constraints, under which every bidder effectively faces the same probability of
winning an object prior to the auction. Consequently, since the lowest-type bidder
pays and receives nothing, the total expected revenue must be invariant to sequencing
and payment rules by the revenue equivalence theorem[”|

Proof of Corollary We focus on part (ii), since part (i) is obvious. In this alter-
native proof, we compare explicitly the expected revenues from two auction policies,
one with K = 1 so that it is a simultaneous auction of all m objects, the other with
an arbitrary sequencing rule K > 1 selling ¢, objects in round k = 1, ..., K. Let ®(x)
and @ (x) denote the total pre-auction expected payment, respectively, at these auc-
tions by bidder 1 with type . We prove a stronger result of payoft equivalence that
¢, (x) = P (x), which implies the irrelevance of sequencing rules to the seller’s total
expected revenue.

Under simultaneous sales, the condition for K =1 reduces to:
Py (z) = E [0(Yy, V)| {Vin < 2 < 1}] (31)
Under sequential sales, implies
P (2, Gr) = B [0(¥o, V) Vi s = Gy { Y < @ < Yo }] (32)

At the start of the auction, for bidder 1 with type x, his round-k expected payment

is a random variable @*(z). It is a function of Y,,,_, such that

sok('r’ Ymk—l) if T S Ymk—l
0 ifz>Y,

Thus, prior to the auction, a bidder with type = has an expected payment in the kth

18 Mezzetti (2011, Lemma 1) uses this logic to establish payoff equivalence in sequential auctions
under interdependent values (the case of PIE), where bidders are averse to price risks. Our result

extends readily to Mezzetti’s case with generalized interdependent values.
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round equal to

E [¢"(x)]
= E[p"@, Yo, {2 <Y }]
= BB [0V V)V = Gy Yo <& Sy} {2 < Vi3] by B2)
= B [o(¥i, V)| {Yon, <7 < Vi, }]

The sum of the expected payments in all rounds gives the bidder’s total pre-auction

expected payment:
K
= E (Y, V)[{Vn, <2 <Yy, ,}] (33)
k=1

Since the event {Y;, < < 1} can be partitioned into K sub-events:

K
{Ym <r< 1} = U {Ymk <z < Ymkfl} (Ymo =1, Yig = Ym)
k=1

we derive from and that
o(x) = FE [ (Ym,?)\ {Yo<zx< 1}]

- ZE (Yo, V[ {Yin, <2 < Vi }] = Pxe(2)

The seller’s total expected revenue is therefore the same from either auction. m

References

Ashenfelter, Orley. 1989. “How Auctions Work for Wine and Art.” Journal of

Economic Perspectives, 3: 23-36.

Ashenfelter, Orley, and David Genesove. 1992. “Testing for Price Anomalies in
Real-Estate Auctions.” American Economic Review, 82: 501-505.

Athey, Susan. 2001. “Single Crossing Properties and the Existence of Pure Strategy

Equilibria in Games of Incomplete Information.” Econometrica, 69: 861-889.



25

Beggs, Alan, and Kathryn Graddy. 1997. “Declining Values and the Afternoon
Effect: Evidence from Art Auctions.” Rand Journal of Economics, 28: 544-565.

Bernhardt, Dan, and David Scoones. 1994. “A Note on Sequential Auctions.”

American Economic Review, 84: 501-505.

Black, Jane, and David de Meza. 1992. “Systematic Price Differences Between
Successive Auctions Are No Anomaly.” Journal of Economics and Management

Strategy, 1: 607-28.

Bulow, Jeremy, and Paul Klemperer. 1994. “Rational Frenzies and Crashes.” Jour-

nal of Political Economy, 102(1): 1-23.

Chanel, Oliver, Louis-Andre Gérard-Varet, and Stephanie Vincent. 1996. “Auction

" in Economics of

Theory and Practice: Evidence from the Market for Jewelry,’
the Arts: Selected Essays. Victor Ginsburgh and Pierre-Michel Menger, eds.

Amsterdam: Elsevier, pp. 135-49.

Deltas, George, and Georgia Kosmopoulou. 2004. “Catalogue’ vs ‘Order-of-sale’
effects in Sequential Auctions: Theory and Evidence from a Rare Book Sale.

Economic Journal, 114: 28-54.

DeMarzo, Peter M., Ilan Kremer, and Andrzej Skrzypacz. 2005. “Bidding with
Securities: Auctions and Security Design.” American Economic Review, 95:

936-959.

Engelbrecht-Wiggans, Richard. 1994. “Sequential Auctions of Stochastically Equiv-
alent Objects.” Economics Letters, 44: 87-90.

Engelbrecht-Wiggans, Richard, and Charles M. Kahn. 1999. “Calibration of a Model
of Declining Prices in Cattle Auctions.” Quarterly Review of FEconomics and

Finance, 39: 113-128.



26

Eso, Peter, and Lucy White. 2004. “Precautionary Bidding in Auctions.” FEcono-
metrica, 712: T7-92.

Gale, Ian L., and Donald B. Hausch. 1994. “Bottom-Fishing and Declining Prices

in Sequential Auctions.” Games and Economic Behavior, 7: 318-331.

Gale, Tan L, and Mark Stegeman. 2001. “Sequential Auctions of Endogenously
Valued Objects.” Games and Economic Behavior, 36: 74-103.

Gandal, Neil. 1997. “Sequential Auctions of Interdependent Objects: Israeli Cable

Television Licences.” Journal of Industrial Economics, 45: 227—44.

Ginsburgh, Victor A. 1998. “Absentee Bidders and the Declining Price Anomaly in
Wine Auctions.” Journal of Political Economy, 106: 1302-1319.

Goeree, Jacob K. 2003. “Bidding for the Future: Signaling in Auctions with an
Aftermarket.” Journal of Economic Theory 108: 345-364.

Holt, Charles A. 1980. “Competitive Bidding for Contracts under Alternative Auc-
tion Procedures.” The Journal of Political Economy, 88: 433-445.

Hu, Audrey, and Liang Zou. 2015. “Sequential Auctions, Price Trends, and Risk
Preferences.” Journal of Economic Theory 158: 319-335.

Hu, Audrey, Steven A. Matthews, and Liang Zou. 2015. “English Auctions with
Ensuing Risks and Heterogeneous Bidders.” University of Pennsylvania PIER
Working Paper 15-010.

Hu, Audrey, Theo Offerman, and Liang Zou. 2014. “How Risk Sharing May Enhance
Efficiency in English Auctions.” Tinbergen Institute Discussion Paper, TI 2014-
015/1.

Jeitschko, Thomas D., and Elmar Wolfstetter. 1998. “Scale Economies and the

Dynamics of Recurring Auctions.” Economic Inquiry, 40: 403-14.



27

Jones, Chris, Flavio M Menezes, and Francis Vella. 2004. “Auction Price Anomalies:

Evidence from Wool Auctions in Australia.” Economic Record, 80: 271-288.

Krishna, Vijay. 2003. “Asymmetric English Auctions.” Journal of Economic Theory,
112: 261-288.

Krishna, Vijay. 2010. Auction Theory. Second Edition, Elsevier: Academic Press.

Krishna, Vijay, and Eliot Maenner. 2001. “Convex Potentials with an Application
to Mechanism Design.” Econometrica 69: 1113-1119.

Kittsteiner, Thomas, Joerg Nikutta, and Eyal Winter. 2004. “Declining Valuations

in Sequential Auctions.” International Journal of Game Theory, 33: 89-106.

Maskin, Eric, and John Riley. 1989. “Optimal Multi-Unit Auctions.” In Frank Hahn
(ed.), The Economics of Missing Markets, Information, and Games. Oxford:

Oxford University Press, Clarendon Press.

Menezes, Flavio M. and Monteiro, Paulo K. 2003. “Synergies and Price Trends in

Sequential Auctions.” Review of Economic Design, 8: 85-98.

Mezzetti, Claudio. 2011. “Sequential Auctions with Informational Externalities and
Aversion to Price Risk: Decreasing and Increasing Price Sequences.” FEconomic

Journal, 121: 990-1016.

Mezzetti, Claudio, Aleksandar Sasa Peke¢, and Ilia Tsetlin. 2008. “Sequential
vs Single-Round Uniform-Price Auctions.” Games and Economic Behavior, 62:

591-609.

McAfee, R. Preston, and Daniel Vincent. 1993. “The Declining Price Anomaly.”
Journal of Economic Theory, 60: 191-212.

McAfee, R. Preston, and Daniel Vincent. 1997. “Sequentially Optimal Auctions”
Games and Economic Behavior , 18: 246-276.



28

Milgrom, Paul. 2004. Putting Auction Theory to Work. Cambridge: Cambridge

University Press.

Milgrom, Paul, and Robert J. Weber. 1982. “A Theory of Auctions and Competitive
Bidding.” Econometrica, 50: 1089-1122.

Milgrom, Paul, and Robert J. Weber. 2000. “A Theory of Auctions and Competitive
Bidding I1,” in The Economic Theory of Auctions Vol. II. Klemperer Paul. ed.
Edward Elgar Publishing Ltd, pp. 179-194.

Milgrom, Paul, and Chris Shannon. 1994. “Monotone Comparative Statics.” FEcono-

metrica, 62: 157-180.

Myerson, Roger B. 1981. “Optimal Auction Design.” Mathematics of Operations
Research 6: 58-73.

Pavan, Alessandro, Ilya Segal, and Juuso Toikka. 2014. “Dynamic Mechanism
Design: A Myersonian Approach.” Econometrica, 82: 601-653.

Pitchik, Carolyn, and Andrew Schotter. 1988. “Perfect Equilibria in Budget-
Constrained Sequential Auctions: An Experimental Study.” RAND Journal of
Economics, 19: 363-388.

Rosato, Antonio. 2014. “Loss Aversion and the ‘Afternoon Effect’ in Sequential

Auctions.” University of Technology Sydney, Working Paper.

van den Berg, Gerard. J., Jan C. van Ours, and Menno P. Pradhan. 2001. “The
Declining Price Anomaly in Dutch Dutch Rose Auctions.” American Economic

Review, 91: 1055-62.

Weber, Robert J. 1983. “Multi-Object Auctions.” in Auctions, Bidding and Con-
tracting: Uses and Theory. Richard Engelbrecht-Wiggans, Martin Shubik, and
Robert M. Stark, eds. New York: New York University Press, pp. 165-194.



	Introduction
	Environment
	Sequential incentive compatibility
	Main Results
	Concluding Remarks
	Appendix A. Proof of Proposition ??
	Appendix B. Revenue Equivalence
	References

