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Coco Design, Risk Shifting Incentives and Capital Regulation

Stephanie Chan∗ Sweder van Wijnbergen†

This version: November 13, 2017 ‡

Abstract

Contingent convertible capital (CoCo) is a debt instrument that converts to equity or is written

off if the issuing bank fails to meet a distress threshold. The conversion increases the issuer’s loss-

absorption capacity, but results in wealth transfers between CoCo holders and shareholders, which may

change risk-shifting incentives to shareholders. Higher risk increases the probability of CoCo conversion,

while lowering the wealth transfer. We show that for Principal-Write-Down (PWD) CoCos, the net

effect is to always increase risk-shifting incentives, while for equity-converting CoCos, it depends on

the extent of dilution after conversion. We integrate the analysis in a game-theoretic optimal capital

regulation framework and show that use of PWD or insufficiently dilutive CE CoCos requires higher

capital requirements for given asset structure to offset the rising risk-shifting incentives these instruments

give rise to.

1 Introduction

This paper analyzes the risk-shifting incentives that arise from letting banks issue contingent convertible

capital (CoCo) to meet capital requirements set by regulators and explores the implications for the design

and setting of optimal capital requirements. CoCos are hybrid instruments that are issued as debt but

convert to equity or are written off if the issuing bank fails to meet a distress threshold. The threshold may

be contractual, as when the bank fails to meet a preset equity ratio, or discretionary, as when regulators

deem the bank to be close to an often vaguely-defined point of non-viability. CoCos are designed this way

in order to relieve the issuer of the burden of raising capital in situations of financial distress (Flannery
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[2005]). As a result, CoCos have become popular with regulators because of their enhanced loss absorption

capacity relative to subordinated debt. But we show in this paper that many CoCos (in fact the majority

of all CoCo structures presently used) have worse risk-shifting incentives than subordinated debt, so the

loss absorption capacity is bought at a price. We analytically present the link between design features and

implied risk-shifting incentives compared with debt (lower capital ratios) or equity (higher quality capital)

as alternative to CoCos. We then embed the analysis of risk-shifting incentives in a stylized optimal capital

requirements model and show that at the social optimum the use of (insufficiently dilutive) CoCos to meet

capital requirements calls for higher capital requirements as a function of their design structure. And this

holds in particular for the use of Principal Write Down CoCos, irrespective of the write down percentage

used. This runs counter to the current structure of the BIS standards, where capital requirement ratios are

based on risk weighted assets only.

Key to our conclusions is the fact that while CoCo conversion increases the loss absorption capacity of

the issuing bank, conversion may, depending on their design, also change the order of seniority. If CoCos

are written off (Principal Write Down CoCos) or CoCo holders receive insufficient number of shares after

conversion, CoCo holders absorb the first losses, instead of the original shareholders. This implies that at

the moment of conversion, there is a wealth transfer from CoCo holders to the shareholders after a distress

event has set of the conversion trigger. If CoCos are converted to equity (equity converting CoCos), CoCo

holders absorb the losses together with the existing shareholders. In this case, the wealth transfer may be

in favor of either the CoCo holder or the existing shareholder, depending on the terms of the conversion.

These transfers do not exist when the bank uses subordinated debt. Regardless of the direction of the wealth

transfer, a wedge is created relative to the use of subordinated debt, which changes the bank’s risk-shifting

incentives and therefore should have consequences for the design of the capital requirements regime.

Our contribution to the literature is to provide a simple theoretical model of risk-shifting in the presence

of CoCos, when the conversion is automatic (based on a breach of a preset equity ratio). We use the Merton

[1974] call options framework to value various types of claims on the bank’s assets model (debt, CoCos,

equity), enabling us to endogenize the probability of CoCo conversion in a straightforward manner, rather

than treating it as exogenously given as is done in part of the literature. While a number of papers have

given examples of the risk-shifting that may potentially be caused by CoCos (see for instance Berg and

Kaserer [2015], Chen et al. [2017], Hilscher and Raviv [2014], Koziol and Lawrenz [2012]), the quoted papers

have to rely on numerical simulation methods, which unavoidably implies that the results are conditional

on particular parameter choices. Of course relying on numerical methods allows these studies to analyze

much more complex models than we can in our simple but analytically tractable framework. But relying on

numerical simulations instead of on a fully analytical approach may mask dependency of results on specific
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parameters chosen and is likely to provide less insight in the economic intuition behind the simulation results.

In contrast, using our simplified call options framework yields completely analytical solutions, where the

dependency of results on specific parameter values can be shown analytically. The key simplification is in the

time structure: we use a simple discrete time set up where all events happen at specified times, i.e. a European

option framework in discrete time. The existing asset pricing literature on CoCos uses continuous time and

analyzes the conversion as a random stopping time problem, essentially replacing our European calls and puts

by analogous knock in/knock out barrier option. Our approach allows for more generality, admittedly at the

expense of simplification of the basic structure. This also allows us to decompose the sources of risk-shifting:

an increase in the conversion probability of a given CoCo, and a decrease in the wealth transfer relative to

issuing subordinated debt. We think this paper shows the benefits of complementing the largely simulation

based literature by a simplified but analytically tractable approach.

In addition, our paper is the first to consider the interaction of CoCo issuance with the existing regulatory

framework and to derive implications for the optimal structure and setting of capital requirements of the

emergence of these new instruments. We do so by embedding the risk-shifting analysis into a game theoretic

approach to the setting of optimal capital requirements, with the regulator acting as a Stackelberg leader

and the banks as Stackelberg followers. Recent regulatory changes have allowed the use of CoCos to improve

loss absorption capacity, but do not limit the types of CoCos that may be used to meet capital requirements.

As CoCos create a wedge relative to subordinated debt because of the expected wealth transfers, replacing

subordinated debt with CoCos changes the incentives of the bank. We show that this implies that, depending

on their design, CoCos may foil the regulator’s risk management intentions by changing the bank’s risk choices

- unless accompanied by an offsetting change in the capital requirements.

We apply our framework to the full range of CoCos issued so far: principal writedown (PWD) CoCos,

which are not well-covered in the academic literature but widely issued (about 60% as of the first quarter

of 2017), and convert-to-equity (CE) CoCos with dilutive and non-dilutive conversion ratios. While there is

no question about the superiority of additional equity over subordinated debt from a regulatory perspective,

the wedge brought about by the risk-shifting incentives embedded in CoCos matters in determining whether

CoCos are or are not superior to subordinated debt. We find that PWD and insufficiently dilutive CE CoCos

encourage banks to take riskier choices relative even to subordinated debt and thus even more relative to

equity, this is because the wealth transfer that takes place when conversion occurs is always favoring the

shareholders when CoCos are PWD or insufficiently dilutive CE CoCos. This reversal of seniority that takes

place in the case of such insufficiently dilutive CoCos actually strengthens rather than weakens risk-shifting

incentives, even when they replace subordinated debt. Obviously, allowing equity to be replaced by CoCos

designed in this way makes matters much worse, to the extent that not raising the capital requirements
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and allowing subordinated debt to be issued to fill the gap would be a better option. But when the CoCos

are of the dilutive CE variety, the risk-shifting incentive turns negative because the wealth transfer itself

becomes negative - while shareholders in aggregate obtain a higher residual equity upon conversion, the old

shareholders must share the total residual value (i.e. old and new claims) with the new shareholders created

upon conversion. The dilutive sharing of residual equity, while not strictly equivalent to ex ante skin in

the game, does make shareholders choose risk levels that make the conversion probability smaller. As a

result, the risk level chosen under dilutive CE CoCos will be lower than the risk level chosen under the same

amount of subordinated debt. We show that if the dilution is large enough, risk-shifting incentives can even

be lower than in the case of pure equity. We then explore the consequences of these links between CoCo

design and risk-shifting incentives for the optimal capital requirements structure by analyzing a Stackelberg

game between the regulator as leader and the banks as followers. More equity to meet capital requirements

leads to both higher loss absorption capacity and lower risk-shifting incentives, but when CoCos are used

instead these two objectives are in conflict with each other: more PWD and insufficiently dilutive CoCos do

increase loss absorption capacity but they simultaneously raise risk-shifting Incentives thereby opening up

arbitrage opportunities (Boyson et al. [2016] make a similar point for the case of Trust Preferred Securities

in the US). We show that when insufficiently dilutive CoCos and in particular PWD CoCos are used to meet

capital requirements, these requirements should be raised to offset the increased risk-shifting incentives these

instruments lead to.

The remainder of this paper is structured as follows. Section 2 discusses the related literature. We present

the model in Section 3 and analyze risk-shifting incentives as a function of CoCo design features in Section

4. Section 5 sets up the study of optimal capital requirements and CoCos by introducing private and social

costs of bankruptcy and derives implications for the optimal structure and level of capital requirements once

CoCos play an important role in the banking system’s capital structure. Section 6 concludes. Some useful

but standard option pricing results are listed in Appendix A, while the proofs that are not in the text are

presented in Appendix B.

2 Related literature

There is a small but growing body of research on the impact of CoCos on the risk-shifting incentives of banks.

Koziol and Lawrenz [2012] only consider CE CoCos, and argue that risk-shifting incentives always increase

relative to ordinary bonds, as long as the old equity holder gets to keep some shares after conversion. This

strong result depends critically on their assumption that the conversion trigger coincides with the default

trigger: If asset values decline enough to trigger default at a particular leverage ratio, replacing some of the
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debt by CoCos will leave shareholders better off: with an equal decline in asset values they are left with

some claims and default is staved off, while in the straight debt case they would have lost everything. Berg

and Kaserer [2015] numerically simulate the value of equity given an exogenously set mixture of debt and

equity converter CoCos for four specific conversion ratios as a function of asset return variance. They argue

that risk-shifting rises as wealth transfers from CoCo holders to equity holders increase, and observe that the

price at which conversion takes place has a direct impact on the magnitude and even sign of these wealth

transfers. They also show that several of the existing CoCos such as those issued by Lloyds and Rabobank

have prices that fall with changes in implied asset volatility, inferring that the market recognizes the risk

taken by the banks This finding points at very clear risk-shifting incentives inherent in the CoCo designs

issued by those two banks. Hilscher and Raviv [2014] argue that risk-shifting incentives of banks may be

mitigated by choosing the conversion ratio properly. None of these studies analyzes PWD CoCos or the

interaction between CoCos as capital and optimal capital requirements. For a capital structure containing

CoCos, Hilscher and Raviv [2014] derive conversion ratios at which the resulting equity vega1 is equal to

zero. Their conclusion echoes the suggestion of Calomiris and Herring [2013] on having CoCos which are

sufficiently dilutive. On the other hand, Martynova and Perotti [2016] claim that both CE and PWD CoCos

can mitigate risk-shifting if the trigger level is set properly. In their paper, risk-shifting takes the form of not

exerting sufficient effort in monitoring the assets of the bank. However they do not consider the possibility

that the bank’s risk choice affects the probability of conversion and the interaction of that effect with the

wealth transfer that takes place upon conversion. Accounting for the latter link is at the core of the analysis

presented in this paper.

CoCo papers that are cast in an asset pricing framework come in all varieties: for example De Spiegeleer

and Schoutens (2011) provide two models based on an credit derivative and equity derivative approach

respectively. Authors using asset pricing models mostly do endogenize the conversion by approaching it as a

stopping time problem in continuous time. Among the previously mentioned papers, Berg and Kaserer [2015]

and Koziol and Lawrenz [2012] fall within this category, as do Albul et al. [2013] and in particular Chen et al.

[2017]. Both Albul et al. [2013] and Chen et al. [2017] focus on CoCos that convert to equity and show that

they have the potential to reduce the probability of bankruptcy since they increase loss absorption capacity.

They argue that for this to happen the trigger level for CoCo conversion must be sufficiently high in order

to prevent debt-induced collapse of the value of equity. However, they also show that once this has been

prevented, the presence of CoCos brings about tax benefits and possibly lower rollover costs of debt due to

the lower probability of bankruptcy, and argue that these features unambiguously imply that CoCos mitigate

risk-shifting incentives. Albul et al. [2013] argue that debt overhang effects will cause cbanks to resist any

1Vega is the sensitivity of the option value with respect to the volatility of its underlying assets.
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regulation imposing issuance of CoCos. Moreover, most of the structural papers only consider CoCos that

convert to equity, such that there is partial dilution of existing shareholders. As a consequence, conversion

in the cases they analyze always imply a loss to old shareholders. But of the more than 162.6 billion Euro

face value CoCos issued by European banks as of the first quarter of 2017, substantially more than half are

issued on terms that imply a wealth transfer towards equity holders once conversion takes place, a possibility

that plays a substantial role in our paper. Finally none of the papers in the literature discuss the impact of

swapping Cocos for straight debt or equity on the objectives regulators pursue through capital requirements

and the consequences for optimal capital requirements.

3 Revisiting the call options approach to residual equity valuation

Black and Scholes [1973] and Merton [1974] have noted that the shareholders of a firm effectively hold a call

option on their company’s assets. The creditors of the firm have a claim over the assets to the extent of the

outstanding liability, but the shareholders can obtain the full claim to the assets by paying off all outstanding

liabilities. Therefore the residual claim held by the shareholders can be thought of as a call option on the

firm’s assets, with the outstanding liability as the strike price.

For a bank that has issued hybrid instruments such as CoCos, the valuation of its residual equity is more

involved, because the change in the hybrid’s “state” changes the bank’s capital structure. This will in general

imply a corresponding change in the valuation of the residual equity. Therefore, the valuation of residual

equity involving hybrids must take the various states of the hybrid security into account.

If the probability of conversion was exogenous, valuation would be straightforward: the residual equity

value of a CoCo-issuing bank can then simply be expressed as a linear combination of the residual equity

values before conversion (when the CoCo is treated as debt) and after conversion (when the CoCo is either

written off or is converted to equity), with the conversion probability as the weighting factor. However, CoCos

convert whenever the bank encounters either an automatic or a discretionary trigger, but, either way, after

“bad news” (see in particular Chan and van Wijnbergen [2015] for the signaling effect of conversions). This

in turn means that expected values conditional on conversion will be different for the same asset compared

to expected values conditional on no conversion having taken place, a point we explicitly incorporate in our

analysis. Also, the bank’s ability to choose risk levels affects the shape of the return distribution, which in

turn affects the likelihood of the bank hitting the trigger value for its capital ratio. Therefore, we cannot

assume that the probability of conversion is exogenous.

By expressing the bank’s residual equity as a call option, and by recognizing that the probability of CoCo

conversion is affected by the risk levels chosen by the bank, we are able to examine the risk-shifting incentives
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the CoCo-issuing bank faces. Moreover, using the method outlined above, we can examine each type of CoCo

design and determine which of them provides the best and the worst incentives for risk-shifting.

3.1 Setup

CoCos have two kinds of trigger: an automatic one which occurs whenever the bank fails to meet a preset

equity ratio, and a discretionary one which occurs whenever the regulator believes the bank has reached the

so called point of non-viability. In this paper, we focus on the automatic type.

A model with CoCos must have at least three dates because the risk choice, the conversion itself, and the

final payoffs happen at distinct dates. However, if one wants to determine the ex ante risk-shifting incentives

induced by a CoCo, it is enough to know the impact of risk on the expected realizations of the asset value

at the time of conversion. Therefore, while we refer to t = 1 and t = 2 events , our analysis focuses on the

t = 0 actions.

Consider a CoCo-issuing bank. At t = 0, its capital structure is composed of Dd deposits, Ds CoCos, and

E initial equity. We assume that the CoCo does not convert at t = 0. At this stage, the CoCo-issuing bank

is indistinguishable from an ordinary bank with Ds subordinated debt in place of CoCos. We normalize the

amounts such that Dd + Ds + E = 1. We take these amounts as given, because we are interested in seeing

how banks choose risk for a given capital structure. Since banks face capital regulation, the bank is anyhow

constrained in choosing its capital structure.

Upon obtaining these funds, the bank invests them in an asset that gives return R2 at t = 2. We assume

that R2 follows a lognormal distribution with parameters
(
µ, σ2

)
for the corresponding normal distribution

of ln (R2). The bank can choose the risk level σ of the assets at t = 0. However, once the bank has chosen

σ, it cannot make changes at any later time. Call the return expected at t = 0 R: R = E0(R2). Also, to

ensure that we analyze a pure risk effect not confounded with increases in wealth, we structure the increase

in risk in such a way that E (R2) = R stays unchanged (i.e. a mean-preserving spread in variance to offset

the impact of Jensen’s inequality). Furthermore without loss of generality we assume investors have a zero

discount rate and are risk neutral; risk choices are driven by leverage, not by risk aversion. Because of these

assumptions, we can interpret R as the t = 0 price of the risky asset.

The setup described above allows us to write the equity holder’s claim as a call option on the asset return,

as in Black and Scholes [1973] and Merton [1974]. We assume there is only one share, and the bank does not

issue any new shares aside from those that may arise from CoCo conversion. Denote the value of the share

at t = 0 as e0. Thus, before conversion, the bank’s residual equity may be expressed as

e0 = C [R, Dd +Ds] (1)
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where C [R, D] is a call option2 on an asset with current price (value) R and strike price (outstanding

liabilities) D in this particular instance. In all subsequent calculations, we use D to refer to a general strike

price, but specify the actual level of debt (e.g. Dd or Dd +Ds) when appropriate.

At t = 1, a signal is received drawn from the same marginal distribution as R2 but assumed correlated

to R2, i.e. the signal is informative about R2. As a consequence the asset price changes to R1. In principle

it is possible that R1 falls short of the total liability Dd + Ds. In that case the bank is in default and will

be closed down. However, we only consider cases when conversion precedes default, so we assume that the

t = 1 signal will always be high enough to preclude anticipations of insolvency.

CoCos convert at t = 1 when R1 is lower than what is consistent with a preset trigger equity ratio τ . At

t = 2, when R2 materializes, the creditors of the bank are paid, and anything left accrues to the residual

claimant, which is the equity holder of the bank. In principle it is also possible to draw conclusions from risk

choices for run probabilities: for such an analysis in a global games framework, see Chan and van Wijnbergen

[2015]. But in this paper we assume there is deposit insurance and therefore no risk of depositor runs in

order to focus entirely on the risk-shifting implications of various CoCo designs. CoCos cannot be run on

since they are non-redeemable.

3.2 The endogenous conversion probability

It is straightforward to value residual equity when Ds is subordinated debt. But when CoCos are involved, we

need to consider both the change in the value of the residual equity arising from the change in the outstanding

liability once conversion takes place, as well as the probability that the CoCo converts. Martynova and Perotti

[2016] treat this probability as exogenous. However, this is not a desirable assumption for our purpose since

the bank’s choice of risk affects the distribution of the asset returns and thus unavoidably the probability of

conversion. In this section, we endogenize this probability, using an analog on to the concept of distance-to-

default, the distance to conversion.

The distance-to-default is a measure of the closeness of the gross asset return and the value of the

outstanding liability. For lognormally distributed asset returns R and total face value of debt D, the distance-

to-default dd at t = 0 (hence the use of R instead of R1) can in the context of our model be written as

dd =
1

σ

[
ln
R

D
+ r − σ2

2

]
(2)

where r is the risk-free rate. It is implicit from the use of this measure that the default event occurs when

the equity ratio of the bank is 0. However, with CoCos, the relevant event is not default, but conversion. For

2Appendix A reproduces the basic mathematics of the Black-Scholes call options framework.
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CoCos with automatic conversion, the trigger event is when the bank’s equity ratio falls short of the trigger

level τ > 0. We therefore introduce a measure similar to distance-to-default by incorporating the trigger

level τ , the distance-to-conversion dc.
3 Automatic conversion occurs whenever

R−D
R

≤ τ ⇔ R(1− τ) ≤ D, (3)

allowing us to write the distance-to-conversion dc as

dc =
1

σ

(
ln
R (1− τ)

D
+ r − σ2

2

)
. (4)

With the assumption of lognormally distributed returns, the conversion probability then equals:

pc = Φ (−dc) (5)

where Φ (·) is the cumulative standard normal distribution. With the conversion probability now well-defined,

we can value the equity of a bank that has issued CoCos within our framework as a properly probability

weighted linear combination of values of residual equity with differing amounts of outstanding liability, the

approach taken in the next subsection. But first consider the properties of the relation between distance to

conversion, probability of conversion, risk σ and the trigger level τ .

As dc is a function of both τ and σ, the probability of conversion pc must be as well. We have

∂pc

∂τ
= −φ (−dc)

∂dc
∂τ

= φ (−dc)×
(

1

σ (1− τ)

)
> 0 (6)

and

∂pc

∂σ
= −φ (−dc)

∂dc
∂σ

= φ (−dc)×
(

1 +
dc
σ

)
> 0 (7)

where φ (·) is the standard normal distribution. This leads to the following lemma:

Lemma 1. The conversion probability is increasing in the risk σ taken, as well as in the trigger ratio τ .

The intuition behind this result is relatively simple: A higher value of σ shifts more weight in the tail and

so increases the conversion probability, which equals the left tail of the distribution falling below the trigger

value τ . A higher trigger value reduces the distance to conversion and so also increases the probability of

3A similar measure has been introduced by Chan-Lau and Sy [2006], in the context of an early warning system for bank
regulators.
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conversion dc. The fall in the distance-to-conversion induced by both of these factors, combined with the

derivative of the cumulative standard normal distribution with respect to this parameter, deliver the lemma.

From Lemma 1 one can see that the trigger ratio τ and the risk level σ are substitutes in terms of their

effect on the conversion probability. If one takes the cross partial derivative of (7) with respect to τ , one

obtains

∂2pc

∂τ∂σ
=
φ (−dc) (1− τ)

[
σdc

∂dc
∂σ − 1

]
σ2 (1− τ)

2 < 0, (8)

which shows that the marginal conversion probability with respect to risk σ falls as the trigger ratio τ rises

(see Appendix B.1 for details on this derivation). By Young’s theorem, the marginal conversion probability

with respect to the trigger ratio τ also falls as the risk level σ rises. This leads to following corollary:

Corollary 2. The risk level σ and the trigger ratio τ are substitutes in terms of their effect on the conversion

probability.

Corollary 2 suggests that if the bank has a target level of the probability of conversion, it can choose

lower risk levels if the trigger ratio is high enough. Similarly, if the trigger ratio is low, the bank can achieve

its target by choosing higher risk levels.

3.3 Residual equity valuation with CoCos in the capital structure

In this section, we consider the valuation of residual equity when CoCos are in the capital structure. The

two states (pre- and post-conversion) must be considered in the valuation. To this end, we examine how

conversion alters the issuing bank’s residual equity.

There are two types of CoCos that have been issued to date: principal writedown (PWD) CoCos and

convert-to-equity (CE) CoCos. PWD CoCos are written off by the fraction (1− ϕ) ∈ [0, 1] when the bank

runs into an automatic trigger event, leaving ϕDs subordinated debt on the issuing bank’s balance sheet. So

conversion would change the value of the bank’s residual equity from C [R, Dd +Ds] to C [R, Dd + ϕDs],

for any value of R, where ϕ represents the fraction of the CoCos that are retained on the balance sheet.4

CE CoCos are not written down but convert to equity at some conversion rate ψ per unit of CoCo when

the issuing bank encounters an automatic trigger event.5 So conversion would change the bank’s (old) residual

equity from C [R, Dd +Ds] to 1
1+ψDs

(C [R, Dd]). It is important to notice that the overall equity is now

held by two equity owners, the old one and the new equity holder who has obtained his equity from the CoCo

conversion. 1
1+ψDs

measures the degree of dilution. This formula also holds for any value of R. Of course if

4For this reason, we refer to ϕ as the retention parameter.
5Some papers refer to the conversion price, which is the inverse of the conversion rate. That is, for conversion rate ψ the

conversion price is 1/ψ.
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an adverse signal has set off an triggering event, the signal has likely affected the share price R adversely, an

issue we return to below.

Both the writeoff and the equity conversion features can be accommodated by the expression in (9) to

represent a general CoCo-issuing bank’s residual equity after conversion.

C [R, Dd + ϕDs]

1 + (1− ϕ)ψDs
(9)

This formula embeds all possibilities:

1. A pure CE CoCo has ϕ = 0, and ψ > 0, ψ ∈ [0, ∞)

2. A pure PWD CoCo with full writedown has ϕ = 0 and ψ = 0. As such, it can be seen as a limiting

case of a CE CoCo with lim ψ → 0; and

3. A pure PWD CoCo with partial writedown has ϕ > 0, ϕ ∈ (0, 1) and ψ = 0 or

4. A CoCo with a mix of PWD and CE features has ϕ > 0, ϕ ∈ (0, 1) and ψ > 0, ψ ∈ [0, ∞). This kind

of CoCo partially converts into shares and partially continues as subordinated debt

Note also that if the CoCo has ψ = 0 and ϕ = 1, we obtain regular subordinated debt instead of a CoCo.

To date, none of the CoCos issued possess both equity conversion and principal write down characteristics

at once: CoCos are either pure PWD or pure CE. Also, the two possible partial conversion CoCo types (3)

and (4) are actually equivalent to a linear combination of regular subordinated debt, with weight ϕ, and

a fully-converrted full PWD CoCo, with weight (1 − ϕ). So all results that we obtain for pure CE CoCos

actually extend to the corresponding partial CoCo types: (1) extends to (4) and (2) extends to (3).

Denote by ecoco the value of a general CoCo-issuing bank’s residual equity at t = 0. As previously

mentioned, the t = 0 value of residual equity of a bank with CoCos in the capital structure can be written

as a linear combination of the pre-conversion state and the post-conversion state, with the probability of

conversion pc as the weighting factor. We need some more definitions before we can implement this approach.

Since at t = 0 it is not known whether the CoCo will be triggered but it is known that if it does the t = 1

signal must have been sufficiently bad for the trigger to go off, the conditional expectation of t = 2 asset

value must be different in the pre-conversion and the post-conversion states. Define R+ as the expected

value of R conditional on there NOT having been a conversion: R+ = E (R2|Without conversion at t = 1).

Similarly we can define R− as the expected value of R conditional on there having been a conversion:

R− = E (R2|With conversion at t = 1). Clearly R= E (R2) = (1 − pc)R+ + pcR−. We can rewrite this

expression as (10) which will be useful in the following sections.

(
R−R+

)
= pc

(
R− −R+

)
. (10)
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With this expression, we may write the CoCo-issuing bank’s residual equity as:

ecoco = pc
C [R−, Dd + ϕDs]

1 + ψDs
+ (1− pc) C

[
R+, Dd +Ds

]
(11)

= C
[
R+, Dd +Ds

]
+ pc

(
C [R−, Dd + ϕDs]

1 + ψDs
− C

[
R+, Dd +Ds

])
= C

[
R+, Dd +Ds

]
+ pc

(
C [R−, Dd + ϕDs]

1 + ψDs
− C

[
R−, Dd +Ds

])
+pc

(
C
[
R−, Dd +Ds

]
− C

[
R+, Dd +Ds

])
≈ C [R, Dd +Ds]−4(R−R+)− pc4(R+ −R−) + pcW

= C [R, Dd +Ds]− pc4(R− −R+)− pc4(R+ −R−) + pcW

= C [R, Dd +Ds] + pcW

ecoco = e0 + pcW

using (10) going from line 4 to line 5 of (11), and W is the wealth transfer as defined below.

W =
C [R−, Dd + ϕDs]

1 + ψDs
− C

[
R−, Dd +Ds

]
(12)

4 is the option delta, the option derivative with respect to R.6 Thus, the ex ante value of residual

equity of a CoCo-issuing bank can be expressed as the value of a bank’s residual equity as if it had issued

subordinated debt instead of a CoCo, e0, plus an expected value of the wealth transfer term pcW .

The expected wealth transfer may be positive or negative, depending on the values of ψ and ϕ. But for

a PWD CoCo the expected wealth transfer pcWpwd is:

pcWpwd = pc
(
C
[
R−, Dd + ϕDs

]
− C

[
R−, Dd +Ds

])
, (13)

(13) is always positive because the lower implied strike price after conversion (Dd + ϕDs) increases the

value of the call option held by the bank’s shareholder. Thus, the difference between C [R−, Dd + ϕDs] and

C [R−, Dd +Ds] is always larger than 0, and increases as ϕ moves from 1 to 0, as the CoCo moves more to

a full write down PWD CoCo. Figure 1 illustrates the change in the wealth transfer from the point of view

of the bank shareholder. At Point A in the Figure, when ϕ = 0, the wealth transfer from the CoCo holder to

the existing shareholder is at its highest value. This is because at ϕ = 0 nothing is left for the CoCo holder.

6In deriving (11) we make one approximation: we assume 4 to be constant over the domain of R, i.e. the second derivative
4R ≈ 0.
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Figure 1: Wealth transfers from CoCo holders to equity holders for various levels of ϕ

0 ϕ

C[R−, D]− C[R−, D +Ds]

1

A

For a pure CE CoCo, the expected wealth transfer pcWce is

pcWce = pc
(
C [R−, Dd]

1 + ψDs
− C

[
R−, Dd +Ds

])
, (14)

which may be positive or negative over the the range of ψ, which is the entire positive segment of the real

axis. Figure 2 illustrates this, again from the point of view of the original equity holder.

Figure 2: Wealth transfers from CoCo holders to equity holders for various levels of ψ

−C[R−, D +Ds]

0

ψ̃

C[R−, D]− C[R−, D +Ds]

ψ →∞

B

At Point B in Figure 2, when ψ = 0, the wealth transfer reaches its highest value. At this value of ψ, the

CE CoCo is equivalent to a full PWD CoCo. However, as ψ → ∞ the CoCo holder completely dilutes the

original shareholder, at ψ = ∞ the original shareholder is wiped out altogether after a conversion. So then

the wealth transfer is from the original shareholder to the CoCo holder. As the wealth transfer term Wce is

continuous in ψ, there must exist a value of ψ that sets the wealth transfer of a CE CoCo exactly equal to
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0. Call this value ψ̄; ψ̄ solves Wce(ψ) = 0. This expression allows for an explicit solution for ψ̄ :

ψ̄ =
1

Ds

(
C [R−, Dd]

C [R−, Dd +Ds]
− 1

)
, (15)

which is positive, since C [R−, Dd] > C [R−, Dd +Ds]. At ψ̄, the number of new shares ψ̄Ds valued at the

pre-conversion value of C [R−, Dd +Ds] is just equal to the difference in the values of residual equity pre-

and post-conversion: C [R−, Dd] − C [R−, Dd +Ds].
7 We refer to ψ as the dilution parameter: any value

of ψ < ψ̄ leads to a wealth transfer from the CoCo holder to the shareholder. And any value of ψ > ψ̄ leads

to a wealth transfer from the shareholder to the CoCo holder. Only at ψ = ψ̄ is there a neutral conversion

in the sense of a zero wealth transfer after a conversion. Note that ψ > 0 since ∂C/∂D > 0. This will become

relevant in the next section.

4 The risk-shifting incentives induced by CoCos

In the previous section, we have shown that conversion of a PWD CoCos always involves a positive wealth

transfer from the CoCo holder to the shareholders, but that both the direction and the magnitude of CE

CoCo wealth transfers upon conversion vary with the dilution parameter ψ. Since risk levels of the bank’s

assets influence the probability of conversion, one should expect these wealth transfers to have an impact

on the risk choices banks make given their capital structure, so that is the choice we turn to now. In this

section we analyze how the marginal incentives to take on additional risk change when a bank replaces a given

amount of subordinated debt Ds by an equal face value amount of CoCos, and how this change in incentives

depend on the design features of the CoCo issued. To that end we take the derivative of the expected wealth

transfers with respect to σ. This is because the expected wealth transfer measures the impact on residual

equity of replacing a given amount of subordinated debt with an equivalent amount of CoCos. In effect, we

are looking at the differential effect of CoCos on a bank’s risk-making decisions, with subordinated debt as

the benchmark. Initially, in Section 4.1 we derive the expression for risk-shifting incentives from the expected

wealth transfer arising from CoCo conversion. We focus on CE CoCos first as we can show that everything else

is a special case of such a CoCo. In Section 4.2, we focus on the impact of different parameters: the dilution

parameter ψ, the retention parameter ϕ and the trigger level τ on the risk-shifting incentives. Focusing on

CE CoCos first allows us to work through the rest of the types of CoCos in an organized manner.

7Calomiris and Herring [2013] has a similar discussion and the recommendation to use a conversion price closely related to
our definition of ψ̄. Also, this price is critical according to Sundaresan and Wang [2015] if multiple equilibria are to be avoided
in the case of market-based (share price) conversion triggers.
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4.1 The risk-shifting incentive defined

Consider a pure CE CoCo as described in Section 3. We write the value of residual equity of a bank that has

replaced Ds subordinated debt by issuing a CoCo as

ece = e0 + pc
(
C [R−, Dd]

1 + ψDs
− C

[
R−, Dd +Ds

])
. (16)

The differential valuation effect of issuing a CE CoCo to retire the same amount of subordinated debt is

given by the expected wealth transfer term pcWce:

pcWce = ece − e0 = pc
(
C [R−, Dd]

1 + ψDs
− C

[
R−, Dd +Ds

])
. (17)

Define now the risk-shifting incentive of such a bank as RSIce. This term is the derivative of pcWce with

respect to σ, as shown in (18):

RSIce =
∂pc

∂σ

(
C [R−, Dd]

1 + ψDs
− C

[
R−, Dd +Ds

])
︸ ︷︷ ︸

CFce

+ pc
(
V [R−, Dd]

1 + ψDs
− V

[
R−, Dd +Ds

])
︸ ︷︷ ︸

WFce

, (18)

where we have used the vega notation to denote the derivative of a call with respect to σ. RSIce has two

components, the conversion probability factor (CFce) and the wealth transfer factor (WFce). CFce represents

the increase in the probability of conversion as risk increases, holding the wealth transfer constant. WFce

represents the change in size of the wealth transfer as risk increases, holding the conversion probability

constant.

4.2 Effect of design parameters on risk-shifting incentives

4.2.1 Risk-shifting incentives as a function of the dilution parameter ψ

Consider first the conversion probability factor CFce, reproduced in (19):

CFce =
∂pc

∂σ

(
C [R−, Dd]

1 + ψDs
− C

[
R−, Dd +Ds

])
. (19)

CFce also has two components, the derivative of the conversion probability with respect to σ, and the wealth

transfer itself. From Lemma 1, we know that ∂pc

∂σ > 0. The sign of CFce then depends on the sign of the

wealth transfer. For CE CoCos, this is determined by the expression derived in (15), which is the ψ that sets

wealth transfers equal to zero. For CE CoCos with ψ < ψ̄, the wealth transfer to equity holders is always

positive. On the other hand, for CE CoCos with ψ > ψ̄, the wealth transfer is always negative. Therefore,
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CFce < 0 only if ψ > ψ̄, and the other way around. This also means that CFce < 0 when ψ → ∞, as this

value of ψ is greater than ψ̄.

But what about the wealth transfer factor WFce? This equals:

WFce = pc
∂

∂σ

(
C [R−, Dd]

1 + ψDs
− C

[
R−, Dd +Ds

])
. (20)

WFce represents the impact of the risk level on the value of the wealth transfer itself, for a given probability

of conversion. From the above section, we know that the value of the wealth transfer varies as ψ moves from

0 to ∞. When ψ = 0, WFce reduces to WFce = pc ∂∂σ (C [R−, Dd]− C [R−, Dd +Ds]) and we can express

it as the difference between the vegas8 of two call options that differ only in the strike price. That is,

WFce(ψ = 0) = pc
(
V
[
R−, Dd

]
− V

[
R−, Dd +Ds

])
(21)

where V [·] is the call option vega. As V [·] is continuously differentiable, we can use the mean value theorem

to rewrite (21) as:

WFce(ψ = 0) = −pcDs VD
[
R−, D′

]
< 0, (22)

where D′ ∈ [Dd, Dd +Ds] and VD is the derivative of vega with respect to the strike price D, which we show

in Appendix A.4 to be always positive, hence the inequality at the end of (22).

On the other hand, when ψ →∞, we have

WFce(ψ →∞) = −pcV
[
R−, Dd +Ds

]
< 0

as well, since V [·] > 0. Therefore, WFce is negative given any value of risk and leverage. The intuition behind

this is that a conversion increases the issuing bank’s skin in the game, making risk-shifting less attractive.

So we are left with a potential ambiguity: an increase in the risk σ increases RSIce through the conversion

factor, and decreases RSIce through the wealth transfer factor. To arrive at an unambiguous conclusion

regarding the net effect of CFce and WFce, we first analyze the impact of changes in the dilution parameter

ψ to RSIce as a whole.

Note that ψ has no impact on the probability of conversion for given σ, since it does not influence the

distance to conversion. So the derivative of RSIce with respect to ψ simply equals:

∂RSIce
∂ψ

= − Ds

(1 + ψDs)
2

(
∂pc

∂σ
C
[
R−, Dd

]
+ pcV

[
R−, Dd

])
< 0. (23)

8Vega is the derivative of a call option with respect to σ.
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When ψ = 0, we can write RSIce as follows, which has an ambiguious sign, using results from the previous

section:

RSIce (ψ = 0) =
∂pc

∂σ

(
C
[
R−, Dd

]
− C

[
R−, Dd +Ds

])
︸ ︷︷ ︸

CFce>0

+ pc
(
V
[
R−, Dd

]
− V

[
R−, Dd +Ds

])︸ ︷︷ ︸
WFce<0

. (24)

Also, when ψ →∞, we would have, at the limit,

RSIce (ψ →∞) =
∂pc

∂σ

(
−C

[
R−, Dd +Ds

])
︸ ︷︷ ︸

CFce<0

+ pc
(
−V

[
R−, Dd +Ds

])
< 0︸ ︷︷ ︸

WFce<0

. (25)

When ψ →∞, a CE CoCo unambiguously leads to lower risk-shifting incentives compared to having subor-

dinated debt. This is because conversion leaves nothing for the original shareholder, so both CFce and WFce

are negative, making for an overall negative impact on risk-shifting.

The above analysis leads to the natural question of whether there is a value for the dilution parameter

for which risk-shifting incentives are exactly equal to zero. Call this value ψ̃. We obtain this value by setting

(18) to 0 and solving for ψ. 9 The resulting expression for ψ̃ is

ψ̃ =
1

Ds

(
∂pc

∂σ C [R−, Dd] + pcV [R−, Dd]
∂pc

∂σ C [R−, Dd +Ds] + pcV [R−, Dd +Ds]
− 1

)
. (26)

From the definition of ψ̃ it follows that for any ψ ∈ [0, ψ̃) risk-shifting incentives are positive (i.e. worse

than in the alternative capital structure with subordinated debt instead of CoCos), but for all ψ ∈ [ψ̃, ∞)

the risk-shifting incentives are negative. So if the CE CoCo is sufficiently dilutive (meaning ψ > ψ̃), the

CoCo replacing subordinated debt will actually improve (i.e. reduce) risk-shifting incentives:

What remains to be seen is whether ψ̃ > 0, or, in words, whether sufficiently dilutive CoCos actually

exist. With some manipulation we can rewrite ψ̃ in terms of ψ̄ as follows, which means that indeed, ψ̃ > 0

since ψ̄ > 0:

9This question is also posed in Hilscher and Raviv [2014], who find the conversion ratio that achieves zero vega. However
they only consider the wealth transfer and the leverage channels, not the endogeneity of the conversion probability to the risk
choice, which plays a crucial role in our analysis.
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ψ̃ =

ψ̄ +

V [R−, Dd]
C[R−, Dd]

− V [R−, Dd+Ds]
C[R−, Dd+Ds]

pc/pc
σ

+ V [R−, Dd +Ds] /C [R−, Dd +Ds]


= ψ̄ +

V [R−, Dd] /C [R−, Dd]
pc/pc

σ
+ V [R−, Dd +Ds] /C [R−, Dd +Ds]

[
1− V [R−, Dd +Ds] /V [R−, Dd +Ds]

C [R−, Dd +Ds] /C [R−, Dd]

]
(27)

= ψ̄ +
1

Ds

V [R−, Dd] /C [R−, Dd]
pc/pc

σ
+ V [R−, Dd +Ds] /C [R−, Dd +Ds]

[
1− V

D
[R−, Dd +Ds]D

′

CD [R−, Dd +Ds]D′′

]
,

where D′ and D′′ are both within the interval [Dd, Dd +Ds]. The expression beside ψ̄ is positive because

VD > 0 > CD. This is actually a strong result. First of all it shows that insufficiently dilutive CoCos do exist,

i.e. all CoCos with dilution parameters lower than ψ̃, which is a non-empty set since ψ̃ > 0.

Lemma 3. There exists a value ψ̃ > 0 for the dilution parameter value ψ such that any CE CoCo with

ψ ∈ [0, ψ̃) is insufficiently dilutive, and any CE CoCo with ψ ∈ [ψ̃, ∞) is sufficiently dilutive.

Lemma 3 allows us to state a proposition regarding the risk-shifting incentives of CE CoCos relative to

subordinated debt.

Proposition 4. For any risk level σ and leverage D, replacing subordinated debt by a CE CoCo will lead to

lower risk-shifting incentives for the old equity holder if the dilution parameter ψ is larger than ψ̃ .

Note that full writedown PWD CoCos are a special case of insufficiently dilutive CE CoCos: they induce

the worst risk-shifting incentives out of all kinds of CoCos. That is, ψ = 0 is the minimum value within the

interval [0, ψ̃). Therefore, the results from the insufficiently dilutive CE CoCos also carry over to the full

writedown PWD CoCos as well. It is worth noting that full writedown PWD CoCos create the largest wealth

transfer from CoCo holders to existing equityholders out of all the CoCos. The following proposition follows

directly:

Proposition 5. For any risk level σ and leverage D , replacing subordinated debt by a full write down PWD

CoCo (ψ = ϕ = 0) will always lead to higher risk-shifting incentives

This result takes on special relevance given the fact that more than 50% of all CoCos issued are in fact

PWD CoCos. The higher loss absorption capacity that is bought by issuing all these CoCos may thus in fact

increase rather than reduce the fragility of the financial system.

In fact (27) implies that at the zero wealth transfer point ψ̄ risk-shifting incentives are also positive since

ψ̄ < ψ̃. This is an intuitive result: we have seen that a higher risk makes for a smaller wealth transfer (albeit

a more likely one), so the wealth transfer becomes negative if σ increases at the zero wealth transfer point,
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which benefits the old shareholder. So the dilution parameter should be set at a higher level than the one

required to just effect a zero net wealth transfer when conversion takes place:

Proposition 6. CE CoCos that induce just zero wealth transfers (ψ = ψ̄) are insufficiently dilutive, and

thus induce positive risk-shifting incentives for the issuing bank.

4.2.2 Risk-shifting incentives as a function of the retention parameter ϕ

We have shown that the risk-shifting incentives for complete write down PWD CoCos are positive, but that

proof only applied to the borderline case of retention parameter ϕ = 0, i.e. for complete write down PWD

CoCos. But what is the impact on marginal incentives of the retention parameter ϕ itself? Intuitively one

would surmise that partial PWD CoCos also increase risk-shifting incentives, but can we show that? In this

section we show that the answer is yes.

To see this, note that a partial write down of a CoCo with retention parameter ϕ yields the identical

outcome upon conversion that one gets from a a linear combination of ϕ subordinated debt and (1− ϕ) of a

full write down PWD Coco:

C
[
R−, Dd + ϕDs

]
= C

[
R−, Dd

]
+ ϕ

(
C
[
R−, Dd +Ds

]
− C

[
R−, Dd

])
(28)

= (1− ϕ)C
[
R−, Dd

]
+ ϕ C

[
R−, Dd +Ds

]
which means that the expected wealth transfer from such a CoCo will be

pcW(ψ=0,ϕ>0) = pc
[
(1− ϕ)C

[
R−, Dd

]
+ ϕ C

[
R−, Dd +Ds

]
− C

[
R−, Dd +Ds

]]
(29)

= pc
[
(1− ϕ)C

[
R−, Dd

]
− (1− ϕ)C

[
R−, Dd +Ds

]]
= (1− ϕ) pc

[
C
[
R−, Dd

]
− C

[
R−, Dd +Ds

]]
which is merely 1−ϕ of the expected wealth transfers from full PWD CoCos. As such, it is easy to see that

Proposition 5 holds, scaled by 1− ϕ.

Corollary 7. For any risk level σ and leverage D, replacing subordinated debt by a partial write down PWD

CoCo (ϕ > 0, ψ = 0) will always lead to higher risk-shifting incentives. The risk-shifting incentives fall as ϕ

rises, and disappears at ϕ = 1.

The result is intuitive. We have shown that the RSI of full PWD CoCos (ψ = ϕ = 0) is positive.

Note as well that for ϕ = 1 and ψ = 0, the CoCo is in fact subordinated debt, so ϕ = 1 implies that

nothing changes at conversion. Therefore by construction RSI(ϕ = 1), which measures the risk-shifting
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incentive with respect to what it is under subordinated debt instead of a CoCo, must be zero, so we have

that RSI(ϕ = 0) > RSI(ϕ = 1) = 0. In Appendix B.2 we show that RSI(Ψ = 0,ϕ > 0) > 0 follows,

confirming Corollary 7.

4.2.3 Impact of changing the trigger levelτ on risk-shifting incentives

Consider next the impact of the trigger level τ on the risk-shifting incentives. Clearly the trigger level

itself has no impact on the transfer that takes place when the CoCo is triggered, which means the effect is

solely through the probability of conversion, not the wealth transfer. As before, the risk-shifting incentive is

calculated by taking the derivative of the expected wealth transfer pcW with respect to σ, as shown in (30).

RSI =
∂pcW

∂σ
=
∂pc

∂σ
W + pc

∂W

∂σ
(30)

Since ∂W
∂τ = 0,differentiating the risk-shifting incentive with respect to τ leads to the following expression:

∂RSI

∂τ
=

∂2pc

∂σ∂τ
W +

∂pc

∂τ

∂W

∂σ
. (31)

From Lemma 1, ∂pc

∂τ > 0 while ∂2pc

∂τ∂σ < 0 follows from Corollary 2. The net effect must take the wealth

transfers into consideration. For PWD and insufficiently dilutive CE CoCos, the wealth transfer is always

positive, while the marginal effect of risk on the wealth transfer is negative. So raising the trigger level

τ always reduces the risk-shifting incentives embedded in those CoCo designs.10 This is a possible way of

mitigating the ill effects of CoCos that were designed to favor the original shareholders. As for dilutive CE

CoCos, the fact that ∂2pc

∂σ∂τ < 0 interacts with the negativity of the wealth transfer, such that the net effect is

more ambiguous but in that case the CoCo will always be an improvement over subordinated debt from the

point of risk-shifting incentives anyhow, making the impact of the trigger level less relevant.

Proposition 8. For PWD and insufficiently dilutive CE CoCos, the risk-shifting incentive is decreasing in

the trigger ratio τ . For sufficiently dilutive CE CoCos, the impact of τ depends on the size of the wealth

transfer.

This result supports the Basel III requirement of a trigger level of at least 5.125% or higher for a CoCo

to qualify as Additional Tier 1 capital.

10Martynova and Perotti [2016] also find that increasing the trigger level induces the banks to exert more effort in order to
stave off conversion. This is consistent with our result that risk-shifting incentives decline as the trigger level rises.

20



5 Socially and privately optimal risk choices and the structure of

capital regulation

The goal of banking regulation is to protect the system from default externalities, and by extension, prevent

the use of taxpayer money for bailout purposes. If there are private costs of default and and social costs that

exceed the private costs, private choices on risk levels and capital structure will not be socially optimal.11 With

the menu of securities banks can issue restricted to debt and equity, the analysis is relatively straightforward.

Kashyap and Stein [2004] for example show that private capital structure choices will involve excessive leverage

when social costs of default exceed private costs, and derive optimal capital requirements that resemble what

is in fact implemented in the current Basel III framework for capital regulation. In addition, they argue

that the current Basel framework is excessively pro-cyclical and argue for the use of different risk curves in

different phases of the business cycle. The reason why the resulting structure in Kashyap and Stein [2004] is

relatively simple, with capital requirements exclusively dependent on asset side characteristics, is that with

just debt and equity the regulator’s dual objectives are in fact aligned. A regulator wants to make sure there

is enough loss absorption capacity for when things go wrong (ex post) and wants to mitigate risk-shifting

incentives to reduce the probability that they go wrong (ex ante incentives). Higher equity requirements

reduce both problems: more capital implies higher loss absorption capacity but also decrease ex ante risk-

shifting incentives. But this alignment of objectives may break down when CoCos are introduced in the menu

of choices. CoCos of course increase loss absorption capacity but we have shown in the previous sections

that they may in fact increase rather than mitigate risk-shifting incentives, thereby potentially confronting

the regulator with a difficult tradeoff between his two objectives. In line with this observation, Boyson et al.

[2016] show that low franchise value US banks use trust preferred securities to increase their risk exposure in

spite of capital regulation and leverage constraints designed to rein in that very exposure.In this section we

use a simple framework similar to theirs to derive the consequences for the structure of capital regulation of

allowing CoCos to be counted as capital.

The starting point is that regulators cannot dictate the risk choice banks make but can only impose

leverage limits (See Boyson et al. [2016] for a similar approach.12) We model the analysis as a Stackelberg

game, where banks choose their portfolio risk subject to regulatory capital requirements, and, in line with

the Stackelberg structure, the regulator hits a target level of default probability by choosing those capital

requirements knowing the risk choice banks will then make. In the next section we derive what is in effect the

11There is of course a large literature on this point. Kashyap and Stein [2004] provide a particularly clear and simple exposition.
VanHoose [2007] is a very informative survey on bank behavior and capital regulation.

12The published version of Boyson et al. [2016] omits the theory model for which we refer the reader to the working paper
version NBER WP 19984
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bank’s reaction curve RC, its risk choice conditional given that it knows the regulator will choose a leverage

level D (Section 5.1). We then show how that choice is affected if subordinated debt is replaced by CoCos of

different design structures and trigger levels (Section 5.2). In Section 5.3 we show how the regulator, acting

as a Stackelberg leader, chooses maximum leverage given the bank’s reaction curve RC and show how that

choice is (or rather should be) affected by the introduction of CoCos.

5.1 The bank’s objective function for given leverage D

Expected default costs have two components: the actual costs of bankruptcy once it occurs, and the pro-

bability that default occurs. The bankruptcy costs may be reputational or legal in nature, and distinct

from social costs such as contagion effects on other banks, or the social costs of taxpayer-funded bailouts.

Call them X. We keep these costs exogenous to our analysis, in line with our use of a partial equilibrium

framework. We do postulate that the public costs Xs exceed private costs Xp: Xs > Xp. Expected costs of

default then equal pcXi, with i ∈ (s, p). The probability of default pd can be calculated in the same way as

pc, the probability of conversion, was calculated. We again use the concept of a distance-to-default measure

as defined in (2) where we show it to be a function of both the variance σ2 and leverage D. Trigger levels

are set higher than Tier 1 capital requirements under Basel III rules, in line with the intention to let them

act as bail-in instruments rather than bail-out instruments. As a consequence, the probability of default is

distinct from and higher than the probability of conversion. That does not exclude that for a sufficiently low

draw of R1 at t = 1 there is a significant probability that both events will take place at t = 2, like happened

during the Banco Popular collapse in Portugal (R. Smith [2017]). The literature on CoCos has paid more

attention to the probability of default than to the probability of conversion, perhaps due to the emphasis on

the loss-absorption capacity of CoCos. But Chen et al. [2017] and Hilscher and Raviv [2014] do endogenize

the probability of conversion, in the same way we define and analyze it; both papers use structural credit

risk models to analyze CoCos, like we do, with richer dynamics although with exclusive focus on CE CoCos.

More importantly, neither they nor others in the literature on CoCos consider the interaction between risk

choices and the bank’s capital structure that is the main focus of this section and the next.

Let Xp represent the bank’s private costs of default, and let pd represent the bank’s probability of default.

The expected cost of default then equal pdXp.

pd
(
σ2, D

)
≈ pd

(
σ̄2, D̄

)
+
∂pd

∂σ2

(
σ̄2, D̄

)
σ2 +

∂pd

∂D

(
σ̄2, D̄

)
D

=
1

2
σ2b+ cD. (32)

In what follows we will ignore higher order derivatives of pc for analytical tractability. Expected (private)
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default costs become:

pd (σ, D)Xp =

(
1

2
σ2b+ cD

)
Xp. (33)

This parameterization reflects that a higher risk choice and a higher leverage ratio make default more likely.

The bank then chooses σ2 to maximize the value of its residual equity net of expected default costs given

the expected return R and given leverage D:

max C [R, D]− pdXp = max C [R, D]−
(

1

2
σ2b+ cD

)
Xp. (34)

The bank maximizes (34) by choosing σ. In line with the Stackelberg structure of the game between bank and

regulator that we adopt in the next section, we assume that the bank optimizes for given level of leverage D

(i.e. we work conditional on a given capital structure): the bank anticipates that the regulator will mandate

a maximum leverage ratio (minimum capital ratio) and optimizes given that capital requirement For a given

D, the first-order conditions associated with (34) is

V [R, D|σ] = σ∗bXp, (35)

where the notation V [R, D|σ]means that the function V [R, D] is evaluated at σ = σ∗. So we get:

σ∗ =
V [R, D|σ∗]

bXp

The risk choice comes down to a trade off between higher option value when σ goes up (V > 0) against

a higher probability of default when σ rises (b ≥ 0).

5.2 Privately optimal bank risk levels under different capital structures

5.2.1 Subordinated Debt vs. Additional Equity

To set the stage, consider first the benchmark case where the bank’s capital structure has Dd deposits, and

Ds + E initial equity at t = 0. Given this capital structure, the bank essentially holds a call option on the

asset return R at a strike price of Dd, leading to an objective function of the form

maxC [R, Dd]−
(

1

2
σ2b+ cDd

)
Xp (36)
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and the first-order condition

σ∗e =
V [R, Dd|σ∗e ]

bXp
(37)

where σ∗e represents the optimal risk level given the all equity financing of R−Dd (the only liability is from

deposits).

But when the bank’s capital structure at t = 0 consists of Dd deposits, Ds subordinated debt, and only

E initial equity, the strike price is Dd +Ds, leading to the objective function

max C [R, Dd +Ds]−
(

1

2
σ2b+ c (Dd +Ds)

)
Xp. (38)

The solution for the corresponding first order condition is σ∗s , which is the optimal risk level with the higher

debt level Dd +Ds:

σ∗s =
V [R, Dd +Ds|σ∗s ]

bXp

=
1

bXp
[V [R, Dd|σ∗e ] + (Vσ|σ∗e) (σ∗d − σ∗e) + (VD|σ∗e) Ds]

= σ∗e +
(VD|σ∗e) Ds

bXp − (Vσ|σ∗e)
> σ∗e (39)

This is true for positive bankrupcty costs bXp and for negative Vσ. However, we show in Appendix A.3 that

Vσ is always negative whenever d2 < 0 < d1, a condition that is more likely to hold for poorly capitalized

banks (low ratios of asset value R to outstanding liabilities D) and for high volatility. Figure 3 illustrates

the case:

Figure 3: Optimal Risk Choice of Banks when Ds is Additional Equity versus Subordinated Debt
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Figure 3 shows that the vega of a bank with Ds additional equity intersects the marginal cost line σbXp
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at a smaller value of σ compared to the vega of a bank with Ds subordinated debt. That σ∗s is higher than

σ∗e reflects the higher risk-shifting incentives from issuing Ds subordinated debt relative to issuing the same

amount of additional equity.

Proposition 9. The optimal amount of risk σ∗s that a bank takes with Ds subordinated debt is higher than

the optimal amount of risk σ∗e if the bank has issued Ds additional equity instead.

This result is intuitive: the bank has more skin-in-the-game when it has issued more equity so it chooses

lower risk levels.

5.2.2 PWD and CE CoCos instead of subordinated debt

When a bank issues Ds CoCos in place of the same amount of subordinated debt, the bank’s objective

function becomes

max C [R, Dd +Ds] + pcW −
(

1

2
σ2b+ c (Dd +Ds)

)
Xp (40)

which is similar to (38) but with the expected wealth transfer term pcW added in. The accompanying first

order condition is

V [R, Dd +Ds] +RSI = σ∗cocobXp, (41)

where RSI is the risk-shifting incentive (defined in Section 4) arising from the expected wealth transfer pcW

and σcoco is the optimal risk choice once subordinated debt Ds has been replaced by an equivalent amount

of CoCos. It follows that the relative risk-shifting impact of swapping subordinated debt for a CE CoCo will

depend on the dilution parameter ψ, since we have also seen in Section 4 that RSI depends on ψ. The sign

and magnitude of RSI determines how much the bank’s behavior will change relative to the subordinated

debt case, and, as shown in Section 4, that sign depends on whether ψ is larger or smaller than the value at

which RSI = 0, ψ̃. That is,

σ∗coco > σ∗s ⇔ ψ > ψ̃. (42)

We have shown in Section 4 that PWD CoCos and insufficiently dilutive CE CoCos have positive risk-shifting

incentives, while sufficiently dilutive CE CoCos have negative risk-shifting incentives. Therefore, for PWD

CoCos and insufficiently dilutive CE CoCos, V [R, Dd +Ds] +RSI must lie above that of V [R, Dd +Ds].

Similarly, V [R, Dd +Ds] + RSI must lie below V [R, Dd +Ds] for dilutive CE CoCos. Figure 4 below

illustrates the first example, for insufficiently dilutive CoCos (ψ < ψ̃), and by extension, all PWD CoCos.
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Figure 4: Optimal risk choices of banks with CoCos instead of subordinated debt:ψ < ψ̃
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A priori this result holds for full write down PWD CoCos since they correspond to ψ = 0 < ψ̃, so we obtain

the following proposition:

Proposition 10. The optimal amount of risk that a bank takes with Ds worth of either PWD CoCos or in-

sufficiently dilutive CE CoCos is higher than the optimal amount of risk if the bank has issued Ds subordinated

debt.

It is true that PWD CoCos improve loss absorption after conversion, and therefore meet the criteria for

inclusion in Additional Tier 1 capital. However, as they elicit positive risk-shifting incentives before con-

version, their use may make it more likely that the loss absorption capacity will be necessary in the future.

Both Proposition 10 and Corollary 7 shows that RSI turns positive for PWD CoCos. On the other hand,

insufficiently dilutive CoCos have a slight advantage over PWD CoCos in that they force the old shareholder

to relinquish part of the residual equity resulting from a conversion, but under Proposition 4, if ψ > ψ̃, the

old shareholder still finds it more attractive to make conversion more likely instead.

Figure 5 below depicts the other case, where CoCos are dilutive, i.e. ψ > ψ̃.
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Figure 5: Optimal Risk choices of banks with CoCos instead of subordinated debt:ψ > ψ̃
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s RSI+ and RSI− indicate that the risk-shifting

incentives are positive and negative, respectively.

Likewise, under Proposition 4, it is clear that sufficiently dilutive CE CoCos induce lower risk choices

than the same amount of subordinated debt. As such, their inclusion as Additional Tier 1 capital is an

improvement, but as they do not constitute skin in the game ex ante, they are still different from equity.

Nonetheless, the threat of dilution effectively deters risk-shifting. We can summarize the results in the

following proposition:

Proposition 11. The privately optimal amount of risk that a bank takes with Ds sufficiently dilutive CE

CoCos is lower than the (privately) optimal amount of risk if the bank would have issued Ds subordinated

debt instead.

5.2.3 Dilutive CoCos versus equity instead of subordinated debt

Thus far we have proven two sets of results, σ∗ce < σ∗s with dilutive CE CoCos, and σ∗ce > σ∗s otherwise.

But can we determine how CE CoCos compare with straight equity in terms of risk choice? Post-conversion,

dilutive CoCos and straight equity provide the same loss absorption capacity. But before conversion, the

threat of a forthcoming dilution leads to less risk-shifting in order to stave off dilution in the case of dilutive

CoCos. Against that effect is the fact that before conversion equity implies more skin in the game which

leads to lower risk choices before conversion for the same amount of additional equity. Is it possible that the

fear of dilution dominates the more skin in the game factor, which would cause such a CoCo to have even

better characteristics than pure equity? Does there exist a dilution parameter high enough to trigger better

risk-shifting incentives for CE CoCos relative to additional equity?
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Recall from (37) that whenDs is equity, the strike price isDd, so the first order condition is V [R, Dd|σ∗e ] =

σ∗ebXp. From (41) we get for a CoCo instead of equity: V [R, Dd +Ds|σ∗coco] +RSI = σ∗cocobXp .

If we decompose V [R, Dd +Ds|σ∗coco] in terms of σe and V [R, Dd], we can rewrite the first order

condition of a CE CoCo as

V [R, Dd|σ∗e ] + Vσ(σ∗coco − σ∗e) + (VD|Dd) Ds +RSI = (σ∗coco − σ∗e) bXp + σ∗ebXp

σ∗coco = σ∗e +
(VD|Dd) Ds +RSI

bXp − (Vσ|σ∗e)
(43)

Thus, any ψ that sets (VD|Dd) Ds + RSI ≥ 0 makes the risk-shifting incentive of Ds CE CoCo smaller

than or equal to the risk-shifting incentive for Ds additional equity, for equal loss absorption capacity after

conversion.13 Call this value ψeq. In particular, the condition for a CoCo to induce lower risk-shifting

incentives than straight equity becomes:

ψ ≥ ψeq =
1

Ds

 pcV [R−, Dd] + ∂pc

∂σ C [R−, Dd]

pcV [R−, Dd +Ds] + ∂pc

∂σ C [R−, Dd +Ds]−
(
R−φ(d1)

D

) (
d1
σ

)
Ds

− 1

 . (44)

Note that ψeq > ψ̃ (i.e. it is larger than the dilution parameter at which RSI = 0) because:

∂pc

∂σ
C
[
R−, Dd +Ds

]
+pcV

[
R−, Dd +Ds

]
>
∂pc

∂σ
C
[
R−, Dd +Ds

]
+pcV

[
R−, Dd +Ds

]
−R

−

D

d1
σ
φ (d1)Ds,

which obtains from the fact that at ψ = ψ̃, RSI = 0 and since RSI is decreasing in ψ, it must be that

ψeq > ψ̄.

This means that if the conversion ratio ψ of CE CoCos are super-dilutive (i.e. when ψ ∈ [ψeq, ∞)), they

are from a regulatory point of view even better than straight equity in terms of risk-shifting incentives.The

following proposition thus holds:

Proposition 12. For ψ ∈
[
0, ψ̃

]
, we have σ∗e < σ∗s < σ∗ce For ψ ∈

[
ψ̃, ψeq

]
we have σ∗e < σ∗ce < σ∗s < σ∗pwd.

Finally, for ψ ∈ [ψeq, ∞], we get a strong result: σ∗ce < σ∗e < σ∗s < σ∗pwd.

So when the CoCo is super-dilutive (i.e. ψ > ψeq), Ds CE CoCos provide lower risk-shifting incentive

compared even to the same amount of additional straight equity, for equal loss absorption capacity. And

even when they are not super-dilutive but still provide at least a zero wealth transfer to the old shareholder,

they still perform better than either subordinated debt or PWD CoCos, in that they provide less risk-shifting

incentives for the same loss absorption capacity as subordinated debt would. But if the CoCos are not dilutive

13Again assuming that Vσ is small enough to not reverse the sign of the denominator. This will certainly not happen whenever
d2 < 0 < d1.
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at all, they are worse than subordinated debt in that they provide even worse risk-shifting incentives for equal

loss absorption capacity. In that case they should not be part of Additional Tier 1 capital.

5.2.4 Risk-shifting incentives and the trigger level for conversion

In the previous sections, we have already seen that an increase in τ reduces the distance-to-conversion,

thereby increasing the conversion probability. However, it does not play a role in the probability of default.

To see this, consider again the first order condition for a general CoCo, as in (41) relative to the one for

subordinated debt, as in ((39)). This results in the following optimal risk choice:

σ∗coco = σ∗s +
RSI

bXp − (Vσ|σ∗s )
> σ∗s (45)

τ only plays a role in RSI. Therefore, taking the derivative of σ∗coco with respect to τ is equivalent to looking

at the sign of RSI’s derivative with respect to τ :

∂σ∗coco
∂τ

=
1

bXp − (Vσ|σ∗s )

∂RSI

∂τ
. (46)

We already know from Corollary 8 that ∂RSI
∂τ < 0 for PWD and insufficiently dilutive CE CoCos, while

the sign is ambiguous for dilutive CE CoCos. Therefore, holding everything else constant, an increase in

the trigger ratio causes a decrease in the risk-shifting incentives of a bank that has issued either PWD or

insufficiently dilutive CE CoCos.

Proposition 13. Taking the probability of default into consideration, a bank that has issued PWD or insuf-

ficiently dilutive CE CoCos will lower its risk-shifting in response to a higher trigger ratio for conversion.

5.3 Risk Choices, CoCos and capital regulation

Recent regulatory changes pushed CoCos to the frontline. From Basel III, CoCos now form part of Additional

Tier 1 and Tier 2 capital for bank. This means that CoCos will comprise at most 3.5% out of the 8.0%

minimum total capital. These regulations imply that CoCos will form a substantial portion of a bank’s

balance sheet in the near future, replacing subordinated debt to a large extent. However, as we have seen in

the previous section, the replacement of subordinated debt with CoCos have implications on a bank’s risk

choices because of the expected wealth transfers.

In the previous subsections we analyzed the banks’ risk choices given imposed capital requirements, as

the first step in our Stackelberg set up of the game between a regulator and the banks it supervises. The next

step is to analyze the regulator’s choice of leverage given the reaction curves of the commercial banks. Since
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the regulator cannot control the banks’ risk choices directly, we assume, in line with Boyson et al. [2016],

that the regulator targets a desired default probability which it achieves by setting capital requirements

assuming banks follow their reaction curve in response. Because the regulator is assured that the bank will

comply with its mandates, we can indeed model the situation as a Stackelberg game: the regulator sets the

target probability level knowing the bank’s objective function, letting the bank react to those requirements

by choosing its desired risk levels.

5.3.1 Setup

We have previously mentioned that the bank’s expected costs of default are a function of both risk σ and

leverage D, as in (33). This implies that for a target probability of default pd, there is a tradeoff between

risk and leverage. The probability of default was defined in (32), and reproduced here.

pd =
1

2
σ2b+ cD. (47)

The regulator sets a target level of this probability, call that probability pd, very much in the way capital

requirements and risk weights are determined under the successive Basel regimes. It follows from (47) that

there is a tradeoff between risk σ and leverage D for a constant pd: For a bank to comply with pd, any

increase in σ must be compensated by a decrease in D and vice versa. By totally differentiating (47) and

setting it to 0, we obtain the following negative slope:

0 = σb dσ + c dD

dσ

dD

∣∣∣∣∣
pd

= − c

σb
. (48)

The downward sloping line labeled pd in Figure 6 illustrates the tradeoff between risk and leverage that this

choice of a given default probability implies. Given pd, a bank can choose a higher σ if leverage D is lower and

still maintain the probability of default at pd. A higher target default probability corresponds to an upward

shift in the downward sloping line in Figure 6 and a lower probability a corresponding shift downwards of

the pd line.
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Figure 6: A bank’s Reaction Curve RC against a regulator’s chosen probability of default
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We turn now to the bank’s reaction function. In Section 5.1 we have shown that there is a positive

relationship between a bank’s leverage and choice of risk levels, the bank’s risk-shifting incentives increase

with leverage. We can draw a reaction curve (RC) that shows the bank’s best risk choice as leverage changes.

RC can be interpreted as the reaction of the Stackelberg follower. The bank’s first-order condition under

a capital structure with D total debt is set forth in (35). By totally differentiating the bank’s first-order

condition, we obtain the condition that the bank must obey if it wants to maximize the value of its residual

equity:

0 = VD [R, D] dD + (−bXp) dσ

dσ

dD

∣∣∣∣∣
RC

=
VD [R, D]

bXp
, (49)

which is positive. See RC in Figure 6. The representation is very much simplified: we draw the curves as

linear for presentational purposes only.

The regulator will set set capital requirements (leverage) D in addition to pd, which when combined with

the bank’s reaction curve, leads a bank to choose a particular level of σ. At issue then is how the Stackelberg

leader (regulator) picks the right point off that curve by imposing that capital requirements, or equivalently

in our set up, the maximum amount of leverage D. To a regulator, there is a tradeoff between risk and

leverage if it wants to hit its target probability if default. Figure 6 shows how the system works. Imposing

a maximum leverage D3 implies that the chosen variance can be σ2, if the target is pd. However, to a bank,

risk and leverage reinforce each other, as reflected in the slope of the reaction curve. So for given requirement

D, say a maximum leverage of D3, it will choose a lower level of risk,: σ3 in Figure 6. But this implies that

the bank takes too little risk relative to that which is considered optimal by the regulator, as Point 3 lies on

pd < pd. Similarly, if the regulator imposes a maximum leverage D2, the optimal risk from her viewpoint
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is σ3if it wants to stay at the pd line. But at D2 the bank’s RC implies that it will then choose σ2, which

is now too much risk compared to what the regulator deems optimal: Point 2 lies on pd < pd. Only if the

regulator imposes leverage D1 will the bank choose a risk level σ1 that is compatible with the pd specified

by the regulator, at the intersection of the pd and RC lines:. So point 1 is the equilibrium solution to the

Stackelberg game between the regulator and the bank. This example shows how the regulator keeps the

bank’s reaction curve in mind when setting capital requirements as its part in the Stackelberg game against

the bank.

5.3.2 Replacing subordinated debt with CoCos

So we have seen that the regulator can achieve its desired level of default probabilities by choosing the

maximum leverage ratio taking into account the bank’s reaction curve, banks may undermine that target by

introducing CoCos. To see that consider how the interaction between risk choice and leverage changes when

CoCos that can be bailed in, written down, or converted to equity are introduced on the liability side. The

ability to eliminate all or part of Ds changes a bank’s reaction curve, meriting further attention. Consider

now what happens when, possibly in response to the recent change in capital standards, subordinated debt

is replaced by CoCos. In Section 5.2, we have shown that CoCos have risk-shifting incentives which differ

from subordinated debt, because of the expected wealth transfers. Therefore, a CoCo-issuing bank’s first

order condition for a given debt D should also take the risk-shifting incentives into account stemming from

the presence of CoCos on its balance sheet. The FOC then becomes:

V [R, D] +RSI = σbXp. (50)

Clearly replacing subordinated debt by CoCos for example necessarily alters the reaction curve of a bank

because of the additional RSI term, which involves both σ and D as well. If we totally differentiate RSI

with respect to both parameters, we obtain

0 =
∂RSI

∂σ
dσ +

∂RSI

∂D
dD

dσ

dD
= −

∂RSI
∂D
∂RSI
∂σ

. (51)

For a CoCo with positive RSI (such as PWD and insufficiently dilutive CE CoCos), (51) is positive, because

the risk-shifting incentive is increasing in leverage (less skin in the game implies higher gambling incentives)

and decreasing in risk (diminishing marginal returns). Of course, for a CoCo with negative RSI (dilutive

CE CoCos), (51) is negative.
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Consider first PWD and insufficiently dilutive CE CoCos. Let RC ′ denote the reaction curve drawn using

(50). Since the risk-shifting incentive is positive, the reaction curve RC ′ must lie above that of RC. Figure

7 represents the change simply as an upward twist in the slope.

Figure 7: Upward rotation of the Reaction Curve corresponding to replacing subordinated debt by risk-
inducing CoCos
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So suppose that the regulator has chosen the probability of default pd and has imposed leverage D1 on

the banks, i.e. Point 1 in Figure 7, as in the benchmark case. Then, suppose for the sake of increasing

loss absorption capacity, Ds subordinated debt is completely replaced with either a PWD or a insufficiently

dilutive CE CoCo. This change causes the reaction curve to twist up from RC to RC ′. As the bank did

not change its leverage ratio, it still has D1 leverage, but because of the potential wealth transfer brought

about by the change from subordinated debt to equity, the risk incentives are higher: the bank’s position is

now at Point 2, where leverage is at D1 but risk choice is at σ2 > σ1. What should the regulator do in this

situation? At Point 2, the risk level σ2 and leverage D1 combination implies a probability of default which

is higher than pd. To get back at pd for risk level σ2, she should impose higher capital requirements (lower

leverage) D2, as indicated in Figure 7 . But raising capital requirements by an additional D1 −D2 in turn

leads to a lower risk choice of σ3, which now implies a probability of default below pd, and so on. The new

set of equilibrium values is at Point 4, with a higher risk choice than at Point 1 but a correspondingly larger

loss absorption capacity because of the associated higher capital requirement.

Proposition 14. When PWD and insufficiently dilutive CE CoCos are used by banks in their capital structure

in place of subordinated debt, regulators should increase capital requirements if they want banks to choose risk

levels that are consistent with the regulators’ own preference/stipulated default probability.

The issuance of PWD and insufficiently dilutive CE CoCos to fulfill TLAC requirements causes banks

to choose higher risk levels than would obtain if straight equity or even subordinated debt would have been

chosen, and the regulator should impose correspondingly higher capital requirements. PWD and insufficiently
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dilutive CE CoCos therefore are poor substitutes for equity for compliance with TLAC requirements.

So given that subordinated debt only qualifies as Tier 2 capital under Basel III, it is arguable that PWD

CoCos should not have been included as Additional Tier 1 equity regardless of the trigger level, because

PWD CoCos lead to higher risk-shifting incentives. As conversion of a writedown CoCo wipes out a junior

creditor, it allows the shareholder/manager to jump the seniority ladder. Therefore, they will not act in

a safer manner even when compared with the case where these instruments are subordinated debt instead.

Much of the CoCos issued between 2013 to 2015 have done just that, replace expiring subordinated debt.

The situation is better when dilutive CE CoCos are considered, because the movement of the expected

wealth transfer is away from the shareholder to the CoCo holder. Relative to subordinated debt, the same

amount of CoCos have an additional term, RSI. The RSI for CE CoCos fall as the dilution parameter ψ

increases, and are negative for ψ > ψ̃. Therefore, combining (50) and (51) for a negative value of RSI, the

RC twists downwards to some RC ′′ instead of upwards. Figure 8 shows this other case.

Figure 8: Downward rotation of the bank’s Reaction Curve corresponding to replacing subordinated debt by
dilutive CoCos
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As with the other case, suppose that the regulator has chosen the probability of default pd and has

imposed leverage D1 on the banks, i.e. Point 1 in Figure 8, as in the benchmark case. Then, suppose for

the sake of increasing loss absorption capacity, Ds subordinated debt is completely replaced with a dilutive

CoCo. This change causes the reaction curve to twist down from RC to RC ′′. The fall in the reaction

curve for a given leverage D1 actually causes the bank’s risk choice to fall from σ1 to σ2, in contrast to if

the reaction curve twists upwards. To reach Point 4 in Figure 8, the regulator actually has to lower capital

requirements to induce banks to take the optimal level of risk given RC ′′ and pd, which is σ4. Seen this way,

dilutive CoCos are a legitimate component of Additional Tier 1 capital, because they induce banks to choose

lower risk levels for a given leverage D.

Proposition 15. When dilutive CE CoCos are used by banks in their capital structure instead of subordinated
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debt, regulators may decrease capital requirements if they want banks to choose risk levels that are consistent

with the regulator’s stipulated default probability.

What Propositions 14 and 15 come down to is that just taking the asset side into account in setting

capital requirements leaves banks arbitrage opportunities by using CoCos tailored to their own preferences.

In particular using PWD or insufficiently dilutive CE CoCos to fulfill T1 capital requirements will lead to

higher risk-shifting incentives than the use of equity, and in the case of PWDs or more generally insufficiently

dilutive CoCos (ψ < ψ̃) even to higher risk-shifting requirements than the use of subordinated debt will lead

to. As a consequence, setting risk weights for different asset categories is no longer enough once CoCos are

used on the liability side to achieve consistency between the implied risk-shifting incentives and the regulator’s

required (maximum) default probability.

6 Conclusion

CoCos have become popular among banks since the emergence of Basel III and the Total Loss Absorption

Capacity (TLAC) Standard proposed by the Financial Stability Board. The reason is that CoCo conversion

enhances loss absorption capacity by reducing the bank’s leverage but act as debt before they are converted.

However, an unintended consequence of this feature is that a wealth transfer occurs between the CoCo holders

and the original shareholders when the conversion takes place. Depending on its sign and magnitude that

wealth transfer may encourage the issuing bank to make conversion more likely by taking on more risk.

So contrary to the case where only equity is used to meet capital requirements, once we have CoCos on

the liability side of the balance sheet, there is a potential conflict between the Loss Absorption and Risk

Mitigation objectives a regulator has, depending on the design features of the CoCo used. In this paper, we

have analyzed the implications of these wealth transfers on the issuing bank’s risk-shifting incentives and the

ensuing impact on capital requirements if regulators are still planning to use those capital requirements to

achieve a for them acceptable default probability of the regulated bank.

By writing the issuing bank’s residual equity as a linear combination of the pre-and post-conversion states,

with the probability of conversion as the weighting factor, we were able to express the residual equity as one

of a bank that has issued subordinated debt, plus an expected wealth transfer. The expected wealth transfer

is the product of the wealth transfer and the conversion probability. While the literature has paid attention

to the wealth transfer, it has largely taken the conversion probability as exogenous. We have endogenized

this probability, as we recognize that it is influenced by a bank’s risk choices.

We show that the strength of the risk-shifting incentives is strongly influenced by CoCo design. As

insufficiently dilutive CE CoCos always transfer wealth to equity holders upon conversion, the risk-shifting
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incentive is positive. On the other hand, sufficiently dilutive CE CoCos transfer wealth from equity holders to

CoCo holders upon conversion and so act as an extra deterrent to risk-shifting: the threat of dilution results

in negative risk-shifting incentives relative to subordinated debt. The risk-shifting incentives act as a wedge

in a bank’s optimization problem, such that the optimal risk choice is different from that under the same

amount of subordinated debt. For PWD CoCos and insufficiently dilutive CE CoCos, the risk choices are

higher than under the same amount of subordinated debt, while for dilutive CE CoCos, they will be lower.

We have obtained particularly strong results for PWD CoCos. First of all full write down PWD CoCos

are the limiting case of CE CoCos as the dilution parameter (the number of shares created upon conversion)

approaches zero. So full write down PWD CoCos always induce worse risk-shifting incentives even when

compared with subordinated debt, and obviously even more so when compared to the use of straight equity.

And second, we have shown that this results extends to also to incomplete write down CoCos (with retention

parameter ϕ > 0), which is not a trivial result as they cannot be obtained as a limiting case of a CE CoCo.

These results naturally lead to further questions concerning capital requirements. An important impli-

cation of our results is that the interaction between capital requirements and asset-side portfolio risk must

be reconsidered whenever amendments are made to existing policies. If CoCos are to continue to play an

important role in the capital structure of banks, the level of capital requirements should also depend on how

they are met. In that vein we have shown that some of the disadvantages of insufficiently dilutive CoCos can

be offset by raising the bar higher: if inappropriate CoCo design increases risk-shifting incentives, that effect

can be counteracted by requiring more skin in the game, i.e. by setting the requirement ratios higher than

they are set for the case of pure equity or sufficiently dilutive CoCos.

These results are important in setting regulations. Basel III and the TLAC Standard were written with

the focus on increasing loss absorption capacity of the financial system. To a substantial extent, this loss

absorption capacity is being filled by CoCos, potentially completely for meeting TLAC requirements and up

to one quarter of the total for T1 capital requirements. But to achieve a more robust financial system, it is not

enough to only consider loss absorption capacity. We must also consider regulation that prevents banks from

choosing excessively risky actions in the first place, as the designers of Basel II fully realized when introducing

risk weights. Capital regulation is also meant to force banks to put more skin in the game in order to reduce

risk-shifting incentives, not just to increase loss absorption capacity for given risk levels. We embedded our

analysis of risk-shifting incetives and CoCo design structure into a game theoretic analysis of optima capital

requirements, with the regulator as Stackelberg leader and banks as Stackelberg followers. Since CoCos are

hybrids of debt and equity, the risk levels they induce will generally be different from the ones induced by

the use of debt and equity only for the same capital requirements. And as we have shown, not all CoCos

are created equal - some have higher risk-shifting incentives than others. We find that at the very least, the
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type of CoCo that is allowed to fill in Additional Tier 1 capital requirements should be restricted to equity

converters, and among those only CE CoCos which are sufficiently dilutive. Alternatively, if PWD or more

generally insufficiently dilutive CoCos are allowed, their use should lead to correspondingly higher capital

requirements. Only then can regulators achieve consistency between the risk-shifting incentives embedded in

the banks’ balance sheet structure and the regulator’s target probability of default of the regulated bank.
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A Some standard option pricing results: the call option function

and its derivatives

Consider a firm with asset value R and outstanding liabilities D.14 The value of its equity is akin to that of

a call option with expected return Rand strike price D. We write C [R, D], where the full expression is

C [R, D] = exp (−r) [R exp (r) Φ (d1)−DΦ (d2)]

= RΦ (d1)− exp (−r)DΦ (d2)

where r is the risk-free rate, Φ (·) is the cumulative density function of the standard normal distribution,

d1 = 1
σ

[
ln RD + r + 1

2σ
2
]

and d2 = 1
σ

[
ln RD + r − 1

2σ
2
]
. We use the following first and second-order partial

derivatives of C [R, D] in the chapter.

14In this section, we use R (calligraphic font) to denote a general asset value, and to distinguish from R (regular font) that
is used in the main text, which has the specific meaning of the expected value of the firm’s assets.
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A.1 Vega

Vega is the sensitivity of the option value with respect to the volatility of its underlying assets. It is calculated

by taking the derivative of the call option with respect to volatility σ. For any asset value R and outstanding

liability D:

V [R, D] =
∂C [R, D]

∂σ
= Rφ (d1) > 0

where φ (·) is the probability density function of the standard normal distribution.

A.2 CD: The derivative of the call option with respect to the strike price D

For any asset value R and outstanding liability D, the derivative of the call option with respect to D is

CD =
∂C [R, D]

∂D
= − exp (−r) Φ (d2) < 0

A.3 Vσ: The second-order derivative of C [R, D] with respect to σ 15

The second-order derivative of C [R, D] with respect to σ is the first-order derivative of vega with respect

to σ. We refer to this as Vσ in the text.

Vσ =
∂2C [R, D]

∂σ2
=
∂V [R, D]

∂σ

= Rφ′ (d1)
∂d1
∂σ

= V [R, D]

(
d1d2
σ

)

Note that for a positive distance-to-default d2 we get that Vσ > 0. Vσ is smaller the smaller the product

d1d2. And in particular we getVσ < 0 if and only if the following inequalities hold:

−σ
2

2
< log

(
R

D

)
<
σ2

2
(52)

since then d1d2 < 0.We get Vσ > 0 again for very negative values for d2 < d1 < 0, a case we will not

consider in this paper. Note that (52) is more likely to hold for weakly capitalized banks (low R/D) and for

high volatility σ2.

15This quantity is known in the option pricing literature as a second order ”Greek” and is referred to as ”Vomma” (although
there is of course no such letter in the Greek alphabet).
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A.4 VD: The cross-order partial derivative of C [R, D] with respect to σ and D

The cross-order partial derivative of C [R, D] with respect to σ and D is also the first-order derivative of

vega with respect to the strike price D. We refer to this shorthand as VD in the main text. For d1 > d2 > 0,

we have

VD =
∂2C [R, D]

∂σ∂D
=
∂V [R, D]

∂D
= Rφ′ (d1)

∂d1
∂D

= −Rφ (d1) d1

(
− 1

σD

)
=
R
D

φ (d1)
d1
σ
> 0

B Proofs for various results in the paper

B.1 Proof that ∂2pc

∂τ∂σ
< 0

∂2pc

∂τ∂σ
=

∂

∂σ

(
∂pc

∂τ

)
=

∂

∂σ

(
φ (−dc)

1

σ (1− τ)

)
= σ (1− τ)φ′ (−dc)

(
−∂dc
∂σ

)
− φ (−dc) (1− τ)

=
σ (1− τ)φ (−dc) dc

(
∂dc
∂σ

)
− φ (−dc) (1− τ)

σ2 (1− τ)
2

=
φ (−dc) (1− τ)

[
σdc

∂dc
∂σ − 1

]
σ2 (1− τ)

2

=
φ (−dc) (1− τ)

[
−σdc

(
1 + dc

σ

)
− 1
]

σ2 (1− τ)
2

< 0

where we use :

σdc
∂dc
∂σ

= σdc

[
σ (−σ)− dcσ

σ2

]
= −σdc

(
1 +

dc
σ

)

40



B.2 Impact of ϕ on the risk-shifting incentives of PWD CoCos.

Since C [R−, Dd +Ds] and V [R−, Dd +Ds] are not functions of ϕ, we may express?? as

∂RSIpwd
∂ϕ

=
∂pc

∂σ

∂C [R−, Dd + ϕDs]

∂ϕ︸ ︷︷ ︸
∂CFpwd/∂ϕ

+ pc
∂V [R−, Dd + ϕDs]

∂ϕ︸ ︷︷ ︸
∂WFpwd/∂ϕ

= −∂p
c

∂σ
exp (−r) Φ (d∗2)Ds︸ ︷︷ ︸
∂CFpwd/∂ϕ

+ pc
R−φ (d∗1)Ds

Dd + ϕDs

d1
σ︸ ︷︷ ︸

∂WFpwd/∂ϕ

= −∂p
c

∂σ
exp (−r) Φ (d∗2)Ds︸ ︷︷ ︸
∂CFpwd/∂ϕ

+ pcV ∗D
Ds

Dd + ϕDs︸ ︷︷ ︸
∂WFpwd/∂ϕ

Line 2 follows from the standard expression of the derivative of a call with respect to the strike price using

the chain rule to get the derivative with respect to ϕ (the strike price is Dd + ϕDs).The notations d∗1 and

d∗2 indicate that the functions d1 and d2 were evaluated at strike price Dd + ϕDs instead of a generic strike

price D.

Consider the equation RSI(ϕ) = 0.We know that RSI(1) = 0. IfRSI(ϕ) = 0,for a ϕ < 1, it follows that

RSI(ϕ)−RSI(1) = 0. This implies:

pcσ

(W (1)−W (ϕ))︸ ︷︷ ︸
A

+ pc
(Wσ(1)−Wσ(ϕ))︸ ︷︷ ︸

B

.
= 0

Note that W (1) = 0 and W (ϕ) < 0, so A > 0. And pcσ > 0 too. Consider next (B). Since W(1) is always

zero for all values of its arguments, Wσ = 0 too. So if we establish that Wσ(ϕ) < 0,the equality cannot hold

and multiple solutions to RSI(ϕ) = 0are ruled out.

Wσ(ϕ) = V (·, Dd +Ds)− V (·, Dd + ϕDs)

= −VDD′

< 0

for ϕ < 1and Dd + ϕDs < D′ < Dd + ϕD . This establishes that the equality cannot hold, i.e. assuming

multiple solutions leads to a contradiction so multiple solutions for RSI(ϕ) = 0 can be ruled out.
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