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Abstract

We examine the impact of temporal and portfolio aggregation on the quality of Value-

at-Risk (VaR) forecasts over a horizon of ten trading days for a well-diversified portfolio

of stocks, bonds and alternative investments. The VaR forecasts are constructed based

on daily, weekly or biweekly returns of all constituent assets separately, gathered into

portfolios based on asset class, or into a single portfolio. We compare the impact of

aggregation to that of choosing a model for the conditional volatilities and correlations,

the distribution for the innovations and the method of forecast construction. We find

that the level of temporal aggregation is most important. Daily returns form the best

basis for VaR forecasts. Modeling the portfolio at the asset or asset class level works

better than complete portfolio aggregation, but differences are smaller. The differences

from the model, distribution and forecast choices are also smaller compared to temporal

aggregation.
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1 Introduction

Value-at-Risk (VaR) for a horizon of ten trading days has become the standard downside risk

measure for investment portfolios since the Basel Committee on Banking Supervision (1996),

and is widely used in the financial sector (see Berkowitz and O’Brien, 2002). Because prices

can be observed at a higher frequency and for all assets in the portfolio, a risk manager has

to choose the degree of aggregation of the observations when constructing the VaR forecast.

The typical approach in practice first gathers the assets into asset classes like stocks, bonds,

and alternative assets. Next, a model for the daily asset class returns is used to construct a

one-step VaR forecast for the portfolio. This forecast is then scaled to the required horizon

by the square-root-of-time rule. This scaling of the daily VaR forecast is explicitly advised in

the Basel Committee on Banking Supervision (1996) (see also Diebold et al., 1997; Dańıelsson

and Zigrand, 2006). However, many alternatives with a lower or higher degree of temporal

and portfolio aggregation are available.

We investigate the importance of the aggregation choice for the quality of ten-day VaR

forecasts. This VaR forecast is a quantile of the portfolio return distribution over the coming

ten days. We focus on the 1% and 5% quantiles, so VaR forecasts with 99% and 95% confi-

dence levels. To construct this distribution, a risk manager can use different degrees of both

temporal and portfolio aggregation. We compare their importance to other required choices.

In particular, we consider different models for the conditional volatilities and correlations of

the asset returns, different distributions for the innovations in these models, and different

methods to construct cumulative multi-step forecasts (see also McAleer, 2009).

The degree of aggregation determines how detailed the serial and cross-sectional depen-

dence of the returns is modeled. A model for all assets at the highest observed frequency

describes very precisely how shocks to one particular asset affect its own future return dis-

tribution at different horizons, as well as that of other assets. However, such an extensive

model can be tedious to use in practice. Aggregation of assets into portfolios reduces the

model dimension, whereas temporal aggregation reduces the number of forecasts that have

to be accumulated. It also reduce the complexity of the model, if serial dependence only has

short-term consequences.

Consequently, these choices involve a trade-off between precision and efficiency on the

one hand and complexity and the risk of misspecification on the other hand. A low degree of

aggregation particularly improves precision when different aspects of the return distributions
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vary. For instance, when the effect of shocks on the volatility is more persistent in one

(group of) asset(s), temporally and cross-sectionally aggregated models will lead to imprecise

forecasts. Less temporal aggregation also increases the efficiency, since more observations

are available (keeping the estimation window fixed). The flip side of this choice is the risk

of misspecification. More complex models are generally less robust to misspecification. The

effects of errors in the specification can be amplified by the forecasting horizon. Small errors

in a single-period forecast can build up to a large error in a multi-step forecast.1

We study the impact of the degree of aggregation on ten-day VaR forecasts for a well-

diversified portfolio of eight indexes, related to equities, bonds, and alternative assets. We

vary the degree of temporal aggregation between modeling daily, weekly and biweekly re-

turns, so from no to full temporal aggregation. In the cross-sectional dimension we analyze

aggregation into a single portfolio, into the three main asset classes (stocks, bonds and al-

ternatives), and no aggregation, so modeling the returns on all eight portfolio constituents.

We examine all possible combinations of these different levels of temporal and portfolio ag-

gregation. We do not examine the use of intraday data, because they are generally used

in models for daily data (see, for example, Giot and Laurent, 2004; Clements et al., 2008;

Brownlees and Gallo, 2010). Instead, we focus on methods that use one specific frequency.

We leave a comparison of models that use mixed data frequencies with or without intraday

data (see also Ghysels et al., 2009) for future research.

We compare the impact of aggregation to that of three other important required choices:

the model for the conditional volatilities and correlations, the distribution for the innovations

and the method of forecast construction. Regarding the first choice, we examine six well-

established, relatively simple models from the GARCH family. We combine the univariate

GARCH models of Bollerslev (1986) and Glosten et al. (1993) (GJR) with the CCC model

of Bollerslev (1990), the DCC model of Engle (2002) and the rank-1 HDCC model from

Bauwens et al. (2016) for the correlations. Hansen and Lunde (2005) and Laurent et al.

(2012) show that these models perform just as well as more extensive alternatives (see, for

example, Kuester et al., 2006; Brownlees and Gallo, 2010). The RiskMetrics approach from

JP Morgan and Reuters (1996), which is popular in practice, completes the set of models.

These seven models allow us to determine the importance of asymmetry in the marginal

models and of dynamics in the correlations. The RiskMetrics approach offers a one-size-

1See the surveys by Bhansali (1999) and Chevillon (2007) for a general discussion of iterated versus direct
multi-step forecasts.
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fits-all alternative. As distributions for the innovations in these models we use a copula

approach based on the normal, the Student’s t and the empirical distribution. While the

failure of the normal distribution for risk measurement has been widely documented since

Mandelbrot (1963) and Fama (1965), it remains popular in practice. The other two are

promising alternatives.

The method of forecast construction is relevant when returns are modeled at a higher

frequency than the forecast horizon. Cumulative multi-step forecasts can be constructed by

an iterative procedure or by scaling one-step forecasts.2 In the iterative procedure, h-step

forecasts are constructed by iterating forward the one-period-ahead density for h periods.3

This procedure captures the path dependence that the models imply, but can be time-

consuming. A faster though perhaps less accurate alternative is the scaling of the one-period

risk forecast. Scaling by the square-root-of-time is the industry standard, even though it can

lead to overestimation of the ten-day VaR (see Diebold et al., 1997) as well as underestimation

(see Dańıelsson and Zigrand, 2006; Wang et al., 2011).

The combination of these five choice aspects leads to 255 methods to forecast the VaR.

We use the tests proposed by Christoffersen (1998) and Engle and Manganelli (2004) to

assess the accuracy of each method in isolation. We examine whether a particular method

outperforms another by constructing Model Confidence Sets as proposed by Hansen et al.

(2011) based on the asymmetric tick-loss function as in Giacomini and Komunjer (2005).

We also conduct pairwise comparisons based on the test of Diebold and Mariano (1995) in

the framework of Giacomini and White (2006). These horse races are based on more than

five thousand ten-day VaR forecasts for the period 1994–2014. We use the industry standard

of a VaR confidence level of 99%, and use 95% as a robustness check.

Our results show that the degree of temporal aggregation is most important, whereas

the degree of portfolio aggregation is less consequential. Working with daily returns leads

to 99%- and 95%-VaR forecasts that come closest to having correct coverage, and perform

significantly better than forecasts based on weekly or biweekly returns. While we also find

evidence supporting more detailed multivariate models, in particular for 95%-VaR forecasts,

differences here are smaller and in many cases not significant. Our results point at models

based on the three main asset classes for 99%-VaR forecasts, and models on the asset level

2In specific cases, closed-form expressions for the multi-step distributions can be used. See for example
Drost and Nijman (1993) for the GARCH(1,1) model, Hafner (2008) for multivariate GARCH models, and
Sbrana and Silvestrini (2013) for the RiskMetrics method.

3See Marcellino et al. (2006) for iterated forecasts in an autoregressive framework and Ghysels et al.
(2009) for iterated forecasts in a GARCH framework.
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for the 95% case. We conclude that the methods with lower degrees of aggregation better

capture the propagation of shocks, both over time and between the different asset returns.

When forecasts are constructed by iterating based on daily data, the GJR model of

Glosten et al. (1993) gives the best forecasts, whereas the distribution choice is of less con-

sequence. When forecasts are constructed from weekly or biweekly data, the distribution

choice is important for 99%-VaR forecasts, but not for 95% forecasts. In the 99% case, the

empirical (Student’s t) distribution performs best for weekly (biweekly) data. So, at the

(bi)weekly frequency the innovations capture the fat tails and asymmetry, whereas the mo-

dels incorporate these features at the daily frequency. The method of forecast construction is

not that important. Our evidence tends to favor iterating over scaling to form forecasts, but

differences vary widely based on the other settings. When combined with a normal distri-

bution, scaling leads to worse performance than iterating. The same holds for combinations

with a GJR model. Modeling time-variation in correlation hardly has any consequences at

all.

We contribute to several strands of the literature. Most closely related are the papers

that compare different methods for VaR forecasting. We show the importance of the degree

of temporal aggregation in the realistic risk management setting of a ten-day VaR forecast,

whereas the literature so far only evaluates one-day VaR forecasts based on either daily

data or intraday data.4 Our results for portfolio aggregation complement McAleer and

Da Veiga (2008) and Santos et al. (2013). McAleer and Da Veiga (2008) conclude that VaR

forecasts for a small equity-only portfolio are best when full aggregation is applied. We also

find that aggregation of the equity part into a single portfolio works well, but that further

aggregation of the different asset classes does not improve performance. In line with our

findings, Santos et al. (2013) report that multivariate models perform better than univariate

models, but they do not consider intermediate degrees of aggregation. The importance of

the distribution choice is in line with Giot and Laurent (2004); Kuester et al. (2006); Bao

et al. (2006); Clements et al. (2008); McAleer and Da Veiga (2008).

Second, we add to the literature that examines multi-period forecasts of variances and

covariances. Contrary to the papers that study VaR forecasts, the papers in this area do

investigate temporal aggregation, but they generally evaluate the forecasts by a loss function

4Giacomini and Komunjer (2005); Bao et al. (2006); Kuester et al. (2006); McAleer and Da Veiga (2008);
Santos et al. (2013) use daily data, whereas Giot and Laurent (2004); Brownlees and Gallo (2010); Clements
et al. (2008) also use intraday data.
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that uses a volatility proxy.5 Though Patton (2011) and Laurent et al. (2013) consider

general classes of loss functions, our use of the asymmetric tick-loss function adds a new

perspective, in particular on the interplay of the volatility forecast and the conditional return

distribution.6 Also when tail loss is important, iterated forecasts are preferred, followed by

scaled and then direct forecasts as in Ghysels et al. (2009). In line with Hansen and Lunde

(2005); Brownlees et al. (2011); Laurent et al. (2012) we find that leverage effects in GARCH

models are important. Contrary to Laurent et al. (2012), we do not find a preference for

DCC over CCC. When tail loss is evaluated, the distribution constitutes an important choice

opposite to Brownlees et al. (2011) who evaluate forecasts based on a symmetric loss function.

Third, our research is related to the papers in the large field of economic forecasting that

compare iterated with direct forecasts, and forecasts of aggregates with aggregating fore-

casts. Theoretically, iterated forecasts are more efficient if the model is correctly specified,

whereas direct forecasts are more robust to misspecification (see Chevillon, 2007). Empi-

rically, Marcellino et al. (2006) report that iterated forecasts outperform direct ones in an

analysis of 170 macro time series, because the models for the higher observation frequency

can include more lags. We do not include more lags in models for daily data, but in our case

the more precise identification and propagation of shocks in the daily models can explain

their outperformance. The same explanation applies to the preference of multivariate models

over univariate models that we find. In a macroeconomic setting, Marcellino et al. (2003)

conclude that the aggregation of forecasts works better than forecasting aggregates. In a

follow-up of Marcellino et al. (2006), Pesaran et al. (2011) show that multivariate models

can also improve the forecasts for single non-aggregated variables.

From a practical perspective, our results show that it is best to work with daily data, and

to model on the level of either the assets or the asset classes. A GJR-GARCH model with

iterated forecasts further improves performance. For 99%-VaR forecasts in particular, it is

best to use the empirical distribution function. However, our results also indicate that the

RiskMetrics approach based on scaling forecasts constructed from daily data in combination

with the empirical distribution is not so bad after all.

The article proceeds as follows. In Section 2 we discuss the different choice aspects in

more detail, and present the design of our research. In Section 3 we present the data. We

present the results in Section 4 and conclude in Section 5. Appendices provide additional

5See the surveys by Andersen et al. (2006); Patton and Sheppard (2009).
6See Elliott and Timmermann (2008) for a general discussion about the loss function in relation to

forecasting.
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information on the methods and results.

2 Methodology

We take the perspective of a risk manager responsible for monitoring the risk of a portfolio

of n assets over the coming h time periods, during which the portfolio composition does

not change. She observes the asset prices at discrete points in time t = 1, 2, . . .. We can

approximate the log portfolio return from t to t+ h by

rpt,h =
h∑
τ=1

w′rt+τ , (1)

where w and rt are n× 1 vectors that contain the portfolio weights and the one-period log

asset returns. We concentrate on a fully invested long-only portfolio, so we assume wi ≥ 0,

i = 1, 2, . . . , n and
∑n

i=1wi = 1, though these assumptions are not crucial for our analysis.

The approximation holds reasonably well when the variance of the portfolio return is not

too large, which holds for our case of a ten-day horizon and long-only portfolios.

The risk of the portfolio is measured in terms of Value-at-Risk. The h-period VaR with

confidence level 1− ϑ of the portfolio return rpt,h is defined as

VaRϑ(rpt,h) = − sup{l : Pr[rpt,h ≤ l|Ft] ≤ ϑ}, (2)

where Ft denotes the information set at time t. In line with the Basel accords, we set the

confidence level equal to 99% (ϑ = 0.01) and the horizon equal to ten days. Additionally,

we consider ϑ = 0.05.

Value-at-Risk is the negative of the ϑ-quantile of the conditional distribution of rpt,h. To

forecast this distribution, the risk manager has to make a number of choices. We investigate

the consequences of five different choice aspects. The first two choices concern the degree of

temporal and portfolio aggregation. Together, they establish the basic return variable rbt,k

that will be modeled. Third, she has to decide on the time series model to describe the

return dynamics. Fourth, she has to choose a distribution for (the innovation in) rbt,k. Fifth,

she has to determine how to construct the distribution of rpt,h from the model for rbt,k. We

discuss these five aspects in turn below.
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2.1 Choosing the degree of aggregation

The first choice determines the degree of aggregation of the nh random variables that con-

stitute rpt,h. Aggregation can be done both temporally and cross-sectionally. Temporal

aggregation means that k-period returns form the basis of the model instead of single-period

returns. Cross-sectional aggregation means a reduction of the portfolio dimension by grou-

ping assets together in m basic portfolios. So instead of the single-period n-dimensional

returns rt, the k-period returns rbt,k with dimension mb ≤ n form the basis of the model,

where b indicates the particular set of basic portfolios.

To construct the basic portfolios we define an mb× n selection matrix Sb, with elements

sbij = 1 if asset j is part of portfolio i and zero otherwise. Row i indicates which assets

constitute portfolio i. Since each asset has to be part of exactly one portfolio, all columns of

Sb must sum to one. The mb×1 vectorwb contains the weights of the mb basic portfolios and

satisfies wb = Sbw. The returns rbt,k on the basic portfolios b over horizon k are constructed

as the product of the weight matrix W̃ b and the asset returns summed over k periods:

rbt,k = W̃ b

k∑
τ=1

rt+τ with w̃bij = sbijwj/
n∑
κ=1

sbiκwκ. (3)

Row i of W̃ b contains the weights of the assets in basic portfolio i, scaled so they sum to

one. Assuming that k is a divisor of h, we replace Equation (1) by

rpt,h =

h/k∑
τ=1

wb′rbt+(τ−1)k,k. (4)

When k = 1 and mb = n the risk manager aggregates in neither dimension, and models

the asset returns in the most detailed way. When k = h she fully aggregates over time,

and constructs a one-step ahead forecast of the return distribution. When mb = 1, the

cross-section is fully aggregated, and she models the portfolio return as a univariate random

variable. Other choices of k and mb reduce the scale of the model, but the distribution of

rpt,h remains the result of a sum of multivariate return distributions.

For temporal aggregation we investigate the cases of no (k = 1), weekly (k = 5) and full

(biweekly) aggregation (k = h = 10). For cross-sectional aggregation we analyze the case of

no (mb = n), full (mb = 1), and aggregation by asset class.
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2.2 Choosing the time-series model

The financial econometrics literature has established that the conditional distribution of

asset returns is not constant over time. For the time-varying mean of returns (V)ARMA

models have been proposed. The family of GARCH models has become the standard for

modeling the volatilities and correlations of returns. Because the number of models has

grown very large, we restrict our attention to a couple of relatively simple models that have

been found to perform well.7 We specify all models in a multivariate setting, and only discuss

the univariate version if necessary.

We model the mean of the return distribution by a VAR(p) model

rbt,k = φbk +

p∑
i=1

Γ b
i,kr

b
t−ik,k + εbt,k, Et[ε

b
t,k] = 0, Et[ε

b
t,kε

b′
t,k] = Σb

t,k (5)

where φbk is an mb × 1 vector, Γ b
i,k, i = 1, . . . p are mb ×mb matrices, and εbt,k is an mb × 1

vector with innovations over the period from t to t + k.8 Conditional on the information

available at time t, the innovations have mean zero and variance Σb
t,k. When no temporal

aggregation takes place and returns are daily, we choose p = 1. Assets may be traded

in different time zones, and a VAR(1) model can accommodate the resulting lagged cross-

sectional dependence. In the cases of weekly and fortnightly aggregation, serial dependence

in returns becomes negligible, so we use a VAR(0) model, that is, we assume a constant

mean.

Because (co)variances have a crucial impact on risk measures, we investigate several

specifications from the class of multivariate GARCH models. The literature offers a wide

variety of models that differ in the effects that shock have on the variance matrix. We are

particularly interested in the importance of asymmetric effects of shocks, and the importance

of time-varying correlations. Moreover, estimation should remain feasible when no cross-

sectional aggregation is applied. Therefore, we focus on GARCH and GJR-GARCH models

combined with CCC and parsimonious DCC specifications, and the RiskMetrics approach.

Based on the evidence in Laurent et al. (2012), we do not consider more extensive multivariate

models.

7See Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009) for an overview of (multivariate)
GARCH models. Hansen and Lunde (2005); Laurent et al. (2012) show that relatively simple models are
not outperformed by more extensive alternatives.

8In our notation, the unit of t is a day independent of the choice of temporal aggregation, because the
forecast horizon h is also independent of it. As a consequence, we denote the first lagged k-period observation
as rbt−k,k. The same structure applies to the volatility models in this subsection.
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Conditional correlation models in the style of Bollerslev (1990) and Engle (2002) build

the variance matrix Σb
t,k from mb univariate models for the variances, σ2b

i,t,k and a separate

model for the correlation matrix Rb
t,k,

Σb
t,k = diag(σbt,k)R

b
t,k diag(σbt,k), (6)

where the diag operator returns a diagonal matrix with the argument vector on the diagonal,

and the mb× 1 vector σbt,k contains the volatilities σbi,t,k. We define standardized innovations

ηbi,t,k = εbi,t,k/σ
b
i,t,k, i = 1, . . . ,mb, (7)

that are still correlated, and uncorrelated innovations ζbi,t,k that satisfy

ηbt,k =
(
Rb
t,k

)1/2
ζbt,k, with Et−k[ζ

b
t,kζ

b′
t,k] = I, (8)

where ηbt,k and ζbt,k are the mb-vectors with elements ηbi,t,k and ζbi,t,k, and (Rb
t,k)

1/2 denotes the

lower triangular matrix that results from the Cholesky decomposition of Rb
t,k. We discuss

the distributions for the innovations in the next subsection.

The univariate models for σ2b
i,t,k belong to the GARCH family, in particular the standard

GARCH(1,1) model of Bollerslev (1986), and the extension proposed by Glosten et al. (1993),

referred to as GJR-GARCH. The latter can be written as

σ2b
i,t,k = ωbi,k +

(
αbi,k + γbi,kI(εbi,t−k,k < 0)

)
(εbi,t−k,k)

2 + βbi,kσ
2b
i,t−k,k, i = 1, . . . ,mb, (9)

where ωbi,k, α
b
i,k, β

b
i,k > 0, γbi,k > −αbi,k, and I is the indicator function. Assuming that the

conditional distribution of εbi,t,k is symmetric, the variance is stationary when αbi,k + 1
2
γbi,k +

βbi,k < 1. Shocks have an asymmetric effect on the volatility when γbi,k 6= 0. The standard

GARCH model results when γbi,k = 0.

We consider three models for the correlation matrix: the Constant Conditional Corre-

lation (CCC) of Bollerslev (1990), the Dynamic Conditional Correlation (DCC) of Engle

(2002) with the correction of Aielli (2013), and a Hadamard DCC (HDCC) model of Bau-

wens et al. (2016). The CCC model assumes a constant correlation matrix Rk
t,b,k = Rb

k. The

DCC model contains a dynamic specification for the correlation matrix. First, a matrix Qb
t,k
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is constructed from

Qb
t,k = (1− αq

b,k − β
q
b,k)Q̄

b
k + αq

b,kη̃
b
t−k,kη̃

b′
t−k,k + βq

b,kQ
b
t−k,k, (10)

where η̃bt−k,k = Diag(Qb
t−k,k)

1/2ηbt−k,k, and the Diag operator returns a diagonal matrix whose

diagonal elements are equal to those of the square matrix given as argument (as in Bauwens

et al., 2016). We use correlation targeting, and set Q̄b
k = E[η̃bt−k,kη̃

b′
t−k,k]. The parameters

αq
b,k, β

q
b,k should be positive and satisfy αq

b,k + βq
b,k < 1. While Qb

t,k is positive definite by

construction, its diagonal elements are not necessarily equal to one. The correlation matrix

Rb
t,k results from

Rb
t,k = Diag(Qb

t,k)
−1/2Qb

t,k Diag(Qb
t,k)

−1/2. (11)

The DCC model implies the same dynamics for all correlations, which may be restrictive,

in particular when the number of assets grows large. We therefore consider the Hadamard

DCC extension of Bauwens et al. (2016), replacing Equation (10) by

Qb
t,k = (ıı′ −Aq

b,k −B
q
b,k)� Q̄

b
k +Aq

b,k � η̃
b
t−k,kη̃

b′
t−k,k +Bq

b,k �Q
b
t−k,k, (12)

where Aq
b,k,B

q
b,k are mb × mb matrices and � denotes the Hadamard product. Because

Bauwens et al. (2016) finds that a rank-1 specification for Aq
b,k and Bq

b,k is on the one hand

parsimonious and on the other hand not outperformed by more extensive specifications, we

impose Aq
b,k = αq

b,kα
q′
b,k and Bq

b,k = βq
b,kıı

′.9

Finally, we include the RisMetrics model, which is widely used in practice. This model

directly gives the evolution of the variance matrix,

Σb
t,k = Σ0

b,k + (1− λb,k)εbt−k,kεb′t−k,k + λb,kΣ
b
t−k,k, (13)

where Σ0
b,k is a constant matrix and 0 ≤ λb,k ≤ 1 is the decay parameter (see JP Morgan and

Reuters, 1996 and Mina and Xiao, 2001). Based on Zaffaroni (2008) we include Σ0
b,k in the

specification. Because the dynamics in this model are determined by a single parameter λb,k,

the variances of all basic portfolio returns and the covariances between all pairs of returns

share the same behavior over time.

9To prevent empirical problems, we do not apply the more general rank-1 specification of Aq
b,k to Bq

b,k.
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2.3 Choosing the distribution

The third choice concerns the distribution of the innovations εbt,k. We examine three choices

for this distribution: the normal, the Student’s t, and the empirical distribution. We briefly

discuss these options, and the implications of their combination with the models of the

previous subsection.

The multivariate normal distribution enjoys wide popularity, despite its exponentially de-

clining tails. Because it is closed under summation, temporal and cross-sectional aggregation

of forecasted distributions is straightforward. The combination of the normal distribution

with univariate GARCH models and a constant correlation matrix was proposed by Boller-

slev (1990). Replacing the constant correlation matrix by the dynamics in Equations (10)

and (11) is the DCC model as in Engle (2002). The normal distribution combined with the

RiskMetrics model produces the classical RiskMetrics approach (see Mina and Xiao, 2001).

The Student’s t-distribution is a popular alternative, because it has fatter tails.10 To

enhance flexibility, we use a univariate Student’s t-distribution for the marginal distribution

of each εbi,t,k, with a specific degrees of freedom parameter νbi,k, and model the dependence by

the Student’s t-copula. We transform the univariate pdf to have expectation µ and variance

σ2,

ψ̃(z;µ, σ2, ν) =
Γ((ν + 1)/2)

Γ(ν/2)
√

(ν − 2)πσ

(
1 +

(z − µ)2

(ν − 2)σ2

)− ν+1
2

, ν > 2 (14)

where ν is the degrees of freedom, and Γ is the Gamma function. We combine these marginal

models with the Student’s t-copula,

Cψ(v1, . . . , vmb ;Ω, ν) = Ψmb(Ψ
−1(v1; ν), . . . ,Ψ−1(vmb ; ν);Ω, ν), ν > 2 (15)

where Ω is a correlation matrix, ν the degrees of freedom parameter, Ψmb the cdf of the

(unscaled) multivariate Student’s t-distribution, and Ψ−1 the inverse of the cdf of the (unsca-

led) univariate Student’s t-distribution. Together, the marginal models and the copula have

mb + 1 degrees of freedom parameters, which can all be different. The combination of this

copula approach with the DCC specification in Equations (10) and (11) is closely related

to one of the models in Jondeau and Rockinger (2006). When the RiskMetrics approach is

10Though the literature proposes many alternatives with fatter tails than the normal distribution, we
restrict ourselves to the Student’s t-distribution because of its good performance reported by Mittnik and
Paolella (2000); Giot and Laurent (2004); Bao et al. (2006); Kuester et al. (2006).
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selected, we use a multivariate Student’s t-distribution for εbt,k,

ψ̃mb(z;µ,Σ, ν) =
Γ((ν +mb)/2)

Γ(ν/2)((ν − 2)π)mb/2
√
|Σ|

(
1 +

(z − µ)′Σ−1(z − µ)

(ν − 2)

)− ν+mb
2

, (16)

with ν > 2 and where |Σ| denotes the determinant of Σ. This specification is again scaled

to ensure Var[z] = Σ.

As the third option we propose the empirical distribution. It can capture both the fat

tails and the asymmetry that are typically present in return distributions.11 It does not suffer

from the risk of misspecification, but the resulting loss of efficiency may particularly affect

forecasts of tail events. For the CCC and DCC specifications, we use it for the marginal

distributions of the standardized innovations ηbi,t,k in Equation (7) in combination with the

Gaussian copula. For a set of P realizations in the vector x, the empirical cumulative

probability function is given by

F emp
P (z;x) =

1

P + 1

P∑
τ=1

I(xτ ≤ z). (17)

The Gaussian copula is given by

Cφ(v1, . . . , vmb ;Ω) = Φmb(Φ
−1(v1), . . . ,Φ

−1(vmb);Ω), (18)

where ∀i, vi ∈ [0, 1], Ω is a correlation matrix, Φmb the cdf of the mb-variate normal distri-

bution, and Φ−1 the inverse of the cdf of the univariate normal distribution. This design

corresponds with the SCOMDY models in Chen and Fan (2006). In a univariate setting this

approach reduces to Filtered Historical Simulation (see also Christoffersen, 2009). When

the RiskMetrics-specification is used, the empirical distribution applies to ζbi,t,k as defined in

Equation (8). We do not assume that ζbi,t,k and ζbj,t,k are independent for i 6= j, and use the

multivariate empirical distribution

F emp
P,mb

(z;X) =
1

P + 1

P∑
τ=1

mb∏
i=1

I(xi,τ ≤ zi), (19)

where z is an mb×1 vector andX is a mb×P matrix that contains the set of P observations.

11The skewed t distributions and copulas are also good candidates to capture these aspects. See for
example Hansen (1994); Demarta and McNeil (2005) and Bauwens and Laurent (2005).
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2.4 Choosing the method of forecast construction

The final choice relates to the construction of forecasts. The risk manager has to choose how

to construct a multi-period forecast, in case she has not applied full temporal aggregation.

When h = k she constructs a one-step-ahead forecast, and we call this forecast “direct”.

When k < h, she can choose between “iterated” and “scaled” forecasts. Iterated forecasts

take into account the path dependence that results from the serial dependence in the return

models. The forecasted distribution for rbt+jk,k, j ≥ 1 is constructed based on the forecasted

distribution for the previous horizon, rbt+(j−1)k,k. Generally, the convolution of these distri-

butions does not have a closed-form expression, which means that simulations have to be

used. Scaling forecasts implies the assumption that the distributions of rbt,k and rbt,h have

the same shape, but the location and scale parameters of the aggregated distribution rbt,h

are adjusted for the horizon h. When VAR-effects in Equation (5) are absent, the mean and

variance are scaled by a factor h/k. Formulated for volatility, this is the well-known “square

root of time” rule, that is advocated in the Basel Accords. We discuss the technical aspects

of the forecast construction in Appendix B.2, and show in Appendix B.3 how to include the

serial dependence implied by the VAR in Equation (5) when scaled forecasts are used.

Iterated forecasts can be more precise but also more time-consuming than scaled forecasts.

When portfolios are large, iterated forecasts may become computationally infeasible, which

explains the popularity of scaling in practice. However, Diebold et al. (1997); Dańıelsson

and Zigrand (2006); Wang et al. (2011) show that scaled forecasts become worse when the

horizon increases. For some of the models we consider, for instance the univariate GARCH

or RiskMetrics specifications, multi-step ahead forecasts can be constructed in closed form

(see Drost and Nijman, 1993 for the first and Sbrana and Silvestrini, 2013 for the second),

but generally this is not the case. Therefore, scaling remains a relevant forecasting method.

Ghysels et al. (2009) show that MIDAS forecasts dominate other forecasting methods for

horizons longer than 10 days (see also Ghysels et al., 2006). Because our forecasting horizon

is shorter, we do not investigate the performance of MIDAS techniques.

2.5 Estimation and Empirical Design

We estimate the parameters in all the different models with a multi-step procedure. First, we

estimate the VAR-parameters in Equation (5) by ordinary least squares. The VAR residuals

are the input for the next estimation step. For the CCC and DCC models we estimate the
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parameters of the marginal models in Equation (9) (GARCH or GJR-GARCH) separately

for each basic portfolio by (Quasi) Maximum Likelihood (QML). We construct standardized

residuals as in Equation (7), and use these as the basis of our Maximum Likelihood estimation

of the (unconditional) correlation matrix, and if needed the parameters of the (H)DCC

models and the degrees of freedom in Equation (15). For the RiskMetrics approach, we

estimate the parameters in Equation (13) by (Q)ML. We provide a more detailed description

in Appendix B.1.

The estimation procedure for the CCC and DCC models is the common approach that

is advocated in the literature (see Bollerslev, 1990; Engle, 2002; Chen and Fan, 2006; Aielli,

2013). For copulas this multi-step estimation is referred to as the Inference Functions for

Margins method (see Joe, 1997, Ch. 10), or Multi-Stage Maximum Likelihood (see Patton,

2013). Originally, the decay factor λ of the RiskMetrics models is determined by minimizing

the root mean squared error (see JP Morgan and Reuters, 1996), but Zaffaroni (2008) shows

that this approach is unreliable, and advocates QML instead.

Each forecast is based on a moving window of 1,000 days (so approximately four years

of data). When we apply temporal aggregation (k > 1), we aggregate the daily observations

to 200 weekly (k = 5) or 100 biweekly (k = 100) observations. We reestimate all model

parameters, when 50 days have passed, and assume that the parameters do not change at

intermediate points in time. When simulations are needed, we use 10,000 draws. We also

investigate the effect of doubling the size of the estimation windows.

2.6 Evaluation

At each point in time t, we construct an out-of-sample Value-At-Risk forecast for the portfolio

return rpt,h over the next h days for all combinations of choices. We refer to each choice

combination as a method (cf. Giacomini and White, 2006), and denote the forecast by

method j as qjt ≡ −VaRϑ(rpt,h). We evaluate the quality of each forecasting method itself,

and compare them with each other.

The unconditional coverage (UC) test of Christoffersen (1998); Kupiec (1995) tests whet-

her the actual fraction of VaR-violations equals the theoretical fraction ϑ. We define the

VaR violation (also called hit)

xjt+h ≡ I(rpt,h ≤ qjt ), (20)
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where I denotes again the indicator function. If VaR method j works correctly, E[xjt+h] = ϑ.

We test this hypothesis against the alternative E[xjt+h] > ϑ, as regulators care mostly about

too many violations.

The dynamic quantile (DQ) test of Engle and Manganelli (2004) tests whether the VaR-

violations are predictable by past information. If VaR method j works correctly, the violation

xjt+h should be unrelated to the forecasted Value-at-Risk qjt . Because of the overlap in the

forecasting horizon, violations xjt+h and xjt+h+1 are related by construction. Therefore, we

only include qjt in the test. Based on Herwartz and Waichman (2010), we implement the

test by a linear regression

x̃jt+h = c0j + c1jq
j
t , (21)

where x̃jt+h = xjt+h−ϑ is the centered hit. We then test whether c1j = 0 against the alternative

c1j 6= 0. As advocated by Herwartz and Waichman (2010), we construct the critical values

for the test based on bootstraps. They show that using the asymptotic distribution of the

test statistic leads to considerable size distortions. Because of the overlap in the centered

hit series, we use a block bootstrap with a block length of 10. We do not use a logit (or

probit) model, because the maximum likelihood estimator is inconsistent because of the

serial correlation in xjt+h.
12

To determine the differences between the different choice aspects, we apply the procedure

for constructing the Model Confidence Set as in Hansen et al. (2011, Sec. 3.1.2). We also

compare pairs of forecasts by the test of Diebold and Mariano (1995) (DM-test) in the

framework of Giacomini and White (2006). We need their framework, because some of the

methods that we compare are nested (for example, the GARCH models are nested in the

GJR models, and the CCC models in the DCC models). Additionally, it allows for parameter

estimation uncertainty. Our use of a rolling window to estimate the model parameters fits

in this framework.

We use the asymmetric tick loss function as in Giacomini and Komunjer (2005)

Lϑ(ejt+h) = (ϑ− I(ejt+h < 0))ejt+h, (22)

where ejt+h ≡ rpt,h− q
j
t . Because of the asymmetry of the loss function, realizations below qjt ,

that is, VaR violations, lead to a larger loss. Next, we define the loss differential between

12We are grateful to a referee for pointing out this issue.
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methods j and j′ as

dj,j
′

ϑ,t ≡ Lϑ(ejt)− Lϑ(ej
′

t ). (23)

We test E[dj,j
′

ϑ,t ] = 0 by the statistic proposed by Diebold and Mariano (1995). When the

null-hypothesis is rejected and E[dj,j
′

ϑ,t ] < 0, method j outperforms method j′.

Because we make ten-day VaR forecasts for every day in our sample, all tests in this

section suffer from overlapping data. Therefore, we use the procedure of Newey and West

(1987) with a Bartlett kernel and 10 leads and lags in the calculation of variances and

standard errors. We use a significance level of 5% in our tests, unless stated otherwise.

3 Data

We base our empirical analysis on a well-diversified investment portfolio. This portfolio

invests 50% in bonds, 30% in equities, 10% in real estate, and the remaining 10% in com-

modities. The investments in bonds are split between US government bonds (30%) and US

corporate bonds (20%). The equity part can be further divided based on regions: Europe

(12%), United States (10.5%), Pacific (3.75%) and Emerging Markets (3.75%). Appendix A

provides details about our used indexes. Our sample covers the period January 1, 1990–

February 28, 2014. We delete holidays, giving a sample size of 6,030 daily observations.13

Because we use an estimation window of 1,000 observations and make a ten-day forecast, we

evaluate 5,021 forecasts. The first forecast is for the portfolio return over the ten working

days from December 17 to 31, 1993.

We analyze our data at the daily, weekly and biweekly frequency, for each asset and for

the aggregated portfolio. We summarize the main aspects here, and present more details in

Appendix A. Generally, bonds show considerably lower returns, but also lower volatilities

than the other assets. All returns exhibit negative skewness and excess kurtosis and auto-

correlation. The correlation matrix shows a block structure, with high correlation between

bonds and between equities. Real estate is highly correlated with equities and mildly with

commodities. The portfolio returns are less volatile than the individual asset returns, which

shows the effect of diversification. However, they are stronger left skewed than almost all

13Because we analyse an international portfolio, we define a holiday as day when the values of two or more
indexes do not change. Because of the dominance of the US in the portfolio, most holidays are US public or
government holidays.

17



constituent series, and the kurtosis coefficient is close to the maximum among them, which

shows the effect that diversification breaks down in time of crises.

Our comparison of daily, weekly and biweekly returns shows that returns are far from

i.i.d. Lau and Wingender (1989) show that when k i.i.d. returns are aggregated, the skew-

ness coefficient is scaled by 1/
√
k and the coefficient of excess kurtosis by 1/k. Instead of

decreasing, the left skewness of all series increases when moving from daily to weekly or bi-

weekly returns. The kurtosis coefficients for weekly returns decrease, but much less than for

the i.i.d. case. For the portfolio as a whole these effects are even stronger. Taken together,

these results indicate that extreme and negative returns cluster over time and in the cross

section. So, scaling densities may not work well for measures of tail risk. Moreover, portfolio

aggregation does not mitigate the effect.

4 Results

Our analysis boils down to a large-scale horse race. We analyze all combinations of three

possible levels of temporal aggregation (daily, weekly and biweekly), three levels of portfolio

aggregation (no aggregation, aggregation into the three main asset classes, and aggregation

into a single portfolio), five model specifications (CCC-GARCH, DCC-GARCH, CCC-GJR,

DCC-GJR and RiskMetrics), three distributions (normal, empirical, and Student’s t), and

two forecasting options (iterated and scaling). The forecasting options are available when

daily or weekly returns are used. For biweekly returns only a one-step-ahead forecast is

needed. In total this leads to 255 different methods. We evaluate the quality of the resulting

VaR forecasts in different ways, where we focus on the impact of the different choices. We

do not aim at finding the specific combination of options that beats all others. We examine

the VaR forecasts with a 99% confidence level in detail, and briefly consider the forecasts

with the 95% confidence level. We use a 5% significance level unless otherwise noted.

4.1 VaR forecasts with a 99% confidence level

4.1.1 Absolute forecast quality

We first investigate how the five different choices impact the coverage of the VaR forecasts

and test equality to the nominal 1% level against the one-sided alternative of more violati-

ons. Too many violations can lead to penalties for a financial institution, whereas too few
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violations may be undesirable, but are less likely to cause problems. To see how the different

choices influence the results, we report the total number of rejections for a particular sig-

nificance level in Table 1. The detailed results are available in Table C.1 in Appendix C.1.

The interpretation of the summarized results deserves some care, because the tests are not

independent.

[Table 1 about here.]

Table 1a shows that temporal aggregation leads to more violations. For daily returns

combined with iterated forecasts, 15 methods out of 51 leads to violations that significantly

exceed 1% with p-values below 0.05. For biweekly aggregation, 39 methods lead to signifi-

cantly more violations than 1%. The results for weekly returns lie in between. Together,

they indicate that less temporal aggregation, so a more detailed observation of the return

dynamics, leads to better coverage ratios.

The relation of portfolio aggregation with the coverage generally shows a U-shape, though

with some exceptions. A split into three basic assets, so modeling the main asset classes,

leads to the lowest violation frequency. For 57 out of 105 forecast methods, the frequency of

VaR violations deviates significantly from 1%. Aggregating the assets into a single portfolio

generally leads to larger violation frequencies, with 30 out of 45 being significant. Modeling

all asset leads to slightly more violations (62 out of 105) than modeling at the level of the

main asset classes.

The model choice shows some interesting results. First, the one-size-fits-all approach of

RiskMetrics works quite well, both univariately and multivariately, with 8 out of 15 and

15 out of 30 rejections at the 0.05 level. Second, replacing GARCH by GJR, so including

an asymmetric effect of shocks, improves the coverage ratios, and leads to 9 rejections in

the univariate setting. In the multivariate setting, exchanging the CCC, DCC and HDCC

specifications does not influence the coverage ratios much. When combined with the GJR

specification their performance is at par with RiskMetrics, with 15 out of 30 ratios significant

at the 0.05 level. Though the performance of the RiskMetrics and DCC-GJR models is

similar, the RiskMetrics model works particularly well when combined with scaling, whereas

the DCC-GJR model works better in combination with iterated forecasts.

The choice for the distribution impacts coverage substantially. The empirical distribution

comes first, the Student’s t-distribution second, and the normal distribution last. When daily

returns are combined with iterated forecasts, the differences between the distributions are
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not that large, but when weekly and biweekly form the basis the differences are considerable

(see Table C.1). When the empirical distribution is used, only 7 out of 85 ratios differ

significantly from 1%, compared to no less than 67 for the Student’s t and even 75 for

the normal distribution. Moreover, when the violation frequencies exceed 1%, those of the

empirical distribution are the lowest.

The choice between scaled or iterated forecasts particularly influences the results when

daily data is used. Scaling a forecast from one to ten steps ahead generally leads to worse

coverage ratios than constructing iterated forecasts. This effect holds particularly when the

dynamics are specified in more detail, and are largest for the DCC-GJR model. When Ris-

kMetrics is used constructing scaled or iterated forecasts does not matter much. Differences

are also smaller for weekly data. Because the variance process in the RiskMetrics method is

not mean-reverting, this result is not surprising.

Next, we turn to the dynamic quantile (DQ) test based on Equation (21) to investigate

whether the forecast quality varies with the magnitude of the VaR forecast. The summary

results are in Table 1, and the full results in Table C.2. Mostly, the relation between a

violation and the forecast is not significant, with only 40 rejections out of 255 methods.

Nevertheless, the estimates and in particular their signs give useful insights into the forecast

quality. A positive sign means that risk is overestimated in times of distress, because a

larger than average VaR forecast (a value for qjt below average) decreases the probability of a

violation. Risk is then underestimated for quiet times. For negative signs, the interpretation

is reversed.

Temporal aggregation has a clear effect on the forecast quality. The use of daily returns

leads to a slight underestimation of risk in times of distress for 46 methods, but to overes-

timation for only five. These results indicate that models based on daily returns generally

revert a bit too fast to the steady-state volatility. A closer inspection of Table C.20a shows

that the five positive coefficients are all for forecasts based on RiskMetrics, where mean-

reversion is absent. The negative coefficients are mostly insignificant, but a richer GARCH

specification may improve the forecasts. For weekly returns, the number of positive and

negative coefficients are about equal. For biweekly returns all coefficients are positive, and

30 out of 51 are significant. Here, mean reversion is clearly too slow.

Full portfolio aggregation leads more often to positive than to negative coefficients (27

versus 18), but this pattern reverses for less aggregation. When all assets are considered,

73 methods lead to negative coefficients and 32 to positive ones. When three basic assets
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are used, positive and negative coefficients are more balanced. Also in the cross-sectional

dimension, methods with a low degree of aggregation lead more often to an underestimation

of VaR in times of distress.

The results for the different model specifications show again the effect of mean reversion.

In the univariate case, we find more evidence for overestimation of VaR in times of distress,

compared to the multivariate cases. A more precise identification of the nature of the shocks

may help, but it is not clear which specification is best, as the differences between the six

multivariate GARCH models are quite small. The asymmetry captured by the GJR model

has small effects on iterated forecasts (daily or weekly) but leads to underestimation of risk

in times of distress when forecasts are scaled. The difference between CCC, DCC and HDCC

models is generally larger when eight assets are considered than three. In the CCC models

correlations are assumed to be constant, so it leads more often to underestimation. The

RiskMetrics model, which does not imply mean reversion, leads to overestimation.

Overall, we conclude that the results of the DQ-test are mostly related to the speed of

mean reversion implied by the models. When mean reversion is relatively fast, the DQ-test

indicates a slight underestimation of risk in times of distress, though mostly insignificant.

This effect is clearest when daily data and/or CCC models are chosen. When mean reversion

is slower and shocks become more persistent, the DQ-tests signal overestimation in times of

distress. Significance is a bit stronger, though the majority of methods show insignificant

coefficients. The differences between the distributions are small. All show about as many

positive as negative coefficients. The same conclusion applies to iterating versus scaling.

Summarizing, we find that temporal aggregation has a large impact on the forecast qua-

lity. Using weekly or biweekly data leads to too frequent violations, though more often

during quiet times. Portfolio aggregation has less impact. Modeling on the level of asset

classes gives the best results for coverage and time-variation. The model choice is also of less

importance. Differences between the combinations of CCC/DCC/HDCC and GARCH/GJR

methods are small, but still indicate a preference for the DCC/HDCC-GJR method. Diffe-

rences with RiskMetrics are somewhat larger. The choice for the distribution is again more

important. In particular distributions with fat tails lead to better coverage ratios. The fore-

casting method is important when daily data are used, with iterated forecasts outperforming

scaled ones.

We conclude that more detailed information on shocks as provided by daily data on the

asset or asset class level, and a more detailed specification of their propagation in the form of
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a richer model and iterated forecasts, improve forecast quality. Increased aggregation means

that sometimes shocks are missed, whereas the one-size-fits-all approach of the RiskMetrics

methods, and the scaling of forecasts lead to a too strong extrapolation of the effects of

shocks. On the other hand, we find that detailed information, models and forecasting increase

the risk of forecast errors. So far, the benefits of an increased level of detail outweigh these

errors.

4.1.2 Relative forecast quality

We now turn to a statistical comparison of the different methods. For each method, we

calculate the average asymmetric tick loss as in Equation (22), reported in Table 2. The

lowest loss (5.10 × 10−2) is obtained by constructing iterated forecasts based on daily data

for eight assets, with a DCC-GJR model and the empirical distribution. The largest loss

(8.95× 10−2) results from a direct forecast based on biweekly data for eight assets with the

RiskMetrics approach and the empirical distribution.

[Table 2 about here.]

[Table 2 (continued) about here.]

We construct the Model Confidence Set (MCS) (Hansen et al., 2011) with a significance

level of 10% to determine the importance of the different choice aspects. The results in

Table 3 show that the observation frequency is the most important choice. None of the

methods based on daily observations are removed from the MCS, neither when iterated nor

when scaled forecasts are constructed. A lower frequency leads to more removals: 7 for

weekly observations combined with iterated forecasts, 13 for the combination with scaled

forecasts, and 31 for biweekly observations. So, less temporal aggregation clearly leads to

better results.

[Table 3 about here.]

When weekly data are used to construct iterated forecasts, the seven models that are

excluded typically do not allow for enough dynamics (Table 3a). Five of the excluded models

use RiskMetrics, the other two use a univariate GARCH specification. Along the dimension

of portfolio aggregation, five excluded models model at the portfolio level, the other two at

the asset class level. The exclusions seem not particularly related to the distributions.
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The removals from the subset of scaled forecasts based on weekly data in Table 3b show

a slightly clearer pattern. Of the 13 removed methods five use RiskMetrics, and three use

CCC-GARCH. The other five are spread over the other model choices. Looking at the

portfolio aggregation, seven removals model returns at the portfolio level, five at the asset

class level and only one at the asset level. We now see that the Student’s t-distribution

counts only two removals, whereas the normal counts six removals, and the empirical five.

From the 51 methods based on biweekly data in Table 3c, 31 are removed and 20 remain.

In particular, all 17 models based on the empirical distribution are excluded, compared to

five for the normal distribution and nine for the Student’s t-distribution. The sample size of

100 observations is too small to reliably construct the empirical distribution, and even gives

trouble for the Student’s t-distribution.

From the subset of methods that use either the normal or Student’s t-distribution, all

models on the portfolio level are excluded. From the models based on the asset class level,

six are removed, compared to only two from the models based on the asset level. With

regard to the model specification, the RiskMetrics approach often leads to exclusion (four

out of six). We do not observe a clear pattern in the in- or exclusion of the other model

specifications.

We conclude that using observations at the asset level, and to a lesser extent at the asset

class level, can compensate for the low detail in the temporal dimension. Also, a model

specification with richer dynamics can offer some compensation. Working with biweekly

data typically leads to larger losses than using data with a higher frequency, whatever the

portfolio details or model specification.

We now investigate whether the methods that use daily data can yield some further

insight into the consequences of the remaining choices. The MCS results shows that no

particular combination stands out, as all models are included in the MCS. Also when we

start the MCS procedure with only the 110 daily methods, no methods are removed from

this set. Therefore, we conduct pairwise comparisons of those methods that differ in only one

choice aspect based on the Diebold-Mariano test. For example, we test whether the DCC-

GJR specification leads to the same average loss as the RiskMetrics specification, when

iterated forecasts are constructed based on daily data at the asset level using the empirical

distribution. Detailed results are available in Appendix C.1. We summarize them in Table 4.

[Table 4 about here.]
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Our results show a preference for iterated forecasts. For 38 out of 51 comparisons, the

losses from iterated forecasts are lower than from scaled forecasting. Six (14) loss differen-

tials are significant at the 5% (10%) level. Because of this difference, we separately report

summary statistics for iterated and scaled forecasts.

The results for portfolio aggregation (panels b and c) confirm our conclusion from the

MCS that a low degree of portfolio aggregation leads to better performance. Modeling at

the asset level leads to lower losses for 16 (18) out of 21 methods that use iterated forecasts,

when compared to modeling at the asset class (portfolio) level. Modeling at the asset class

level beats modeling at the portfolio level also 21 times. However, differences are generally

not significant. For scaled forecasts, results are similar. These results are consistent with

the preference for multivariate models reported by Santos et al. (2013).

With regard to the distribution choice, the normal distribution loses from the empirical

and Student’s t-distributions in 13 (15) out of 17 comparisons based on iterated forecasts,

and for all 17 comparisons based on scaled forecasts. The empirical distribution is preferred

to the Student’s t-distribution. This result may be due to the skewness that the empirical

distribution can capture, and contrasts with the bad results for the empirical distribution

when biweekly data are used. The empirical distribution only works well when a large

number of observations is available.

The number of comparisons of model specifications is large, because we analyze 7 speci-

fications. We therefore summarize our results such that we can see the consequences of the

parsimonious specification of RiskMetrics versus the richer (multivariate) GARCH specifi-

cations, the asymmetric effects in the marginal specification (GARCH vs. GJR), and the

dynamics in the multivariate part (CCC, DCC and HDCC).

Panels f and g clearly show a preference for richer model specifications than RiskMetrics.

All 36 multivariate models produce a lower average loss than RiskMetrics, which is significant

for 15 (12) methods with iterated (scaled) forecasts. For the univariate case, the results are

more mixed. Given the preference for multivariate models in panels b and c, we conclude

that allowing for a separate specification of the dynamics in the marginal volatilities and in

the dependence is worthwhile.

Our results also show a clear preference for the asymmetric specification of the volatility

dynamics in the GJR-GARCH model. When iterated forecasts are used, the univariate GJR

specification beats GARCH for 3 out of 3 methods. For the multivariate specifications, it

does so for 53 out of 54 methods, with 20 loss differentials that are significant at the 10%
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level. When scaled forecasts are used, the evidence is also in favor of the GJR specification,

though less pronounced.

We do not find a clear winner for the dynamics in the dependence. The CCC specification

leads to losses that are not that different from the DCC/HDCC specifications. The HDCC

specification performs less than DCC, in particular when scaled forecasts are constructed.

Summarizing, the DM tests indicate that methods that have more information available

and make better use of it lead to lower losses, though differences are often not significant.

For portfolio aggregation, we find a preference for models at the asset or asset class level.

For the distribution, the empirical one is preferred. Multivariate models with asymmetric

effects in the volatility are preferred, but correlation dynamics do not matter much.

4.2 VaR forecasts with a 95% confidence level

We repeat our analyses for VaR forecasts with a confidence level of 95%. We focus here

on the main findings, and provide the full set of results in Appendix C.2. In the discussion

below, we always use the test outcomes at the 5% significance level, except for the results of

the Model Confidence Set, which uses again the 10% significance level.

In terms of absolute forecasting quality, the different methods show better coverage ratios

than for the 99% VaR forecasts. Based on their 95% VaR-forecasts, only 49 methods (out

of 255) are rejected, compared to 149 based on their 99% VaR forecasts. This drop in the

number of rejections is concentrated in the methods that use the normal distribution, as it

goes down from 75 to only 11. For the Student’s t-distribution, the number of rejections

decreases from 67 to 38, indicating that the normal distribution now leads to better coverage.

When we use a significance level of 10%, the empirical distribution outperforms both the

normal and Student’s t-distribution with 4 compared to 47 and 61 rejections.

The rejections based on the 95% VaR forecasts are more concentrated in the methods

that use biweekly observations (19 out of 51), which further strengthens the preference for

less time aggregation. The options for the portfolio aggregation and for the model are more

or less equally affected, and show similar drops in the number of rejections.

The DQ-tests find more evidence of time variation of the VaR exceedances. Based on the

95% VaR forecasts, 65 coefficients are significantly positive, compared to 35 based on the

99% VaR forecasts. We also find more positive coefficients for the 95% case (198 compared

to 117). In particular, the coefficients are positive when weekly and biweekly data are used

to construct forecasts. This finding indicates more overestimation of risk in times of distress.
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The differences with the 99% case may point at changes in the shape of the distributions,

but we do not investigate this issue in more detail.

The average losses can be estimated more precisely based on the 95% VaR forecasts.

As a consequence, the MCS becomes smaller: 126 methods are maintained, and 129 are

removed. Recall that for the 99% VaR forecasts, only 51 models are removed. The removals

are again concentrated in the methods that use a larger degree of temporal aggregation.

Many methods that generate forecasts based on weekly data are removed (75 out of 102),

and even all that use biweekly data. From the 110 methods that use daily data only 3 are

removed.

The pattern that we observe for the removals from the subset of methods that use weekly

data for 99% VaR forecasts is stronger for 95% forecasts. All methods that model on the

asset class or portfolio level are out, as are all methods that use RiskMetrics, and most

methods that use the empirical distribution. The three excluded methods from the subset

based on daily data all use RiskMetrics.

The pairwise comparison of the different methods based on daily data also show a stronger

preference for no portfolio aggregation. Losses are again lower for models at the asset level,

but now the differences are significant for 5 and 13 out of 21 comparisons with models at

the asset class and portfolio level.

The method of constructing forecasts and the distribution for innovations are less conse-

quential for 95% VaR forecasts. Though losses tend to be lower for scaled forecasts of 95%

VaR (42 times compared to 17 times for the 99% VaR), only one differential is significant.

Also, the normal distribution does not lead as often to negative losses.

The pairwise comparisons of the different model specifications yields similar results as

for 99% VaR forecasts. RiskMetrics loses from richer multivariate GARCH specifications.

Within the latter subset, models with the asymmetric GJR specification for the marginal

volatility process outperform models with the symmetric specification, and the choice for

CCC, DCC or HDCC does not matter much.

We conclude that the degree of time aggregation is the most important choice, both for

99% and 95% VaR forecasts. Using daily data leads to the best coverage and the lowest

losses. For 95% VaR forecasts, the degree of portfolio aggregation becomes more important,

though it remains less consequential that the degree of temporal aggregation. Models as the

asset level lead to reasonable coverage, and to lower losses than models at the asset class

or portfolio level. Daily observations at the asset level are best combined with models that
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specify the effects of shocks more precisely. The choice for the distribution is important

for 99% VaR forecasts, with the empirical and Student’s t-distribution outperforming the

normal distribution. For the 95% VaR forecasts, the distribution matters less. The same

holds for the forecasting method.

4.3 Longer estimation window

Our main result that methods with daily data outperform those with (bi)weekly data can

have two causes. Methods based on daily data can better capture the propagation of shocks,

but the better performance can also reflect increased efficiency because more observations

are available for estimation. In particular, 100 biweekly observations may be too few to

reliably estimate the parameters in multivariate GARCH models. Therefore, we investigate

how our results change when we double the estimation window from approximately four

to eight years. So, instead of 1,000, 200 and 100 observations, we now use 2,000, 400 and

200 observations for estimation in the daily, weekly and biweekly methods. We discuss the

main findings here, and present the detailed results in Appendix C.3. If efficiency is the

main driver of our result, we should see an improvement in the forecast quality of methods

based on weekly and especially biweekly data, both in absolute sense and in comparison

with methods based on daily data.

Regarding absolute forecast quality, we observe only slight improvements for biweekly

data. Using the 4-year estimation window, correct unconditional coverage is rejected for

39 out of 51 methods at the 5% significance level (see Table 1). The DQ-test leads to 30

rejections. For the 8-year window, these tests produce 36 and 11 rejections. For weekly data

results become a bit worse.

Our analyses of relative forecast quality show smaller differences between all methods

when using an 8-year estimation window. The MCS contains all methods based on daily

and weekly data, and only six methods based on biweekly data are removed. Pairwise com-

parisons with DM-tests show that daily methods with iterated (scaled) forecasts significantly

(at 5% level) outperform weekly methods 14 (18) times using a 4-year estimation window.

These numbers go down to 8 (11) using a 8-year window. The comparison of daily versus

biweekly methods shows a reduction of 34 (26) to 19 (19). However, at the 10% level, results

are the same for both windows. Moreover, the loss differentials actually increase for the

8-year window, and so do their standard errors, which explains the decreased significance.

Based on these results, we conclude that a low degree of temporal aggregation is prefera-
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ble, because it leads to methods that better capture the propagation of shocks. Our results

for portfolio aggregation point in the same direction. An increase in the number of modeled

assets also leads to models that better capture shocks, without affecting efficiency.

5 Conclusion

In this paper we investigate the importance of the degree of aggregation for forecasting 99%

and 95% ten-day ahead Value-at-Risk (VaR). We analyze the effect of aggregating daily

returns to weekly and biweekly returns, and aggregation of assets into the main asset classes

and into a single portfolio. We compare the importance of aggregation to those of choosing a

time-series model (asymmetric or symmetric GARCH, constant or time-varying correlation,

or the RiskMetrics approach), choosing a distribution (the Gaussian, Student’s t, or the

empirical distribution), and choosing a method for forecast construction (iterated or scaled).

Our main finding is that the degree of temporal aggregation is the most important choice.

Using daily returns leads to better VaR forecasts than (bi)weekly returns. The dynamics in

the distribution of returns is best captured at the daily level. A higher degree of aggregation

leads to a loss of important details. The chosen model and distribution also matter for the

forecasts. When daily returns are chosen, the model is the second-most important choice.

Because the dynamics are present in great detail, the model should accurately capture them.

Because weekly or biweekly returns obscure the return dynamics, the chosen distribution

becomes more important than the model.

We find that multivariate models outperform univariate ones, confirming Santos et al.

(2013), though the differences are not that large, and often not significant. The degree of

portfolio aggregation affects forecast quality less than the degree of temporal aggregation,

the model and distribution choice. Iterating forecasts are better than scaled and direct

forecasts. This holds in particular for the 99% VaR. Scaled forecasts generally perform

better than direct forecasts, in line with Ghysels et al. (2009).

We advise to construct models on the asset class level based on daily data. The model

had best contain asymmetric effects on the marginal level, but correlation dynamics are

not consequential. The distribution should allow for fat tails, in particular for 99% VaR

forecasts. It is also best to iterate forecasts. However, applying the RiskMetrics approach

with scaling does not make forecasts that much worse.
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Dańıelsson, J. and Zigrand, J. (2006). On time-scaling of risk and the square-root-of-time rule.
Journal of Banking & Finance, 30(10):2701–2713.

Demarta, S. and McNeil, A. J. (2005). The t copula and related copulas. International Statistical
Review, 73(1):111–130.

Diebold, F., Hickman, A., Inoue, A., and Schuermann, T. (1997). Converting 1-day volatility to
h-day volatility: Scaling by

√
n is worse than you think. Wharton Working Paper, 97-34.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business &
Economic Statistics, 13(3):134–144.

Drost, F. C. and Nijman, T. E. (1993). Temporal aggregation of garch processes. Econometrica:
Journal of the Econometric Society, 61(4):909–927.

Elliott, G. and Timmermann, A. (2008). Economic forecasting. Journal of Economic Literature,
46(1):3–56.

Engle, R. F. (2002). Dynamic conditional correlation - a simple class of multivariate generalized au-
toregressive conditional heteroskedasticity models. Journal of Business & Economics Statistics,
20(3):339–350.

Engle, R. F. and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by
regression quantiles. Journal of Business & Economic Statistics, 22(4):367–381.

Fama, E. F. (1965). The behavior of stock market prices. Journal of Business, 38(1):34–105.

Ghysels, E., Rubia, A., and Valkanov, R. (2009). Multi-period forecasts of volatility: Direct,
iterated, and mixed-data approaches. Working paper, Rady School of Management, University
of California San Diego.

Ghysels, E., Santa-Clara, P., and Valkanov, R. (2006). Predicting volatility: Getting the most out
of return data sampled at different frequencies. Journal of Econometrics, 131(1):59–95.

Giacomini, R. and Komunjer, I. (2005). Evaluation and combination of conditional quantile fore-
casts. Journal of Business & Economic Statistics, 23(4):416–431.

Giacomini, R. and White, H. (2006). Tests of conditional predictive ability. Econometrica,
74(6):1545–1578.

Giot, P. and Laurent, S. (2004). Modelling daily value-at-risk using realized volatility and ARCH
type models. Journal of Empirical Finance, 11(3):379–398.

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the expected
value and the volatility of the nominal excess return on stocks. Journal of Finance, 48(5):1779–
1801.

Hafner, C. M. (2008). Temporal aggregation of multivariate garch processes. Journal of Econome-
trics, 142(1):467–483.

Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic
Review, 35(3):705–730.

30



Hansen, P. R. and Lunde, A. (2005). A forecast comparison of volatility models: does anything
beat a GARCH (1, 1)? Journal of Applied Econometrics, 20(7):873–889.

Hansen, P. R., Lunde, A., and Nason, J. M. (2011). The model confidence set. Econometrica,
79(2):453–497.

Herwartz, H. and Waichman, I. (2010). A comparison of bootstrap and monte-carlo testing appro-
aches to Value-at-Risk diagnosis. Computational Statistics, 25(4):725–732.

Joe, H. (1997). Multivariate Models and Dependence Concepts, volume 73 of Monographs on Sta-
tistics and Applied Probability. Chapman & Hall, London, UK.

Jondeau, E. and Rockinger, M. (2006). The copula-GARCH model of conditional dependencies: An
international stock market application. Journal of International Money and Finance, 25(5):827–
853.

JP Morgan and Reuters (1996). Riskmetrics–technical document. Technical report, Morgan Gua-
ranty Trust Company and Reuters Ltd.

Kuester, K., Mittnik, S., and Paolella, M. S. (2006). Value-at-risk prediction: A comparison of
alternative strategies. Journal of Financial Econometrics, 4(1):53–89.

Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal
of Derivatives, 3(2):73–84.

Lau, H.-S. and Wingender, J. R. (1989). The analytics of the intervaling effect on skewness and
kurtosis of stock returns. The Financial Review, 24(2):215–233.

Laurent, S., Rombouts, J. V., and Violante, F. (2012). On the forecasting accuracy of multivariate
garch models. Journal of Applied Econometrics, 27(6):934–955.

Laurent, S., Rombouts, J. V., and Violante, F. (2013). On loss functions and ranking forecasting
performances of multivariate volatility models. Journal of Econometrics, 173(1):1–10.

Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36(4):394–
419.

Marcellino, M., Stock, J. H., and Watson, M. W. (2003). Macroeconomic Forecasting in the Euro
Area. European Economic Review, 47(1):1–18.

Marcellino, M., Stock, J. H., and Watson, M. W. (2006). A comparison of direct and itera-
ted multistep ar methods for forecasting macroeconomic time series. Journal of Econometrics,
135(1):499–526.

McAleer, M. (2009). The ten commandments for optimizing value-at-risk and daily capital charges.
Journal of Economic Surveys, 23(5):831–849.

McAleer, M. and Da Veiga, B. (2008). Single-index and portfolio models for forecasting value-at-risk
thresholds. Journal of Forecasting, 27(3):217.

Mina, J. and Xiao, J. Y. (2001). Return to RiskMetrics: The evolution of a standard. Technical
report, RiskMetrics, New York, NY, USA.

Mittnik, S. and Paolella, M. S. (2000). Conditional density and value-at-risk prediction of Asian
currency exchange rates. Journal of Forecasting, 19(4):313–333.

Newey, W. K. and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, 55(3):703–708.

31



Patton, A. (2013). Copula methods for forecasting multivariate time series. In Elliott, G. and
Timmermann, A., editors, Handbook of Economic Forecasting, volume 2B, chapter 16, pages
899–960. Elsevier North Holland, Amsterdam, Netherlands.

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics, 160(1):246–256.

Patton, A. J. and Sheppard, K. (2009). Evaluating volatility and correlation forecasts. In Andersen,
T., Davis, R., Kreiss, J.-P., and Mikosch, T., editors, Handbook of Financial Time Series, pages
801–838. Springer-Verlag, Berlin, Heidelberg.

Pesaran, M. H., Pick, A., and Timmermann, A. (2011). Variable selection, estimation and inference
for multi-period forecasting problems. Journal of Econometrics, 164(1):173–187.

Santos, A. A. P., Nogales, F. J., and Ruiz, E. (2013). Comparing univariate and multivariate
models to forecast portfolio value-at-risk. Journal of Financial Econometrics, 11(2):400–441.

Sbrana, G. and Silvestrini, A. (2013). Aggregation of exponential smoothing processes with an
application to portfolio risk evaluation. Journal of Banking & Finance, 37(5):1437–1450.
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Table 1: Summary results of unconditional coverage and dynamic quantile tests

UC-test results DQ-test results
rejections at sign. sign.

# methods 1% 5% 10% neg. neg. pos. pos.

(a) Temporal aggregation

Daily, iterated 51 1 15 22 46 3 5 0
Daily, scaled 51 12 29 37 46 2 5 0
Weekly, iterated 51 7 32 37 23 0 28 2
Weekly, scaled 51 18 34 37 23 0 28 3
Biweekly, direct 51 26 39 39 0 0 51 30

(b) Portfolio aggregation

Portfolio level 45 15 30 37 18 3 27 10
Asset class level 105 24 57 65 47 0 58 17
Asset level 105 25 62 70 73 2 32 8

(c) Model specification

GARCH, uv. 15 6 13 14 6 0 9 3
GJR, uv. 15 5 9 12 6 1 9 3
RiskMetrics, uv. 15 4 8 11 6 2 9 7
CCC-GARCH 30 8 19 21 17 0 13 1
DCC-GARCH 30 10 20 20 20 0 10 3
HDCC-GARCH 30 12 20 22 19 0 11 3
CCC-GJR 30 5 15 19 22 2 8 1
DCC-GJR 30 6 15 17 21 0 9 4
HDCC-GJR 30 6 15 18 19 0 11 3
RiskMetrics, mv. 30 2 15 18 2 0 28 7

(d) Distribution

Normal 85 50 75 78 44 0 41 7
Empirical 85 2 7 21 47 2 38 18
Student’s t 85 12 67 73 47 3 38 10

This table summarizes the results of the unconditional coverage (UC) and dynamic quantile (DQ) tests of
Christoffersen (1998) and Engle and Manganelli (2004) for the 255 different methods that we analyze. In
each panel, we categorize the methods based on the choice aspect given in the panel heading. For each option
that can be chosen, we report the total number of methods. Next, we report for the number of rejections
from the UC tests for significance levels of 1, 5 and 10%. Under the null (alternative) hypothesis, the actual
coverage ratio equals (exceeds) the theoretical coverage ratio of 0.01. To conduct the DQ test, we regress the
centered hit series on the negtive VaR forecasts. We report the number of negative and positive coefficients,
and the number of significant ones at the 10% level. Significance is determined by bootstraps as in Herwartz
and Waichman (2010). The full results are available in Tables C.1 and C.2 in Appendix C.1.
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Table 2: Average asymmetric tick loss

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 5.84 5.47 5.59 5.81 5.39 5.41 5.82 5.47 5.54
DCC-GARCH 5.54 5.51 5.43 5.34 5.50 5.46
HDCC-GARCH 5.60 5.58 5.47 5.38 5.54 5.56
CCC-GJR 5.54 5.30 5.27 5.51 5.28 5.18 5.48 5.27 5.26
DCC-GJR 5.34 5.17 5.33 5.10 5.23 5.18
HDCC-GJR 5.38 5.24 5.39 5.20 5.35 5.22
RiskMetrics 5.59 6.02 6.07 5.66 5.96 5.82 5.64 6.00 6.13

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 5.92 5.59 5.65 5.66 5.39 5.35 5.78 5.46 5.47
DCC-GARCH 5.66 5.58 5.50 5.33 5.53 5.42
HDCC-GARCH 5.70 5.66 5.47 5.31 5.56 5.48
CCC-GJR 5.74 5.59 5.54 5.59 5.48 5.29 5.66 5.45 5.35
DCC-GJR 5.64 5.44 5.51 5.21 5.40 5.28
HDCC-GJR 5.68 5.47 5.56 5.25 5.56 5.32
RiskMetrics 5.74 6.06 6.13 5.60 5.96 6.00 5.64 6.00 6.06

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 7.13 6.69 6.73 6.86 6.33 6.34 6.88 6.58 6.68
DCC-GARCH 6.70 6.67 6.32 6.29 6.50 6.62
HDCC-GARCH 6.68 6.74 6.36 6.39 6.58 6.67
CCC-GJR 6.62 6.47 6.40 6.43 6.21 6.10 6.38 6.24 6.29
DCC-GJR 6.50 6.36 6.22 6.11 6.25 6.25
HDCC-GJR 6.48 6.41 6.26 6.11 6.32 6.29
RiskMetrics 7.08 7.07 7.33 6.97 7.00 7.51 6.69 7.07 7.27

This table shows the average value of the asymmetric tick loss function of Giacomini and Komunjer (2005)
as in Equation (22) for ϑ = 0.01. All values have been multiplied by 100.

34



Table 2: Average asymmetric tick loss – continued

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 7.28 6.79 6.79 6.75 6.37 6.33 6.84 6.61 6.63
DCC-GARCH 6.79 6.75 6.36 6.30 6.58 6.62
HDCC-GARCH 6.81 6.80 6.42 6.31 6.60 6.66
CCC-GJR 6.75 6.68 6.55 6.27 6.18 6.07 6.37 6.32 6.32
DCC-GJR 6.69 6.50 6.19 6.02 6.34 6.27
HDCC-GJR 6.71 6.57 6.19 6.05 6.37 6.34
RiskMetrics 7.15 7.06 7.36 6.90 6.98 7.30 6.67 7.04 7.22

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 7.42 7.16 7.18 7.55 7.60 7.16 7.22 7.06 7.04
DCC-GARCH 7.12 7.17 7.57 7.16 7.03 7.01
HDCC-GARCH 7.17 7.19 7.61 7.20 7.05 7.00
CCC-GJR 7.17 7.00 6.95 7.15 7.33 6.90 6.88 6.90 6.82
DCC-GJR 6.96 6.93 7.28 6.89 6.82 6.81
HDCC-GJR 7.01 6.96 7.29 6.92 6.88 6.80
RiskMetrics 7.59 7.59 8.45 7.80 8.59 8.95 7.48 7.66 8.40

See table note on previous page.
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Table 3: Methods removed from the Model Confidence Set

(a) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 0.087 0.087
DCC-GARCH
HDCC-GARCH
CCC-GJR
DCC-GJR
HDCC-GJR
RiskMetrics 0.098 0.089 0.082 0.070 0.073

(b) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 0.086 0.079 0.096
DCC-GARCH
HDCC-GARCH 0.095
CCC-GJR 0.089 0.096
DCC-GJR 0.091
HDCC-GJR 0.088
RiskMetrics 0.089 0.082 0.073 0.065 0.075

(c) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 0.082 0.060 0.054 0.078 0.084
DCC-GARCH 0.045 0.075 0.091
HDCC-GARCH 0.097 0.049 0.075 0.089
CCC-GJR 0.087 0.069 0.057 0.081 0.087 0.098
DCC-GJR 0.050 0.080 0.090
HDCC-GJR 0.048 0.080 0.087
RiskMetrics 0.083 0.091 0.066 0.074 0.075 0.068 0.091

(d) Number of removed and maintained methods

Temporal aggr. Out In Total
Daily, iterated 0 51 51
Daily, scaled 0 51 51
Weekly, iterated 7 44 51
Weekly, scaled 13 38 51
Biweekly, direct 31 20 51

Portfolio aggr.
Portfolio level 21 24 45
Asset class level 19 86 105
Asset level 11 94 105

Disitribution
Normal 13 72 85
Empirical 26 59 85
Student’s t 12 73 85

Model Out In Total
GARCH, uv. 8 7 15
GJR, uv. 4 11 15
RiskMetrics, uv. 9 6 15
CCC-GARCH 2 28 30
DCC-GARCH 3 27 30
HDCC-GARCH 5 25 30
CCC-GJR 4 26 30
DCC-GJR 4 26 30
HDCC-GJR 4 26 30
RiskMetrics, mv. 8 22 30

This table presents the MCS p-value with which a model has been removed from the Model Confidence Set.
We follow the procedure of Hansen et al. (2011, Sec. 3.1.2), with the tick loss function in (22), ϑ = 0.01,
and a significance level of 10%. The procedure starts with the complete set of 255 methods. Panels for
daily observations combined with iterated or scaled forecasts are absent, because no methods with these
combinations have been removed. Panel (d) presents the number of methods with a particular choice that
have been removed from (“Out”) and are maintained in (“In”) the Model Confidence Set.36



Table 4: Results of the Diebold-Mariano tests

# of neg. sign. neg. pos. sign. pos.
Method A Method B tests 5% 10% 5% 10%

(a) Forecasting method

Iterated Scaled 51 38 6 14 13 0 0

(b) Portfolio aggregation, iterated forecasts

Asset level Asset class level 21 15 1 3 6 0 0
Asset level Portfolio level 21 18 0 6 3 1 2
Asset class level Portfolio level 21 18 0 0 3 1 2

(c) Portfolio aggregation, scaled forecasts

Asset level Asset class level 21 16 1 3 5 0 0
Asset level Portfolio level 21 18 0 6 3 1 2
Asset class level Portfolio level 21 18 0 0 3 1 2

(d) Distribution, iterated forecasts

Normal Empirical 17 4 0 0 13 1 2
Normal Student’s t 17 2 0 1 15 0 3
Empirical Student’s t 17 12 0 2 5 1 1

(e) Distribution, scaled forecasts

Normal Empirical 17 0 0 0 17 1 2
Normal Student’s t 17 0 0 1 17 0 3
Empirical Student’s t 17 15 0 2 2 1 1

(f) Model, iterated forecasts

RiskMetrics, uv. other, uv. 6 3 0 0 3 0 0
RiskMetrics, mv. other, mv. 36 0 0 0 36 15 32
GARCH, uv. GJR, uv. 3 0 0 0 3 0 1
GARCH, mv. GJR, mv. 54 1 0 0 53 0 20
CCC DCC 12 5 0 0 7 0 0
CCC HDCC 12 8 0 1 4 0 0
DCC HDCC 12 12 0 3 0 0 0

(g) Model, scaled forecasts

RiskMetrics, uv. other, uv. 6 5 0 0 1 0 0
RiskMetrics, mv. other, mv. 36 0 0 0 36 12 28
GARCH, uv. GJR, uv. 3 0 0 0 3 0 0
GARCH, mv. GJR, mv. 54 14 0 0 40 2 14
CCC DCC 12 5 0 0 7 0 1
CCC HDCC 12 8 0 0 4 0 0
DCC HDCC 12 10 1 5 2 0 0

This table shows summary results of the tests that the expected value of the loss function of methods A
and B are equal, LA = LB . We calculate the loss differential as LA − LB . A negative loss differential
means that method A is preferable to method B. We use the asymmetric tick loss function of Giacomini and
Komunjer (2005) as in Equation (22) with ϑ = 0.01. We report the number of negative and positive average
loss differentials, and the number of times these differentials are significant for the 5% and 10% significance
levels, based on the statistic proposed by Diebold and Mariano (1995), evaluated in the setting of Giacomini
and White (2006). Standard errors of the average loss differential are based on Newey and West (1987) with
10 leads and lags. We compare pairs of methods that differ in only one choice aspect (indicated by the panel
heading), so the other four choices are the same. All methods use daily data.
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A Data Details

A.1 Portfolio construction

This section contains detailed information on the construction of the typical pension fund

portfolio. For all series, returns in USD are based on the closing prices of each day. All

return series are obtained from Thomson Reuters Datastream. For the returns on the US

bond portfolios we use the Barclays US Aggregate Bond Index (Mnemonic: LHGOVBD)

and the Barclays Capital US Corporate Bond Index (Mn: LHCCORP). The Aggregate Bond

Index is a predominate index benchmark for US bond investors, and acts as a benchmark

index for many US index funds. It comprises four major subindexes: US Government Index,

US Credit Index, US Mortgage Backed Securities Index and US Asset Backed Securities

Index. The Corporate Bond Index covers investment-grade bonds that are denominated in

US Dollar.

We use the MSCI Europe Index to cover the European stock market (Mn: MSEROP$).

This index captures large and mid cap representation across the following 15 Developed

Markets (DM) countries in Europe: Austria, Belgium, Denmark, Finland, France, Germany,

Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the UK.

The US equity part is based on the MSCI USA Index (Mn: MSUSAML), a free float ad-

justed market capitalization index that is designed to measure large and mid cap US equity

market performance. The equity part for the Pacific area represents the large and mid cap

across Australia, Hong Kong, Japan, New Zealand and Singapore (Mn: MSPACF$). Like-

wise, the MSCI EM Index summarizes the equity returns from 23 Emerging Markets (Mn:

MSEMKF$). All retur

The return on the real estate investment is constructed from the FTSE EPRA/NAREIT

Developed that incorporates Real Estate Investment Trusts (REITs) and Real Estate Holding

& Development companies (Mn: FEGLOB$). The index represent general trends in eligible

real estate equities worldwide.

The investment in commodities is approximated by the the S&P GSCI Index (formerly

the Goldman Sachs Commodity Index) (Mn: GSCITOT). This Index serves as a benchmark

for investment in the commodity markets and as a measure of commodity performance over

time. Currently, it comprises 24 commodities from all commodity sectors - energy products,

industrial metals, agricultural products, livestock products and precious metals with a high

exposure to energy products.
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A.2 Initial data analysis

The summary statistics for daily returns in Table A.1 indicate substantial differences bet-

ween bonds and the other assets. Bonds show a considerably lower return than the other

asset classes. The lowest average return comes from Pacific equities (-0.50% per year), the

highest from US equities. Bond volatilities range from 4.48% to 5.40% per year, whereas

the volatilities of the other classes range from 16.57% to 21.71%. Almost all series exhibit

negative skewness (between -0.18 and -0.61), except the Pacific equity series. Excess kurtosis

is present in each return series (ranging from 2.48 to 10.18). Consequently, the Jarque-Bera

test rejects the hypothesis of normality for all series. The significance of Ljung-Box statistics

indicates significant autocorrelation for all series. The autocorrelation is largely driven by

the first lag and is positive for all series, except for US equity and for commodity returns.

[Table A.1 about here.]

Because we are interested in the effects of temporal and portfolio aggregation on pre-

dictive densities in general and risk in particular, we calculate summary statistics for the

portfolio as a whole, and for weekly and biweekly returns. Of course, the average portfo-

lio return corresponds directly with a weighted average of the returns of each asset class.

The volatilities of the portfolio returns shows the effects of diversification, as it is much lo-

wer than the non-bond classes. However, diversification breaks down when extreme returns

occur. The portfolio returns are stronger left skewed than almost all constituent series,

and the kurtosis coefficient is close to the maximum among them. Clustering over time is

also stronger for the portfolio, with a high first order autocorrelation coefficient and a high

Ljung-Box statistic.

Using weekly or biweekly returns instead of daily returns has a small effect on the vo-

latility of the series. If returns were i.i.d., the scaled volatilities would be independent of

the interval over which the returns are observed. When returns exhibit positive (negative)

autocorrelation, the volatility of aggregated returns will be higher (lower). For Emerging

Market equities, real estate, and the portfolio as a whole, we see an increase in volatility,

which implies positive autocorrelation. For the other classes, volatilities go down, implying

negative autocorrelation.

The coefficients for skewness and kurtosis show large deviations from the values that

would result if daily returns were i.i.d. Lau and Wingender (1989) derive that when k i.i.d.

returns are aggregated, the skewness coefficient is scaled by 1/
√
k and the coefficient of excess

kurtosis by 1/k. Instead of a decrease for skewness, the left skewness of all series increases for

biweekly and weekly returns compared to daily returns. The kurtosis coefficients for weekly
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returns decrease, but much less than for the i.i.d. case. These results indicate that extreme

returns, and in particular negative extreme returns tend to cluster. Also, the hypothesis of

a normal distribution is rejected for (bi)weekly data.

The statistics for the portfolio as a whole show that extreme and negative returns tend

to cluster over time and in the cross section. The volatility estimates do not vary much with

the frequency of observation, and are considerably lower than the average volatilities of the

asset classes. When returns are aggregated, the degree of left skewness goes up instead of

down, and the coefficient of excess kurtosis does not decrease either. Hence, while scaling

daily or weekly volatilities to biweekly volatilities may work, scaling the density seems to be

incorrect, in particular when risk measures are needed. The results for the portfolio returns

show that cross-sectional aggregation does not mitigate this effect.

We show the correlations between the different asset classes at different frequencies in

Table A.2. We see a clear block structure in the correlation matrix. Corporate bonds and

government bonds are highly correlated with each other, but correlations with the other

assets is slightly negative. The equity returns are also highly correlated with each other and

with real estate. Commodities is a category on its own. Aggregating the assets into the

larger categories of bonds, equities and alternatives corresponds with this block structure.

[Table A.2 about here.]

Correlations that are calculated with weekly or a biweekly returns generally show the

same picture as the correlations for daily data, though some equity correlations show a

substantial increase. This applies in particular to all correlations with Pacific Equities,

reflecting that daily returns are not synchronized.

We conclude from this initial analysis that asset returns show several forms of temporal

dependence. Linear dependence over time, as measured by autocorrelation, is small but

significant. Scaling volatility is therefore not correct, but deviations are generally not very

large. The results for skewness and kurtosis on the other hand are more troublesome. Instead

of going down, both measures increase, both for temporal and for portfolio aggregation.

These increases indicate that extreme, and in particular extreme negative returns tend to

cluster. As a consequence, risks are larger for a (bi)weekly than for a daily horizon. Simply

scaling daily risk measures might therefore not be appropriate.
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Table A.1: Summary Statistics of Asset and Portfolio Returns

Govt. Corp. EU US Pacific EM real commo- portfolio
bonds bonds equities equities equities equities estate dities

Weight (in %) 30 20 12 10.5 3.75 3.75 10 10 100

(a) daily returns

Mean (% p.a.) -0.02 0.45 5.24 7.06 -0.50 6.24 3.16 4.00 2.38
Volatiliy (% p.a.) 4.48 5.40 20.18 18.35 21.24 19.15 16.57 21.71 6.87
Skewness -0.18 -0.27 -0.14 -0.30 -0.01 -0.54 -0.50 -0.61 -0.59
Excess kurtosis 2.19 2.48 9.24 8.43 5.27 10.18 10.13 8.73 9.45
Jarque-Bera 1240 1610 21485 17963 6974 26308 26026 19527 22796
ACF(1) 0.022 0.004 0.007 -0.065 0.015 0.212 0.137 -0.012 0.154
ACF(2) -0.031 -0.012 -0.039 -0.023 -0.031 0.044 0.035 0.004 0.008
ACF(3) -0.018 -0.008 -0.022 0.010 -0.016 0.018 0.026 -0.002 0.016
Ljung-Box 46.80 35.30 77.76 87.67 49.94 371.1 176.8 39.64 205.0

(b) weekly returns

Volatiliy (% p.a.) 4.42 5.33 19.73 17.11 20.98 22.73 18.74 21.55 7.74
Skewness -0.25 -0.39 -0.73 -0.66 -0.20 -0.80 -1.05 -0.60 -0.98
- implied by daily -0.08 -0.12 -0.06 -0.13 0.00 -0.24 -0.22 -0.27 -0.26
Excess kurtosis 0.85 2.04 5.01 6.10 2.42 5.59 8.79 3.30 7.56
- implied by daily 0.44 0.50 1.85 1.69 1.05 2.04 2.03 1.75 1.89
Jarque-Bera 49.59 262.2 1729 2103 329.4 1927 4235 661.3 3645
ACF(1) -0.064 -0.027 -0.079 -0.103 -0.052 0.029 0.010 -0.032 0.008
ACF(2) 0.058 0.090 0.025 0.045 0.030 0.092 0.058 0.043 0.067
Ljung-Box 30.31 40.13 50.31 42.63 31.42 54.99 53.71 37.13 48.96

(c) biweekly returns

Volatiliy (% p.a.) 4.27 5.26 18.93 16.20 20.42 23.05 18.82 21.20 7.77
Skewness -0.28 -0.64 -1.06 -0.97 -0.21 -0.97 -1.35 -0.68 -1.45
- implied by weekly -0.18 -0.27 -0.51 -0.47 -0.14 -0.56 -0.74 -0.42 -0.69
- implied by daily -0.06 -0.08 -0.04 -0.09 0.00 -0.17 -0.16 -0.19 -0.19
Excess kurtosis 0.66 2.73 5.41 6.47 2.34 4.22 9.28 2.92 10.63
- implied by weekly 0.42 1.02 2.50 3.05 1.21 2.80 4.40 1.65 3.78
- implied by daily 0.22 0.25 0.92 0.84 0.53 1.02 1.01 0.87 0.95
Jarque-Bera 22.87 235.8 1004 1483 188.2 587.5 2635 285.4 3538
ACF(1) 0.05 0.11 0.00 -0.01 0.02 0.13 0.09 0.07 0.09
Ljung-Box 25.74 27.55 29.57 23.66 21.73 42.97 45.06 28.32 36.60

Means and volatilities for daily returns in panel(a) are annualized assuming 250 trading days. ACF(q)
denotes the autocorrelation for lag q. Ljung-Box statistics are calculated for 20 lags. Critical values for 95%
and 99% confidence levels are 31.4 and 37.6 based on a χ2

20 distribution. The statistics in panel (b) are
the averages of the statistics for each day of the week. The statistics in panel (c) are the averages of the
statistics for each of the ten possible starting days. Implied coefficients of skewness and of excess kurtosis
for the aggregation of k returns are calculated by scaling the non-aggregated coefficients by 1/

√
k and 1/k,

based on Lau and Wingender (1989).
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Table A.2: Correlations of Asset Returns

Govt. Corp. EU US Pacific EM Real Commo-
bonds bonds equities equities equities equities estate dities

(a) daily returns

Govt. bonds 1 0.91 -0.15 -0.16 -0.02 -0.14 -0.13 -0.14
Corp. bonds 1 -0.08 -0.06 0.06 -0.02 -0.04 -0.12
EU equities 1 0.51 0.12 0.43 0.56 0.14
US equities 1 0.38 0.63 0.61 0.25
Pac equities 1 0.53 0.52 0.10
EM equities 1 0.62 0.22
Real estate 1 0.19
Commodities 1

(b) weekly returns

Govt. bonds 1 0.85 -0.11 -0.10 -0.06 -0.14 -0.05 -0.15
Corp. bonds 1 0.05 0.06 0.07 0.05 0.12 -0.07
EU equities 1 0.74 0.59 0.73 0.74 0.25
US equities 1 0.46 0.64 0.67 0.18
Pacific equities 1 0.61 0.67 0.19
EM equities 1 0.71 0.25
Real estate 1 0.23
Commodities 1

(c) biweekly returns

Govt. bonds 1 0.80 -0.10 -0.10 -0.07 -0.13 -0.02 -0.16
Corp. bonds 1 0.15 0.16 0.13 0.15 0.24 -0.03
EU equities 1 0.77 0.62 0.73 0.75 0.26
US equities 1 0.53 0.67 0.69 0.18
Pacific equities 1 0.63 0.68 0.22
EM equities 1 0.71 0.27
Real estate 1 0.25
Commodities 1

The correlations in panel (b) are the averages of the correlations based on weekly returns for each day of the
week. The correlations in panel (c) are the averages of the correlations based on biweekly returns for each
of the ten possible starting days.
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B Methodological details

B.1 Esimation

In this subsection, we discuss the parameter estimation for all combinations of univariate

and multivariate models on the one hand and distributions on the other hand.

Univariate case

We first estimate the parameters of the univariate version of Equation (5) by ordinary least

squares (OLS), and construct a series of residuals ε̂bt,k. Based on this series, we estimate

the parameters of the GJR or GARCH model in Equation (9) or of the RiskMetrics model

in Equation (13) as the second pass. When these models are combined with the normal or

Student’s t-distribution for the innovations we use Maximum Likelihood (ML) estimation.

When the Student’s t-distribution is used, we base the likelihood function on the scaled pdf

in Equation (14). When these models are combined with the empirical distribution, we use

Quasi Maximum Likelihood (QML) estimation. For all models, we use variance targeting to

determine ωbi,k.

Multivariate RiskMetrics

We estimate the parameters of the VAR-model of Equation (5) by OLS, and construct a series

of residuals ε̂bt,k. In the second pass, we estimate the parameters in Equation (13) based on

this series. When RiskMetrics is combined with the normal or Student’s t-distribution, we

apply ML estimation. In the case of the Student’s t-distribution, the likelihood function

is scaled, as in Equation (16). When the empirical distribution is chosen, we use QML

estimation.

CCC model

We estimate the parameters of the VAR-model of Equation (5) by OLS, and construct a

series of residuals ε̂bt,k. In the second pass, we estimate the parameters of the marginal

models (GJR or GARCH) for each series ε̂bi,t,k, i = 1, 2, . . . ,mb in the same way as in the

univariate case, and construct series of standardized residuals η̂bi,t,k. The third pass depends

on the distribution. When the normal distribution is used, we estimate the correlation matrix

by the sample correlation of η̂bt,k (cf. Bollerslev, 1990). When the Student’s t or empirical

distribution is used, we first apply the probability integral transform (PIT) to the residuals

of each marginal model based on Equation (14) or Equation (17). Next, we use ML based
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on the transformed series to estimate the parameters of the Student’s t in Equation (15)

(cf. Patton, 2013, Sec. 3.1) or the parameters of the Gaussian copula in Equation (18) (cf.

Patton, 2013, Sec. 3.2; Chen and Fan, 2006).

DCC model

In this case, we follow the same first two passes as for the CCC model. The final pass

depends again on the distribution. When the normal distribution is used, we estimate the

DCC parameters in (10) by ML estimation based on the normal distribution function (cf.

Engle, 2002). For the other two distributions, we apply the PIT, and then use ML based on

the transformed series to estimate the DCC parameters (and the degrees of freedom in the

case of the Student’s t-copula). In all methods we use correlation targeting as proposed by

Aielli (2013).

B.2 Forecasting methods

We build the forecasts of the portfolio return distribution from forecasts for the expected

returns, and for the unexpected part, upt,h ≡ rpt,h−Et[r
p
t,h]. The Value-at-Risk for the portfolio

return follows as

VaRα(rpt,h) = −Et[r
p
t,h] + VaRα(upt,h). (B.1)

The expected portfolio return obeys

Et[r
p
t,h] = w′µt,h/k,k, (B.2)

where µt,κ,k is the conditional κ-steps ahead cumulative expected return with κ = h/k that

follows from Equation (5).14 We show in Appendix B.3 that

µt,k,κ ≡Et

[
κ−1∑
j=0

rt+jk,k

]
=(Im − Γ )−2

(
κIm − (κ+ 1)Γ + Γ κ+1

)
φ+

(Im − Γ )−1(Γ − Γ κ+1)rt−k,k. (B.3)

The forecasts for the unexpected part are derived in closed form or based on simulations.

We discuss the different cases in the next subsections.

14We suppress the superscript b that indicates the basic portfolios to ease the notation in this subsection.
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B.2.1 One-step-ahead forecasts

One-step ahead forecasts result when full temporal aggregation is applied to the modeled

returns. They are also used when forecasts are scaled. For some cases, VaR can be calculated

analytically, for others simulations are needed. We provide an overview below, and discuss

the construction for a one-step-ahead forecast k

Normal Student’s t Empirical

mb = 1 mb > 1 mb = 1 mb > 1

CCC or DCC Closed form Closed form Simulation C Closed form Simulation C

RiskMetrics Closed form Closed form Closed form Closed form Simulation E

In the closed-form cases, Value-at-Risk is calculated as

VaRα(upt,k) = −
√
w′Σt,kwF

−1(α;θ). (B.4)

Here Σt,k denotes the forecasted variance, which depends on the specification, CCC, DCC

or RiskMetrics. F−1 denotes the inverse of a standardized cumulative distribution function,

and θ is a vector containing all parameters needed to calculate this inverse. When a normal

distribution is assumed, this vector is empty. When the Student’s t-distribution is used,

the cdf should be based on Equation (14), and θ contains the degree of freedom parameter.

When the empirical distribution is used, θ contains a set of realizations (cf. Equation (17)).

We use here that the normal and Student’s t-distribution are closed under summation.

When the CCC or DCC approaches are combined with the Student’s t- or empirical

distribution, copula-based simulations are needed to calculate VaRα(ut,k). Each simulation

s consist of four steps.

C1. Generate a one-step-ahead forecast for the correlation matrix Rt,k and the volatilities

σi,t,k.

C2. Draw a random mb× 1 vector ṽs from the copula (Gaussian or Student’s t-), using the

forecasted correlation matrix Rt,k.

C3. Transform each draw ṽs,i by applying the standardized inverse cdf of the respective

marginal distribution, η̃s,i = F−1i (ṽs,i;θi).

C4. Multiply η̃s,i by the forecasted volatility, ε̃s,i = σi,t,kη̃s,i.

C5. Pre-multiply the vector ε̃s by the weights to produce a random draw from the distri-

bution of upt,h, ũ
p
s = w′ε̃s.
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Repeating these steps S times approximates the distribution of upt,k. The α-quantile of the

simulated distribution is a forecast for VaRα(upt,k).

When the empirical distribution is combined with RiskMetrics, a different simulation

procedure is needed.

E1. Generate a one-step-ahead forecast for the variance matrix Σt,k.

E2. Take a random draw ζ̃s from the empirical distribution that corresponds with ζt,k.

E3. Multiply ζ̃s with the Cholesky decomposition of the forecasted variance matrix, ε̃s =

Σ
1/2
t,k ζ̃s.

E4. As in step C5 of the copula-based simulation.

This procedure is again repeated S times to approximate the distribution of upt,k, from which

the α-quantile is taken.

B.2.2 Iterated multi-step-ahead forecasts

Iterated forecasts take the complete serial dependence that is implied by the different models

into account. Because of this serial dependence, closed-form expression for VaR are not

available and simulations are needed. For the CCC or DCC models, a simulation s consists

of the following steps

I1. Set j = 1. Generate a one-step-ahead forecast for the correlation matrix Rt,k,s = Rt,k

and the volatilities σi,t,k,s = σi,t,k.

I2. Draw a random mb × 1 vector ṽs,j from the copula (Gaussian or Student’s t-), using

the forecasted correlation matrix Rt+(j−1)k,k,s.

I3. Transform each draw ṽs,j,i by applying the standardized inverse cdf of the respective

marginal distribution, η̃s,j,i = F−1i (ṽs,j,i;θi).

I4. Multiply η̃s,j,i by the forecasted volatility, ε̃s,j,i = σi,t+(j−1)k,k,sη̃s,i.

I5. Construct one-step-ahead forecasts for the correlation matrix Rt+jk,k,s based on

Rt+(j−1)k,k,s and η̃s,j, and the volatilities σi,t+jk,k,s based on σi,t+(j−1)k,k,s and ε̃s,j,i.

If j < κ, increase j by one, and go to step I2 Otherwise continue.

I6. Construct the draw from the distribution upt,h as

ũps = w′
κ∑
j=1

ε̃s,j.
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Repeating these steps S times approximates the distribution of upt,h. The α-quantile of the

simulated distribution is a forecast for VaRα(upt,h).

For the RiskMetrics approach, the procedure for simulation s goes as follows.

R1. Set j = 1. Generate a one-step-ahead forecast for the variance matrix Σt,k,s = Σt,k.

R2. Draw a random mb × 1 vector ζ̃s,j from the standardized distribution for ζt,k.

R3. Multiply ζ̃s,j with the Cholesky decomposition of the forecasted variance matrix, ε̃s,j =

Σ
1/2
t+(j−1)k,k,sζ̃s,j.

R4. Construct a one-step-ahead forecast for the variance matrix Σt+jk,k,s based on

Σt+(j−1)k,k,s and ε̃s,j. If j < κ, increase j by one, and go to step R2. Otherwise

continue with step I6.

Repeating this procedure S times approximates the distribution upt,h, from which the α-

quantile is taken.

B.2.3 Scaled multi-step-ahead forecasts

Contrary to iterated forecasts, scaled forecasts ignore the serial dependence between the

innovations in the return process. Scaled forecasts are based on the assumption that the

distribution of upt,h is the same as the distribution of upt,k with a scale parameter that is

adjusted for the horizon h. A scaled forecast is hence a one-step-ahead forecasts combined

with an adjustment of the scale. When the one-step-ahead forecast can be constructed in

closed form as in Equation (B.4), the scaled forecast takes the form

VaRα(upt,h) = −
√

(w ⊗w)′Sh/k(Γ ) vec(Σt,k)F
−1(α;θ), (B.5)

where Sh/k(Γ ) is the m2
b ×m2

b scaling factor, and Σt,k is the one-step-ahead forecast of the

variance matrix. We derive this scaling factor in Appendix B.3.

When simulations are used to construct a one-step-ahead forecast, scaling takes place in

the initialization steps C1 and E1. In both cases, a scaled forecast of the variance matrix is

constructed as

Σt,h = unvec
(
Sh/k(Γ ) vec(Σt,k)

)
. (B.6)

This scaled variance matrix can be directly used in the RiskMetrics simulation procedure. For

the copula simulation procedure, the (scaled) variance matrix is split in a (scaled) correlation

matrix and scaled volatility forecasts.
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When VAR-effects are absent, so Γ = O, the scaling factor simplifies to Sh/k(O) =

h/kIm2 , which implies a multiplication of the variance matrix by h/k. In that case, the

VaR-forecast itself can be scaled,

VaRα(upt,h) =
√
h/kVaRα(upt,k),

which is the familiar “square root of time”-rule.

B.3 VAR-forecasts and variance scaling

For the construction of the Value-at-Risk forecasts, analytical results for forecasts by VAR

models are relevant. When the variance of the innovations in a VAR-model are constant,

multi-step-ahead forecasts for the (cumulative) process can be constructed in closed form.

These forecasts indicate how the variance should be scaled, moving from one- to n-step-ahead

forecasts. We derive the scaling factor in this appendix (see also Campbell and Viceira, 2005).

We use slightly different notation in this section for clarity. We consider an m× 1 vector

yt that is observed at each period t, and follows a VAR of order 1,

yt+1 = φ+ Γyt + εt+1, Et[εt+1] = 0m Et[εt+1ε
′
t+1] = Ω, (B.7)

where φ is an m-vector, Γ is a m×m matrix, and εt+1 is an m-vector with innovations that

are independent over time. We assume that the eigenvalues of Γ are inside the unit circle,

and that Ω is invertible.

The forward solution yt+n follows as

yt+n =
n−1∑
i=0

Γ i(φ+ εt+n−i) + Γ κyt

= (Im − Γ )−1(Im − Γ n)φ+ Γ nyt +
n−1∑
i=0

Γ iεt+n−i, (B.8)

where Im is an identity matrix of size m, and the inverse of (Im − Γ ) exists because the Γ

is convergent. The conditional expectation of yt+n is thus given by

E[yt+n|yt] = (Im − Γ )−1(I − Γ n)φ+ Γ nyt. (B.9)
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Next, we define the cumulative process

zt,n ≡
n∑
i=1

yt+i. (B.10)

Its expectation conditional on a value yt follows as

E[zt,n|yt] =
n∑
i=1

E[yt+i|yt] =
n∑
i=1

(
(Im − Γ )−1(I − Γ i)φ+ Γ iyt

)
=(Im − Γ )−1

(
nIm − Γ

n−1∑
i=0

Γ i

)
φ+ Γ

n−1∑
i=0

Γ iyt

=(Im − Γ )−2 (n(Im − Γ )− Γ (Im − Γ n))φ+ Γ (Im − Γ )−1(Im − Γ n)yt

=(Im − Γ )−2
(
nIm − (n+ 1)Γ + Γ n+1

)
φ+

(Im − Γ )−1(Γ − Γ n+1)yt. (B.11)

The deviation of zt,n from its conditional average can be written as

zt,n − E[zt,n|yt] =
n∑
i=1

i−1∑
j=0

Γ jεt+i−j =
n∑
i=1

n−i∑
j=0

Γ jεt+i

=
n∑
i=1

(Im − Γ )−1(Im − Γ n−i+1)εt+i. (B.12)

Because the innovation vectors are i.i.d., the variance follows as

Var[zt,n] =
n∑
i=1

(Im − Γ )−1(Im − Γ i)Ω
(
(Im − Γ )−1(Im − Γ i)

)′
,

For comfortable matrices A, B, and C, vec(ABC) = (C ⊗ A) vec(B), which applied to

the previous equation yields

vec(Var[zt,n]) =
n∑
i=1

((
(Im − Γ )−1(Im − Γ i)

)
⊗
(
(Im − Γ )−1(Im − Γ i)

))
vec(Ω)

=
(
(Im − Γ )−1 ⊗ (Im − Γ )−1

)
·

n∑
i=1

(
(Im − Γ i)⊗ (Im − Γ i)

)
vec(Ω) (B.13)
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The summation in this expression can be reduced as follows15

n∑
i=1

(
(Im − Γ i)⊗ (Im − Γ i)

)
= nIm2 − Im ⊗

n∑
i=1

Γ i −
n∑
i=1

Γ i ⊗ Im +
n∑
i=1

Γ i ⊗ Γ i

= nIk2 − Im ⊗ (Im − Γ )−1(Γ − Γ n+1)− (Im − Γ )−1(Γ − Γ n+1)⊗ Im+

(Ik2 − Γ ⊗ Γ )−1
(
(Γ ⊗ Γ )− (Γ ⊗ Γ )n+1

)
. (B.14)

The conditional variance of the weighted sum w′zt,n can be calculated as

Var[w′zt,n|yt] = w′Var[zt,n]w = (w⊗w)′ vec(Var[zt,n]) = (w⊗w)′Sn(Γ ) vec(Ω), (B.15)

where Sn is the m2 ×m2 scaling matrix for horizon n depending on Γ ,

Sn(Γ ) = ((Im − Γ )⊗ (Im − Γ ))−1
n∑
i=1

(
(Im − Γ i)⊗ (Im − Γ i)

)
, (B.16)

as follows from Equation (B.13). Equation (B.14) can be substituted for the summation.

Because the one-period variance Ω and the weights w are on opposite sides of the scaling

matrix Sn(Φ), we cannot scale the variance of the weighted sum w′Ωw.

This scaling factor is an extension of the traditional square-root-of-time rule for scaling

the volatility. When VAR-effects are absent, i.e., Γ = O, Sn(O) = nIm2 , and scaling is

simply by n, Var[w′zt,n|yt] = nw′Ωw = nVar[w′zt,1|yt]. When m = 1, the VAR model

reduces to an AR(1)-model with autoregressive coefficient ρ. In that case, the scaling factor

reduces to (cf. Wang et al., 2011)

Sn(ρ) =
1

(1− ρ)2

(
n− 2ρ

1− ρn

1− ρ
+ ρ2

1− ρ2n

1− ρ2

)
. (B.17)

C Additional results

C.1 Detailed results for the 99% confidence level

[Table C.1 about here.]

[Table C.1 (continued) about here.]

15See http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html for an overview of matrix operati-
ons.
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[Table C.2 about here.]

[Table C.2 (continued) about here.]

[Table C.3 about here.]

[Table C.4 about here.]

[Table C.5 about here.]

[Table C.5 (continued) about here.]

[Table C.6 about here.]

[Table C.7 about here.]

[Table C.7 (continued) about here.]

C.2 Results 95% VaR forecasts

[Table C.8 about here.]

[Table C.9 about here.]

[Table C.9 (continued) about here.]

[Table C.10 about here.]

[Table C.10 (continued) about here.]

[Table C.11 about here.]

[Table C.11 (continued) about here.]

[Table C.12 about here.]

[Table C.12 (continued) about here.]

[Table C.13 about here.]

[Table C.14 about here.]

[Table C.15 about here.]

[Table C.16 about here.]

[Table C.16 (continued) about here.]

[Table C.17 about here.]
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C.3 Results based on 8-year estimation window

[Table C.18 about here.]

[Table C.19 about here.]

[Table C.19 (continued) about here.]

[Table C.20 about here.]

[Table C.20 (continued) about here.]

[Table C.21 about here.]

[Table C.21 (continued) about here.]

[Table C.22 about here.]

[Table C.23 about here.]

[Table C.24 about here.]

[Table C.24 (continued) about here.]
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Table C.1: Results for the unconditional coverage test

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 1.71∗∗ 1.73∗∗ 1.95∗∗∗ 1.53∗ 1.27 1.53∗ 1.69∗∗ 1.63∗∗ 1.85∗∗

GARCH (0.39) (0.38) (0.40) (0.37) (0.32) (0.34) (0.38) (0.36) (0.38)
DCC- 1.73∗∗ 1.83∗∗ 1.23 1.35 1.67∗∗ 1.67∗∗

GARCH (0.38) (0.39) (0.32) (0.32) (0.37) (0.37)
HDCC- 1.79∗∗ 1.91∗∗ 1.33 1.55∗ 1.65∗∗ 1.79∗∗

GARCH (0.39) (0.40) (0.32) (0.34) (0.37) (0.39)
CCC- 1.18 1.27 1.47∗ 1.04 1.00 1.16 1.08 1.18 1.41

GJR (0.31) (0.31) (0.33) (0.30) (0.27) (0.30) (0.30) (0.30) (0.33)
DCC- 1.21 1.37 0.94 1.14 1.10 1.25

GJR (0.31) (0.32) (0.27) (0.28) (0.29) (0.31)
HDCC- 1.19 1.45∗ 0.96 1.21 1.21 1.39

GJR (0.31) (0.34) (0.26) (0.31) (0.30) (0.33)
RiskMetrics 1.37 1.43 1.75∗∗ 1.45∗ 1.33 1.39 0.78 1.37 1.59∗

(0.34) (0.37) (0.40) (0.35) (0.35) (0.34) (0.24) (0.37) (0.40)

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 1.97∗∗∗ 1.87∗∗ 2.07∗∗∗ 1.31 1.33 1.41 1.69∗∗ 1.57∗ 1.73∗∗

GARCH (0.42) (0.39) (0.41) (0.33) (0.32) (0.33) (0.38) (0.36) (0.37)
DCC- 1.95∗∗∗ 1.97∗∗∗ 1.35 1.35 1.75∗∗ 1.63∗∗

GARCH (0.40) (0.40) (0.34) (0.33) (0.38) (0.37)
HDCC- 1.99∗∗∗ 2.11∗∗∗ 1.39 1.43∗ 1.73∗∗ 1.65∗∗

GARCH (0.42) (0.42) (0.34) (0.34) (0.38) (0.37)
CCC- 1.93∗∗∗ 1.83∗∗ 2.01∗∗∗ 1.51∗ 1.47∗ 1.49∗ 1.63∗∗ 1.63∗∗ 1.73∗∗

GJR (0.40) (0.38) (0.39) (0.35) (0.34) (0.34) (0.37) (0.35) (0.36)
DCC- 1.91∗∗∗ 1.81∗∗ 1.51∗ 1.39 1.67∗∗ 1.67∗∗

GJR (0.39) (0.38) (0.34) (0.32) (0.35) (0.36)
HDCC- 1.93∗∗∗ 1.95∗∗∗ 1.55∗ 1.41 1.71∗∗ 1.63∗∗

GJR (0.39) (0.39) (0.35) (0.33) (0.37) (0.35)
RiskMetrics 1.75∗∗ 1.59∗ 2.01∗∗∗ 1.18 1.31 1.18 0.84 1.33 1.35

(0.38) (0.39) (0.43) (0.32) (0.36) (0.34) (0.26) (0.36) (0.36)

This table shows the empirical coverage (in %) and results of the unconditional coverage tests of Christoffersen
(1998). Models are estimated with a moving window of 1,000 daily returns, 200 weekly returns or 100
biweekly returns. For every day in the sample, we construct a violation indicator that equals one when
the ten-day realized portfolio loss exceeds the forecasted VaRϑ with ϑ = 0.01, and zero otherwise, as in
Equation (20). We report the coverage (in %), and test whether it is equal to ϑ against the alternative of
strictly more violations. We report Newey and West (1987) standard errors calculated with 10 leads and
lags in parentheses. Superscripts ∗,∗∗ ,∗∗∗ denote rejection of the null-hypothesis with a significance level of
10%, 5% and 1%. The results are based on 5,021 forecasts.
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Table C.1: Results for the unconditional coverage test – continued

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 2.25∗∗∗ 1.95∗∗ 2.03∗∗∗ 1.79∗∗ 1.14 1.12 2.03∗∗ 1.85∗∗ 1.91∗∗

GARCH (0.46) (0.41) (0.43) (0.42) (0.33) (0.33) (0.45) (0.41) (0.42)
DCC- 1.99∗∗∗ 2.09∗∗∗ 1.10 1.06 1.77∗∗ 1.91∗∗

GARCH (0.42) (0.43) (0.33) (0.33) (0.40) (0.41)
HDCC- 2.03∗∗∗ 2.09∗∗∗ 1.08 1.06 1.97∗∗∗ 1.89∗∗

GARCH (0.43) (0.43) (0.32) (0.33) (0.41) (0.41)
CCC- 1.85∗∗ 1.71∗∗ 1.75∗∗ 1.47∗ 1.02 0.98 1.73∗∗ 1.53∗ 1.61∗∗

GJR (0.39) (0.38) (0.39) (0.36) (0.31) (0.30) (0.39) (0.37) (0.37)
DCC- 1.69∗∗ 1.73∗∗ 1.06 1.00 1.51∗ 1.65∗∗

GJR (0.38) (0.39) (0.31) (0.30) (0.36) (0.37)
HDCC- 1.67∗∗ 1.75∗∗ 1.12 1.06 1.53∗ 1.65∗∗

GJR (0.38) (0.40) (0.31) (0.31) (0.37) (0.38)
RiskMetrics 2.01∗∗ 1.81∗∗ 2.03∗∗ 1.67∗ 1.33 1.29 1.79∗∗ 1.71∗∗ 1.75∗∗

(0.45) (0.42) (0.46) (0.41) (0.39) (0.38) (0.40) (0.42) (0.43)

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 2.41∗∗∗ 2.15∗∗∗ 2.21∗∗∗ 1.75∗∗ 0.94 1.00 2.13∗∗∗ 1.91∗∗ 1.91∗∗

GARCH (0.47) (0.43) (0.44) (0.41) (0.31) (0.33) (0.46) (0.42) (0.41)
DCC- 2.19∗∗∗ 2.21∗∗∗ 0.98 1.04 1.85∗∗ 1.93∗∗

GARCH (0.43) (0.44) (0.32) (0.33) (0.42) (0.41)
HDCC- 2.31∗∗∗ 2.23∗∗∗ 0.98 1.00 1.99∗∗∗ 1.99∗∗∗

GARCH (0.45) (0.44) (0.31) (0.32) (0.42) (0.42)
CCC- 2.31∗∗∗ 2.23∗∗∗ 2.13∗∗∗ 1.59∗ 1.10 1.10 1.91∗∗ 1.83∗∗ 1.81∗∗

GJR (0.43) (0.44) (0.43) (0.37) (0.32) (0.32) (0.40) (0.39) (0.39)
DCC- 2.29∗∗∗ 2.07∗∗∗ 1.10 1.08 1.81∗∗ 1.87∗∗

GJR (0.44) (0.42) (0.31) (0.31) (0.39) (0.39)
HDCC- 2.27∗∗∗ 2.15∗∗∗ 1.18 1.04 1.89∗∗ 1.87∗∗

GJR (0.44) (0.43) (0.33) (0.31) (0.40) (0.40)
RiskMetrics 2.15∗∗∗ 1.91∗∗ 2.03∗∗ 1.67∗ 1.39 1.27 1.77∗∗ 1.69∗∗ 1.65∗

(0.46) (0.43) (0.47) (0.41) (0.37) (0.36) (0.40) (0.41) (0.42)

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 2.55∗∗∗ 2.21∗∗∗ 2.33∗∗∗ 1.83∗∗ 0.92 1.06 2.25∗∗∗ 2.15∗∗∗ 1.99∗∗

GARCH (0.48) (0.44) (0.46) (0.42) (0.30) (0.32) (0.47) (0.44) (0.43)
DCC- 2.27∗∗∗ 2.33∗∗∗ 0.88 1.10 2.05∗∗∗ 2.05∗∗∗

GARCH (0.45) (0.46) (0.30) (0.32) (0.42) (0.44)
HDCC- 2.33∗∗∗ 2.35∗∗∗ 0.94 1.06 2.21∗∗∗ 1.99∗∗

GARCH (0.46) (0.46) (0.30) (0.32) (0.45) (0.43)
CCC- 2.75∗∗∗ 2.31∗∗∗ 2.17∗∗∗ 2.07∗∗∗ 0.90 1.16 2.33∗∗∗ 1.97∗∗ 1.95∗∗

GJR (0.48) (0.44) (0.44) (0.43) (0.29) (0.32) (0.45) (0.42) (0.42)
DCC- 2.29∗∗∗ 2.13∗∗∗ 0.88 1.19 2.03∗∗∗ 1.91∗∗

GJR (0.45) (0.44) (0.28) (0.32) (0.42) (0.41)
HDCC- 2.29∗∗∗ 2.19∗∗∗ 0.98 1.16 1.95∗∗ 1.91∗∗

GJR (0.44) (0.44) (0.29) (0.33) (0.41) (0.42)
RiskMetrics 2.29∗∗∗ 1.93∗∗ 2.29∗∗∗ 2.09∗∗∗ 1.79∗∗ 2.09∗∗ 2.07∗∗∗ 1.81∗∗ 2.11∗∗

(0.48) (0.45) (0.49) (0.44) (0.43) (0.48) (0.45) (0.44) (0.50)

See table note on previous page.
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Table C.2: Results of the dynamic quantile tests

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.23 −0.11 −0.27 −0.28 −0.19 −0.22 −0.26 −0.15 −0.13
GARCH (0.14) (0.27) (0.14) (0.11) (0.13) (0.14) (0.12) (0.20) (0.24)

DCC- −0.11 −0.08 −0.15 −0.17 −0.10 −0.07
GARCH (0.26) (0.31) (0.16) (0.15) (0.26) (0.30)

HDCC- −0.11 −0.19 −0.14 −0.24 −0.15 −0.12
GARCH (0.26) (0.20) (0.19) (0.12) (0.19) (0.26)

CCC- −0.11 −0.07 −0.19 −0.22∗ −0.08 −0.21∗ −0.15 −0.08 −0.18
GJR (0.20) (0.26) (0.14) (0.08) (0.21) (0.10) (0.13) (0.22) (0.15)

DCC- −0.07 −0.10 −0.13 −0.15 −0.11 −0.11
GJR (0.25) (0.23) (0.12) (0.13) (0.17) (0.20)

HDCC- −0.08 −0.16 −0.07 −0.19 −0.06 −0.12
GJR (0.22) (0.18) (0.22) (0.13) (0.26) (0.21)

RiskMetrics −0.08 0.03 0.05 −0.13 0.01 0.02 −0.17∗ 0.01 0.00
(0.25) (0.49) (0.52) (0.21) (0.45) (0.50) (0.08) (0.43) (0.44)

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.25 −0.17 −0.24 −0.14 −0.08 −0.13 −0.23 −0.11 −0.15
GARCH (0.15) (0.20) (0.16) (0.18) (0.27) (0.21) (0.14) (0.24) (0.22)

DCC- −0.11 −0.11 −0.08 −0.08 −0.13 −0.08
GARCH (0.26) (0.27) (0.27) (0.25) (0.23) (0.30)

HDCC- −0.19 −0.22 −0.12 −0.08 −0.10 −0.07
GARCH (0.19) (0.19) (0.22) (0.26) (0.27) (0.31)

CCC- −0.15 −0.17 −0.30 −0.19 −0.13 −0.19 −0.14 −0.11 −0.29∗

GJR (0.21) (0.18) (0.11) (0.15) (0.18) (0.14) (0.20) (0.23) (0.10)
DCC- −0.14 −0.16 −0.11 −0.09 −0.10 −0.11

GJR (0.21) (0.20) (0.22) (0.24) (0.25) (0.25)
HDCC- −0.13 −0.26 −0.12 −0.16 −0.09 −0.21

GJR (0.23) (0.13) (0.20) (0.17) (0.27) (0.14)
RiskMetrics −0.17 0.06 0.07 −0.10 0.03 0.03 −0.18∗ 0.01 −0.02

(0.18) (0.55) (0.56) (0.21) (0.50) (0.54) (0.09) (0.45) (0.37)

This table reports the results of the dynamic quantile test of Engle and Manganelli (2004). We conduct a
linear regression of the centered VaR-violations on a constant and the forecasted VaRϑ (in %) for ϑ = 0.01, as
in Equation (21). We report the estimated coefficient on the forecasted VaRθ (expressed as a decimal rate),
and quantile of its t-statistic in the distribution of the statistic under the null hypothesis of no predictability.
Following Herwartz and Waichman (2010), we construct this distribution by 10,000 block bootstrapped
samples with a block length of 10. Superscripts ∗,∗∗ ,∗∗∗ denote quantiles in the 10%, 5% and 1% of the left
or right tail.
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Table C.2: Results of the dynamic quantile test – continued

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.09 0.02 0.00 0.13 0.01 −0.04 0.08 0.01 −0.05
GARCH (0.60) (0.47) (0.46) (0.72) (0.48) (0.34) (0.58) (0.48) (0.38)

DCC- 0.05 −0.03 0.01 −0.08 0.02 −0.07
GARCH (0.54) (0.40) (0.46) (0.27) (0.49) (0.35)

HDCC- 0.11 −0.05 −0.01 −0.03 0.08 −0.03
GARCH (0.64) (0.38) (0.40) (0.37) (0.59) (0.40)

CCC- 0.09 0.01 −0.12 0.06 −0.08 −0.05 0.04 −0.03 −0.13
GJR (0.64) (0.47) (0.26) (0.57) (0.21) (0.29) (0.52) (0.36) (0.23)

DCC- 0.00 −0.12 −0.06 −0.02 0.00 −0.06
GJR (0.44) (0.26) (0.24) (0.37) (0.43) (0.33)

HDCC- 0.05 −0.11 −0.01 −0.03 0.02 −0.05
GJR (0.56) (0.27) (0.40) (0.36) (0.47) (0.35)

RiskMetrics 0.24 0.20 0.21 0.18 0.13 0.15∗∗ 0.21∗ 0.20 0.20
(0.89) (0.81) (0.78) (0.87) (0.83) (0.97) (0.94) (0.80) (0.84)

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.12 0.05 −0.08 0.16 0.00 −0.02 0.05 0.01 −0.08
GARCH (0.63) (0.53) (0.36) (0.83) (0.43) (0.37) (0.52) (0.46) (0.34)

DCC- 0.08 −0.05 0.00 −0.02 0.00 −0.06
GARCH (0.56) (0.37) (0.41) (0.39) (0.45) (0.36)

HDCC- 0.11 −0.06 0.03 −0.02 0.09 −0.02
GARCH (0.63) (0.38) (0.53) (0.37) (0.60) (0.41)

CCC- 0.05 −0.04 −0.19 0.08 0.00 −0.03 0.06 0.00 −0.19
GJR (0.53) (0.39) (0.22) (0.64) (0.44) (0.34) (0.55) (0.42) (0.20)

DCC- −0.02 −0.23 0.04 −0.04 0.03 −0.09
GJR (0.42) (0.18) (0.57) (0.31) (0.50) (0.30)

HDCC- 0.08 −0.19 0.03 −0.02 0.05 −0.16
GJR (0.57) (0.23) (0.53) (0.36) (0.54) (0.21)

RiskMetrics 0.22 0.20 0.21 0.18∗ 0.17∗ 0.14∗∗ 0.16 0.23 0.17
(0.82) (0.79) (0.77) (0.91) (0.94) (0.97) (0.83) (0.86) (0.81)

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.35∗ 0.30 0.26 0.26∗∗∗ 0.09∗ 0.10 0.39∗∗ 0.24 0.30
GARCH (0.91) (0.86) (0.79) (1.00) (0.95) (0.85) (0.97) (0.83) (0.89)

DCC- 0.31 0.26 0.09∗∗ 0.12∗ 0.30∗ 0.23
GARCH (0.88) (0.78) (0.95) (0.91) (0.91) (0.81)

HDCC- 0.35∗ 0.26 0.10∗∗ 0.13∗ 0.29 0.25
GARCH (0.91) (0.80) (0.97) (0.94) (0.89) (0.85)

CCC- 0.26 0.28 0.15 0.27∗∗∗ 0.08∗ 0.10 0.27∗ 0.27∗ 0.14
GJR (0.89) (0.89) (0.68) (1.00) (0.94) (0.83) (0.94) (0.93) (0.69)

DCC- 0.31∗ 0.16 0.09∗∗ 0.12∗ 0.25∗ 0.16
GJR (0.92) (0.69) (0.97) (0.90) (0.91) (0.74)

HDCC- 0.33∗ 0.17 0.10∗∗ 0.10 0.26∗ 0.19
GJR (0.94) (0.71) (0.97) (0.83) (0.92) (0.77)

RiskMetrics 0.35∗∗ 0.32∗∗ 0.60∗∗∗ 0.30∗∗∗ 0.21∗∗∗ 0.24∗∗∗ 0.38∗∗∗ 0.33∗∗ 0.50∗∗

(0.96) (0.96) (1.00) (1.00) (1.00) (1.00) (1.00) (0.97) (0.97)

See table note on previous page.
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Table C.3: Results of the DM-tests for iterated vs. scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.08 −0.06 −0.13∗∗ 0.16 0.06 −0.01 0.04 0.07 0.01
GARCH (0.07) (0.07) (0.07) (0.14) (0.11) (0.04) (0.06) (0.08) (0.05)

DCC- −0.07 −0.12∗∗ 0.02 −0.06∗ 0.04 −0.03
GARCH (0.05) (0.07) (0.10) (0.05) (0.06) (0.03)

HDCC- −0.07∗ −0.10∗ 0.07 0.00 0.09 −0.02
GARCH (0.06) (0.07) (0.10) (0.04) (0.08) (0.03)

CCC- −0.20 −0.26∗∗ −0.29∗ −0.08 −0.11 −0.19 −0.18 −0.09 −0.19
GJR (0.17) (0.14) (0.21) (0.10) (0.11) (0.21) (0.15) (0.08) (0.16)

DCC- −0.27∗∗ −0.30∗ −0.11 −0.18 −0.10 −0.17
GJR (0.16) (0.22) (0.11) (0.22) (0.09) (0.16)

HDCC- −0.23∗∗ −0.29∗ −0.05 −0.17 −0.10 −0.21
GJR (0.13) (0.22) (0.10) (0.21) (0.09) (0.17)

RiskMetrics −0.15∗ −0.06∗ −0.04 0.07 −0.17∗∗∗ 0.00 0.01 0.06 −0.01
(0.09) (0.03) (0.06) (0.08) (0.07) (0.10) (0.06) (0.07) (0.02)

This table shows summary results of the tests that the expected value of the loss function of methods A
and B are equal, LA = LB . We report the loss differential LA − LB (multiplied by 100). A negative loss
differential means that method A is preferable to method B. We use the asymmetric tick loss function of
Giacomini and Komunjer (2005) as in Equation (22) with ϑ = 0.01. The two methods differ in their forecast
construction, with A using iterated and B using scaled forecasts. Both methods use daily data. We report
standard errors of the average loss differential in parentheses, based on Newey and West (1987) with 10
leads and lags. We test that the average loss differential is zero based on the statistic proposed by Diebold
and Mariano (1995), evaluated in the setting of Giacomini and White (2006). Superscripts ∗,∗∗ ,∗∗∗ denote
rejection of the null-hypothesis with a significance level of 10%, 5% and 1%.
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Table C.4: Results of the DM-tests for portfolio aggregation

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Test 1 vs. 3 1 vs. 8 3 vs. 8 1 vs. 3 1 vs. 8 3 vs. 8 1 vs. 3 1 vs. 8 3 vs. 8

CCC- 0.38 0.25 −0.13 0.43 0.40∗ −0.03 0.36 0.29 −0.07
GARCH (0.36) (0.25) (0.20) (0.41) (0.30) (0.17) (0.36) (0.27) (0.17)

DCC- 0.31 0.33 0.03 0.38 0.47∗ 0.09 0.33 0.36 0.04
GARCH (0.27) (0.31) (0.11) (0.34) (0.36) (0.10) (0.31) (0.33) (0.11)

HDCC- 0.24 0.26 0.02 0.34 0.43 0.09 0.28 0.26 −0.02
GARCH (0.24) (0.25) (0.12) (0.32) (0.34) (0.11) (0.29) (0.27) (0.14)

CCC- 0.24 0.27∗ 0.03 0.23 0.33∗ 0.10 0.21 0.22 0.01
GJR (0.28) (0.19) (0.19) (0.33) (0.25) (0.16) (0.29) (0.23) (0.18)

DCC- 0.20 0.37∗ 0.16∗ 0.18 0.41∗ 0.23∗∗ 0.25 0.30 0.04
GJR (0.23) (0.26) (0.11) (0.29) (0.31) (0.10) (0.29) (0.26) (0.15)

HDCC- 0.16 0.30 0.14 0.12 0.31 0.19∗ 0.13 0.26 0.13
GJR (0.21) (0.24) (0.13) (0.25) (0.24) (0.13) (0.22) (0.24) (0.13)

RiskMetrics −0.43∗∗ −0.48∗∗ −0.05 −0.30∗ −0.16∗ 0.13 −0.35 −0.49 −0.13
(0.26) (0.23) (0.18) (0.20) (0.11) (0.24) (0.40) (0.50) (0.14)

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Test 1 vs. 3 1 vs. 8 3 vs. 8 1 vs. 3 1 vs. 8 3 vs. 8 1 vs. 3 1 vs. 8 3 vs. 8

CCC- 0.33 0.27 −0.05 0.27 0.30 0.04 0.32 0.31 −0.01
GARCH (0.33) (0.26) (0.15) (0.30) (0.29) (0.11) (0.36) (0.30) (0.15)

DCC- 0.26 0.34 0.08 0.16 0.33 0.17 0.25 0.36 0.10
GARCH (0.25) (0.30) (0.11) (0.20) (0.34) (0.16) (0.28) (0.34) (0.13)

HDCC- 0.22 0.26 0.04 0.19 0.35 0.16 0.22 0.31 0.09
GARCH (0.23) (0.25) (0.11) (0.21) (0.32) (0.14) (0.27) (0.29) (0.12)

CCC- 0.15 0.21 0.05 0.11 0.30 0.19∗ 0.21 0.32 0.11
GJR (0.24) (0.22) (0.15) (0.21) (0.26) (0.12) (0.27) (0.28) (0.13)

DCC- 0.10 0.30 0.20∗ 0.08 0.38 0.29∗ 0.26 0.38 0.12
GJR (0.17) (0.25) (0.14) (0.14) (0.31) (0.19) (0.27) (0.30) (0.13)

HDCC- 0.07 0.27 0.21∗ 0.03 0.34 0.31∗∗ 0.10 0.35 0.25∗

GJR (0.15) (0.25) (0.14) (0.13) (0.27) (0.17) (0.19) (0.30) (0.16)
RiskMetrics −0.33∗ −0.39∗∗ −0.07 −0.36∗∗ −0.40∗∗∗ −0.04 −0.37 −0.43 −0.06

(0.22) (0.18) (0.16) (0.18) (0.14) (0.21) (0.33) (0.37) (0.12)

This table shows summary results of the tests that the expected value of the loss function of methods A
and B are equal, LA = LB . We report the loss differential LA − LB (multiplied by 100). A negative loss
differential means that method A is preferable to method B. We use the asymmetric tick loss function of
Giacomini and Komunjer (2005) as in Equation (22) with ϑ = 0.01. The two methods differ in their degree
of portfolio aggregation. We consider aggregation into a portfolio (labeled “1”), three asset classes (labeled
“3”), and no aggregation (labeled “8”). All methods use daily data. We report standard errors of the average
loss differential in parentheses, based on Newey and West (1987) with 10 leads and lags. We test that the
average loss differential is zero based on the statistic proposed by Diebold and Mariano (1995), evaluated
in the setting of Giacomini and White (2006). Superscripts ∗,∗∗ ,∗∗∗ denote rejection of the null-hypothesis
with a significance level of 10%, 5% and 1%.
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Table C.5: Results of the DM-tests for the model specification

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH vs. −0.07 0.08 −0.05 0.07 −0.03 0.08
DCC-GARCH (0.10) (0.10) (0.08) (0.09) (0.06) (0.09)

CCC-GARCH vs. −0.14 0.01 −0.09 0.03 −0.08 −0.03
HDCC-GARCH (0.13) (0.03) (0.10) (0.07) (0.08) (0.04)

CCC-GARCH vs. 0.30 0.16 0.32∗ 0.30 0.10 0.23 0.34∗ 0.20 0.28∗

CCC-GJR (0.25) (0.20) (0.20) (0.24) (0.18) (0.19) (0.26) (0.21) (0.18)
CCC-GARCH vs. 0.13 0.42∗ 0.06 0.31 0.24 0.35∗

DCC-GJR (0.18) (0.28) (0.16) (0.25) (0.23) (0.24)
CCC-GARCH vs. 0.08 0.35∗ 0.00 0.21 0.11 0.32∗

HDCC-GJR (0.17) (0.24) (0.15) (0.17) (0.18) (0.21)
CCC-GARCH vs. 0.25 −0.56∗ −0.48∗∗∗ 0.15 −0.57 −0.41∗∗∗ 0.18 −0.53∗ −0.59∗
RiskMetrics (0.21) (0.41) (0.18) (0.15) (0.46) (0.14) (0.34) (0.39) (0.37)

DCC-GARCH vs. −0.07∗ −0.07 −0.04 −0.04 −0.04 −0.11
HDCC-GARCH (0.04) (0.08) (0.04) (0.04) (0.04) (0.09)

DCC-GARCH vs. 0.24 0.24∗ 0.15 0.16 0.23 0.20∗

CCC-GJR (0.26) (0.15) (0.23) (0.14) (0.25) (0.14)
DCC-GARCH vs. 0.20 0.34∗ 0.10 0.24∗ 0.27 0.27∗

DCC-GJR (0.22) (0.21) (0.20) (0.18) (0.26) (0.17)
DCC-GARCH vs. 0.15 0.27∗ 0.04 0.14 0.14 0.24∗

HDCC-GJR (0.21) (0.17) (0.18) (0.12) (0.20) (0.15)
DCC-GARCH vs. −0.49∗ −0.56∗∗ −0.52∗ −0.48∗∗∗ −0.50∗ −0.67∗
RiskMetrics (0.32) (0.25) (0.40) (0.20) (0.35) (0.44)

HDCC-GARCH vs. 0.30 0.31∗ 0.19 0.20 0.27 0.31∗

CCC-GJR (0.29) (0.20) (0.25) (0.17) (0.26) (0.20)
HDCC-GARCH vs. 0.27 0.41∗ 0.14 0.28∗ 0.32 0.38∗

DCC-GJR (0.25) (0.27) (0.22) (0.21) (0.27) (0.25)
HDCC-GARCH vs. 0.22 0.34∗ 0.08 0.18 0.19 0.35∗

HDCC-GJR (0.24) (0.23) (0.20) (0.14) (0.21) (0.22)
HDCC-GARCH vs. −0.42∗ −0.49∗∗∗ −0.48∗ −0.44∗∗∗ −0.46∗ −0.57∗
RiskMetrics (0.29) (0.19) (0.37) (0.18) (0.33) (0.37)

CCC-GJR vs. −0.03 0.10 −0.05 0.08 0.04 0.07
DCC-GJR (0.05) (0.10) (0.05) (0.08) (0.04) (0.07)

CCC-GJR vs. −0.08 0.03 −0.11∗ −0.02 −0.08 0.04
HDCC-GJR (0.08) (0.07) (0.08) (0.04) (0.08) (0.05)

CCC-GJR vs. −0.05 −0.72∗ −0.80∗∗ −0.15 −0.67 −0.64∗∗ −0.16 −0.73∗ −0.87∗∗
RiskMetrics (0.15) (0.55) (0.35) (0.19) (0.59) (0.30) (0.14) (0.56) (0.52)

DCC-GJR vs. −0.05 −0.07∗ −0.06 −0.10 −0.13∗ −0.03
HDCC-GJR (0.04) (0.05) (0.05) (0.08) (0.08) (0.03)

DCC-GJR vs. −0.69∗ −0.90∗∗ −0.63 −0.72∗∗ −0.77∗ −0.94∗∗
RiskMetrics (0.50) (0.43) (0.56) (0.35) (0.57) (0.57)

HDCC-GJR vs. −0.64∗ −0.83∗∗ −0.57 −0.62∗∗ −0.64∗ −0.91∗∗
RiskMetrics (0.48) (0.39) (0.52) (0.28) (0.49) (0.55)

This table shows summary results of the tests that the expected value of the loss function of methods A and B
are equal, LA = LB . We report the loss differential LA−LB (multiplied by 100). A negative loss differential
means that method A is preferable to method B. We use the asymmetric tick loss function of Giacomini and
Komunjer (2005) as in Equation (22) with ϑ = 0.01. The two methods differ in their model specification.
All methods use daily data. We report standard errors of the average loss differential in parentheses, based
on Newey and West (1987) with 10 leads and lags. We test that the average loss differential is zero based
on the statistic proposed by Diebold and Mariano (1995), evaluated in the setting of Giacomini and White
(2006). Superscripts ∗,∗∗ ,∗∗∗ denote rejection of the null-hypothesis with a significance level of 10%, 5% and
1%.
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Table C.5: Results of the DM-tests for the model specification – continued

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH vs. −0.06 0.07 −0.10 0.03 −0.07 0.05
DCC-GARCH (0.08) (0.07) (0.11) (0.08) (0.09) (0.07)

CCC-GARCH vs. −0.11 −0.01 −0.08 0.05 −0.10 0.00
HDCC-GARCH (0.11) (0.04) (0.10) (0.05) (0.10) (0.04)

CCC-GARCH vs. 0.18 0.01 0.11 0.07 −0.09 0.06 0.12 0.00 0.12
CCC-GJR (0.15) (0.12) (0.10) (0.12) (0.13) (0.06) (0.14) (0.12) (0.10)

CCC-GARCH vs. −0.04 0.21∗ −0.12 0.14∗ 0.06 0.19∗

DCC-GJR (0.13) (0.13) (0.17) (0.09) (0.11) (0.12)
CCC-GARCH vs. −0.08 0.18∗ −0.17 0.10∗∗ −0.11 0.16∗

HDCC-GJR (0.14) (0.12) (0.18) (0.06) (0.15) (0.11)
CCC-GARCH vs. 0.19 −0.47 −0.48∗∗ 0.06 −0.57∗ −0.64∗∗∗ 0.14 −0.55∗ −0.59∗
RiskMetrics (0.15) (0.41) (0.23) (0.10) (0.39) (0.19) (0.25) (0.42) (0.39)

DCC-GARCH vs. −0.04∗ −0.08 0.03 0.02 −0.04 −0.05
HDCC-GARCH (0.03) (0.07) (0.03) (0.03) (0.03) (0.07)

DCC-GARCH vs. 0.07 0.04 0.02 0.03 0.07 0.07
CCC-GJR (0.16) (0.11) (0.13) (0.10) (0.15) (0.10)

DCC-GARCH vs. 0.02 0.14∗ −0.01 0.11∗∗ 0.13 0.14∗

DCC-GJR (0.12) (0.09) (0.12) (0.07) (0.14) (0.08)
DCC-GARCH vs. −0.02 0.11 −0.06 0.07 −0.04 0.11∗

HDCC-GJR (0.12) (0.09) (0.13) (0.08) (0.12) (0.08)
DCC-GARCH vs. −0.40 −0.55∗∗ −0.46∗ −0.67∗∗∗ −0.48∗ −0.64∗
RiskMetrics (0.34) (0.28) (0.30) (0.24) (0.35) (0.44)

HDCC-GARCH vs. 0.12 0.12 −0.01 0.02 0.11 0.13
CCC-GJR (0.18) (0.12) (0.14) (0.09) (0.15) (0.12)

HDCC-GARCH vs. 0.07 0.22∗ −0.04 0.09 0.16 0.19∗

DCC-GJR (0.13) (0.14) (0.13) (0.07) (0.15) (0.13)
HDCC-GARCH vs. 0.03 0.19∗ −0.09 0.05 0.00 0.16∗

HDCC-GJR (0.13) (0.14) (0.13) (0.07) (0.12) (0.12)
HDCC-GARCH vs. −0.36 −0.47∗∗ −0.49∗ −0.69∗∗∗ −0.44∗ −0.59∗
RiskMetrics (0.32) (0.22) (0.30) (0.22) (0.34) (0.39)

CCC-GJR vs. −0.05 0.10 −0.03 0.08 0.05∗ 0.07
DCC-GJR (0.08) (0.08) (0.08) (0.08) (0.04) (0.06)

CCC-GJR vs. −0.09 0.07 −0.08 0.04 −0.11 0.03
HDCC-GJR (0.10) (0.07) (0.09) (0.03) (0.10) (0.05)

CCC-GJR vs. 0.01 −0.48 −0.59∗∗ −0.01 −0.48∗ −0.71∗∗∗ 0.03 −0.55 −0.72∗
RiskMetrics (0.16) (0.45) (0.29) (0.14) (0.36) (0.20) (0.21) (0.44) (0.45)

DCC-GJR vs. −0.04∗ −0.03∗ −0.05∗ −0.04 −0.16∗∗ −0.03
HDCC-GJR (0.03) (0.02) (0.03) (0.06) (0.09) (0.03)

DCC-GJR vs. −0.43 −0.69∗∗ −0.45∗ −0.78∗∗∗ −0.60∗ −0.78∗
RiskMetrics (0.38) (0.34) (0.30) (0.25) (0.44) (0.48)

HDCC-GJR vs. −0.39 −0.66∗∗ −0.40∗ −0.74∗∗∗ −0.44 −0.75∗
RiskMetrics (0.36) (0.33) (0.28) (0.21) (0.36) (0.47)

See table note on the previous page.
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Table C.6: Results of the DM-tests for the distribution

(a) daily returns, iterated forecasts

Normal vs. t Normal vs. Empirical Empirical vs. t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.02 0.00 0.05 0.03 0.08 0.18∗ −0.01 −0.08 −0.12∗

GARCH (0.02) (0.02) (0.05) (0.06) (0.11) (0.13) (0.06) (0.11) (0.09)
DCC- 0.04 0.05 0.10 0.17∗ −0.06 −0.12

GARCH (0.05) (0.04) (0.13) (0.13) (0.10) (0.10)
HDCC- 0.06 0.02 0.13 0.21 −0.07 −0.18∗

GARCH (0.07) (0.04) (0.13) (0.17) (0.09) (0.14)
CCC- 0.06∗∗ 0.03 0.01 0.03 0.02 0.09 0.03 0.01 −0.08

GJR (0.03) (0.04) (0.05) (0.05) (0.10) (0.12) (0.04) (0.07) (0.10)
DCC- 0.11∗ −0.01 0.01 0.07 0.10∗∗ −0.08

GJR (0.09) (0.02) (0.10) (0.10) (0.05) (0.10)
HDCC- 0.03 0.02 −0.01 0.04 0.04 −0.02

GJR (0.03) (0.03) (0.09) (0.08) (0.07) (0.06)
RiskMetrics −0.05 0.03 −0.06 −0.07∗ 0.07 0.25∗ 0.02 −0.04 −0.31

(0.22) (0.03) (0.20) (0.05) (0.06) (0.18) (0.24) (0.05) (0.33)

(b) daily returns, scaled forecasts

Normal vs. t Normal vs. Empirical Empirical vs. t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.14∗∗ 0.14∗ 0.18∗∗ 0.27∗ 0.20 0.29∗ −0.12 −0.07 −0.12
GARCH (0.08) (0.10) (0.10) (0.19) (0.17) (0.20) (0.12) (0.09) (0.11)

DCC- 0.13∗ 0.15∗ 0.16 0.25 −0.03 −0.10
GARCH (0.09) (0.10) (0.15) (0.21) (0.08) (0.11)

HDCC- 0.14∗ 0.18∗∗ 0.23∗ 0.35∗ −0.09 −0.17
GARCH (0.10) (0.10) (0.17) (0.25) (0.09) (0.15)

CCC- 0.08∗ 0.13∗ 0.19∗∗ 0.15∗ 0.11 0.25∗ −0.08 0.02 −0.06
GJR (0.06) (0.08) (0.11) (0.11) (0.11) (0.16) (0.07) (0.05) (0.06)

DCC- 0.24∗∗ 0.15∗∗ 0.13 0.23∗ 0.11 −0.07
GJR (0.14) (0.09) (0.11) (0.16) (0.10) (0.08)

HDCC- 0.11∗ 0.15∗∗ 0.12 0.22∗∗ −0.01 −0.06
GJR (0.08) (0.09) (0.11) (0.13) (0.06) (0.06)

RiskMetrics 0.10 0.06 0.07 0.14 0.11 0.13 −0.04 −0.05 −0.07
(0.25) (0.09) (0.18) (0.14) (0.17) (0.26) (0.12) (0.10) (0.33)

This table shows summary results of the tests that the expected value of the loss function of methods A and B
are equal, LA = LB . We report the loss differential LA−LB (multiplied by 100). A negative loss differential
means that method A is preferable to method B. We use the asymmetric tick loss function of Giacomini
and Komunjer (2005) as in Equation (22) with ϑ = 0.01. The two methods differ in the distribution of the
innovations. We consider the normal, empirical and Student’s t-distributions. All methods use daily data.
We report standard errors of the average loss differential in parentheses, based on Newey and West (1987)
with 10 leads and lags. We test that the average loss differential is zero based on the statistic proposed by
Diebold and Mariano (1995), evaluated in the setting of Giacomini and White (2006). Superscripts ∗,∗∗ ,∗∗∗

denote rejection of the null-hypothesis with a significance level of 10%, 5% and 1%.
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Table C.7: Results of the DM-tests for temporal aggregation

(a) daily vs. weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −1.29∗∗ −1.14∗ −1.22∗ −1.05∗∗ −0.93∗ −0.95∗ −1.05∗∗ −1.15∗ −1.11∗
GARCH (0.62) (0.77) (0.85) (0.49) (0.66) (0.65) (0.54) (0.79) (0.79)

DCC- −1.16∗ −1.16∗ −0.94∗ −0.89∗ −1.16∗ −1.00∗
GARCH (0.81) (0.76) (0.67) (0.57) (0.82) (0.71)

HDCC- −1.16∗ −1.08∗ −1.01∗ −0.88∗ −1.11∗ −1.04∗
GARCH (0.79) (0.72) (0.72) (0.56) (0.78) (0.71)

CCC- −1.08∗∗ −1.13∗ −1.17∗ −0.91∗∗ −0.92∗ −0.93∗ −0.90∗∗ −1.03∗ −0.97∗
GJR (0.64) (0.74) (0.79) (0.51) (0.59) (0.60) (0.51) (0.73) (0.70)

DCC- −1.19∗ −1.16∗ −1.00∗ −0.89∗ −1.07∗ −1.02∗
GJR (0.79) (0.75) (0.65) (0.55) (0.74) (0.71)

HDCC- −1.17∗ −1.10∗ −0.91∗ −0.87∗∗ −1.07∗ −0.97∗
GJR (0.79) (0.70) (0.58) (0.51) (0.74) (0.65)

RiskMetrics −1.49∗∗ −1.26∗ −1.05∗∗ −1.31∗∗ −1.68∗∗ −1.05∗∗ −1.05∗∗ −1.14∗ −1.07∗∗
(0.86) (0.93) (0.63) (0.73) (0.80) (0.49) (0.58) (0.73) (0.63)

(b) daily vs. weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −1.36∗∗ −1.14∗ −1.19∗ −1.09∗∗ −0.98∗ −0.98∗ −1.06∗∗ −1.16∗ −1.15∗
GARCH (0.66) (0.82) (0.86) (0.49) (0.70) (0.61) (0.55) (0.84) (0.85)

DCC- −1.17∗ −1.13∗ −0.97∗ −0.87∗∗ −1.20∗ −1.05∗
GARCH (0.84) (0.78) (0.75) (0.52) (0.87) (0.72)

HDCC- −1.14∗ −1.11∗ −1.01∗ −0.95∗∗ −1.18∗ −1.04∗
GARCH (0.82) (0.75) (0.74) (0.53) (0.84) (0.73)

CCC- −1.01∗∗ −1.02∗ −1.09∗ −0.68∗∗ −0.78∗ −0.70∗∗ −0.71∗∗ −0.97∗ −0.87∗
GJR (0.56) (0.72) (0.72) (0.36) (0.57) (0.42) (0.40) (0.71) (0.64)

DCC- −1.06∗ −1.05∗ −0.81∗ −0.68∗∗ −0.99∗ −0.94∗
GJR (0.73) (0.65) (0.58) (0.34) (0.70) (0.64)

HDCC- −1.10∗ −1.03∗∗ −0.80∗ −0.63∗∗ −1.03∗ −0.81∗
GJR (0.77) (0.62) (0.56) (0.33) (0.75) (0.55)

RiskMetrics −1.41∗∗ −1.23∗ −0.99∗ −1.30∗∗ −1.30∗∗ −1.02∗∗ −1.04∗∗ −1.15∗ −1.04∗∗
(0.81) (0.92) (0.62) (0.69) (0.71) (0.49) (0.52) (0.75) (0.63)

(c) daily vs. biweekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −1.57∗∗ −1.59∗∗ −1.70∗ −1.74∗∗∗ −1.75∗∗ −2.22∗∗∗ −1.40∗∗ −1.50∗ −1.60∗
GARCH (0.69) (0.95) (1.07) (0.57) (0.81) (0.86) (0.63) (0.97) (1.00)

DCC- −1.66∗ −1.59∗∗ −1.82∗∗ −2.14∗∗∗ −1.56∗ −1.53∗∗
GARCH (1.02) (0.95) (0.88) (0.75) (1.01) (0.93)

HDCC- −1.61∗∗ −1.56∗∗ −1.82∗∗ −2.13∗∗∗ −1.44∗ −1.51∗∗
GARCH (0.96) (0.93) (0.88) (0.74) (0.95) (0.89)

CCC- −1.63∗∗ −1.68∗∗ −1.69∗ −1.64∗∗∗ −1.72∗∗ −2.05∗∗ −1.40∗∗ −1.57∗ −1.63∗
GJR (0.83) (1.01) (1.15) (0.69) (0.88) (0.93) (0.71) (0.99) (1.05)

DCC- −1.76∗ −1.63∗ −1.78∗∗ −1.95∗∗ −1.62∗ −1.59∗
GJR (1.09) (1.07) (0.93) (0.84) (1.03) (1.00)

HDCC- −1.72∗ −1.63∗ −1.72∗∗ −1.90∗∗∗ −1.58∗ −1.53∗∗
GJR (1.07) (1.06) (0.87) (0.79) (1.01) (0.92)

RiskMetrics −2.00∗∗ −2.38∗∗ −1.57∗ −2.14∗∗∗ −3.13∗∗ −2.63∗∗∗ −1.84∗∗ −2.27∗∗ −1.67∗∗
(0.99) (1.40) (1.02) (0.82) (1.37) (0.99) (0.91) (1.21) (0.99)

This table shows summary results of the tests that the expected value of the loss function of methods A
and B are equal, LA = LB . We report the loss differential LA − LB (multiplied by 100). A negative loss
differential means that method A is preferable to method B. We use the asymmetric tick loss function of
Giacomini and Komunjer (2005) as in Equation (22) with ϑ = 0.01. The two methods differ in their degree
of temporal aggregation as stated in the headings of the different panels. We report standard errors of the
average loss differential in parentheses, based on Newey and West (1987) with 10 leads and lags. We test that
the average loss differential is zero based on the statistic proposed by Diebold and Mariano (1995), evaluated
in the setting of Giacomini and White (2006). Superscripts ∗,∗∗ ,∗∗∗ denote rejection of the null-hypothesis
with a significance level of 10%, 5% and 1%.
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Table C.7: Results of the DM-tests for temporal aggregation – continued

(d) daily vs. biweekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −1.50∗∗ −1.53∗ −1.57∗ −1.89∗∗∗ −1.81∗∗ −2.21∗∗∗ −1.44∗∗ −1.57∗ −1.60∗
GARCH (0.70) (0.99) (1.05) (0.69) (0.92) (0.87) (0.67) (1.04) (1.04)

DCC- −1.60∗ −1.47∗ −1.84∗∗ −2.08∗∗∗ −1.59∗ −1.50∗
GARCH (1.04) (0.95) (0.97) (0.73) (1.06) (0.93)

HDCC- −1.53∗ −1.46∗ −1.89∗∗ −2.14∗∗∗ −1.53∗ −1.48∗
GARCH (0.99) (0.93) (0.97) (0.75) (1.02) (0.91)

CCC- −1.43∗∗ −1.42∗ −1.41∗ −1.56∗∗∗ −1.61∗∗ −1.85∗∗∗ −1.22∗∗ −1.47∗ −1.45∗
GJR (0.72) (0.95) (1.02) (0.66) (0.84) (0.78) (0.61) (0.98) (0.95)

DCC- −1.49∗ −1.33∗ −1.67∗∗ −1.77∗∗∗ −1.52∗ −1.42∗
GJR (0.99) (0.91) (0.89) (0.66) (0.99) (0.89)

HDCC- −1.49∗ −1.33∗ −1.67∗∗ −1.73∗∗∗ −1.48∗ −1.32∗
GJR (1.01) (0.91) (0.86) (0.64) (0.99) (0.80)

RiskMetrics −1.86∗∗ −2.32∗∗ −1.53∗ −2.20∗∗∗ −2.95∗∗ −2.63∗∗∗ −1.85∗∗ −2.34∗∗ −1.66∗∗
(0.92) (1.39) (1.00) (0.88) (1.41) (1.07) (0.86) (1.26) (1.01)

(e) weekly vs. biweekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.28∗∗ −0.45∗∗ −0.47∗∗ −0.69∗∗∗ −0.82∗∗∗ −1.27∗∗∗ −0.35∗∗ −0.36∗∗ −0.49∗∗
GARCH (0.17) (0.22) (0.27) (0.16) (0.17) (0.24) (0.17) (0.20) (0.26)

DCC- −0.51∗∗ −0.42∗∗ −0.88∗∗∗ −1.25∗∗∗ −0.40∗∗ −0.53∗∗
GARCH (0.24) (0.25) (0.23) (0.22) (0.21) (0.27)

HDCC- −0.45∗∗ −0.49∗∗ −0.81∗∗∗ −1.25∗∗∗ −0.33∗∗ −0.47∗∗
GARCH (0.21) (0.26) (0.18) (0.22) (0.19) (0.23)

CCC- −0.55∗∗ −0.56∗∗ −0.52 −0.72∗∗∗ −0.80∗∗∗ −1.12∗∗∗ −0.50∗∗ −0.53∗∗ −0.66∗∗
GJR (0.25) (0.31) (0.41) (0.23) (0.30) (0.35) (0.24) (0.29) (0.38)

DCC- −0.58∗∗ −0.47 −0.78∗∗∗ −1.06∗∗∗ −0.55∗∗ −0.57∗∗
GJR (0.33) (0.38) (0.30) (0.31) (0.31) (0.31)

HDCC- −0.55∗∗ −0.53∗ −0.81∗∗∗ −1.03∗∗∗ −0.51∗∗ −0.56∗∗
GJR (0.31) (0.41) (0.31) (0.30) (0.29) (0.30)

RiskMetrics −0.52∗∗ −1.12∗∗ −0.52 −0.83∗∗∗ −1.44∗∗∗ −1.59∗∗∗ −0.79∗∗ −1.14∗∗ −0.59∗
(0.24) (0.54) (0.44) (0.21) (0.60) (0.55) (0.38) (0.53) (0.42)

(f) weekly vs. biweekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.14 −0.39∗∗ −0.38∗ −0.80∗∗∗ −0.83∗∗∗ −1.23∗∗∗ −0.39∗∗ −0.41∗∗ −0.45∗∗
GARCH (0.14) (0.21) (0.25) (0.24) (0.23) (0.29) (0.20) (0.22) (0.26)

DCC- −0.43∗∗ −0.34∗ −0.86∗∗∗ −1.21∗∗∗ −0.40∗∗ −0.45∗∗
GARCH (0.23) (0.23) (0.25) (0.25) (0.21) (0.26)

HDCC- −0.39∗∗ −0.36∗ −0.89∗∗∗ −1.18∗∗∗ −0.34∗∗ −0.44∗∗
GARCH (0.20) (0.24) (0.25) (0.26) (0.21) (0.23)

CCC- −0.42∗∗ −0.40∗ −0.32 −0.87∗∗∗ −0.83∗∗∗ −1.15∗∗∗ −0.51∗∗ −0.51∗∗ −0.58∗∗
GJR (0.22) (0.26) (0.38) (0.34) (0.29) (0.39) (0.27) (0.30) (0.34)

DCC- −0.43∗ −0.28 −0.86∗∗∗ −1.09∗∗∗ −0.53∗∗ −0.48∗∗
GJR (0.29) (0.35) (0.33) (0.35) (0.31) (0.28)

HDCC- −0.39∗ −0.30 −0.87∗∗∗ −1.09∗∗∗ −0.46∗∗ −0.51∗∗
GJR (0.26) (0.36) (0.32) (0.36) (0.26) (0.28)

RiskMetrics −0.44∗∗ −1.09∗∗ −0.54 −0.90∗∗∗ −1.65∗∗ −1.61∗∗∗ −0.81∗∗ −1.18∗∗ −0.62∗
(0.22) (0.53) (0.43) (0.27) (0.75) (0.64) (0.39) (0.55) (0.43)

See table note on previous page.
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Table C.8: Summary results of UC and DQ tests, ϑ = 5%

UC-test results DQ-test results
rejections at sign. sign.

# methods 1% 5% 10% neg. neg. pos. pos.

(a) Temporal aggregation

Daily, iterated 51 0 6 10 35 0 16 1
Daily, scaled 51 0 12 22 22 0 29 2
Weekly, iterated 51 0 3 19 0 0 51 7
Weekly, scaled 51 0 9 26 0 0 51 6
Biweekly, direct 51 0 19 35 0 0 51 49

(b) Portfolio aggregation

Portfolio level 45 0 7 17 10 0 35 14
Asset class level 105 0 15 39 15 0 90 24
Asset level 105 0 27 56 32 0 73 27

(c) Model specification

GARCH, uv. 15 0 4 7 5 0 10 3
GJR, uv. 15 0 2 7 3 0 12 3
RiskMetrics, uv. 15 0 1 3 2 0 13 8
CCC-GARCH 30 0 8 16 9 0 21 6
DCC-GARCH 30 0 9 19 10 0 20 5
HDCC-GARCH 30 0 9 19 11 0 19 5
CCC-GJR 30 0 4 11 7 0 23 6
DCC-GJR 30 0 5 12 3 0 27 6
HDCC-GJR 30 0 6 13 7 0 23 6
RiskMetrics, mv. 30 0 1 5 0 0 30 17

(d) Distribution

Normal 85 0 11 47 18 0 67 23
Empirical 85 0 0 4 20 0 65 24
Student’s t 85 0 38 61 19 0 66 18

This table summarizes the results of the unconditional coverage (UC) and dynamic quantile (DQ) tests of
Christoffersen (1998) and Engle and Manganelli (2004) for the 255 different methods that we analyze. In
each panel, we categorize the methods based on the choice aspect given in the panel heading. For each option
that can be chosen, we report the total number of methods. Next, we report for the number of rejections
from the UC tests for significance levels of 1, 5 and 10%. Under the null (alternative) hypothesis, the actual
coverage ratio equals (exceeds) the theoretical coverage ratio of 0.05. To conduct the DQ test, we regress the
centered hit series on the negtive VaR forecasts. We report the number of negative and positive coefficients,
and the number of significant ones at the 10% level. Significance is determined by bootstraps as in Herwartz
and Waichman (2010). The full results are available in Tables C.9 and C.10.
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Table C.9: Results for the unconditional coverage test, ϑ = 5%

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 5.66 5.90 6.35∗∗ 5.50 5.02 5.68 5.56 6.01∗ 6.53∗∗

GARCH (0.74) (0.73) (0.78) (0.72) (0.68) (0.73) (0.73) (0.75) (0.80)
DCC- 5.86 6.27∗∗ 5.20 5.66 6.11∗ 6.27∗∗

GARCH (0.74) (0.77) (0.71) (0.73) (0.76) (0.77)
HDCC- 5.86 6.31∗∗ 5.28 5.78 6.07∗ 6.41∗∗

GARCH (0.75) (0.78) (0.72) (0.73) (0.76) (0.78)
CCC- 4.88 5.04 5.74 4.92 4.46 5.22 4.92 5.16 5.76

GJR (0.64) (0.65) (0.71) (0.65) (0.61) (0.66) (0.65) (0.65) (0.71)
DCC- 5.10 5.58 4.66 5.06 5.14 5.76

GJR (0.66) (0.69) (0.63) (0.65) (0.66) (0.70)
HDCC- 5.02 5.70 4.54 5.26 5.02 5.76

GJR (0.65) (0.70) (0.63) (0.67) (0.66) (0.70)
RiskMetrics 5.26 5.32 6.11∗ 5.56 5.34 5.76 3.21 5.30 5.95

(0.71) (0.73) (0.80) (0.72) (0.72) (0.76) (0.55) (0.73) (0.78)

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 5.62 5.90 6.35∗∗ 5.64 5.34 5.94 5.76 6.23∗ 6.67∗∗

GARCH (0.73) (0.73) (0.78) (0.73) (0.69) (0.74) (0.74) (0.76) (0.80)
DCC- 5.99∗ 6.33∗∗ 5.44 5.88 6.33∗∗ 6.61∗∗

GARCH (0.75) (0.77) (0.71) (0.73) (0.77) (0.79)
HDCC- 5.88 6.45∗∗ 5.52 6.03∗ 6.19∗ 6.59∗∗

GARCH (0.74) (0.79) (0.71) (0.76) (0.76) (0.80)
CCC- 5.60 5.60 6.11∗ 5.54 5.30 5.84 5.82 5.90∗ 6.41∗∗

GJR (0.68) (0.68) (0.72) (0.68) (0.66) (0.71) (0.70) (0.70) (0.74)
DCC- 5.74 6.19∗∗ 5.28 5.70 6.05∗ 6.41∗∗

GJR (0.69) (0.73) (0.66) (0.69) (0.71) (0.74)
HDCC- 5.58 6.09∗ 5.42 5.80 5.95∗ 6.31∗∗

GJR (0.68) (0.72) (0.67) (0.70) (0.70) (0.73)
RiskMetrics 5.36 5.44 6.19∗ 5.62 5.48 5.97 3.60 5.58 6.33∗∗

(0.71) (0.74) (0.81) (0.73) (0.74) (0.78) (0.59) (0.75) (0.81)

This table shows the empirical coverage (in %) and results of the unconditional coverage tests of Christoffersen
(1998). Models are estimated with a moving window of 1,000 daily returns, 200 weekly returns or 100
biweekly returns. For every day in the sample, we construct a violation indicator that equals one when
the ten-day realized portfolio loss exceeds the forecasted VaRϑ with ϑ = 0.05, and zero otherwise, as in
Equation (20). We report the coverage (in %), and test whether it is equal to ϑ against the alternative of
strictly more violations. We report Newey and West (1987) standard errors calculated with 10 leads and
lags in parentheses. Superscripts a, b, c denote rejection of the null-hypothesis with a significance level of
1%, 5% and 10%. The results are based on 5,021 forecasts.
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Table C.9: Results for the unconditional coverage test, ϑ = 5% – continued

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 6.09∗ 5.97∗ 5.94 5.66 4.72 4.64 6.35∗∗ 6.29∗ 6.15∗

GARCH (0.77) (0.75) (0.76) (0.74) (0.65) (0.65) (0.79) (0.79) (0.78)
DCC- 6.05∗ 5.97∗ 4.72 4.78 6.35∗∗ 6.17∗

GARCH (0.75) (0.75) (0.65) (0.66) (0.79) (0.78)
HDCC- 6.05∗ 6.01∗ 4.62 4.68 6.55∗∗ 6.25∗

GARCH (0.75) (0.76) (0.63) (0.66) (0.81) (0.78)
CCC- 5.95∗ 5.54 5.86 5.58 4.52 4.58 6.21∗ 5.74 6.01∗

GJR (0.74) (0.70) (0.73) (0.71) (0.63) (0.63) (0.76) (0.71) (0.74)
DCC- 5.66 5.84 4.52 4.64 5.88 6.09∗

GJR (0.71) (0.72) (0.63) (0.63) (0.72) (0.74)
HDCC- 5.80 5.88 4.54 4.70 5.95∗ 5.95∗

GJR (0.71) (0.73) (0.62) (0.64) (0.73) (0.74)
RiskMetrics 5.50 5.32 5.48 5.50 4.88 4.68 5.74 5.34 5.60

(0.74) (0.73) (0.73) (0.73) (0.68) (0.67) (0.75) (0.73) (0.74)

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 6.13∗ 5.95 5.97∗ 5.54 4.72 4.64 6.43∗∗ 6.33∗∗ 6.29∗∗

GARCH (0.78) (0.75) (0.76) (0.73) (0.65) (0.65) (0.80) (0.79) (0.78)
DCC- 6.07∗ 5.99∗ 4.70 4.62 6.35∗∗ 6.21∗

GARCH (0.75) (0.76) (0.64) (0.64) (0.78) (0.77)
HDCC- 6.11∗ 5.99∗ 4.58 4.70 6.45∗∗ 6.31∗∗

GARCH (0.75) (0.76) (0.64) (0.65) (0.79) (0.79)
CCC- 6.15∗ 5.92 6.03∗ 5.60 4.56 4.72 6.19∗ 6.11∗ 6.13∗

GJR (0.75) (0.73) (0.74) (0.71) (0.62) (0.64) (0.75) (0.74) (0.75)
DCC- 6.01∗ 5.94∗ 4.58 4.86 6.27∗∗ 6.17∗

GJR (0.73) (0.72) (0.62) (0.64) (0.75) (0.74)
HDCC- 6.11∗ 6.05∗ 4.68 4.60 6.25∗∗ 6.25∗∗

GJR (0.73) (0.74) (0.62) (0.62) (0.75) (0.76)
RiskMetrics 5.60 5.32 5.52 5.50 4.94 4.80 5.86 5.38 5.74

(0.74) (0.73) (0.73) (0.74) (0.68) (0.69) (0.76) (0.73) (0.75)

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 6.43∗∗ 6.03∗ 6.19∗ 5.97∗ 4.30 4.22 6.81∗∗ 6.41∗∗ 6.51∗∗

GARCH (0.79) (0.76) (0.78) (0.74) (0.64) (0.63) (0.83) (0.79) (0.80)
DCC- 6.15∗ 6.27∗ 4.34 4.22 6.43∗∗ 6.45∗∗

GARCH (0.77) (0.78) (0.63) (0.62) (0.79) (0.79)
HDCC- 6.13∗ 6.21∗ 4.40 4.30 6.61∗∗ 6.39∗∗

GARCH (0.76) (0.78) (0.63) (0.63) (0.80) (0.79)
CCC- 6.57∗∗ 6.19∗ 6.25∗∗ 6.21∗ 4.46 4.42 6.75∗∗ 6.45∗∗ 6.51∗∗

GJR (0.78) (0.75) (0.76) (0.74) (0.64) (0.63) (0.79) (0.77) (0.77)
DCC- 6.15∗ 6.23∗ 4.56 4.46 6.51∗∗ 6.45∗∗

GJR (0.75) (0.76) (0.64) (0.63) (0.77) (0.77)
HDCC- 6.35∗∗ 6.15∗ 4.68 4.56 6.55∗∗ 6.35∗∗

GJR (0.77) (0.75) (0.65) (0.64) (0.77) (0.76)
RiskMetrics 6.03∗ 5.40 6.03∗ 6.05∗ 5.54 5.94 6.49∗∗ 5.70 6.33∗

(0.78) (0.73) (0.80) (0.77) (0.72) (0.76) (0.79) (0.74) (0.82)

See table note on previous page.
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Table C.10: Results of the dynamic quantile tests, ϑ = 5%

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.16 −0.13 −0.49 −0.25 −0.34 −0.74 −0.23 −0.18 −0.48
GARCH (0.36) (0.38) (0.24) (0.33) (0.25) (0.14) (0.32) (0.35) (0.24)

DCC- −0.16 −0.44 −0.25 −0.61 −0.06 −0.27
GARCH (0.36) (0.24) (0.31) (0.17) (0.43) (0.32)

HDCC- −0.24 −0.47 −0.31 −0.85 −0.07 −0.41
GARCH (0.33) (0.24) (0.28) (0.11) (0.42) (0.26)

CCC- −0.05 0.16 −0.16 −0.20 −0.20 −0.47 −0.09 0.12 −0.10
GJR (0.41) (0.60) (0.36) (0.32) (0.31) (0.20) (0.38) (0.56) (0.40)

DCC- 0.18 0.00 −0.12 −0.37 0.13 0.02
GJR (0.63) (0.47) (0.36) (0.23) (0.57) (0.48)

HDCC- 0.12 −0.15 −0.18 −0.55 0.15 −0.05
GJR (0.56) (0.37) (0.32) (0.17) (0.59) (0.42)

RiskMetrics 0.06 0.39 0.80∗ 0.08 0.28 0.60 −0.30 0.35 0.48
(0.50) (0.74) (0.92) (0.51) (0.67) (0.86) (0.22) (0.72) (0.76)

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.03 0.04 −0.35 0.08 0.09 −0.42 −0.02 0.04 −0.37
GARCH (0.43) (0.49) (0.28) (0.51) (0.53) (0.24) (0.44) (0.49) (0.28)

DCC- −0.12 −0.26 0.00 −0.07 0.09 −0.24
GARCH (0.39) (0.31) (0.47) (0.42) (0.53) (0.33)

HDCC- −0.15 −0.36 0.00 −0.49 −0.01 −0.27
GARCH (0.36) (0.27) (0.46) (0.21) (0.46) (0.32)

CCC- 0.12 0.28 −0.05 0.19 0.20 −0.12 0.11 0.33 −0.21
GJR (0.55) (0.70) (0.44) (0.61) (0.65) (0.40) (0.54) (0.72) (0.34)

DCC- 0.31 0.00 0.27 −0.04 0.39 0.11
GJR (0.72) (0.47) (0.70) (0.44) (0.76) (0.55)

HDCC- 0.25 −0.17 0.28 0.00 0.39 −0.03
GJR (0.67) (0.35) (0.70) (0.46) (0.77) (0.45)

RiskMetrics 0.16 0.54 0.78∗ 0.15 0.71∗ 0.57 −0.29 0.44 0.64
(0.58) (0.84) (0.91) (0.57) (0.94) (0.85) (0.24) (0.77) (0.83)

This table reports the results of the dynamic quantile test of Engle and Manganelli (2004). We conduct a
linear regression of the centered VaR-violations on a constant and the forecasted VaRϑ (in %) for ϑ = 0.01, as
in Equation (21). We report the estimated coefficient on the forecasted VaRθ (expressed as a decimal rate),
and its quantile in the distribution of this coefficient under the null hypothesis of no predictability. Following
Herwartz and Waichman (2010), we construct this distribution by 10,000 block bootstrapped samples with
a block length of 10. Superscripts a, b, c denote quantiles in the 1%, 5 % and 10% of the left or right tail.
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Table C.10: Results of the dynamic quantile test, ϑ = 5% – continued

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.94 0.50 0.34 0.75 0.39 0.24 0.89 0.59 0.41
GARCH (0.83) (0.53) (0.36) (0.75) (0.53) (0.33) (0.79) (0.58) (0.40)

DCC- 0.64 0.42 0.54 0.21 0.71 0.48
GARCH (0.66) (0.44) (0.70) (0.28) (0.68) (0.48)

HDCC- 0.63 0.35 0.56 0.24 0.69 0.50
GARCH (0.66) (0.37) (0.74) (0.32) (0.67) (0.48)

CCC- 0.82 0.56 0.28 0.36 0.27 0.14 0.77 0.49 0.40
GJR (0.85) (0.67) (0.32) (0.46) (0.42) (0.20) (0.81) (0.58) (0.43)

DCC- 0.62 0.43 0.35 0.15 0.49 0.56
GJR (0.72) (0.48) (0.53) (0.21) (0.58) (0.59)

HDCC- 0.66 0.27 0.38 0.31 0.66 0.42
GJR (0.77) (0.31) (0.57) (0.42) (0.74) (0.46)

RiskMetrics 0.93∗ 0.88 1.02∗ 0.95∗ 0.84∗ 0.85∗∗ 0.95∗ 0.93 0.93∗

(0.91) (0.87) (0.92) (0.92) (0.92) (0.96) (0.91) (0.88) (0.92)

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.91 0.63 0.30 0.74 0.57 0.28 0.88 0.72 0.37
GARCH (0.83) (0.65) (0.31) (0.83) (0.75) (0.39) (0.79) (0.68) (0.36)

DCC- 0.75 0.36 0.61 0.53 0.70 0.52
GARCH (0.75) (0.38) (0.80) (0.69) (0.69) (0.51)

HDCC- 0.71 0.30 0.57 0.31 0.96 0.46
GARCH (0.73) (0.31) (0.79) (0.43) (0.84) (0.45)

CCC- 0.77 0.62 0.28 0.71 0.37 0.28 0.71 0.59 0.29
GJR (0.81) (0.70) (0.31) (0.82) (0.61) (0.40) (0.77) (0.65) (0.31)

DCC- 0.72 0.34 0.39 0.28 0.61 0.47
GJR (0.78) (0.40) (0.61) (0.42) (0.68) (0.51)

HDCC- 0.71 0.40 0.50 0.28 0.62 0.41
GJR (0.79) (0.45) (0.74) (0.43) (0.69) (0.46)

RiskMetrics 0.94∗ 0.90 1.06∗ 0.90∗ 0.94∗∗ 0.95∗∗ 0.88 0.85 0.95∗

(0.92) (0.89) (0.93) (0.94) (0.96) (0.97) (0.88) (0.84) (0.92)

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 1.04∗∗ 1.23∗∗ 0.97∗ 1.09∗∗ 0.71∗∗ 0.88∗∗ 1.00∗ 1.29∗∗ 0.98∗

GARCH (0.97) (0.98) (0.91) (0.98) (0.96) (0.99) (0.93) (0.97) (0.90)
DCC- 1.28∗∗ 1.10∗ 0.72∗∗ 0.93∗∗∗ 1.26∗∗ 0.99

GARCH (0.98) (0.95) (0.96) (0.99) (0.97) (0.90)
HDCC- 1.38∗∗∗ 1.05∗ 0.81∗∗ 0.98∗∗∗ 1.32∗∗ 0.92

GARCH (0.99) (0.94) (0.98) (0.99) (0.98) (0.90)
CCC- 1.24∗∗∗ 1.38∗∗∗ 1.18∗∗ 1.03∗∗∗ 0.78∗∗ 0.72∗∗ 1.08∗∗ 1.36∗∗∗ 1.12∗∗

GJR (1.00) (1.00) (0.98) (1.00) (0.99) (0.96) (0.99) (0.99) (0.95)
DCC- 1.40∗∗∗ 1.14∗∗ 0.76∗∗ 0.71∗∗ 1.32∗∗∗ 1.16∗∗

GJR (1.00) (0.97) (0.99) (0.96) (1.00) (0.97)
HDCC- 1.46∗∗∗ 1.14∗∗ 0.82∗∗∗ 0.77∗∗ 1.43∗∗∗ 1.21∗∗

GJR (1.00) (0.97) (0.99) (0.98) (1.00) (0.97)
RiskMetrics 1.22∗∗∗ 1.20∗∗∗ 1.75∗∗∗ 1.03∗∗ 1.17∗∗∗ 1.58∗∗∗ 1.55∗∗∗ 1.20∗∗∗ 2.50∗∗∗

(1.00) (1.00) (1.00) (0.98) (1.00) (1.00) (1.00) (0.99) (1.00)

See table note on previous page.
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Table C.11: Average asymmetric tick loss, ϑ = 5%

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 18.25 17.77 17.87 18.29 17.80 17.84 18.22 17.79 17.84
DCC-GARCH 17.89 17.74 17.94 17.71 17.94 17.72
HDCC-GARCH 17.96 17.84 18.00 17.78 17.94 17.84
CCC-GJR 17.99 17.67 17.47 18.02 17.79 17.55 17.94 17.62 17.50
DCC-GJR 17.79 17.43 17.89 17.46 17.68 17.43
HDCC-GJR 17.79 17.44 17.91 17.50 17.78 17.48
RiskMetrics 18.04 18.31 18.61 18.14 18.26 18.42 18.71 18.24 18.46

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 18.15 17.74 17.76 18.17 17.76 17.70 18.14 17.79 17.81
DCC-GARCH 17.84 17.65 17.86 17.60 17.88 17.69
HDCC-GARCH 17.90 17.75 17.90 17.65 17.95 17.79
CCC-GJR 17.95 17.68 17.50 18.00 17.72 17.50 17.95 17.69 17.53
DCC-GJR 17.76 17.43 17.80 17.43 17.70 17.47
HDCC-GJR 17.79 17.44 17.86 17.46 17.81 17.51
RiskMetrics 18.04 18.28 18.61 18.08 18.36 18.32 18.37 18.22 18.51

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 19.48 19.04 18.96 19.42 19.00 18.87 19.30 19.03 18.98
DCC-GARCH 19.06 18.92 19.00 18.84 19.02 18.91
HDCC-GARCH 19.12 18.97 19.09 18.87 19.10 19.00
CCC-GJR 18.96 18.87 18.67 18.90 18.90 18.65 18.81 18.71 18.66
DCC-GJR 18.90 18.65 18.93 18.65 18.70 18.64
HDCC-GJR 18.95 18.70 18.96 18.69 18.81 18.69
RiskMetrics 19.53 19.25 19.55 19.46 19.37 19.89 19.41 19.25 19.66

This table shows the average value of the asymmetric tick loss function of Giacomini and Komunjer (2005)
as in Equation (22) for ϑ = 0.05. All values have been multiplied by 100. See Table 2.
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Table C.11: Average asymmetric tick loss, ϑ = 5% – continued

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 19.51 19.03 18.93 19.40 19.02 18.82 19.32 19.04 18.99
DCC-GARCH 19.03 18.87 19.05 18.80 19.00 18.94
HDCC-GARCH 19.08 18.95 19.12 18.84 19.07 18.99
CCC-GJR 18.89 18.85 18.64 18.84 18.88 18.59 18.76 18.70 18.63
DCC-GJR 18.87 18.62 18.86 18.56 18.70 18.62
HDCC-GJR 18.93 18.67 18.89 18.59 18.78 18.66
RiskMetrics 19.53 19.24 19.56 19.57 19.42 19.83 19.43 19.26 19.63

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 19.65 19.44 19.37 19.56 19.50 19.53 19.50 19.47 19.32
DCC-GARCH 19.41 19.33 19.45 19.51 19.45 19.36
HDCC-GARCH 19.48 19.38 19.49 19.52 19.47 19.36
CCC-GJR 19.40 19.16 19.07 19.21 19.19 19.15 19.15 19.25 19.11
DCC-GJR 19.16 19.06 19.17 19.14 19.20 19.08
HDCC-GJR 19.20 19.08 19.24 19.17 19.26 19.10
RiskMetrics 19.93 19.80 20.72 19.87 20.03 20.91 19.84 19.81 20.80

See table note on previous page.
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Table C.12: Models removed from the Model Confidence Set, ϑ = 5%

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH
DCC-GARCH
HDCC-GARCH
CCC-GJR
DCC-GJR
HDCC-GJR
RiskMetrics 0.072 0.084

(b) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH
DCC-GARCH
HDCC-GARCH
CCC-GJR
DCC-GJR
HDCC-GJR
RiskMetrics 0.074

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 0.055 0.063 0.051 0.055 0.074 0.060 0.066
DCC-GARCH 0.062 0.052 0.071 0.062
HDCC-GARCH 0.055 0.050 0.081 0.060
CCC-GJR 0.062 0.063 0.060 0.056 0.064 0.071
DCC-GJR 0.062 0.055 0.071 0.071
HDCC-GJR 0.055 0.053 0.077 0.060
RiskMetrics 0.054 0.074 0.078 0.055 0.062 0.052 0.045 0.097 0.071

This table presents the MCS p-value with which a model has been removed from the Model Confidence Set.
We follow the procedure of Hansen et al. (2011, Sec. 3.1.2), with the tick loss function in (22), ϑ = 0.05, and
a significance level of 10%. The procedure starts with the complete set of 255 methods. Panel (f) presents
the number of methods with a particular choice that have been removed from (“Out”) and are maintained
in (“In”) the Model Confidence Set.
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Table C.12: Models removed from the Model Confidence Set, ϑ = 5% – continued

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 0.053 0.062 0.048 0.052 0.079 0.057 0.063
DCC-GARCH 0.061 0.052 0.071 0.061
HDCC-GARCH 0.055 0.044 0.074 0.058
CCC-GJR 0.063 0.068 0.060 0.055 0.069 0.071
DCC-GJR 0.062 0.057 0.071
HDCC-GJR 0.056 0.055 0.097 0.062
RiskMetrics 0.055 0.077 0.079 0.053 0.059 0.052 0.045 0.098 0.071

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 0.051 0.060 0.069 0.045 0.042 0.046 0.052 0.060 0.071
DCC-GARCH 0.060 0.067 0.044 0.048 0.056 0.071
HDCC-GARCH 0.055 0.066 0.041 0.048 0.055 0.071
CCC-GJR 0.051 0.071 0.097 0.052 0.050 0.055 0.055 0.059 0.074
DCC-GJR 0.064 0.082 0.048 0.055 0.057 0.071
HDCC-GJR 0.063 0.083 0.044 0.054 0.054 0.074
RiskMetrics 0.048 0.071 0.055 0.045 0.060 0.051 0.044 0.071 0.057

(f) Number of removed and maintained methods

Temporal aggr. Out In Total

Daily, iterated 2 49 51
Daily, scaled 1 50 51
Weekly, iterated 38 13 51
Weekly, scaled 37 14 51
Biweekly, direct 51 0 51

Portfolio aggr.
Portfolio level 28 17 45
Asset class level 63 42 105
Asset level 38 67 105

Disitribution

Normal 41 44 85
Empirical 48 37 85
Student’s t 40 45 85

Model Out In Total

GARCH, uv. 9 6 15
GJR, uv. 9 6 15
RiskMetrics, uv. 10 5 15
CCC-GARCH 14 16 30
DCC-GARCH 14 16 30
HDCC-GARCH 14 16 30
CCC-GJR 12 18 30
DCC-GJR 13 17 30
HDCC-GJR 14 16 30
RiskMetrics, mv. 20 10 30

See table note on the previous page.
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Table C.13: Results of the Diebold-Mariano tests, ϑ = 5%

# of neg. sign. neg. pos. sign. pos.
Method A Method B tests 5% 10% 5% 10%

(a) Forecasting method

Iterated Scaled 51 13 0 0 38 1 1

(b) Portfolio aggregation, iterated forecasts

Asset level Asset class level 21 15 5 9 6 0 1
Asset level Portfolio level 21 19 13 18 2 1 1
Asset class level Portfolio level 21 19 0 5 2 0 0

(c) Portfolio aggregation, scaled forecasts

Asset level Asset class level 21 17 5 9 4 0 1
Asset level Portfolio level 21 18 13 18 3 1 1
Asset class level Portfolio level 21 19 0 5 2 0 0

(d) Distribution, iterated forecasts

Normal Empirical 17 5 1 1 12 3 5
Normal Student’s t 17 12 0 2 5 1 1
Empirical Student’s t 17 4 1 1 13 2 3

(e) Distribution, scaled forecasts

Normal Empirical 17 12 1 1 5 3 5
Normal Student’s t 17 11 0 2 6 1 1
Empirical Student’s t 17 11 1 1 6 2 3

(f) Model, iterated forecasts

RiskMetrics, uv. other, uv. 6 2 0 0 4 1 1
RiskMetrics, mv. other, mv. 36 0 0 0 36 15 19
GARCH, uv. GJR, uv. 3 0 0 0 3 0 0
GARCH, mv. GJR, mv. 54 4 0 0 50 21 27
CCC DCC 12 6 0 2 6 0 0
CCC HDCC 12 6 0 3 6 0 0
DCC HDCC 12 11 0 1 1 0 0

(g) Model, scaled forecasts

RiskMetrics, uv. other, uv. 6 2 0 0 4 0 1
RiskMetrics, mv. other, mv. 36 0 0 0 36 15 18
GARCH, uv. GJR, uv. 3 0 0 0 3 0 0
GARCH, mv. GJR, mv. 54 5 0 0 49 11 22
CCC DCC 12 6 0 0 6 0 0
CCC HDCC 12 6 0 0 6 0 0
DCC HDCC 12 12 0 3 0 0 0

This table shows summary results of the tests that the expected value of the loss function of methods A
and B are equal, LA = LB . We calculate the loss differential as LA − LB . A negative loss differential
means that method A is preferable to method B. We use the asymmetric tick loss function of Giacomini and
Komunjer (2005) as in Equation (22) with ϑ = 0.05. We report the number of negative and positive average
loss differentials, and the number of times these differentials are significant for the 5% and 10% significance
levels, based on the statistic proposed by Diebold and Mariano (1995), evaluated in the setting of Giacomini
and White (2006). Standard errors of the average loss differential are based on Newey and West (1987) with
10 leads and lags. We compare pairs of methods that differ in only one choice aspect (indicated by the panel
heading), so the other four choices are the same. All methods use daily data.
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Table C.14: Results of the DM-tests for iterated vs. scaled forecasts, ϑ = 5%

(a) daily returns

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.09 0.11 0.02 0.13 0.14 0.03 0.08 0.03 0.00
GARCH (0.09) (0.10) (0.07) (0.12) (0.12) (0.11) (0.09) (0.07) (0.07)

DCC- 0.10 0.05 0.11 0.08 0.03 0.05
GARCH (0.10) (0.08) (0.12) (0.11) (0.08) (0.08)

HDCC- 0.09 0.06 0.13 0.09 0.05 −0.01
GARCH (0.10) (0.09) (0.12) (0.11) (0.08) (0.07)

CCC- 0.04 −0.03 −0.01 0.02 0.05 0.07 0.00 −0.03 −0.07
GJR (0.09) (0.07) (0.08) (0.13) (0.11) (0.11) (0.09) (0.08) (0.10)

DCC- 0.01 0.03 0.03 0.09 −0.03 −0.03
GJR (0.07) (0.08) (0.10) (0.11) (0.07) (0.09)

HDCC- 0.01 0.00 0.04 0.06 −0.03 −0.03
GJR (0.07) (0.08) (0.10) (0.11) (0.07) (0.09)

RiskMetrics 0.00 0.00 0.02 0.06 0.11 −0.10 0.34∗∗∗ −0.05 0.02
(0.03) (0.01) (0.02) (0.10) (0.13) (0.08) (0.09) (0.06) (0.04)

This table shows summary results of the tests that the expected value of the loss function of methods A
and B are equal, LA = LB . We report the loss differential LA − LB (multiplied by 100). A negative loss
differential means that method A is preferable to method B. We use the asymmetric tick loss function of
Giacomini and Komunjer (2005) as in Equation (22) with ϑ = 0.05. The two methods differ in their forecast
construction, with A using iterated and B using scaled forecasts. Both methods use daily data. We report
standard errors of the average loss differential in parentheses, based on Newey and West (1987) with 10
leads and lags. We test that the average loss differential is zero based on the statistic proposed by Diebold
and Mariano (1995), evaluated in the setting of Giacomini and White (2006). Superscripts ∗,∗∗ ,∗∗∗ denote
rejection of the null-hypothesis with a significance level of 10%, 5% and 1%.
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Table C.15: Results of the DM-tests for portfolio aggregation, ϑ = 5%

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Test 1 vs. 3 1 vs. 8 3 vs. 8 1 vs. 3 1 vs. 8 3 vs. 8 1 vs. 3 1 vs. 8 3 vs. 8

CCC- 0.48∗ 0.38∗ −0.10 0.50∗ 0.45∗ −0.05 0.43∗ 0.38∗ −0.05
GARCH (0.34) (0.26) (0.21) (0.36) (0.29) (0.20) (0.33) (0.28) (0.20)

DCC- 0.35∗ 0.50∗∗ 0.15 0.36 0.58∗∗ 0.23∗ 0.28 0.50∗ 0.21
GARCH (0.26) (0.30) (0.16) (0.28) (0.35) (0.17) (0.27) (0.32) (0.18)

HDCC- 0.29 0.40∗∗ 0.11 0.30 0.52∗∗ 0.22∗ 0.28 0.38∗ 0.10
GARCH (0.23) (0.24) (0.16) (0.25) (0.30) (0.16) (0.25) (0.26) (0.18)

CCC- 0.32 0.52∗∗ 0.20 0.23 0.48∗∗ 0.25∗ 0.33∗ 0.45∗∗ 0.12
GJR (0.26) (0.23) (0.18) (0.26) (0.25) (0.18) (0.25) (0.24) (0.18)

DCC- 0.20 0.55∗∗ 0.35∗∗ 0.13 0.56∗∗ 0.43∗∗ 0.27 0.51∗∗ 0.24∗

GJR (0.19) (0.26) (0.17) (0.19) (0.28) (0.19) (0.23) (0.27) (0.18)
HDCC- 0.20 0.54∗∗ 0.34∗∗ 0.11 0.52∗∗ 0.41∗∗ 0.16 0.46∗∗ 0.30∗∗

GJR (0.18) (0.25) (0.18) (0.18) (0.24) (0.18) (0.18) (0.24) (0.17)
RiskMetrics −0.26 −0.57∗∗ −0.31∗ −0.12 −0.29 −0.16 0.47 0.25 −0.22

(0.31) (0.33) (0.21) (0.33) (0.32) (0.22) (0.44) (0.58) (0.21)

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Test 1 vs. 3 1 vs. 8 3 vs. 8 1 vs. 3 1 vs. 8 3 vs. 8 1 vs. 3 1 vs. 8 3 vs. 8

CCC- 0.41 0.40∗ −0.02 0.41 0.47∗ 0.06 0.35 0.34 −0.02
GARCH (0.33) (0.27) (0.20) (0.37) (0.30) (0.21) (0.32) (0.28) (0.21)

DCC- 0.31 0.51∗ 0.19 0.31 0.57∗ 0.26∗ 0.26 0.45∗ 0.19
GARCH (0.25) (0.31) (0.17) (0.28) (0.35) (0.18) (0.26) (0.31) (0.18)

HDCC- 0.26 0.41∗ 0.15 0.27 0.52∗∗ 0.25∗ 0.19 0.35∗ 0.16
GARCH (0.23) (0.25) (0.16) (0.26) (0.30) (0.17) (0.23) (0.26) (0.18)

CCC- 0.27 0.45∗∗ 0.18 0.28 0.50∗∗ 0.22 0.26 0.42∗ 0.16
GJR (0.25) (0.24) (0.18) (0.27) (0.25) (0.19) (0.26) (0.26) (0.17)

DCC- 0.19 0.52∗∗ 0.33∗∗ 0.21 0.58∗∗ 0.37∗∗ 0.24 0.48∗∗ 0.24∗

GJR (0.18) (0.26) (0.17) (0.19) (0.26) (0.18) (0.22) (0.27) (0.18)
HDCC- 0.16 0.51∗∗ 0.35∗∗ 0.15 0.55∗∗∗ 0.40∗∗∗ 0.13 0.43∗∗ 0.30∗∗

GJR (0.17) (0.25) (0.18) (0.18) (0.23) (0.17) (0.17) (0.24) (0.18)
RiskMetrics −0.24 −0.56∗∗ −0.32∗ −0.28 −0.24 0.04 0.15 −0.14 −0.29∗

(0.31) (0.32) (0.21) (0.33) (0.29) (0.29) (0.42) (0.57) (0.22)

This table shows summary results of the tests that the expected value of the loss function of methods A
and B are equal, LA = LB . We report the loss differential LA − LB (multiplied by 100). A negative loss
differential means that method A is preferable to method B. We use the asymmetric tick loss function of
Giacomini and Komunjer (2005) as in Equation (22) with ϑ = 0.01. The two methods differ in their degree
of portfolio aggregation. We consider aggregation into a portfolio (labeled “1”), three asset classes (labeled
“3”), and no aggregation (labeled “8”). All methods use daily data. We report standard errors of the average
loss differential in parentheses, based on Newey and West (1987) with 10 leads and lags. We test that the
average loss differential is zero based on the statistic proposed by Diebold and Mariano (1995), evaluated
in the setting of Giacomini and White (2006). Superscripts ∗,∗∗ ,∗∗∗ denote rejection of the null-hypothesis
with a significance level of 10%, 5% and 1%.
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Table C.16: Results of the DM-tests for the model specification, ϑ = 5%

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH vs. −0.13 0.13 −0.14∗ 0.13 −0.15∗ 0.12
DCC-GARCH (0.11) (0.12) (0.11) (0.12) (0.11) (0.11)

CCC-GARCH vs. −0.19∗ 0.03 −0.20∗ 0.07 −0.15 0.00
HDCC-GARCH (0.15) (0.06) (0.14) (0.07) (0.12) (0.07)

CCC-GARCH vs. 0.26 0.09 0.40∗∗ 0.27 0.00 0.30∗∗ 0.28 0.17 0.34∗∗

CCC-GJR (0.24) (0.18) (0.20) (0.22) (0.17) (0.17) (0.24) (0.18) (0.18)
CCC-GARCH vs. −0.02 0.44∗∗ −0.09 0.39∗∗ 0.11 0.41∗∗

DCC-GJR (0.16) (0.26) (0.16) (0.22) (0.18) (0.24)
CCC-GARCH vs. −0.02 0.43∗∗ −0.12 0.34∗∗ 0.01 0.36∗∗

HDCC-GJR (0.17) (0.24) (0.17) (0.18) (0.17) (0.20)
CCC-GARCH vs. 0.20 −0.54∗ −0.74∗∗∗ 0.16 −0.46 −0.58∗∗ −0.49 −0.45 −0.62∗
RiskMetrics (0.23) (0.40) (0.28) (0.19) (0.45) (0.31) (0.41) (0.40) (0.41)

DCC-GARCH vs. −0.06 −0.10 −0.06 −0.07 0.00 −0.11
HDCC-GARCH (0.05) (0.10) (0.05) (0.08) (0.04) (0.10)

DCC-GARCH vs. 0.22 0.27∗∗ 0.14 0.16 0.32∗ 0.23∗

CCC-GJR (0.25) (0.16) (0.22) (0.15) (0.25) (0.16)
DCC-GARCH vs. 0.11 0.31∗∗ 0.05 0.25∗∗ 0.26 0.29∗∗

DCC-GJR (0.18) (0.17) (0.16) (0.15) (0.22) (0.17)
DCC-GARCH vs. 0.11 0.30∗∗ 0.03 0.21∗ 0.15 0.24∗

HDCC-GJR (0.19) (0.17) (0.17) (0.13) (0.19) (0.15)
DCC-GARCH vs. −0.41 −0.87∗∗∗ −0.32 −0.71∗∗ −0.30 −0.74∗
RiskMetrics (0.34) (0.30) (0.39) (0.33) (0.36) (0.45)

HDCC-GARCH vs. 0.28 0.37∗∗ 0.20 0.23∗ 0.32 0.34∗∗

CCC-GJR (0.28) (0.21) (0.25) (0.16) (0.26) (0.20)
HDCC-GARCH vs. 0.17 0.41∗ 0.11 0.32∗∗ 0.26 0.40∗∗

DCC-GJR (0.21) (0.25) (0.19) (0.19) (0.24) (0.24)
HDCC-GARCH vs. 0.17 0.40∗∗ 0.08 0.28∗∗ 0.16 0.36∗∗

HDCC-GJR (0.21) (0.24) (0.18) (0.15) (0.20) (0.21)
HDCC-GARCH vs. −0.35 −0.77∗∗∗ −0.26 −0.64∗∗ −0.30 −0.62∗
RiskMetrics (0.30) (0.27) (0.36) (0.32) (0.35) (0.39)

CCC-GJR vs. −0.12 0.04 −0.09 0.09 −0.06 0.06
DCC-GJR (0.10) (0.09) (0.10) (0.10) (0.08) (0.10)

CCC-GJR vs. −0.11 0.03 −0.12 0.05 −0.17∗ 0.02
HDCC-GJR (0.11) (0.08) (0.12) (0.07) (0.11) (0.06)

CCC-GJR vs. −0.05 −0.63 −1.14∗∗∗ −0.11 −0.46 −0.87∗∗ −0.76∗∗∗ −0.62 −0.96∗∗
RiskMetrics (0.18) (0.51) (0.40) (0.19) (0.55) (0.42) (0.29) (0.50) (0.54)

DCC-GJR vs. 0.00 −0.01 −0.02 −0.04 −0.11∗ −0.05
HDCC-GJR (0.04) (0.04) (0.04) (0.07) (0.07) (0.06)

DCC-GJR vs. −0.52 −1.18∗∗∗ −0.37 −0.96∗∗ −0.56 −1.03∗∗
RiskMetrics (0.45) (0.43) (0.48) (0.43) (0.49) (0.57)

HDCC-GJR vs. −0.52 −1.17∗∗∗ −0.35 −0.92∗∗∗ −0.45 −0.98∗∗
RiskMetrics (0.44) (0.42) (0.47) (0.39) (0.45) (0.55)

This table shows summary results of the tests that the expected value of the loss function of methods A and B
are equal, LA = LB . We report the loss differential LA−LB (multiplied by 100). A negative loss differential
means that method A is preferable to method B. We use the asymmetric tick loss function of Giacomini and
Komunjer (2005) as in Equation (22) with ϑ = 0.05. The two methods differ in their model specification.
All methods use daily data. We report standard errors of the average loss differential in parentheses, based
on Newey and West (1987) with 10 leads and lags. We test that the average loss differential is zero based
on the statistic proposed by Diebold and Mariano (1995), evaluated in the setting of Giacomini and White
(2006). Superscripts ∗,∗∗ ,∗∗∗ denote rejection of the null-hypothesis with a significance level of 10%, 5% and
1%.
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Table C.16: Results of the DM-tests for the model specification, ϑ = 5% – continued

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH vs. −0.10 0.11 −0.10 0.11 −0.09 0.11
DCC-GARCH (0.11) (0.12) (0.11) (0.12) (0.10) (0.13)

CCC-GARCH vs. −0.15 0.01 −0.14 0.05 −0.16 0.02
HDCC-GARCH (0.13) (0.06) (0.13) (0.07) (0.13) (0.08)

CCC-GARCH vs. 0.21 0.06 0.26∗∗ 0.17 0.04 0.20∗ 0.19 0.10 0.28∗∗

CCC-GJR (0.19) (0.16) (0.15) (0.21) (0.16) (0.13) (0.19) (0.17) (0.16)
CCC-GARCH vs. −0.02 0.33∗∗ −0.03 0.28∗∗ 0.09 0.34∗∗

DCC-GJR (0.17) (0.20) (0.17) (0.17) (0.17) (0.20)
CCC-GARCH vs. −0.05 0.32∗∗ −0.09 0.24∗∗ −0.02 0.29∗∗

HDCC-GJR (0.18) (0.19) (0.18) (0.14) (0.18) (0.17)
CCC-GARCH vs. 0.11 −0.54 −0.85∗∗∗ 0.09 −0.59 −0.61∗∗ −0.23 −0.43 −0.70∗
RiskMetrics (0.16) (0.45) (0.32) (0.14) (0.51) (0.28) (0.31) (0.45) (0.47)

DCC-GARCH vs. −0.05 −0.10 −0.05 −0.05 −0.07∗ −0.09
HDCC-GARCH (0.04) (0.11) (0.05) (0.08) (0.05) (0.10)

DCC-GARCH vs. 0.16 0.14 0.13 0.10 0.19 0.17
CCC-GJR (0.21) (0.15) (0.21) (0.16) (0.22) (0.15)

DCC-GARCH vs. 0.08 0.22∗∗ 0.06 0.17∗ 0.18 0.23∗∗

DCC-GJR (0.17) (0.13) (0.16) (0.12) (0.18) (0.13)
DCC-GARCH vs. 0.05 0.21∗ 0.00 0.14 0.07 0.18∗

HDCC-GJR (0.17) (0.14) (0.17) (0.13) (0.17) (0.12)
DCC-GARCH vs. −0.44 −0.96∗∗∗ −0.50 −0.72∗∗∗ −0.34 −0.81∗
RiskMetrics (0.39) (0.36) (0.43) (0.30) (0.40) (0.53)

HDCC-GARCH vs. 0.21 0.25∗ 0.18 0.15 0.26 0.26∗

CCC-GJR (0.23) (0.17) (0.22) (0.14) (0.24) (0.18)
HDCC-GARCH vs. 0.14 0.32∗ 0.11 0.22∗ 0.25 0.32∗

DCC-GJR (0.18) (0.19) (0.17) (0.14) (0.21) (0.20)
HDCC-GARCH vs. 0.11 0.31∗ 0.05 0.19∗ 0.14 0.27∗∗

HDCC-GJR (0.17) (0.19) (0.17) (0.12) (0.18) (0.16)
HDCC-GARCH vs. −0.39 −0.86∗∗∗ −0.45 −0.67∗∗∗ −0.27 −0.72∗
RiskMetrics (0.36) (0.31) (0.42) (0.28) (0.38) (0.46)

CCC-GJR vs. −0.08 0.07 −0.07 0.07 −0.01 0.06
DCC-GJR (0.10) (0.09) (0.10) (0.09) (0.08) (0.10)

CCC-GJR vs. −0.10 0.07 −0.13 0.04 −0.12 0.01
HDCC-GJR (0.12) (0.09) (0.12) (0.07) (0.12) (0.07)

CCC-GJR vs. −0.09 −0.60 −1.10∗∗∗ −0.08 −0.63 −0.81∗∗ −0.42∗ −0.53 −0.98∗∗
RiskMetrics (0.19) (0.52) (0.41) (0.19) (0.58) (0.36) (0.29) (0.53) (0.58)

DCC-GJR vs. −0.03 −0.01 −0.06∗ −0.03 −0.11∗ −0.05
HDCC-GJR (0.04) (0.04) (0.05) (0.06) (0.07) (0.06)

DCC-GJR vs. −0.52 −1.18∗∗∗ −0.56 −0.89∗∗∗ −0.52 −1.04∗∗
RiskMetrics (0.47) (0.44) (0.52) (0.35) (0.51) (0.61)

HDCC-GJR vs. −0.50 −1.17∗∗∗ −0.50 −0.86∗∗∗ −0.40 −0.99∗∗
RiskMetrics (0.45) (0.44) (0.50) (0.33) (0.46) (0.58)

See table note on previous page.
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Table C.17: Results of the DM-tests for the distribution, ϑ = 5%

(a) daily returns, iterated forecasts

Normal vs. t Normal vs. Empirical Empirical vs. t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.03∗ −0.02 0.03 −0.05 −0.03 0.02 0.08 0.01 0.00
GARCH (0.02) (0.04) (0.05) (0.08) (0.09) (0.11) (0.08) (0.11) (0.10)

DCC- −0.04 0.02 −0.04 0.03 0.00 −0.01
GARCH (0.05) (0.04) (0.09) (0.11) (0.11) (0.12)

HDCC- 0.02 0.01 −0.04 0.06 0.06 −0.06
GARCH (0.07) (0.05) (0.10) (0.13) (0.11) (0.14)

CCC- 0.05∗∗ 0.06∗∗ −0.03 −0.03 −0.12∗ −0.08 0.08 0.18∗∗ 0.05
GJR (0.02) (0.03) (0.04) (0.11) (0.09) (0.12) (0.10) (0.10) (0.12)

DCC- 0.11∗ 0.00 −0.10 −0.02 0.21∗∗ 0.03
GJR (0.07) (0.04) (0.09) (0.10) (0.12) (0.12)

HDCC- 0.01 −0.04 −0.12∗ −0.06 0.13∗ 0.02
GJR (0.04) (0.04) (0.08) (0.09) (0.09) (0.11)

RiskMetrics −0.66∗∗∗ 0.07∗∗ 0.15 −0.09 0.05 0.19∗∗ −0.57∗∗ 0.02 −0.04
(0.27) (0.04) (0.22) (0.10) (0.06) (0.11) (0.32) (0.08) (0.26)

(b) daily returns, scaled forecasts

Normal vs. t Normal vs. Empirical Empirical vs. t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.01 −0.05 −0.05∗ −0.02 −0.02 0.05 0.03 −0.03 −0.10
GARCH (0.03) (0.05) (0.04) (0.04) (0.08) (0.06) (0.05) (0.11) (0.09)

DCC- −0.04 −0.05 −0.02 0.05 −0.02 −0.10
GARCH (0.05) (0.04) (0.07) (0.07) (0.11) (0.09)

HDCC- −0.06 −0.04 −0.01 0.10 −0.05 −0.14∗

GARCH (0.06) (0.05) (0.08) (0.09) (0.12) (0.10)
CCC- 0.00 −0.01 −0.02 −0.06∗ −0.04 0.00 0.06∗ 0.04 −0.03

GJR (0.02) (0.04) (0.04) (0.04) (0.06) (0.04) (0.04) (0.08) (0.07)
DCC- 0.06 −0.04 −0.04 0.00 0.09 −0.04

GJR (0.06) (0.04) (0.06) (0.04) (0.09) (0.07)
HDCC- −0.03 −0.08∗ −0.07 −0.02 0.04 −0.06

GJR (0.04) (0.05) (0.06) (0.07) (0.08) (0.07)
RiskMetrics −0.32∗ 0.07∗ 0.10 −0.04 −0.07 0.29∗∗ −0.29 0.14∗ −0.19

(0.21) (0.04) (0.24) (0.07) (0.07) (0.14) (0.25) (0.09) (0.35)

This table shows summary results of the tests that the expected value of the loss function of methods A and B
are equal, LA = LB . We report the loss differential LA−LB (multiplied by 100). A negative loss differential
means that method A is preferable to method B. We use the asymmetric tick loss function of Giacomini
and Komunjer (2005) as in Equation (22) with ϑ = 0.01. The two methods differ in the distribution of the
innovations. We consider the normal, empirical and Student’s t-distributions. All methods use daily data.
We report standard errors of the average loss differential in parentheses, based on Newey and West (1987)
with 10 leads and lags. We test that the average loss differential is zero based on the statistic proposed by
Diebold and Mariano (1995), evaluated in the setting of Giacomini and White (2006). Superscripts ∗,∗∗ ,∗∗∗

denote rejection of the null-hypothesis with a significance level of 10%, 5% and 1%.
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Table C.18: Summary results of UC and DQ tests, 8-year estimation window

UC-test results DQ-test results
rejections at sign. sign.

# methods 1% 5% 10% neg. neg. pos. pos.

(a) Temporal aggregation

Daily, iterated 51 3 17 30 48 4 3 0
Daily, scaled 51 4 29 42 49 1 2 0
Weekly, iterated 51 10 34 39 34 0 17 2
Weekly, scaled 51 20 36 37 28 0 23 1
Biweekly, direct 51 32 36 37 3 0 48 11

(b) Portfolio aggregation

Portfolio level 45 16 27 36 18 4 27 8
Asset class level 105 22 55 68 68 0 37 4
Asset level 105 31 70 81 76 1 29 2

(c) Model specification

GARCH, uv. 15 6 11 14 6 0 9 1
GJR, uv. 15 5 9 12 6 3 9 4
RiskMetrics, uv. 15 5 7 10 6 1 9 7
CCC-GARCH 30 12 21 24 23 0 7 0
DCC-GARCH 30 8 21 25 23 0 7 1
HDCC-GARCH 30 11 20 25 19 0 11 0
CCC-GJR 30 7 19 21 24 1 6 -3
DCC-GJR 30 4 15 18 24 0 6 0
HDCC-GJR 30 6 16 20 24 0 6 0
RiskMetrics, mv. 30 5 13 16 7 0 23 4

(d) Distribution

Normal 85 49 75 79 52 0 33 4
Empirical 85 3 14 32 53 2 32 6
Student’s t 85 17 63 74 57 3 28 4

This table summarizes the results of the unconditional coverage (UC) and dynamic quantile (DQ) tests of
Christoffersen (1998) and Engle and Manganelli (2004) for the 255 different methods that we analyze. In
each panel, we categorize the methods based on the choice aspect given in the panel heading. For each option
that can be chosen, we report the total number of methods. Next, we report for the number of rejections
from the UC tests for significance levels of 1, 5 and 10%. Under the null (alternative) hypothesis, the actual
coverage ratio equals (exceeds) the theoretical coverage ratio of 0.01. To conduct the DQ test, we regress the
centered hit series on the negtive VaR forecasts. We report the number of negative and positive coefficients,
and the number of significant ones at the 10% level. Significance is determined by bootstraps as in Herwartz
and Waichman (2010). The full results are available in Tables C.19 and C.20.
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Table C.19: Results for the UC tests, 8-year estimation window

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 1.74∗∗ 1.77∗∗ 2.24∗∗∗ 1.62∗ 1.59∗ 1.91∗∗ 1.72∗ 1.72∗∗ 2.14∗∗∗

GARCH (0.44) (0.43) (0.49) (0.43) (0.41) (0.46) (0.44) (0.43) (0.47)
DCC- 1.79∗∗ 1.99∗∗ 1.62∗ 1.79∗∗ 1.69∗∗ 1.87∗∗

GARCH (0.44) (0.46) (0.42) (0.44) (0.42) (0.45)
HDCC- 1.67∗ 2.19∗∗∗ 1.57∗ 1.84∗∗ 1.64∗ 2.06∗∗

GARCH (0.42) (0.48) (0.41) (0.44) (0.42) (0.47)
CCC- 1.22 1.27 1.77∗∗ 1.29 1.22 1.67∗ 1.14 1.19 1.67∗

GJR (0.37) (0.35) (0.43) (0.38) (0.34) (0.41) (0.37) (0.34) (0.42)
DCC- 1.07 1.52∗ 1.04 1.32 1.14 1.47

GJR (0.34) (0.40) (0.33) (0.36) (0.35) (0.39)
HDCC- 1.22 1.69∗∗ 1.12 1.57∗ 1.14 1.57∗

GJR (0.36) (0.42) (0.34) (0.41) (0.34) (0.41)
RiskMetrics 1.39 1.37 2.01∗∗ 1.44 1.44 1.44 0.82 1.34 1.79∗

(0.39) (0.40) (0.50) (0.40) (0.41) (0.43) (0.31) (0.40) (0.49)

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 2.01∗∗ 1.99∗∗ 2.34∗∗∗ 1.29 1.64∗ 1.89∗∗ 1.72∗ 1.69∗ 2.04∗∗

GARCH (0.47) (0.46) (0.50) (0.37) (0.41) (0.45) (0.44) (0.43) (0.47)
DCC- 1.99∗∗ 2.11∗∗ 1.64∗ 1.64∗ 1.77∗∗ 1.89∗∗

GARCH (0.46) (0.48) (0.43) (0.42) (0.43) (0.46)
HDCC- 2.04∗∗ 2.19∗∗∗ 1.59∗ 1.82∗∗ 1.72∗∗ 2.01∗∗

GARCH (0.46) (0.49) (0.42) (0.43) (0.43) (0.47)
CCC- 1.96∗∗ 1.87∗∗ 2.26∗∗∗ 1.54∗ 1.82∗∗ 1.87∗∗ 1.62∗ 1.79∗∗ 1.96∗∗

GJR (0.45) (0.43) (0.49) (0.41) (0.43) (0.44) (0.42) (0.42) (0.45)
DCC- 1.96∗∗ 2.06∗∗ 1.49 1.67∗ 1.59∗ 1.82∗∗

GJR (0.44) (0.47) (0.40) (0.41) (0.41) (0.43)
HDCC- 1.99∗∗ 2.31∗∗∗ 1.52∗ 1.79∗∗ 1.52 1.99∗∗

GJR (0.45) (0.50) (0.40) (0.43) (0.40) (0.46)
RiskMetrics 1.64∗ 1.57∗ 2.11∗∗ 1.29 1.24 1.34 0.90 1.32 1.49

(0.43) (0.42) (0.52) (0.39) (0.38) (0.43) (0.32) (0.40) (0.45)

This table shows the empirical coverage and results of the unconditional coverage tests of Christoffersen
(1998). Models are estimated with a moving window of 2,000 daily returns, 400 weekly returns or 200
biweekly returns. For every day in the sample, we construct a violation indicator that equals one when
the ten-day realized portfolio loss exceeds the forecasted VaRϑ with ϑ = 0.01, and zero otherwise, as in
Equation (20). We report the coverage (in %), and test whether it is equal to ϑ against the alternative of
strictly more violations. We report Newey and West (1987) standard errors calculated with 10 leads and
lags in parentheses. Superscripts ∗,∗∗ ,∗∗∗ denote rejection of the null-hypothesis with a significance level of
10%, 5% and 1%. The results are based on 4,021 forecasts.
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Table C.19: Results for the UC tests, 8-year estimation window – continued

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 2.39∗∗∗ 2.29∗∗∗ 2.49∗∗∗ 1.96∗∗ 1.42 1.57 2.16∗∗ 2.06∗∗ 2.26∗∗∗

GARCH (0.53) (0.51) (0.53) (0.48) (0.41) (0.44) (0.51) (0.49) (0.51)
DCC- 2.19∗∗∗ 2.39∗∗∗ 1.44 1.64∗ 2.01∗∗ 2.11∗∗

GARCH (0.50) (0.52) (0.42) (0.44) (0.50) (0.50)
HDCC- 2.19∗∗∗ 2.46∗∗∗ 1.49 1.59∗ 1.96∗∗ 2.11∗∗

GARCH (0.49) (0.53) (0.44) (0.45) (0.49) (0.49)
CCC- 1.99∗∗ 1.82∗∗ 2.06∗∗ 1.69∗ 1.32 1.44 1.94∗∗ 1.72∗∗ 1.96∗∗

GJR (0.47) (0.43) (0.47) (0.44) (0.38) (0.40) (0.46) (0.42) (0.46)
DCC- 1.79∗∗ 1.99∗∗ 1.34 1.24 1.69∗∗ 1.82∗∗

GJR (0.43) (0.46) (0.39) (0.39) (0.42) (0.44)
HDCC- 1.77∗∗ 2.01∗∗ 1.09 1.32 1.67∗ 1.91∗∗

GJR (0.43) (0.46) (0.36) (0.40) (0.42) (0.46)
RiskMetrics 2.24∗∗∗ 2.09∗∗ 2.46∗∗∗ 1.74∗ 1.49 1.27 2.16∗∗ 1.94∗∗ 1.96∗∗

(0.53) (0.52) (0.57) (0.48) (0.45) (0.41) (0.54) (0.50) (0.51)

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 2.66∗∗∗ 2.51∗∗∗ 2.69∗∗∗ 1.91∗∗ 1.24 1.44 2.21∗∗∗ 2.11∗∗ 2.09∗∗

GARCH (0.56) (0.54) (0.56) (0.47) (0.39) (0.43) (0.51) (0.50) (0.49)
DCC- 2.66∗∗∗ 2.51∗∗∗ 1.37 1.42 2.01∗∗ 2.04∗∗

GARCH (0.54) (0.53) (0.40) (0.42) (0.49) (0.50)
HDCC- 2.56∗∗∗ 2.66∗∗∗ 1.27 1.52 2.01∗∗ 2.19∗∗∗

GARCH (0.53) (0.55) (0.40) (0.46) (0.50) (0.50)
CCC- 2.61∗∗∗ 2.39∗∗∗ 2.54∗∗∗ 1.82∗∗ 1.42 1.42 2.26∗∗∗ 1.89∗∗ 1.96∗∗

GJR (0.53) (0.50) (0.52) (0.45) (0.39) (0.40) (0.50) (0.45) (0.47)
DCC- 2.36∗∗∗ 2.41∗∗∗ 1.42 1.32 2.01∗∗ 2.04∗∗

GJR (0.49) (0.50) (0.39) (0.38) (0.45) (0.46)
HDCC- 2.39∗∗∗ 2.49∗∗∗ 1.34 1.37 1.91∗∗ 2.06∗∗

GJR (0.49) (0.52) (0.39) (0.40) (0.44) (0.47)
RiskMetrics 2.49∗∗∗ 2.26∗∗∗ 2.51∗∗∗ 1.62∗ 1.37 1.09 2.11∗∗ 1.87∗∗ 1.79∗∗

(0.55) (0.53) (0.57) (0.46) (0.43) (0.38) (0.53) (0.49) (0.48)

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 3.06∗∗∗ 2.79∗∗∗ 2.93∗∗∗ 2.34∗∗∗ 0.92 1.29 2.46∗∗∗ 2.26∗∗∗ 2.34∗∗∗

GARCH (0.61) (0.58) (0.59) (0.55) (0.36) (0.42) (0.55) (0.52) (0.52)
DCC- 2.81∗∗∗ 2.93∗∗∗ 0.97 1.12 2.26∗∗∗ 2.24∗∗∗

GARCH (0.58) (0.59) (0.37) (0.38) (0.52) (0.51)
HDCC- 2.91∗∗∗ 3.03∗∗∗ 0.95 1.22 2.26∗∗∗ 2.26∗∗∗

GARCH (0.58) (0.60) (0.36) (0.41) (0.52) (0.52)
CCC- 3.08∗∗∗ 2.54∗∗∗ 2.64∗∗∗ 2.44∗∗∗ 0.95 1.19 2.69∗∗∗ 2.24∗∗∗ 2.14∗∗∗

GJR (0.59) (0.52) (0.54) (0.53) (0.36) (0.39) (0.55) (0.50) (0.49)
DCC- 2.61∗∗∗ 2.61∗∗∗ 0.82 1.17 2.11∗∗ 2.01∗∗

GJR (0.53) (0.53) (0.32) (0.39) (0.49) (0.46)
HDCC- 2.61∗∗∗ 2.61∗∗∗ 0.97 1.14 2.19∗∗∗ 2.04∗∗

GJR (0.52) (0.53) (0.33) (0.39) (0.48) (0.47)
RiskMetrics 2.81∗∗∗ 2.29∗∗∗ 2.56∗∗∗ 2.36∗∗∗ 1.57 1.44 2.36∗∗∗ 1.89∗∗ 1.79∗

(0.61) (0.55) (0.58) (0.58) (0.46) (0.43) (0.55) (0.51) (0.50)

See table note on previous page.
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Table C.20: Results of the DQ test, 8-year estimation window

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.30 −0.18 −0.33 −0.32 −0.11 −0.34 −0.31 −0.16 −0.29
GARCH (0.11) (0.19) (0.14) (0.10) (0.25) (0.12) (0.11) (0.20) (0.16)

DCC- −0.15 −0.09 −0.10 −0.07 −0.13 −0.03
GARCH (0.21) (0.31) (0.26) (0.32) (0.23) (0.38)

HDCC- −0.17 −0.29 −0.14 −0.25 −0.15 −0.16
GARCH (0.18) (0.15) (0.21) (0.16) (0.20) (0.25)

CCC- −0.21 −0.06 −0.31 −0.29∗ −0.06 −0.25 −0.24∗ −0.07 −0.30∗

GJR (0.12) (0.28) (0.10) (0.08) (0.28) (0.13) (0.09) (0.24) (0.10)
DCC- −0.09 −0.11 −0.11 −0.12 −0.08 −0.10

GJR (0.20) (0.24) (0.17) (0.21) (0.23) (0.25)
HDCC- −0.10 −0.19 −0.09 −0.17 −0.08 −0.16

GJR (0.20) (0.18) (0.21) (0.18) (0.22) (0.19)
RiskMetrics −0.07 −0.01 0.03 −0.08 0.02 −0.02 −0.20∗ −0.02 0.03

(0.28) (0.39) (0.46) (0.26) (0.45) (0.37) (0.09) (0.38) (0.47)

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.29 −0.14 −0.29 −0.21 −0.08 −0.18 −0.31 −0.16 −0.19
GARCH (0.13) (0.24) (0.17) (0.13) (0.29) (0.21) (0.10) (0.18) (0.22)

DCC- −0.14 −0.10 −0.13 −0.05 −0.14 −0.07
GARCH (0.22) (0.31) (0.22) (0.35) (0.22) (0.32)

HDCC- −0.12 −0.23 −0.17 −0.11 −0.16 −0.15
GARCH (0.26) (0.20) (0.18) (0.27) (0.18) (0.24)

CCC- −0.21 −0.13 −0.38 −0.28∗ −0.09 −0.25 −0.25 −0.10 −0.31
GJR (0.16) (0.23) (0.11) (0.10) (0.29) (0.15) (0.11) (0.26) (0.12)

DCC- −0.12 −0.16 −0.15 −0.11 −0.15 −0.08
GJR (0.23) (0.23) (0.18) (0.24) (0.17) (0.29)

HDCC- −0.18 −0.32 −0.17 −0.20 −0.22 −0.19
GJR (0.18) (0.13) (0.16) (0.16) (0.12) (0.19)

RiskMetrics −0.07 0.02 0.05 −0.08 −0.02 −0.01 −0.18 −0.02 −0.01
(0.29) (0.46) (0.49) (0.25) (0.37) (0.37) (0.10) (0.37) (0.40)

This table reports the results of the dynamic quantile test of Engle and Manganelli (2004). We conduct a
linear regression of the centered VaR-violations on a constant and the forecasted VaRϑ (in %) for ϑ = 0.01, as
in Equation (21). We report the estimated coefficient on the forecasted VaRθ (expressed as a decimal rate),
and quantile of its t-statistic in the distribution of the statistic under the null hypothesis of no predictability.
Following Herwartz and Waichman (2010), we construct this distribution by 10,000 block bootstrapped
samples with a block length of 10. Superscripts ∗,∗∗ ,∗∗∗ denote quantiles in the 10%, 5% and 1% of the left
or right tail.
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Table C.20: Results of the DQ test, 8-year estimation window – continued

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.06 −0.14 −0.04 0.05 −0.08 −0.21 0.09 −0.05 −0.04
GARCH (0.52) (0.30) (0.40) (0.52) (0.30) (0.18) (0.57) (0.38) (0.40)

DCC- −0.13 −0.05 −0.03 −0.02 −0.02 −0.03
GARCH (0.30) (0.38) (0.37) (0.41) (0.41) (0.39)

HDCC- 0.00 −0.01 −0.06 −0.04 0.03 0.04
GARCH (0.44) (0.43) (0.33) (0.35) (0.48) (0.47)

CCC- 0.08 −0.06 −0.25 0.03 −0.07 −0.15 0.08 −0.14 −0.33
GJR (0.57) (0.33) (0.18) (0.49) (0.26) (0.20) (0.58) (0.22) (0.12)

DCC- −0.07 −0.07 −0.07 −0.10 −0.09 −0.04
GJR (0.30) (0.33) (0.28) (0.23) (0.28) (0.38)

HDCC- −0.07 −0.10 −0.04 −0.11 −0.09 −0.21
GJR (0.31) (0.30) (0.32) (0.22) (0.26) (0.19)

RiskMetrics 0.28∗ 0.21 0.31 0.17 0.13 0.14 0.38∗∗ 0.21 0.19
(0.91) (0.76) (0.82) (0.80) (0.73) (0.86) (0.99) (0.76) (0.72)

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.00 −0.09 −0.06 0.14 0.02 −0.17 0.06 0.00 −0.07
GARCH (0.45) (0.36) (0.40) (0.71) (0.46) (0.19) (0.52) (0.44) (0.36)

DCC- −0.07 −0.06 0.03 −0.02 −0.01 −0.01
GARCH (0.38) (0.39) (0.50) (0.40) (0.42) (0.44)

HDCC- −0.01 −0.02 0.06 0.01 0.08 −0.04
GARCH (0.43) (0.42) (0.56) (0.44) (0.55) (0.40)

CCC- 0.10 0.02 −0.42 0.11 −0.06 −0.15 0.12 −0.09 −0.29
GJR (0.57) (0.47) (0.13) (0.65) (0.30) (0.19) (0.63) (0.30) (0.16)

DCC- 0.01 −0.17 −0.04 −0.07 −0.08 −0.08
GJR (0.44) (0.25) (0.33) (0.27) (0.31) (0.33)

HDCC- 0.04 −0.30 −0.05 −0.10 −0.09 −0.20
GJR (0.50) (0.18) (0.31) (0.25) (0.29) (0.21)

RiskMetrics 0.20 0.28 0.31 0.17 0.14 0.12 0.36∗∗ 0.25 0.14
(0.74) (0.83) (0.81) (0.86) (0.82) (0.86) (0.98) (0.83) (0.67)

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- 0.38 0.36 0.15 0.41∗∗∗ 0.08 0.08 0.30 0.15 0.13
GARCH (0.83) (0.79) (0.59) (1.00) (0.83) (0.64) (0.84) (0.63) (0.58)

DCC- 0.30 0.30 0.10∗ 0.14 0.25 0.22
GARCH (0.75) (0.73) (0.91) (0.83) (0.76) (0.73)

HDCC- 0.27 0.25 0.09 0.12 0.24 0.09
GARCH (0.73) (0.67) (0.87) (0.76) (0.76) (0.55)

CCC- 0.26 0.22 0.11 0.32∗∗∗ 0.06 0.07 0.30 0.08 −0.16
GJR (0.80) (0.75) (0.57) (1.00) (0.72) (0.60) (0.89) (0.56) (0.26)

DCC- 0.23 0.19 0.06 0.09 0.06 −0.01
GJR (0.77) (0.68) (0.77) (0.68) (0.54) (0.44)

HDCC- 0.25 0.09 0.08 0.08 0.09 −0.12
GJR (0.80) (0.55) (0.86) (0.66) (0.59) (0.29)

RiskMetrics 0.44∗∗ 0.43∗∗ 0.43∗ 0.40∗∗∗ 0.22∗∗ 0.17∗∗ 0.35∗∗ 0.35∗ 0.23
(0.95) (0.96) (0.91) (1.00) (0.99) (0.99) (0.98) (0.94) (0.77)

See table note on previous page.
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Table C.21: Average asymmetric tick loss, 8-year estimation window

(a) daily returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 6.39 5.98 6.31 6.38 5.94 6.18 6.40 5.94 6.26
DCC-GARCH 6.02 6.19 5.94 6.06 6.01 6.16
HDCC-GARCH 6.06 6.29 5.96 6.12 6.04 6.24
CCC-GJR 6.08 5.75 5.94 6.08 5.77 5.91 6.03 5.69 5.81
DCC-GJR 5.73 5.80 5.74 5.72 5.69 5.77
HDCC-GJR 5.75 5.84 5.74 5.78 5.73 5.79
RiskMetrics 6.11 6.20 6.75 6.15 6.22 6.55 6.12 6.25 6.82

(b) daily returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 6.42 6.07 6.39 6.11 5.90 6.04 6.29 5.89 6.15
DCC-GARCH 6.11 6.27 5.95 5.94 6.00 6.09
HDCC-GARCH 6.16 6.39 5.97 6.04 5.99 6.17
CCC-GJR 6.24 6.00 6.26 6.08 5.91 5.96 6.15 5.85 6.02
DCC-GJR 6.01 6.09 5.91 5.81 5.87 5.93
HDCC-GJR 6.06 6.22 5.95 5.93 5.90 5.99
RiskMetrics 6.21 6.25 6.79 6.10 6.22 6.59 6.13 6.22 6.71

(c) weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 7.88 7.77 7.80 7.56 7.21 7.23 7.67 7.62 7.65
DCC-GARCH 7.71 7.69 7.20 7.18 7.61 7.57
HDCC-GARCH 7.69 7.80 7.18 7.23 7.61 7.65
CCC-GJR 7.26 7.05 7.23 7.08 6.74 6.88 7.25 7.00 7.14
DCC-GJR 7.05 7.09 6.72 6.78 6.95 7.08
HDCC-GJR 6.99 7.20 6.73 6.85 6.93 7.12
RiskMetrics 7.56 7.91 8.09 7.30 7.68 7.86 7.94 7.84 7.79

This table shows the average value of the asymmetric tick loss function of Giacomini and Komunjer (2005)
as in Equation (22) for ϑ = 0.01. All values have been multiplied by 100. Models are estimated with a
moving window of 2,000 daily returns, 400 weekly returns or 200 biweekly returns. The results are based on
4,021 forecasts.
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Table C.21: Average asymmetric tick loss, 8-year estimation window – continued

(d) weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 7.98 7.89 7.90 7.29 7.09 7.17 7.59 7.65 7.58
DCC-GARCH 7.82 7.77 7.13 7.09 7.62 7.50
HDCC-GARCH 7.79 7.89 7.12 7.18 7.69 7.57
CCC-GJR 7.52 7.36 7.50 7.09 6.81 6.79 7.32 7.16 7.19
DCC-GJR 7.33 7.35 6.78 6.78 7.07 7.14
HDCC-GJR 7.25 7.46 6.74 6.85 7.06 7.23
RiskMetrics 7.62 7.96 8.13 7.23 7.62 7.65 7.88 7.82 7.76

(e) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 8.82 8.59 8.31 8.18 8.29 7.79 8.32 8.23 7.93
DCC-GARCH 8.47 8.16 8.31 7.70 8.09 7.82
HDCC-GARCH 8.39 8.24 8.24 7.76 8.02 7.82
CCC-GJR 8.46 7.97 7.77 7.92 7.70 7.18 8.00 7.78 7.54
DCC-GJR 7.83 7.64 7.73 7.24 7.67 7.39
HDCC-GJR 7.86 7.72 7.67 7.22 7.72 7.45
RiskMetrics 8.98 8.41 8.23 8.69 8.24 8.09 8.22 8.44 7.98

See table note on previous page.
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Table C.22: Methods removed from the Model Confidence Set, 8-year estimation
window

(a) biweekly returns, direct forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC-GARCH 0.094
DCC-GARCH 0.092
HDCC-GARCH 0.090
CCC-GJR
DCC-GJR 0.097
HDCC-GJR 0.098
RiskMetrics 0.099

This table presents the MCS p-value with which a model has been removed from the Model Confidence
Set. We follow the procedure of Hansen et al. (2011, Sec. 3.1.2), with the tick loss function in (22) and a
significance level of 10%. The procedure starts with the complete set of 255 methods. Panels for daily and
weekly observations combined with iterated or scaled forecasts are absent, because no methods with these
combinations have been removed. Models are estimated with a moving window of 2,000 daily returns, 400
weekly returns or 200 biweekly returns. The results are based on 4,021 forecasts.
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Table C.23: Results of the Diebold-Mariano tests for temporal aggregation, 4 and
8-year estimation window

# of neg. sign. neg. pos.
Method A Method B tests 1% 5% 10%

(a) 4-year estimation window

Daily, iterated Weekly, iterated 51 51 0 14 51 0
Daily, scaled Weekly, scaled 51 51 0 18 51 0
Daily, iterated Biweekly, direct 51 51 8 34 51 0
Daily, scaled Biweekly, direct 51 51 10 26 51 0
Weekly, iterated Biweekly, direct 51 51 17 46 48 0
Weekly, scaled Biweekly, direct 51 51 16 39 46 0

(b) 8-year estimation window

Daily, iterated Weekly, iterated 51 51 3 8 50 0
Daily, scaled Weekly, scaled 51 51 4 11 50 0
Daily, iterated Biweekly, direct 51 51 2 19 51 0
Daily, scaled Biweekly, direct 51 51 3 19 51 0
Weekly, iterated Biweekly, direct 51 51 9 13 40 0
Weekly, scaled Biweekly, direct 51 51 10 14 34 0

This table shows summary results of the tests that the expected value of the loss function of methods A and
B are equal, LA = LB . We calculate the loss differential as LA−LB . A negative loss differential means that
method A is preferable to method B. We use the asymmetric tick loss function of Giacomini and Komunjer
(2005) as in Equation (22) with ϑ = 0.05. We report the number of negative and positive average loss
differentials, and the number of times these differentials are significant for the 1% 5% and 10% significance
levels, based on the statistic proposed by Diebold and Mariano (1995), evaluated in the setting of Giacomini
and White (2006). Standard errors of the average loss differential are based on Newey and West (1987) with
10 leads and lags. We compare pairs of methods that differ in only in their degree of temporal aggregation,
so the other four choices are the same. The full results for the 4-year and 8-year estimation windows are
available in Table C.7 and Table C.24.
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Table C.24: Results of the DM-tests for temporal aggregation, 8-year estimation win-
dow

(a) daily vs. weekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −1.64∗∗∗ −1.54∗ −1.80∗ −1.28∗∗∗ −1.06 −1.28∗ −1.40∗∗ −1.43∗ −1.69∗
GARCH (0.70) (1.01) (1.19) (0.54) (0.83) (0.97) (0.66) (0.99) (1.19)

DCC- −1.54∗ −1.72∗ −1.13∗ −1.26∗ −1.44∗ −1.62∗
GARCH (1.01) (1.11) (0.83) (0.89) (1.00) (1.07)

HDCC- −1.58∗ −1.67∗ −1.13∗ −1.22∗ −1.44∗ −1.59∗
GARCH (1.04) (1.07) (0.86) (0.85) (1.02) (1.07)

CCC- −1.30∗∗ −1.32∗ −1.32∗ −1.09∗∗∗ −0.98∗ −0.97∗ −1.32∗∗ −1.37∗ −1.31∗
GJR (0.58) (0.85) (0.91) (0.43) (0.74) (0.70) (0.57) (0.87) (0.94)

DCC- −1.32∗ −1.36∗ −1.06∗ −0.99∗ −1.34∗ −1.29∗
GJR (0.88) (0.88) (0.74) (0.69) (0.90) (0.87)

HDCC- −1.39∗ −1.28∗ −1.08∗ −0.99∗ −1.36∗ −1.22∗
GJR (0.92) (0.86) (0.77) (0.68) (0.94) (0.84)

RiskMetrics −1.57∗ −1.43∗∗ −1.73∗ −1.26∗ −1.34∗∗ −1.47∗ −1.96∗ −0.99∗ −1.61∗
(0.98) (0.84) (1.14) (0.76) (0.60) (0.91) (1.40) (0.67) (1.09)

(b) daily vs. weekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −1.71∗∗ −1.56∗ −1.85∗ −1.26∗∗∗ −1.13∗ −1.19∗ −1.43∗∗ −1.46∗ −1.77∗
GARCH (0.75) (1.05) (1.21) (0.53) (0.85) (0.88) (0.70) (1.04) (1.22)

DCC- −1.55∗ −1.75∗ −1.16∗ −1.18∗ −1.44∗ −1.64∗
GARCH (1.05) (1.12) (0.85) (0.81) (1.02) (1.10)

HDCC- −1.57∗ −1.68∗ −1.15∗ −1.14∗ −1.43∗ −1.71∗
GARCH (1.07) (1.09) (0.88) (0.76) (1.06) (1.12)

CCC- −1.40∗∗∗ −1.28∗ −1.39∗ −1.10∗∗∗ −0.84 −0.90∗ −1.29∗∗∗ −1.19∗ −1.32∗
GJR (0.57) (0.84) (0.89) (0.39) (0.68) (0.67) (0.53) (0.84) (0.90)

DCC- −1.31∗ −1.37∗∗ −0.97∗ −0.88∗ −1.24∗ −1.21∗
GJR (0.85) (0.81) (0.69) (0.57) (0.85) (0.77)

HDCC- −1.28∗ −1.25∗ −0.92∗ −0.80∗ −1.27∗ −1.19∗
GJR (0.86) (0.79) (0.71) (0.53) (0.88) (0.76)

RiskMetrics −1.53∗ −1.44∗∗ −1.75∗ −1.23∗∗ −1.09∗∗ −1.41∗∗ −1.89∗ −1.07∗ −1.62∗
(0.97) (0.84) (1.12) (0.71) (0.53) (0.76) (1.31) (0.71) (1.10)

(c) daily vs. biweekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −2.60∗∗ −2.09∗ −2.67∗ −1.99∗∗ −1.62∗∗ −2.35∗∗ −2.08∗∗ −1.73∗ −2.33∗
GARCH (1.21) (1.30) (1.66) (0.96) (0.98) (1.12) (1.07) (1.20) (1.53)

DCC- −2.06∗ −2.53∗ −1.66∗∗ −2.37∗∗ −1.71∗ −2.13∗
GARCH (1.29) (1.57) (0.96) (1.05) (1.19) (1.40)

HDCC- −2.04∗ −2.43∗∗ −1.66∗ −2.27∗∗∗ −1.63∗ −2.04∗
GARCH (1.31) (1.46) (1.01) (0.91) (1.20) (1.32)

CCC- −2.54∗∗ −1.90∗ −2.29∗ −2.00∗∗ −1.29∗ −1.93∗∗ −2.11∗∗ −1.77∗ −2.13∗
GJR (1.26) (1.21) (1.46) (1.01) (0.89) (1.02) (1.08) (1.18) (1.44)

DCC- −1.91∗ −2.18∗ −1.53∗ −1.99∗∗ −1.67∗ −2.03∗
GJR (1.25) (1.39) (0.93) (0.94) (1.18) (1.39)

HDCC- −1.94∗ −2.21∗ −1.45∗ −1.93∗∗ −1.69∗ −2.05∗
GJR (1.27) (1.37) (0.96) (0.86) (1.19) (1.34)

RiskMetrics −3.06∗∗ −1.66∗∗ −2.27∗ −2.77∗∗ −1.68∗∗∗ −2.05∗ −2.28∗ −1.23∗ −2.23∗
(1.84) (0.96) (1.55) (1.59) (0.59) (1.29) (1.41) (0.82) (1.49)

This table shows summary results of the tests that the expected value of the loss function of methods A
and B are equal, LA = LB . We report the loss differential LA − LB (multiplied by 100). A negative loss
differential means that method A is preferable to method B. We use the asymmetric tick loss function of
Giacomini and Komunjer (2005) as in Equation (22) with ϑ = 0.01. The two methods differ in their degree
of temporal aggregation as stated in the headings of the different panels. We report standard errors of the
average loss differential in parentheses, based on Newey and West (1987) with 10 leads and lags. We test that
the average loss differential is zero based on the statistic proposed by Diebold and Mariano (1995), evaluated
in the setting of Giacomini and White (2006). Superscripts ∗,∗∗ ,∗∗∗ denote rejection of the null-hypothesis
with a significance level of 10%, 5% and 1%.
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Table C.24: Results of the DM-tests for temporal aggregation, 8-year estimation win-
dow – continued

(d) daily vs. biweekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −2.57∗∗ −2.01∗ −2.59∗ −2.26∗∗ −1.77∗∗ −2.38∗∗ −2.20∗∗ −1.84∗ −2.37∗
GARCH (1.25) (1.33) (1.65) (1.12) (1.05) (1.11) (1.16) (1.29) (1.57)

DCC- −1.98∗ −2.44∗ −1.78∗∗ −2.36∗∗ −1.79∗ −2.14∗
GARCH (1.31) (1.56) (1.06) (1.02) (1.26) (1.44)

HDCC- −1.94∗ −2.32∗ −1.73∗ −2.26∗∗∗ −1.69∗ −2.08∗
GARCH (1.32) (1.46) (1.07) (0.88) (1.27) (1.36)

CCC- −2.37∗∗ −1.58∗ −2.04∗ −2.00∗∗ −1.24∗ −1.79∗∗ −2.00∗∗ −1.56∗ −1.97∗
GJR (1.17) (1.14) (1.33) (1.01) (0.87) (0.93) (1.02) (1.12) (1.32)

DCC- −1.62∗ −1.90∗ −1.44∗ −1.82∗∗ −1.51∗ −1.85∗
GJR (1.14) (1.22) (0.89) (0.80) (1.12) (1.24)

HDCC- −1.56∗ −1.90∗ −1.30∗ −1.72∗∗∗ −1.49∗ −1.87∗
GJR (1.14) (1.19) (0.88) (0.68) (1.11) (1.20)

RiskMetrics −2.95∗∗ −1.61∗∗ −2.21∗ −2.82∗∗ −1.65∗∗∗ −2.05∗ −2.27∗∗ −1.34∗ −2.26∗
(1.77) (0.95) (1.51) (1.63) (0.65) (1.27) (1.35) (0.90) (1.52)

(e) weekly vs. biweekly returns, iterated forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.97∗ −0.55∗ −0.87∗ −0.71∗ −0.57∗∗∗ −1.07∗∗∗ −0.68∗ −0.30 −0.63∗
GARCH (0.59) (0.34) (0.54) (0.54) (0.20) (0.28) (0.50) (0.25) (0.39)

DCC- −0.52∗ −0.81∗ −0.53∗∗∗ −1.11∗∗∗ −0.27 −0.50∗
GARCH (0.32) (0.53) (0.17) (0.28) (0.22) (0.38)

HDCC- −0.47∗ −0.76∗ −0.53∗∗∗ −1.05∗∗∗ −0.18 −0.45∗
GARCH (0.32) (0.46) (0.19) (0.25) (0.21) (0.32)

CCC- −1.24∗ −0.58∗ −0.97∗ −0.91 −0.31∗ −0.96∗∗∗ −0.79 −0.41 −0.81∗
GJR (0.81) (0.41) (0.61) (0.73) (0.20) (0.38) (0.63) (0.34) (0.56)

DCC- −0.58∗ −0.83∗ −0.46∗∗ −1.00∗∗∗ −0.33 −0.74∗
GJR (0.42) (0.57) (0.23) (0.33) (0.32) (0.57)

HDCC- −0.55∗ −0.93∗ −0.38∗∗ −0.94∗∗∗ −0.34 −0.83∗
GJR (0.40) (0.57) (0.23) (0.29) (0.27) (0.56)

RiskMetrics −1.49∗ −0.22 −0.53 −1.51∗∗ −0.34∗∗ −0.58∗ −0.32∗ −0.24 −0.62∗
(0.93) (0.18) (0.44) (0.90) (0.19) (0.40) (0.20) (0.19) (0.44)

(f) weekly vs. biweekly returns, scaled forecasts

Normal Empirical Student’s t
Asset split 1 3 8 1 3 8 1 3 8

CCC- −0.86∗ −0.44∗ −0.74∗ −1.00∗ −0.64∗∗∗ −1.19∗∗∗ −0.76∗ −0.38∗ −0.61∗
GARCH (0.61) (0.32) (0.52) (0.70) (0.23) (0.33) (0.56) (0.28) (0.41)

DCC- −0.43∗ −0.69∗ −0.62∗∗∗ −1.19∗∗∗ −0.34∗ −0.50
GARCH (0.31) (0.52) (0.23) (0.32) (0.27) (0.40)

HDCC- −0.38∗ −0.64∗ −0.58∗∗∗ −1.12∗∗∗ −0.26 −0.37
GARCH (0.29) (0.44) (0.22) (0.28) (0.25) (0.31)

CCC- −0.97 −0.29 −0.65∗ −0.91 −0.39∗∗ −0.88∗∗∗ −0.70 −0.37 −0.65∗
GJR (0.78) (0.35) (0.50) (0.81) (0.24) (0.33) (0.64) (0.31) (0.48)

DCC- −0.31 −0.54 −0.47∗∗ −0.94∗∗∗ −0.27 −0.63
GJR (0.35) (0.48) (0.23) (0.31) (0.30) (0.52)

HDCC- −0.28 −0.65∗ −0.38∗∗ −0.93∗∗∗ −0.23 −0.68∗
GJR (0.34) (0.47) (0.21) (0.26) (0.26) (0.50)

RiskMetrics −1.43∗ −0.18 −0.47 −1.59∗ −0.55∗∗∗ −0.65 −0.38∗∗ −0.27∗ −0.64∗
(0.89) (0.16) (0.42) (0.99) (0.22) (0.54) (0.20) (0.20) (0.45)

See table note on previous page.
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