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ABSTRACT

We extend the generalized method of moments to a setting where a subset of the
parameters may vary over time with unknown dynamics. We approximate the true
unknown dynamics by an updating scheme that is driven by the influence function of
the conditional criterion function at time t. The updates ensure a local improvement
of the conditional criterion function at each time in expectation. In our framework,
time-varying parameters are a function of past data; it leads to a computationally
efficient method since it does not require simulation-based methods for estimation.
The approach can be applied to a wide range of moment conditions that are used in
economics and finance. We provide an illustration for a capital asset pricing model
with time-varying risk aversion.
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1. Introduction

The Generalized Method of Moments (GMM) framework of Hansen (1982) has had a major impact

on the development of time series econometrics in the last three decades and continues to be

widely used in economics and finance. GMM provides a unified framework for inference, while only

requiring the specification of a vector of moment conditions that are often derived from economic

theory. The approach is able to handle partially-defined dynamic models for economic data. GMM

also allows the use of lagged variables as instruments which is particularly appealing as the dynamic

relationships between economic variables are typically complex. For a review of the literature, see

Hansen and West (2002) and Kuersteiner (2012).

When GMM is applied to time series data, an important step of the analysis is accounting for

possible instabilities in estimated parameters. Much research has focused on the case of identifying

structural breaks in parameters; see, for example, Andrews (1993). However, in empirical work it is

often found that additional model flexibility is required to match the key features in economic and

financial time series, such as frequent changes in conditional means, volatilities, or correlations. The

importance of capturing these features has been highlighted by Shephard (2005), Hamilton (2010),

and Fernández-Villaverde and Rubio-Ramírez (2013), among others. In this context, time-varying

parameter models have become a popular alternative to structural breaks and regime switching

models. So far, most contributions on time-varying parameters are in the context of likelihood-

based inference (using both frequentist and Bayesian methods) while much less research in this

direction is conducted within the GMM framework. In our study we extend the GMM framework

by allowing some parameters to vary over time in an integrated and general fashion, as well as in

a computationally appealing way.

In our extension of GMM, we estimate the true time-varying parameter using an autoregressive

updating scheme driven by the influence function of the conditional GMM criterion function. This

new parameter updating scheme adjusts the time-varying parameter estimates in a (local) steepest

descent direction based on the information contained in the new incoming observations and their

discordance with local moment conditions (at time t). In this way, the recursive updating scheme

accounts for the sequential process of data becoming available over time: a real-time mechanism

that is typical for the analysis of time series data. We refer to our method as the Generalized

autoregressive Method of Moments (GaMM). The GaMM updating scheme approximates the true

time-varying parameter by a function of only past data. Our approach is observation-driven in the
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classification of Cox (1981) and as such it is computationally straightforward. We argue that GaMM

is a highly effective method, especially in settings where other techniques are difficult to implement

or are computationally prohibitive, and where no alternative methods are readily available. In

addition to extending the flexibility of GMM by accommodating time-varying parameters, GaMM

retains all appealing features of GMM.

The influence function that we use to drive the parameter dynamics is well-known and has been

applied in many areas of statistics. For instance, influence functions are used to measure changes in

estimators of static parameters when adding new observations and have implications for robustness,

optimality, and efficiency of estimators; see Hampel et al. (2011). Interestingly, one can show that

standard Gauss-Newton-Raphson optimization algorithms adjust static parameters based on the

average value of their influence functions; see the in-depth discussions in Cox and Hinkley (1979).

We develop this interpretation of the influence function further towards the time-varying parameter

case. The intuition is clear: large values of the influence function for a series of observations over

time suggest that local adjustments of the parameters can result in a better local fit of the moment

conditions. GaMM incorporates this information into the updating scheme of the time-varying

parameter values by using the influence function as the driving mechanism. Although our focus

in this paper is on the GMM framework, this driving mechanism can be applied to any criterion

function for which an influence function exists and can be computed. This includes other M-

estimators such as maximum likelihood or quantile estimators; see Patton et al. (2017).

The updating scheme based on the influence function is not arbitrary. We show that a GaMM

update leads to local improvements in expectation of the conditional GMM criterion function.

This result holds under different forms of mis-specification of the model, the underlying parameter

dynamics, or the moment conditions. Blasques et al. (2015) establish similar, although more

restrictive optimality results for the special case of maximum likelihood estimation (MLE) and the

generalized autoregressive score dynamics (GAS) of Creal et al. (2011, 2013) and Harvey (2013).

We generalize these optimality results to a general setting of local criterion functions and parameter

update steps; for an alternative approach in the context of GMM, see Gospodinov and Otsu (2012).

Although GaMM is designed to extend the standard GMM framework for time series, it also

generalizes other observation-driven approaches proposed in the literature. In particular, GaMM

encompasses the generalized autoregressive score dynamics (GAS) of Creal et al. (2011, 2013)

and Harvey (2013), which itself has generalized many earlier models. Hence GaMM nests many
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popular econometric models which include the GARCH model of Engle (1982) and Bollerslev

(1986) and many of its variations, the autoregressive conditional duration (ACD) model of Engle

and Russell (1998), as well as many new models for time-varying parameters under fat-tails and

mixed observation densities; see the references in Creal et al. (2011) as well as those in Harvey

and Luati (2014), Creal et al. (2014), Patton et al. (2017), Opschoor et al. (2018), Lucas et al.

(2018), and Oh and Patton (2018). For this strand of literature, the influence function perspective

provides a clear motivation for the type of scaling (inverse conditional Fisher information matrix)

used in GAS. Previously, the scaling has been dealt with in a rather ad-hoc manner, as in Creal

et al. (2011, 2013), or it has not been implemented at all, as in Oh and Patton (2018).

In our empirical study, we apply GaMM to a simple consumption-based asset pricing model with

myopic expectation formation and an unstable risk aversion parameter. As in the seminal work

of Hansen and Singleton (1982), we use a constant relative risk aversion (CRRA) utility function.

Many contributions in the literature have argued that this simple model fails at explaining the

cross-sectional variation in stock returns: time series estimates of static risk aversion in this model

are often too high compared to risk aversion estimates obtained from experimental data. This

phenomenon is referred to as the equity premium puzzle; see, for example, Savov (2011), Mehra and

Prescott (1985), Chen and Ludvigson (2009), Lettau and Ludvigson (2009) or Ludvigson (2011).

Typically, the estimates of the CRRA risk aversion coefficient in the standard model appear sensitive

to the choice of the sample period, initial parameter values, and the choice of instruments. More

recently, Malmendier and Nagel (2011); Cohn et al. (2015); Guiso et al. (2018) provide empirical

and experimental evidence for instability of risk-aversion among households, finance professionals,

and investors respectively. Here, we consider a GaMM specification of the CRRA utility function

with a time-varying risk aversion parameter. A possible alternative considered in the literature is

a specification of utility function that includes (consumption) habit formation; see, for example,

Constantinides (1990), Campbell and Cochrane (1999) or Ludvigson (2011). This also leads to

a time-varying relative risk aversion that is a direct function of consumption dynamics. In our

GaMM framework, by contrast, we do not need to explicitly impose what drives the changes in risk

aversion. The path of the time-varying risk aversion parameter is recovered from the ever changing

relationship between past returns and past consumption growth.

Using a static CRRA specification for U.S. quarterly consumption and stock return data between

1947 and 2015, we confirm the findings in Savov (2011) and Lettau and Ludvigson (2009): the

GMM estimates of the relative risk aversion and the discount rate do not have any economic
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intuition. Risk aversion is estimated implausibly high (> 100), and the discount rate exceeds one.

When considering a time-varying risk aversion coefficients in our GaMM framework, much more

reasonable average values of the risk aversion coefficient (between 1 and 3) are obtained. The

results are qualitatively robust against the use of other proxies for consumption; see, for example,

Kroencke (2017). Overall, we conclude that within the CRRA setting the data strongly favour

a specification with a time-varying relative risk aversion coefficient. The empirics thus provide

an effective illustration of the potential of GaMM as a tool for empirically investigating possible

parameter instability in a GMM framework.

The remainder of this paper is organized as follows. In Section 2 we lead with a motivating example

as well as an intuitive explanation of the main ideas. Section 3 develops the methodology in its

generic form. Section 4 presents our empirical dynamic non-linear asset pricing application for U.S.

consumption and stock return data. Section 5 concludes.

2. A regression example

To provide intuition for our approach and a better understanding of the challenge of the problem, we

first consider a linear regression model for a dependent variable yt with a k × 1 vector of regressors

xt and with a disturbance εt that has mean zero and constant variance. The k regressors are

possibly endogenous such that we have moment conditions E[xtεt] ̸= 0. The variables yt and xt are

time series variables that are subject to different dynamic processes and are possibly part of a larger

dynamic system that can be subject to shocks and breaks. The assumption of a static regression

coefficient may therefore not be very realistic and hence we consider a time-varying process for the

regression parameter βt. We thus face the major challenge of treating endogenous regressors and

time-varying parameters simultaneously.

Under endogeneity but with a static parameter vector, we could base our analysis on a K ×1 vector

of instrumental variables zt, with K ≥ k, and apply GMM using moment conditions E[ztεt] = 0.

Conversely, under a time-varying regression parameter but with exogenous regressors, we could

treat the time-varying parameters by a range of methods including the celebrated Kalman filter.

The simultaneous treatment of both endogenous regressors and time-varying parameters, however,

is not straightforward: GMM cannot easily be generalized to the time-varying parameter setting,

while the Kalman filter provides biased filtered estimates when regressors are endogenous.

Our framework starts from the conditional moment conditions Et−1[ztεt] = 0, where Et−1[ · ] refers
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to conditioning on past information. These conditional moment conditions at time t may contain

information about the direction in which to change the time-varying parameters to obtain a better

local fit of the model. For instance, if specific elements of Et−1[ztεt] are persistently positive over

some period of time, the fit to the moment conditions can be improved substantially by adjusting

the corresponding elements in βt temporarily upwards (or downwards) using a steepest descent

direction based on the time t conditional GMM criterion function.

We formalize this mechanism through an autoregressive updating scheme, which we refer to as

the Generalized autoregressive Method of Moments (GaMM). This leads to a mechanism that

lets the parameters change gradually and continuously over time. This updating scheme exploits

the possible persistent deviations in the empirical realizations of time t moment conditions. In

essence, GaMM incorporates new information into the parameter dynamics by removing time series

predictability in the conditional moment conditions.

In our GaMM framework, we assume that the true dynamics of βt are unknown. We filter these

dynamics from the data using functions of past observations only. Hence our approach belongs to

the class of observation-driven models in the classification of Cox (1981) and can therefore exploit

major computational and statistical advantages. To define the updating steps for βt, we consider

the conditional moment conditions at time t and the corresponding local objective function

Et−1 [zt (yt − xᵀ
t βt)]

ᵀ Ωt−1 Et−1 [zt (yt − xᵀ
t βt)] , (1)

where Ωt−1 is a weighting matrix, which for the sake of this illustration we set equal to the unit

matrix, Ωt−1 = I. The update of βt aims to improve this local objective function given the

incoming observation (yt, xᵀ
t , zᵀ

t )ᵀ. The update is based on the influence function of the GMM

estimator. The influence function can be interpreted as a ‘derivative’ of the time t conditional

GMM objective function, where the derivative is taken with respect to the time-varying parameter

βt in the direction of the new data point (yt, xᵀ
t , zᵀ

t ). Intuitively, this yields a steepest descent

improvement to the time t conditional GMM criterion function based on the most recent data.

Motivating example. In summary, consider a dependent variable yt ∈ R, a vector of regressors

xt ∈ Rk×1, and a time-varying parameter vector βt that constitute a time-varying regression model

yt = xᵀ
t βt + εt where disturbance εt has mean zero and constant variance. We assume that some

of the regressors are endogenous, such that Et−1[xtεt] ̸= 0. We adopt the local objective function in

eq. (1) for a vector of valid instruments zt ∈ RK×1 with K ≥ k and Et−1[ztεt] = 0.
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The steepest descent update step of the time-varying parameter as based on the influence function

in this case reduces to

st = Ct(x, z) zt (yt − xᵀ
t βt) , (2)

where Ct(x, z) is a scaling matrix that depends on the second moments of xt and zt; see Section 3

for more details. We incorporate the ‘steepest descent’ step st in an autoregressive updating scheme

for βt as follows:

βt+1 = ω · (I − B) + B βt + A st, (3)

where ω, A, and B are static vectors and matrices that are unknown and need to be estimated. For

reasons of parsimony, A and B can be restricted to diagonal matrices or even to scalars. We refer

to the updating scheme eq. (3) as GaMM(1, 1). The “(1, 1)” refers to the use of one lag for both

the time-varying parameter βt and the updating step st. We can easily generalize the updating

step by including more lags for βt, st, or both, or by introducing more complex dynamic schemes,

including fractionally integrated lag polynomials.

The GaMM updating scheme in eq. (2) and (3) is intuitive as we can interpret st as the contri-

bution of the time t observation to the GMM estimator. In Section 3.2 we show that the GaMM

update always ensures an expected local improvement to the conditional GMM objective function.

This convenient property generalizes the notion of optimal score-based steps in a Kullback-Leibler

framework as studied by Blasques et al. (2015). Effectively, the arguments developed below in

our study of GaMM extend to a much wider class of conditional objective functions for which an

influence function can be defined.

A final step to operationalize GaMM is an estimation approach for the new static parameters ω,

A and B that govern the dynamics of βt in eq. (3). This requires a new set of moment conditions.

For example, in the simple regression case of k = K = 1, we use the instrumented unconditional

moment conditions

E
[
zt · (yt − xᵀ

t βt) · (1 , βt−1 , st−1)ᵀ
]

= 0, (4)

where (1, βt−1, st−1)ᵀ is a vector of instruments. We can recognize the instruments as the partial

derivatives of βt with respect to ω, B, and A. We show in Section 3.3 that these proposed
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instruments can be regarded as efficient approximations to the optimal instruments for ω, A,

and B, respectively. Furthermore, the instruments are numerically easy to compute as they are

obtained as a direct by-product of the recursion in eq. (3). Considering the unconditional moment

conditions in eq. (4) in more detail, we see that they exploit the persistence in the time series of st

by including terms such as zt(yt −xᵀ
t βt)st−1 = stst−1. Since eq. (4) imposes that the unconditional

expectation of this cross-product must be zero, the dynamic scheme in eq. (3) removes as much

autocorrelation in the time t moment condition zt (yt − xᵀ
t βt) as possible.

Summarizing, our GaMM framework effectively consists of three main steps. First, we allow some

of the parameters in the standard GMM set-up to be time-varying with dynamics of unknown

form. This is effectively as simple as providing a time index for some of the parameters, though

the choice of which parameters can vary over time should naturally be rooted in economic theory.

Second, we approximate these unknown dynamics by a non-linear autoregressive scheme driven

only by past observations. Our key innovation is the use of the influence function of the time t

conditional GMM estimator to drive the parameter dynamics. Such an updating scheme ensures

the local improvement of the conditional GMM criterion in expectation. Intuitively, it provides

steepest descent improvements of the local GMM criterion function at time t. Third, to estimate

the new static parameters in the non-linear autoregressive GaMM updating scheme, we introduce

feasible instruments and a corresponding unconditional GMM criterion. The main illustration used

in this section of the standard linear regression model with endogenous regressors is carried through

into Section 3 when setting up GaMM for general non-linear moment conditions, establishing its

optimality properties, and its asymptotic properties.

3. The Generalized autoregressive Method of Moments

In this section, we consider the generalized autoregressive method of moments (GaMM) in its

general form, we provide theoretical arguments justifying the GaMM update steps as expected

improvements of the local GMM objective function at time t and we illustrate the results for the

linear regression model with endogenous regressors as discussed in the previous section.

Motivating example (ctd). In our main example of a linear regression model with time-varying

regression parameters and endogenous regressors, define V xx,t = Et−1[xtx
ᵀ
t ], V zz,t = Et−1[ztz

ᵀ
t ],

V zx,t = Et−1[ztx
ᵀ
t ] and V xz,t = V ᵀ

zx,t, and assume that all three matrices have full column rank.

These conditions, together with Et−1[ztεt] = 0, ensure valid instruments.
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3.1. General form of GaMM dynamics

Consider the conditional moment condition at time t,

Et−1 [gt (wt; ft, θ1)] = 0, (5)

where gt : Rm × F × Θ1 → RK is a vector-valued function, wt ∈ Rm is the data vector, and (ft, θ1)

is a parameter vector that is split into a time-varying parameter ft ∈ F and a static parameter

θ1 ∈ Θ1. We approximate the unknown dynamics of ft by observation-driven dynamics, i.e., we

write ft as a function of past observations wt−1, wt−2, . . ., only. The moment function gt( · ) can

be non-linear in ft.

To introduce the observation-driven GaMM dynamics for ft, consider the time t conditional GMM

criterion function

Et−1 [gt (wt; ft, θ1)]ᵀ Ωt−1 Et−1 [gt (wt; ft, θ1)] , (6)

where Ωt−1 is a positive definite weighting matrix known at time t − 1. The expectations in eq. (6)

are computed under the time t − 1 conditional measure Fw of wt.

Motivating example (ctd). In the regression model with time-varying regression parameter and

endogeneity, we have ft = βt and wᵀ
t = (yt, xᵀ

t , zᵀ
t ). The function defining the moment condition

is given by gt(wt; ft, θ1) = zt(yt − xᵀ
t ft), which in this case does not depend on θ1.

To propagate ft forward to ft+1 given the realization of wt, we take a scaled steepest descent

step using an appropriate concept of a derivative of eq. (6). A similar approach in a likelihood

based framework was introduced by Creal et al. (2011, 2013) and Harvey (2013) using a standard

(Newtonian) derivative of the log-density at time t. The GMM criterion eq. (6) is different from

the likelihood framework in that we minimize the square of an average (or expectation) rather than

the average (or expectation) of a log-density. We therefore use a corresponding, more appropriate

derivative concept, namely the Gâteaux derivative. The Gâteaux derivative leads directly to the

well-known concept of the influence function, which plays a central role in many parts of statistics;

see, for example, Hampel et al. (2011). The influence function or Gâteaux derivative in the direction

of the new data point wt accounts in a natural way for new information about the position of the

time-varying parameter ft compared to the incoming data wt. We prove later that the influence
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function steps lead to expected local improvements of eq. (6), even if the model is mis-specified and

the parameter dynamics do not coincide with those of the data generating process.

To define the influence function, consider a contaminated measure F ϵ
w = (1 − ϵ)Fw + ϵ δwt , where

δwt is the Dirac measure that puts unit mass on the realized value wt. Overweighting the new

observation wt by using F ϵ
w rather than Fw allows us to capture the information in the new

observation in an appropriate way when updating ft to ft+1.

The first order condition with respect to ft corresponding to eq. (6), evaluated at the measure F ϵ
w,

is given by

(Ḡϵ
t)ᵀΩt−1 Eϵ

t−1 [gt (wt; ft, θ1)] = 0, (7)

with

Gf ,t = ∂gt (wt; ft, θ1)
∂fᵀ

t

, Ḡ
ϵ
f ,t = Eϵ

t−1 [Gf ,t] , Ḡf ,t = Ḡ
0
f ,t,

and where Eϵ
t−1 and Et−1 ≡ E0

t−1 denote the expectation operators with respect to F ϵ
w and F 0

w ≡ Fw,

respectively. Note that the ft that solves eq. (7) is a function of F ϵ
w, i.e., ft = ft(F ϵ

w). The following

result is well-known.

Proposition 1 (see, e.g., Hampel et al., 2011 or Ronchetti and Trojani, 2001). Assuming eq. (5),

and taking derivatives of eq. (7) with respect to ϵ and evaluating at ϵ = 0, we obtain the influence

function

st = dft(F ϵ
w)

dϵ

∣∣∣∣
ϵ=0

= −
((

Ḡf,t

)ᵀ
Ωt−1Ḡf ,t

)−1 (
Ḡf ,t

)ᵀ
Ωt−1 gt (wt; ft, θ1) , (8)

where the inverse can be replaced by a pseudo-inverse if Ḡ
ᵀ
f ,tΩt−1Ḡf ,t is rank deficient.

Motivating example (ctd). For our example, we have Ḡf ,t = Et−1[−ztx
ᵀ
t ] = −V zx,t. If we set

Ωt−1 to its typical, ‘optimal’ choice Ωt−1 = V −1
zz,t, we obtain

st =
(
V xz,tV

−1
zz,tV zx,t

)−1
V xz,tV

−1
zz,t zt (yt − xᵀ

t ft),

The step st reflects the projection of the xt variables on the space spanned by the instruments as is

typical for instrumental variables estimation.
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The step st can be directly used in a random walk scheme for updating ft, that is ft+1 = ft + a st

for some step length a > 0. More generally, we propose to base the dynamics on the autoregressive

updating scheme

ft+1 = ω +
p∑

j=1
Bj

(
f t+1−j − ω

)
+

q∑
i=1

Ai st+1−i, (9)

where ω = ω(θ2), Bj = Bj(θ2), and Ai = Ai(θ2) are appropriately sized vectors and matrices that

depend on a static parameter vector θ2, and where we extend the parameter vector to θᵀ = (θᵀ
1, θᵀ

2).

We refer to the updating scheme in eq. (9) as GaMM(p, q) dynamics. In particular, in this paper

we work with the GaMM(1,1) specification with p = q = 1, A1 = A, and B1 = B, as given by

ft+1 = (I − B) ω + B ft + A st. (10)

The random walk scheme clearly is a special case of eq. (10) with ω = 0, A1 = aI, B1 = I.

If eq. (5) holds, {st}t∈Z forms a martingale difference sequence with Et−1[st] = 0, where the

expectation is with respect to the probability measure Fw. Due to the properties of martingale

differences, the unconditional mean of ft in eq. (9) is E[ft] = ω if ft is weakly stationary and eq. (5)

holds. To initialize the recursion in eq. (9), we can therefore set ft = ω for t = 0, −1, . . . , −p + 1

and st = 0 for t = 0, −1, . . . , −q + 1. Alternatively, these initial values can be estimated either

jointly with the static parameters in θ or with a static model based on a small estimation window

at the beginning of the sample period. Note, however, that such estimates for the initial conditions

are not consistent.

Interestingly, the steps based on the influence function simplify to the generalized autoregressive

score-driven (GAS) approach of Creal et al. (2011, 2013) and Harvey (2013) if the moment con-

dition is the first order condition of the log-likelihood criterion. To see this, let g(wt; ft, θ1) =

∂ log p(wt|ft; θ1)/∂ft, where p(wt|ft; θ1) is the time t conditional predictive density of wt. Filling

this out in eq. (8), we obtain

st = Ḡ
−1
f ,t · (∂ log p(wt|ft; θ1)/∂ft) ,

which precisely coincides with the scaled score step of Creal et al. (2013) using the inverse con-

ditional Fisher information matrix to scale the score. Whereas this scaling was introduced rather

ad-hoc in Creal et al. (2013), it follows without any further ad-hoc assumptions from the direct
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definition of the influence function in our GaMM framework. The property that GAS is a special

case of GaMM mirrors the well-known fact that maximum likelihood is a special case of GMM.1 As

the score-driven approach of Creal et al. (2013) in turn encompasses many well-known time-varying

parameter models from the literature such as GARCH, MEM, ACD, and many other models, the

GaMM approach covers an even wider range of empirically relevant models and settings.

3.2. GaMM steps as expected improvements to moment conditions

In this sub-section, we provide a further theoretical motivation for the use of the steps st in eq. (8).

In particular, we show that the influence function steps st ensure local improvements to the time

t conditional objective function eq. (6) in expectation. The result extends optimality results for

score-based steps in a likelihood framework as derived by Blasques et al. (2015). Blasques et al.

(2015) show for the generalized autoregressive score model of Creal et al. (2011, 2013) that time-

varying parameter updates based on the score of the time t log-likelihood function improve the

local Kullback–Leibler divergence between the true, unknown data density and the model density

in areas where the true density has much probability mass. In addition, they show that any

observation-driven update with similar optimality properties needs to be proportional to the score.

Their results hold under very general forms of mis-specification of the postulated statistical model.

Score-based updates apparently locally improve the Kullback-Leibler divergence between the true

data generating process and the statistical model, even if the latter is mis-specified.

The earlier results of Blasques et al. were presented in the context of information–theoretic op-

timality and Kullback–Leibler divergence. This fits nicely with the original score-based approach

of Creal et al. (2013), which explicitly relies on the likelihood framework and on the conditional

observation density. In the context of GMM, however, optimality centers around the quadratic ob-

jective function of the moment conditions as in eq. (6). As a result, we need to adapt the concepts

and results in Blasques et al. (2015) accordingly. Similarly to Blasques et al., we can argue that

our results below hold irrespective of whether or not the model is mis-specified. In particular, we

formulate conditions that ensure local improvements in expectation even if the model is incorrect,

moment conditions are violated, or parameter dynamics are not correctly specified.

Define a short-hand notation for the time t GMM objective function in eq. (6) evaluated at some
1The updates in Creal et al. (2011, 2013) and Harvey (2013) can also be directly derived as the influence function

of the maximum (log-)likelihood criterion.
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f as

C(t, f) =
(∫

gt (w; f , θ1) dFw(w)
)ᵀ

Ωt−1

(∫
gt (w; f , θ1) dFw(w)

)
, (11)

where as before Fw denotes the distribution of wt conditional on all past observations. Note

we do not require the moment conditions to be correctly specified, that is, we do not require

Et−1 [gt(wt; ft, θ)] = 0. Even if the model and the moment conditions were correctly specified, we

should not expect that our initial guess of f1 would be correct and, at least during the start-up

phase of the model, we expect that the moment conditions are not met at the postulated values for

ft. It is then important to know whether the estimated time-varying parameter ft moves in the

‘correct’ direction.

We make the following assumptions.

Assumption A.

A.1 The moment function gt(w; f , θ) is twice continuously differentiable in f with measurable

derivatives (in wt).

A.2 The weight matrix Ωt−1 is positive definite and finite. The derivative matrix Ḡt is finite and

has full column rank.

A.3 Et−1[gj,t(wt; ft, θ1)4] < ∞ with gj,t(wt; ft, θ1) the jth element of gt(wt; ft, θ1).

A.4 supf ||
∫

∂Gf ,t(w; f , θ1)/∂f dFw(w) || ≤ C < ∞ for every θ1.

In the Appendix, we prove the following result.

Proposition 2. Given Assumption A, there exists a GaMM(1,1) update with ω = 0, B = I, and

A = a I, such that

Et−1 [C(t, ft) − C(t, ft+1)] ≥ 0, (12)

where ft+1 is given by the recursion in equation eq. (10).

The main insight of Proposition 2 is that a GaMM(1,1) update with ω = 0, B = I, and A = a I for

small positive a results in a non-increase of the local objective function in expectation. Informally

stated, GaMM steps on average improve the local GMM criterion function at time t, or at least,

do not increase it. This provides a strong basis for the influence function based steps as introduced

13



in Section 3.1. Proposition 2 holds without specifying the true conditional distribution of the data

Fw and without assuming that the model or the moment conditions are correctly specified. Along

the same lines as in Blasques et al. (2015) for a likelihood based framework, one can further extend

these results to establish non-local improvement properties and improvement properties for the

more general autoregressive scheme in eq. (9) if one is willing to impose additional conditions on

the data generating process.

The main assumptions needed for Proposition 2 are the smoothness of the moment conditions, the

finiteness of both the weight matrix Ωt−1 and of the expected moment derivatives when evaluated

at ft, the existence of sufficient moments of the score steps, and a uniform boundedness condition on

the moment derivatives matrix. The latter two may possibly be relaxed further, but the sufficient

conditions in Assumption A are enough for our current purposes.

Motivating example (ctd). For our example, we have Ḡf ,t = Et−1[−ztx
ᵀ
t ] = −V zx,t, which

does not depend on ft, such that ∂Ḡf ,t/∂f = 0 and A.4 is directly satisfied. It is also easy to show

that A.1 and A.2 are met. What remains are the moment assumptions on z4
i,ty

4
t and z4

i,tx
4
j,t, where

zi,t and xj,t are the i-th and j-th element of zt and xt, respectively. The Appendix contains an

elaborate simulation experiment for this model to show that GaMM(1,1) dynamics indeed succeed

in tracking the unknown parameter dynamics of ft, even if the model is severely mis-specified.

3.3. Estimation of static parameters and choice of instruments

The estimation of the new static parameters ω, A, and B in θ2 requires the formulation of new,

additional moment conditions. To solve this issue and to estimate the static parameters in θ, we

augment the conditional moment conditions in eq. (5) by a matrix of instruments Zt ∈ RL×K to

arrive at the unconditional moment conditions

E [Zt gt(wt; ft, θ1)] = 0, (13)

and the corresponding unconditional GMM criterion function

min
θ∈Θ

g̃ᵀ
T Ω̃T g̃T , g̃T = 1

T

T∑
t=1

Zt gt(wt; ft, θ1), (14)

where Ω̃T is a positive definite matrix. Note that ft itself also depends on θ, both via the recurrence

relation in eq. (10) and via the specification of the influence function step st. We make this explicit
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by writing ft = ft(wt−1; ft−1, θ) where needed. As usual, we can start estimating θ by setting

Ω̃T = I in a first-step estimation and minimizing eq. (14). In a second step, we can then replace Ω̃T

by a long run variance estimate of Var
[
T 1/2 g̃T

]
obtained from the first step; see Hansen (1982).

As instruments we propose Zt =
(
1, fᵀ

t−1, sᵀ
t−1

)ᵀ ⊗ I, such that

E [Zt gt(wt; ft, θ1)] = E
[(

1 , fᵀ
t−1 , sᵀ

t−1
)ᵀ ⊗ gt(wt; ft, θ1)

]
= 0, (15)

where ⊗ denotes the Kronecker product. These instruments are easy to compute and come as a

by-product of the construction of ft itself. One can easily recognize Zt as the partial derivative

of ft with respect to (I − B) ω, B, and A, respectively. The instrumented moment condition

E [1 ⊗ gt(wt; ft, θ1)] = 0 imposes that the conditional moment condition should also hold un-

conditionally. The other two instrumented moment conditions E [st−1 ⊗ gt(wt; ft, θ1)] = 0 and

E [ft−1 ⊗ gt(wt; ft, θ1)] = 0 exploit the autocorrelation in the sample values of the moment condi-

tions gt. In particular, gt(wt; ft, θ1) ⊗ st−1 holds the cross products of the moment conditions gt

and its lags gt−1 via the lagged scores st−1. If there is any first-order autocorrelation in gt, the

unconditional moment conditions in eq. (14) remove this autocorrelation as much as possible by

exploiting the GaMM dynamics and adjusting A and B accordingly.

One way to motivate eq. (15) is as an approximate solution to the optimal instrument problem; see,

e.g. Davidson and MacKinnon (1993) for a textbook treatment on optimal instruments. Deriving

optimal instruments in a general setting is typically non-trivial. To facilitate the exposition, we

make a simplifying assumption that the moment conditions are correctly specified in the sense that

for all t < s we have

E [gs(ws; f s, θ1)gᵀ
t (wt; ft, θ1)] = 0. (16)

We concentrate on the optimal instruments for the GaMM dynamics, i.e., for θ2. Following David-

son and MacKinnon (1993), these are given by

Zᵀ
θ2,t = Ωt−1 Et−1

[
dgt(wt; ft, θ1)

dθᵀ
2

]
= Ωt−1 Et−1

[
∂gt(wt; ft, θ1)

∂fᵀ
t

dft

dθᵀ
2

]
= Ωt−1 Ḡ

ᵀ
f ,t

dft

dθᵀ
2

, (17)

where the last equality follows from the fact that ft depends on past data only due to the observation
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driven nature of GaMM dynamics. The total derivative dft/dθᵀ
2 is the key part for the dynamic ft

in eq. (17). Note that the product Ωt−1Ḡ
ᵀ
f ,t would also be there even if ft were a static rather than

a dynamic parameter. The total derivative in the instruments in eq. (17) and the partial derivative

proposed as our instruments in eq. (15) are clearly different, as the latter does not account for the

fact that ft and st on the right-hand side of eq. (8) depend on θ. However, we have the following

result.

Proposition 3. Given a GaMM(1,1) update with ω = 0, B = (1 − a) I, and A = a I, then for

small a > 0

dft

dθᵀ
2

= I ⊗
(

1
−−→
ft−1

ᵀ −−→st−1
ᵀ
)

+ O(a), (18)

where −−→st−1 and −−→
ft−1 are exponentially weighted moving averages of st−i and f t−i for i ≥ 1,

respectively, and where O(a) vanishes at order a for a → 0.

The difference between using the partial rather than the total derivative of ft with respect to

θ2 as instruments thus amounts to using unsmoothed versus exponentially smoothed versions of

(st−1, ft−1). The unsmoothed instruments provide a quick approximation to the dominant part of

the optimal instruments for θ2 without the need to keep track of the additional recursion for dft/dθ

as spelled out in Appendix A (page S.4). In fact, the instruments are obtained as a direct by-product

of the GaMM recursion. The simulations in the subsequent sections reveal that the instruments Zt

work well empirically: the resulting estimates of ft track the true parameter dynamics well, even

in cases where the model is mis-specified.

Motivating example (ctd). For our example with a time-varying regression parameter in an

instrumental variables setting, we refer to the simulations in Appendix B. These show that static

parameter estimates and estimated paths of the time-varying parameter are accurate. The bias in

the estimated paths of ft compared to for instance a standard linear Gausian state-space model

are virtually zero for the GaMM approach, and only reveal a modest increase in variability of the

estimates.

3.4. Asymptotic distribution theory

To derive the asymptotic properties of θ̂ such as consistency and asymptotic normality, we can

largely build on the standard framework for GMM estimators as originally developed by Hansen

16



(1982). We need to differentiate between two sequences ft. The first sequence is defined for

t = 1, 2, . . . and initialized at f̄1 and follows the (initialized) stochastic recurrence in eq. (10). We

write this sequence as {ft(θ, f̄1)}t∈N. The second sequence is defined for t = . . . , −1, 0, 1, . . . and is

the stationary and ergodic solution of eq. (10). We write this second sequence as {ft(θ)}t∈Z. We

make the following assumptions.

Assumption B.

B.1 For a neighborhood Θ0 of θ0, the process {ft(θ; f̄1)}t∈N initialized at f̄1 converges uniformly

and exponentially fast almost surely to a unique stationary and ergodic sequence {ft(θ)}t∈Z,

i.e., ct
1 supθ∈Θ0 ||ft(θ; f̄1) − ft(θ)|| a.s.→ 0 for some c1 > 0 and for every f̄1 ∈ F . A similar

requirement holds for the first two derivatives of {ft(θ; f̄1)}t∈N with respect to θ.

B.2 The process {Zt(ft(θ)) gt(wt; ft(θ), θ1)}t∈Z is stationary and ergodic with finite first moment,

with Zt(ft(θ))ᵀ = (1, ft−1(θ)ᵀ, st−1(ft−1(θ); θ)ᵀ) and gt twice continuously differentiable in

ft(θ) and measurable in wt for every θ. Moreover, the scaling matrix Ω̃T
a.s.→ Ω̃, where Ω̃ is

positive definite.

B.3 The GMM objective function (14) and its limiting objective function

E [Zt gt(wt; ft(θ), θ1)]ᵀ Ω̃ E [Zt gt(wt; ft(θ), θ1)]

are twice continuously differentiable with respect to θ. The limiting objective function has a

unique minimum at θ⋆
0 ∈ int(Θ), where int(Θ) denotes the interior of the compact parameter

space Θ.

B.4 The gradient dg̃T /dθᵀ and Hessian dg̃T /(dθᵀ ⊗ dθᵀ) from eq. (14) evaluated at θ⋆
0 and at the

stationary and ergodic sequence {ft(θ)}t∈Z satisfy a uniform law of large numbers (ULLN)

with full column rank limits G̃ and H̃, respectively.

B.5 The standardized unconditional moment condition
√

T g̃T of eq. (14) evaluated at θ⋆
0 and at

the stationary and ergodic sequence {ft(θ⋆
0)}t∈Z satisfies a central limit theorem (CLT) and

weakly converges to a multivariate normal with mean zero and covariance matrix Ṽ .

Assumptions B.2–B.5 are standard high-level conditions for the identification, consistency, and

asymptotic normality of GMM estimators for stationary and ergodic data sequences; see for instance

Hansen (1982), Davidson and MacKinnon (1993), or White (1996), including a further breakdown

to some more resctrictive low-level conditions. This underlines once more that the GaMM set-up
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seamlessly matches the familiar standard GMM framework. Note that conditions B.2–B.3 allow

for E[Zt gt(wt; ft(θ), θ1)] ̸= 0 at θ = θ⋆
0. As shown in Section 3.2, the local improvement property

of the GaMM steps continues to hold under this type of mis-specification, though convergence is

no longer to the ‘true’ parameter, but to a pseudo-true parameter θ⋆
0 that minimizes the limiting

GMM objective function.

Condition B.1 is familiar in the time-varying parameter context and relates to the concept of con-

tinuous filter invertibility. The importance of invertibility has been stressed before by for instance

Straumann and Mikosch (2006) and Wintenberger (2013). It ensures that the filter converges

pathwise to a unique stationary and ergodic solution, irrespective of the starting condition f̄1. The

exponential rate of convergence is used to establish the asymptotic normality of θ̂ later on. It is

not needed to establish consistency. For many models, Assumption B.1 takes a familar form. For

instance, for GARCH models the conditions collapse to the familiar convergence conditions formed

by “Nelson’s triangle”; see Nelson (1990, 1991). For the exponential GARCH (EGARCH) model,

primitive conditions for Assumption B.1 to hold are formulated in Straumann and Mikosch (2006)

and Wintenberger (2013), while primitive conditions for the highly non-linear class of univariate

generalized autoregressive score models are given by Blasques et al. (2014). Also for our leading

example, condition B.1 takes a simple form.

Motivating example (ctd). For our motivating example with a time-varying regression parameter

in an instrumental variables setting with stationary and ergodic regressors, we have

st =
(
V xzV −1

zz V zx

)−1
V xzV −1

zz zt (yt − xᵀ
t ft).

The expression for ft+1 is then linear in ft with a random matrix coefficient:

ft+1 =(I − B) ω+

A
(
V xzV −1

zz V zx

)−1
V xzV −1

zz zt yt+(
B − A

(
V xzV −1

zz V zx

)−1
V xzV −1

zz zt xᵀ
t

)
ft.

For exponential convergence, besides requiring E[zt yt] to be finite, we need the largest Lyapunov

exponent of this stochastic recurrence equation to be negative. This is implied by requiring the
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spectral radius of B − A to be smaller than 1, as

E
[
B − A

(
V xzV −1

zz V zx

)−1
V xzV −1

zz zt xᵀ
t

]
= B − A.

For instance, for the time-varying mean model with xt = zt = 1, this collapses to |B − A| < 1.

We now have the following result.

Proposition 4. Under Assumption B, the GMM estimator for the static parameter vector θ, in-

cluding the parameters ω, A and B specifying the GaMM dynamics, is consistent and asymptotically

normal, i.e.,

T 1/2
(
θ̂ − θ0

)
d→ N

(
0, K̃

−1
L̃K̃

−1)
, (19)

where

K̃ =
(
G̃

ᵀ
Ṽ

−1
G̃

)−1
L̃ = G̃

ᵀΩ̃Ṽ Ω̃G̃,

where G̃ and Ṽ are defined in Assumption B. The efficient weighting matrix is Ω̃ = Ṽ
−1, in which

case the asymptotic covariance matrix collapses to (G̃ᵀ
Ṽ

−1
G̃)−1.

The key of the proof of this result as shown in the Appendix is that we can replace the non-

stationary initialized filtered series {ft(θ, f̄1)}∞
t=1 in the expressions for the GMM estimator by

its stationary and ergodic limit {ft(θ)}∞
t=−∞. After that, the proof follows the standard line of

argument for GMM estimators for stationary and ergodic data sequences.

3.5. Extension: exploiting scores of static parameters

In this section, we present a possible extension of the GaMM(1,1) approach that exploits the misfit

in the time t moment conditions both with respect to the dynamic parameter ft and with respect

to the static parameter θ1. The advantage of this extension is that it can capture more empirical

features in the data. For instance, when modelling volatility of stock returns, it can give rise to the

so called leverage type effect, i.e., an asymmetric response of volatility dynamics to positive and

negative returns.

As a first step, we note that a static parameter is a special case of GaMM(1,1). This follows

immediately if we set A = 0 and B = 0. To exploit this feature further, we treat the static
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parameter θ1 and the time-varying parameter ft jointly as f̃t
ᵀ ≡ (ft

ᵀ, θᵀ
1). The GaMM(1,1)

specification for f̃t is given by

f̃t+1 = ω̃ + B̃
(
f̃ t − ω̃

)
+ Ãs̃t, (20)

where

B̃ =

 B CB

0 0

 , ω̃ =

 ω

θ1

 , Ã =

 A CA

0 0

 , (21)

with s̃t containing the influence function with respect to parameter vector f̃t rather than ft only.

So far, we considered the matrices CA and CB to be zero. These restrictions, however, can be

relaxed. By allowing for non-zero matrices CA and CB, the time-varying parameter ft also responds

to the influence function of the static parameter θ1. This may sometimes be useful. For example,

when analyzing a time series of financial returns yt = µ + εt, with εt = σtzt, and zt ∼ D (0, 1) for

some distribution D with zero mean and variance one, applying our joint GaMM solution to the

moment conditions

gt =

 yt − µ

(yt − µ)2 − σ2
t

 =

 εt

ε2
t − σ2

t

 , Gt = −I, (22)

eq. (20) with ft = σ2
t and CB = 0 reduces to

σ2
t+1 = ω + B (σ2

t − ω) + A
(
ε2

t − σ2
t

)
+ CA εt

= (1 − B) ω + A ε2
t + (B − A) σ2

t︸ ︷︷ ︸
GARCH(1,1)

+ CA εt︸ ︷︷ ︸
Leverage

. (23)

For CA = 0, we obtain the standard updating equation for a generalized autoregressive conditional

heteroskedasticity (GARCH) model. For CA ̸= 0, however the additional term CA εt captures a

leverage type effect: negative returns have a different impact on future volatilities than positive

returns. Empirically, returns are often left-skewed which would also translate into an asymmetric

response of the volatility to similarly sized negative and positive returns. The effect mimics the

leverage effect as specified in the asymmetric AGARCH model of Engle (1990) and Engle and Ng

(1993), the optimal filtering specification of Nelson and Foster (1994), and the quadratic QGARCH

model of Sentana (1995).
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4. An asset-pricing model example with time-varying risk aversion

4.1. The economic model specification

For the development of a non-linear asset pricing model with a time-varying risk aversion coefficient,

we adopt the GaMM framework as developed in the earlier sections. Inspired by the seminal

work of Hansen and Singleton (1982), we consider a representative agent with a constant relative

risk aversion (CRRA) power utility function who faces a consumption-investment problem. This

produces the following Euler equation for pricing assets,

Et

[
β (Ct+1/Ct)−γ Rx

t+1

]
= 1, (24)

where Rx
t+1 denotes the vector of gross asset returns, β is a subjective discount factor, and γ

represents the curvature of the utility function. In the case of CRRA utility function, γ is also

the relative risk aversion. Both consumption and asset returns are assumed to be expressed in real

terms. The Euler equation in eq. (24) implies a stochastic discount factor Mt = β (Ct+1/Ct)−γ .

Previous research shows that empirical estimates of the risk aversion parameter γ are sensitive

to the particular sample period, starting values, and instruments employed. Furthermore, results

of many studies suggest that time series estimates of γ are typically too high compared to risk

aversion estimates obtained from experimental data and that the simple model in eq. (24) fails at

explaining the cross-sectional variation in stock returns; see, for example, Savov (2011); Mehra and

Prescott (1985); Chen and Ludvigson (2009); Lettau and Ludvigson (2009), or Ludvigson (2011)

for a summary of the literature and further developments in the field. Mehra and Prescott (1985)

referred to this phenomenon as the equity premium puzzle. The reason for poor performance is

often attributed to the fact that consumption growth is too smooth relative to the variation in

returns and hence the stochastic discount factor needs to be increased by means of high values for

the coefficients γ and β.

Poor performance of the standard model in eq. (24) can be addressed in various ways. Constan-

tinides (1990); Campbell and Cochrane (1999), or Ludvigson (2011) discuss allowing for habit

formation in the utility specification, which adds an additional source of variation to the stochastic

discount factor. Habit models can often be rewritten into eq. (24) with additional multiplicative

term. Another strand of literature tries to improve the quality of consumption data that is required
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to estimate the model; see, for example, Savov (2011) and Kroencke (2017). These authors argue

that consumption data provided by government agencies responsible for compiling macroeconomic

statistics2 is artificially smoothed. Their main finding is that once smoothing of consumption data

is reduced, the static relative risk aversion coefficient is estimated lower. Nonetheless, it is still too

high to ‘solve’ the equity premium puzzle in Mehra and Prescott (1985).

At the same time, literature provides strong arguments for allowing the risk aversion parameter

to change in time. Stability of deep parameters in the simple structural model in eq. (24) was

already questioned by Ghysels and Hall (1990) who introduce a structural break test for γ. We

note that Ghysels and Hall do not find sufficient evidence to reject the hypothesis of a constant

risk aversion parameter in their sample, but their tests may have low power against specific mean-

reverting alternatives. Furthermore, the aforementioned habit models include time-varying relative

risk aversion, but tie it to the dynamics of consumption.3 More recently, Malmendier and Nagel

(2011); Cohn et al. (2015); Guiso et al. (2018) provide strong empirical and experimental evidence

for changing risk aversion among households, finance professionals, and investors respectively. Col-

lectively these papers attribute these changes to fear stemming from past experiences of agents.

For instance, in Malmendier and Nagel (2011) individuals who lived through market busts with low

stock returns are less likely to participate in the stock market and are willing to invest a relatively

lower proportion of their wealth in risky assets.

Given the evidence for time-varying risk aversion it is interesting to see if the poor performance of

the standard model is only a result of mis-specification. As such, we revisit the simple consumption

CAPM model in eq. (24), but we allow the relative risk aversion coefficient γt to vary over time.

We filter out γt from the data by endowing the standard Euler equation (24) with GaMM(1,1)

dynamics. We assume that the shocks to risk aversion are exogenous and that agents are myopic in

the sense that they consider γt to remain fixed forever when making their decision at time t. This

results in the revised Euler equation

Et

[
β (Ct+1/Ct)−γt Rx

t+1

]
= 1. (25)

Using eq. (25), we can directly employ the GaMM framework by taking ft = γt.

To estimate Ḡt, which in this case depends on the consumption growth data, the return data, and
2In U.S., the Bureau of Economic Analysis.
3When allowing for habit formation, it is implied that relative risk aversion depends on γ and on the current

values of consumption and consumption habit.
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on the time-varying parameter ft, we use exponentially weighted moving averages. Computing Ḡt

analytically is impossible in this case as we do not know nor do we want to assume the distribution

of the risky asset returns and the distribution of consumption growth. Replacing the expectation

by a sample average is not appropriate either as the conditional distribution of asset returns given

consumption growth in equilibrium that is needed for Ḡt depends on the current (myopic) risk

aversion parameter γt. If, however, ft varies sufficiently slowly, observations in the recent past can

be seen as informative about the curvature Ḡt of the moment conditions now. Our exponentially

weighted moving average (EWMA) estimate of Ḡt takes the form

ˆ̄Gt = λ ˆ̄Gt−1 + (1 − λ)
∂gt

(
wt; ft, θ̂

)
∂fᵀ

t

, (26)

where we choose λ in the range (0.98, 1.0) and where we initialize the recursion in eq. (26) by
ˆ̄G0 = I.4 A similar scheme for smoothing the information on the curvature of the score was

introduced in Creal et al. (2013).

4.2. Simulation results

For our simulations, we fix β = 1, which is close to its typical empirical estimate; see for instance

Hansen et al. (2008) or Savov (2011). Furthermore, we endow the true risk aversion parameter

γ0,t either with a structural break or with exogenous AR(1) dynamics. Given a series of γ0,t,

t = 1, . . . , T , we use the following data generating process:

∆ct = µc + εct, εct ∼ N
(
0, σ2

γ

)
, (27)

Rt = eγ0,t∆ct + εRt, εRt ∼ N
(
0, σ2

R

)
, (28)

where we set µc = 0.041, σct = 0.09, and σRt = 0.1. For the remainder of this paper, we also set

Ωt−1 = I. This produces good results in the simulations and the empirical application later on

and is also computationally convenient. Estimation results using the GaMM(1,1) specification are

presented in Figure 1.

The classical full sample GMM estimates of γ for the structural break and the AR(1) case are
4The initial guess ˆ̄G0 = I can be updated by running the EWMA in reverse, i.e.,

ˇ̄Gt = λ ˇ̄Gt+1 + (1 − λ) ∂gt (wt; ft, θ)/∂ft, using ˇ̄GT = ˆ̄GT from the forward EWMA as a starting value.
Subsequently, we can then re-initialize the forward EWMA by setting ˆ̄G0 = ˇ̄G0 in eq. (26). This does not increase
the computational burden significantly and slightly improves results.
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1

Time-Varying Risk Aversion in CCAPM With Power Utility

This figure illustrates performance of GaMM in estimating the risk aversion parameter in CCAPM. We use
the basic power utility specification:

1 = Et

[
β

(
Ct+1

Ct

)−γt

Rt+1

]
,

and assume that agents are myopic about the changes in risk aversion parameter γt. Furthermore, in
simulations we fix β = 1 and we do not estimate the discount factor. Results are based on 10,000 replications.
Paths were estimated with GaMM(1,1). We juxtapose the true value of the parameter at time t with
the median estimate across all replications. We also present 95, 90, and 50% empirical confidence bands
constructed based on all simulation results.

11.10 and 12.25, respectively. For the case of the AR(1), this implies that 70% of the γt realisations

actually lie below the full sample GMM estimate. If there is time-variation in γt, the full sample

GMM estimates are thus severely biased towards the high-end realizations of the true time-varying

risk aversion parameter γ0,t. As we show later, this may also be part of the explanation of the

equity premium puzzle.
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If we consider the GaMM(1,1) estimation results, we clearly see that the filtered path γ̂t tends to

follow the true path closely. In case of a large structural break, the estimator takes some time to

adjust to the new setting. Overall, however, the path is able to capture both the episodes of high

and low relative risk aversion. This is a typical result in time-varying parameter models that do

not explicitly model a regime switching scenario. In case of the mean-reverting AR(1) dynamics,

the GaMM(1,1) approach also recovers the major up and down swings in γt.

4.3. Empirical equity premium results for U.S. data

We estimate the model for quarterly U.S. data between 1947 and 2015. As test assets, we use

the 3-Month Treasury Bill rate (from the Board of Governors of the Federal Reserve System)

and six equity portfolios (double sorted on size and book-to-market as provided by Fama and

French). Data on population size in the U.S. as well as expenditure on non-durable goods and

consumption of services is provided by the U.S. Bureau of Economic Analysis. Apart from the six

Fama-French portfolios we obtain all remaining data from FRED.5 All series are deflated with an

implicit price deflator (2009=100) which we calculate for the combined consumption (non-durables

and services) series. We use two-step feasible GMM/GaMM and report results from the second

step only. Standard errors for parameter θ are estimated using the Newey and West (1987) HAC

covariance matrix with truncation lag chosen following the procedure proposed by Newey and

West (1994). We denote them as se
(p)
θ . In the results reported below, the model is estimated

without additional conditioning information; see Ludvigson (2011) for a discussion of why this is

appropriate. We note that adding other instrumental variables to the model does not qualitatively

impact the results.

We first estimate the model without time-varying relative risk aversion and obtain a discount rate

of β̂ = 1.42 with se
(7)
β = 0.14, and a risk aversion parameter of γ̂ = 133.06 with se

(7)
γ = 38.92. The

high and imprecise estimate for the relative risk aversion is in line with previous research (Savov,

2011; Lettau and Ludvigson, 2009). A similarly high and unrealistic value of β is reported by

Lettau and Ludvigson (2009) for a slightly shorter sample. These results clearly confirm the equity

premium puzzle, but also suggest that agents value future utility more than the present one. This

is economically unintuitive. A closer inspection of the data suggests that given the static model

there are many ‘outlying observations’ (1949–1953, 1960, 1980, and 2008). These observations are
5The specific series we use are: 3-Month Treasury Bill (TB3MS), population (B230RC0Q173SBEA), personal

consumption expenditures on nondurable goods (PCND) and services (PCESV) with their corresponding implicit
price deflators (DNDGRD3Q086SBEA and DSERRD3Q086SBEA respectively).
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2

Equity Premium Puzzle

This figure illustrates performance of GaMM in estimating the time-varying relative risk aversion parameter
in CCAPM. We use the basic power utility specification:

1 = Et

[
β

(
Ct+1

Ct

)−γt

Rt+1

]
,

and assume that agents are myopic about the changes in risk aversion parameter γt. Tests assets are
comprised of the 3-Month Treasury Bill rate and six equity portfolios double sorted on size and book-to-
market. We use consumption of non-durable goods and services. All series are deflated with an implicit
price deflator (2009=100). Shaded regions correspond to NBER recessions while other relevant events are
labelled separately.

both clustered in time and most likely heavily bias the estimates upwards.6

In contrast to the static estimation results, GaMM(1,1) produces reasonable values for both the

subjective discount factor and the relative risk aversion. The discount factor is estimated at β̂ = 0.98

with se
(4)
β = 0.001. Figure 2 shows the estimated path of the relative risk aversion parameter γ̂t

based on GaMM(1,1) dynamics together with NBER recession periods. The average value of the
6It is worth noting what impact β and γ have on the moment conditions in a neighborhood of time t. Ceteris

paribus, an increase in the discount rate β increases both the mean and dispersion of the moment conditions without
affecting higher moments of their distribution. On the other hand, an increase in the curvature γ increases the variance
and skewness of the moment conditions and thus lowers the mean. At the estimated values of the parameters, the
‘outliers’ we identify have an order of magnitude higher contribution to the criterion function and thus have enormous
leverage on the outcome.
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relative risk aversion coefficient is ¯̂γt = 1.42 (3.13 in 1950–1960, 1.06 in 1990-2000, and 0.55 in

2000-2010). Static parameters governing the GaMM dynamics are estimated at ω̂ = 3.03 with

se
(4)
ω = 0.75, and Â = 0.02 with se

(4)
A = 0.005. The value of B̂ is estimated at its boundardy value

B̂ = 1.00, in line with the non-stationary downward secular trend in risk aversion γ̂t.

Apart from the large downward secular trend in risk aversion, we also see some shorter-term

movements. These appear to be cyclical to some extent, though not explicitly modeled as such.

Enlarging the model with a cyclical component could be done in the same way as for structural

time series models; see Harvey (1989). The short-term cycle appears to follow the business cycle.

During recessions and sometimes even before the recession, risk aversion is pushed downwards.

Given the postulated utility framework and corresponding Euler equation, these pro-cyclical short-

term fluctuations imply that agents adjust their consumption slowly and with a delay compared

to reactions of financial markets. In other words, when a recession hits there is a period during

which consumption is too high given the observable (negative) returns. In the current limited

framework, this can only be explained by a lower risk aversion parameter, which is why we see

the drops in γt. After the recession ends, we observe risk aversion returning to its long-term trend

value. This can happen either because agents adjusted their consumption expenditure or because

markets recovered. These patterns are consistent with many of the phenomena and extensions to

the basic model as reported in the literature, such as habit formation (Campbell and Cochrane,

2000), increasing leverage and shortening of investment time-horizon for households (Adrian and

Shin, 2010), or loss aversion (Kahneman and Tversky, 1984) where agents exhibit (in this case

relative) risk-loving behaviour in the loss domain and risk aversion in the gain domain. In line with

observations in Cohn et al. (2015) and Guiso et al. (2018) we also observe relative increases of risk

aversion after market crashes compared to its value during the bad episodes.

More interesting than the short-term cyclical behaviour is the secular (long-term) pattern in risk

aversion. In particular, we notice a continuous decrease in risk aversion since the 1950s, when γ̂t

was higher possibly due to the post World War II recovery period which is also consistent with the

evidence in Malmendier and Nagel (2011); Cohn et al. (2015); Guiso et al. (2018). Comparing the

first and the last decade in the sample shows the extent of the change. On the one hand, the average

real consumption growth was between 0.4% and 0.5% in both periods. On the other hand, the real

returns in the 1950s were more than three times as high as they were in the 2000s (7% versus 2%)

based on data in Shiller (2005). Such a difference in realized returns given the relatively constant

pattern of consumption growth can only be consistently explained in the proposed model if risk
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aversion has decreased substantially: from the 1950s to the 2000s the GaMM(1,1) estimates of risk

aversion decrease from an average value of about 3.13 to a value of about 0.55, i.e., a full order of

magnitude. Following the 2008 financial crisis, the model even estimates the representative agent to

be risk seeking for some time, roughly up to the end of the European sovereign debt crisis, and risk

neutral thereafter. Part of this effect may be due to the return seeking behaviour of institutional

investors worldwide in the period of extremely low short term interest rates and non-standard

central bank policies in the post-crisis era. Finally, these results do not change qualitatively if we

replace the traditional NIPA consumption with data from, e.g., Kroencke (2017).

In short, we conclude that the estimated time-variation in γt obtained with the GaMM approach

helps us to pinpoint different episodes in U.S. investment behaviour. The estimates obtained are in

reasonable ballpark ranges and, in any case, are far from the economically absurd levels obtained

for the same utility specification but with static parameters.

5. Conclusions

We have proposed a new approach for modeling time-varying parameters in linear and non-linear

econometric models identified through moment conditions. The new approach is referred to as

the Generalized autoregressive Method of Moments since it endows parameters that are identified

via standard GMM (conditional) moment conditions with autoregressive dynamics based on local

deviations of the same (conditional) moment conditions. The method goes substantially beyond

previous observation-driven approaches and encompasses many of the previous observation-driven

models found in the literature, including the generalized autoregressive score approach of Creal

et al. (2013) and Harvey (2013). Given that our method is observation-driven, it also falls directly

within the generic GMM framework of Hansen (1982) in terms of the development of the appropriate

asymptotic theory for the estimator.

The key novelty in our approach is that we update the time-varying parameters using the influence

function for a local (conditional) version of the estimation criterion. Although our current treatment

is entirely set in the context of GMM estimation, extensions to other estimation criteria are easily

conceived.

We have illustrated our approach in an instrumental variables setting with time-varying regression

parameters, and for an asset pricing application using Euler equations. These examples demonstrate

that GaMM does not only lead to novel dynamic model specifications, it can also give rise to new
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empirical findings. In particular, the secular trending pattern in risk aversion obtained for the

standard power utility representative agent model shows that allowing for time variation in deep

parameters might be a useful direction to solve some of the empirical puzzles in economics and

finance. GaMM dynamics can be viewed as a straightforward and computationally easy tool to

uncover potential time-variation in parameters and may therefore provide empirically guidance

towards further theoretical model development.
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Appendix A: Proofs

Proof of Proposition 1. The result can be found directly in for instance Ronchetti and Trojani (2001).

For completeness, we provide the standard derivation following Hampel et al. (2011). Taking

derivatives of eq. (7) with respect of ϵ, we have

0 = d
dϵ

(
Ḡ

ϵ
f ,t

)ᵀ
Ωt−1 Eϵ

t−1 [gt (wt; ft, θ1)]
∣∣∣∣
ϵ=0

=
(
Ḡ

ϵ
f ,t

)ᵀ
Ωt−1 · d

dϵ
Eϵ

t−1 [gt (wt; ft, θ1)]
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ϵ=0

=
(
Ḡ

ϵ
f ,t

)ᵀ
Ωt−1 · d

dϵ

(∫
gt (w; ft(F ϵ

w), θ1) d ((1 − ϵ)Fw + ϵ∆wt)
)∣∣∣∣

ϵ=0

=
(
Ḡ

ϵ
f ,t

)ᵀ
Ωt−1 ·

(∫
gt (w; ft(Fw), θ1) d (∆wt − Fw) + Ḡ

0
f ,t

dft(F ϵ
w)

dϵ

∣∣∣∣
ϵ=0

)
=

(
Ḡ

ϵ
f ,t

)ᵀ
Ωt−1 ·

(
gt (wt; ft(Fw), θ1) + Ḡ

0
f ,t

dft(F ϵ
w)

dϵ

∣∣∣∣
ϵ=0

)
⇔

dft(F ϵ
w)

dϵ
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ϵ=0

= −
((

Ḡf,t

)ᵀ
Ωt−1Ḡf ,t

)−1 (
Ḡf ,t

)ᵀ
Ωt−1 gt (wt; ft, θ1) ,

with Ḡf ,t = Ḡ
0
f ,t, and where the second equality follows from eq. (5); see also Hampel et al. (2011)

for more details.

Proof of Proposition 2. Define the time t conditional expectations

ḡt(f) =
∫

gt(w; f , θ1)dFw(w), (A.1)

Ḡf ,t(f) =
∫

∂gt(w; f , θ1)
∂fᵀ dFw(w), (A.2)

where Fw(w) is the unknown true conditional distribution of wt given all information up to time

t − 1. Define V̄ t = Ḡf ,t(ft)ᵀ Ωt−1 Ḡf ,t(ft) and a GaMM(1,1) step with ω = 0, A = aI for a ∈ R+,

and B = I. Under the current differentiability conditions, we obtain

ḡt(f ′) = ḡt(f) + Ḡf ,t(f∗) (f ′ − f),

Ḡf ,t(f ′) = Ḡf ,t(f) +
dim(f)∑

j=1

∂Ḡf ,t(f)
∂f j

∣∣∣∣∣
f=f∗∗

· (f ′ − f)j ,

where f∗ and f∗∗ are points on the line segment between f and f ′, and dim(f) denotes the

dimension of f . Using these two expansions, and defining ∆ft+1 = ft+1 − ft and ∂jḠf ,t(f) =
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∂Ḡf ,t(f)/∂f j , we have

C(t, ft) − C(t, ft+1)
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∂jḠf ,t(f∗∗
t+1) · (f∗

t+1 − ft)j

ᵀ

Ωt−1ḡt(ft)
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ᵀ
f ,tΩt−1gt

− a2 (a∗)2 gᵀ
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where f∗
t+1 and f∗∗

t+1 are points between ft and ft+1, a∗ is a scalar between a and 0, gt =

gt(wt; ft, θ1), ḡt = ḡt(ft), and Ḡt = Ḡt(ft). Taking conditional expectations, and using the

existence of fourth order moments and the finiteness of all relevant weight and derivative matrices,
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we obtain

Et−1 [C(t, ft) − C(t, ft+1)] = −2aḡᵀ
t Ωt−1Ḡf ,tV̄ tḠ

ᵀ
f ,tΩt−1ḡt + O(a2), (A.3)

where O(a2) denotes a term vanishing at order a2. It is then clear that for small enough a, this

expected difference is positive, which proves the result.

Proof of Proposition 3. Let θᵀ = (θᵀ
1, θᵀ

2), with θᵀ
2 = (ωᵀ, vec [B]ᵀ , vec [A]ᵀ ) containing the static

parameters governing the GaMM(1,1) dynamics, and θ1 containing the remaining static parameters.

Taking the total derivative of the moment function, we obtain

dgt(wt; ft, θ1)
dθᵀ = ∂gt(wt; ft, θ1)

∂θᵀ + ∂gt(wt; ft, θ1)
∂fᵀ

t

· dft(wt−1; ft−1, θ)
dθᵀ ,

such that

Zᵀ
t = Ωt−1 Gθ,t + Ωt−1 Gf ,t

dft(wt−1; ft−1, θ)
dθᵀ , (A.4)

with

Gθ,t = Et−1

[
∂gt(wt; ft, θ1)

∂θᵀ

]
=

(
Et−1

[
∂gt(wt;ft,θ1)

∂θᵀ
1

]
0

)
=

(
Gθ1,t 0

)
,

and Gt = G0
t as defined in eq. (7). The last derivative in eq. (A.4) follows the recursion

dft+1
dθᵀ = dft+1(wt; ft, θ)

dθᵀ

= d(I − B)ω
dθᵀ + (ft(wt−1; ft−1, θ)ᵀ ⊗ I)d vec [B]

dθᵀ +

(st(wt; ft, θ)ᵀ ⊗ I)d vec [A]
dθᵀ + B

dft(wt−1; ft−1, θ)
dθᵀ +

A
∂st(wt; ft, θ)

∂θᵀ + A
∂st(wt; ft, θ)

∂fᵀ
t

dft(wt−1; ft−1, θ)
dθᵀ

=
(

0 I − B fᵀ
t ⊗ I sᵀ

t ⊗ I
)

+ B
dft

dθᵀ + A
∂st

∂θᵀ + A
∂st

∂fᵀ
t

dft

dθᵀ . (A.5)

In the first term in eq. (A.5), we directly recognize the instruments proposed in equation eq. (15).

In empirical work, A is typically small, while B is large with roots close to the unit circle. Using

the propositions premise that B = (1 − a) I and A = a I for small a, it follows immediatelly from
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eq. (A.5) that we can write

dft+1
dθᵀ =

t−1∑
i=0

(1 − a)i ·
(

0 I − B fᵀ
t−i ⊗ I sᵀ

t−i ⊗ I
)

+ O(a),

which proves the result.

Proof of Proposition 4. To establish consistency, the main difficulty is that the initialized series

ft(θ, f̄1) is not stationary and ergodic. We show however that we can replace ft(θ, f̄1) by its

stationary and ergodic uninitialized limit ft(θ), after which we can appeal to the standard argu-

ment for the consistency of the GMM estimator for stationary and ergodic data, where the data in

this case consists of the sequence {(wt, ft(θ)}t∈Z.

We write the sample moment condition as

g̃T

(
ft(θ, f̄1) , θ

)
= 1

T

T∑
t=1

Zt

(
ft(θ, f̄1)

)
gt

(
wt; ft(θ, f̄1), θ1

)

= 1
T

T∑
t=1

Zt
(
ft(θ)

)
gt

(
(wt; ft(θ), θ1

)
+ (A.6)

1
T

T∑
t=1

(
Zt

(
ft(θ, f̄1)

)
gt

(
wt; ft(θ, f̄1), θ1

)
− Zt (ft(θ)) gt (wt; ft(θ), θ1)

)
.

The first term converges to its expectation using Assumption B.2 and the ergodic theorem. The

second line in eq. (A.6) converges to zero almost surely by Assumption B.1, the continuity of Zt

and gt in ft, and the continuous mapping theorem. The remainder of the consistency proof now

follows the standard line of argument as found in for instance White (1996).

For asymptotic normality, we consider the first order condition

0 =

dg̃T

(
ft(θ̂), f̄1) , θ̂

)
dθᵀ

ᵀ

Ω̃T g̃T

(
ft(θ̂, f̄1) , θ̂

)
,

and expand it around θ⋆
0 as

0 =

dg̃T

(
ft(θ⋆

0, f̄1) , θ⋆
0

)
dθᵀ

ᵀ

Ω̃T g̃T

(
ft(θ⋆

0, f̄1) , θ⋆
0

)
+ (A.7)
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dim(θ)∑
i=1

d2g̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

dθᵀdθi

ᵀ

Ω̃T g̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

+ (A.8)

dg̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

dθᵀ

ᵀ

Ω̃T

dg̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

dθi

 ×
(
θ̂i − θ⋆

0,i),

where θ̄
⋆ is a point between θ⋆

0 and θ̂. From Assumption B.2 we have Ω̃T
a.s.→ Ω̃. We also note that

dg̃T

(
ft(θ⋆

0, f̄1) , θ⋆
0

)
dθᵀ =

∂g̃T

(
ft(θ⋆

0, f̄1) , θ⋆
0

)
∂θᵀ +

∂g̃T

(
ft(θ⋆

0, f̄1) , θ⋆
0

)
∂fᵀ

∂ft(θ⋆
0, f̄1)

∂θᵀ (A.9)

a.s.→ ∂g̃T (ft(θ⋆
0) , θ⋆

0)
∂θᵀ + ∂g̃T (ft(θ⋆

0) , θ⋆
0)

∂fᵀ
∂ft(θ⋆

0)
∂θᵀ , (A.10)

as θ affects g̃T both directly and via the time-varying parameter ft(θ, f̄1). Note that eq. (A.10)

follows from eq. (A.9) via the continuous mapping theorem and Assumption B.1, which holds for

both ft(θ, f̄1) and its first two derivatives. Also note that that via the continuous mapping theorem

and the exponentially fast almost sure convergence of ft(θ, f̄1) to ft(θ), we obtain

√
T ·

(
g̃T

(
ft(θ⋆

0, f̄1) , θ⋆
0
)

− g̃T

(
ft(θ⋆

0) , θ⋆
0
)) a.s.→ 0, (A.11)

such that eq. (A.9) follows a central limiting result from Assumption B.5 along the standard lines

of argument; see for instance White (1996).

From eq. (A.9), Assumption B.1, and the continuous mapping theorem, we also obtain

d2g̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

dθᵀdθi
=

∂2g̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

∂θᵀ∂θi
+

dim(f)∑
j=1

∂2g̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

∂θᵀ∂f j

∂f t,j(θ̄⋆
, f̄1)

∂θi
+

∂2g̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

∂fᵀ∂θi

∂ft(θ̄
⋆
, f̄1)

∂θᵀ +
dim(f)∑

j=1

∂2g̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

∂fᵀ∂f j

∂f t,j(θ̄⋆
, f̄1)

∂θi

∂ft(θ̄
⋆
, f̄1)

∂θᵀ +

∂g̃T

(
ft(θ̄

⋆
, f̄1) , θ̄

⋆
)

∂fᵀ
∂2ft(θ̄

⋆
, f̄1)

∂θᵀ∂θi

a.s.→

∂2g̃T

(
ft(θ̄

⋆) , θ̄
⋆
)

∂θᵀ∂θi
+

dim(f)∑
j=1

∂2g̃T

(
ft(θ̄

⋆) , θ̄
⋆
)

∂θᵀ∂f j

∂f t,j(θ̄⋆)
∂θi

+
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∂2g̃T

(
ft(θ̄

⋆) , θ̄
⋆
)

∂fᵀ∂θi

∂ft(θ̄
⋆)

∂θᵀ +
dim(f)∑

j=1

∂2g̃T

(
ft(θ̄

⋆) , θ̄
⋆
)

∂fᵀ∂f j

∂f t,j(θ̄⋆)
∂θi

∂ft(θ̄
⋆)

∂θᵀ +

∂g̃T

(
ft(θ̄

⋆) , θ̄
⋆
)

∂fᵀ
∂2ft(θ̄

⋆)
∂θᵀ∂θi

. (A.12)

Using eqs. (A.10) to (A.12), we can now replace all initialized time-varying parameters ft(θ, f̄1) in

eqs. (A.7) to (A.8) by their stationary and ergodic counterparts ft(θ) and follow the standard line

of argument for proving the asymptotic normality of GMM estimators under Assumption B; see

for instance White (1996).

Appendix B: Time-varying linear regression models with endogenous covariates

Model

Linear regression models are standard tools in economic analysis. A typical concern is the endo-

geneity of one of the regressors with the error term due to omitted variable bias or measurement

error. Consider the standard linear regression equation

yt = xᵀ
t βt + εt,

with Et−1[xᵀ
t βt] ̸= 0. Given the availability of an instrument variable zt, the obvious way to

estimate βt is via the conditional moment condition

Et−1 [zt (yt − xᵀ
t βt)] = 0. (B.1)

The complication here is that the parameters βt are time-varying. The moment condition eq. (B.1),

however, lends itself directly to the GaMM framework by setting ft = βt. Assuming zt and xt

to be stationary and ergodic, we estimate Ωt−1 = E[ztz
ᵀ
t ]−1 and Ḡt = E[ztx

ᵀ
t ] by their sample

averages.

Simulation results

Consider a simple linear model where both β0,t and β1,t are time-varying:

yt = β0,t + β1,txt + εyt, εyt ∼ N
(
0, σ2

εy

)
, E [εytεxt] = ρ, (B.2)
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xt = π0,x + π1,xzt + εxt, εxt ∼ N
(
0, σ2

εx

)
, zt ∼ N

(
µz, σ2

z

)
, (B.3)

βi,t+1 = πββi,t + ηi,t, ηi,t ∼ N
(
0, σ2

i,η

)
, i = 0, 1. (B.4)

If ρ ̸= 0 and σ2
εx

> 0, we have a standard endogenous regressor problem. For lower values of σ2
εx

, the

size of the bias when estimating β1,t using standard least-squares based methods, is larger. Define

xᵀ
t = (1, xt), zᵀ

t = (1, zt), and βᵀ
t = (β0,t, β1,t), and let Πx be such that xᵀ

t = zᵀ
t Πx + (0, εxt).

As a benchmark model we use an ordinary state space model consisting of equations eq. (B.2)

and eq. (B.4) and estimated using standard Kalman Filter methods. This is close to comparing

the performance of an instrumental variables (IV) estimator with an ordinary least squares (OLS)

estimator in a static context, where in our dynamic context the Kalman Filter and the GaMM

estimator take the roles of the OLS and IV estimators, respectively.

Our data generating process uses eqs. (B.2) to (B.4). The parameters we selected are ρ = 0.5,

σ2
εy

= 1, πx = 0.5, µz = 0, σ2
z = 1, and πᵀ

β = [0.98, 0.98]ᵀ. We vary σεx and ση to study the effect of

different magnitudes of the endogeneity problem and of the time-variation of the coefficients. We

use σ2
εx

= {0.5, 4} and σ2
η = {0.01, 0.25, 0.75}, where lower values of σεx result in larger biases of the

least-squares based estimator. All simulations are repeated for T = {1000, 2500, 5000} observations,

with 1000 observations corresponding to approximately 4 years of daily data. We obtained similar

results for simulations conducted with shorter time-series T = {250, 500}, as well as for other time-

varying patterns for βt than in eq. (B.4), including structural breaks and slowly varying sinusoid

waves.

The results of 10,000 replications are presented in Figure B.1 and Figure B.2. The figures summarize

a considerable amount of information in a dense way. In the top panel (Panel A), we summarize

the results for β̂0,t, while the bottom panel (Panel B) presents the results for the coefficient β1,t

corresponding to the endogenous regressor. For each simulation, we summarize the average bias and

root mean squared error (RMSE) of the time-varying parameters into a single summary statistic,

Average Biasi = 1
T

T∑
t=1

(
β̂i,t − βtrue

i,t

)
, Average RMSEi =

[
1
T

T∑
t=1

(
β̂i,t − βtrue

i,t

)2
] 1

2

. (B.5)

The results of the 10,000 simulations are presented as box-plots. In the left-half of each plot, the

endogeneity problem is moderate with a high value of σ2
εx

= 4.0. In the right-hand half of each

graph, the endogeneity problem is more severe with σ2
εx

= 0.5. This becomes particularly important

for the coefficient β1,t in Panel B. For both the moderate and the high endogeneity bias case, we
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B.1

Bias of GaMM for a Simple Endogeneity Problem

The figure compares performance of GaMM (black) to Kalman Filter with AR1 (light grey) or Random
Walk (dark grey) dynamics for coefficients. We simulate observations and true parameters from a simple
linear model where all coefficients are time-varying:

yt = β0,t + xtβ1,t + εt

xt = 0.5zt + ϕt

βi,t+1 = 0.98βi,t + ηi,t

E [εtϕt] = 0.5 εt ∼ N (0, 1) , ϕt ∼ N (0, σϕ) zt ∼ N (0, 1) ηi,t ∼ N (0, ση)

We consider a moderate (σ2
εx

= 4.0; left-hand half of the figure) and a high (σ2
εx

= 0.5; right-hand half
of the figure) degree of the endogeneity problem. For both the moderate and the high endogeneity bias
case, we consider different degrees of time-variation in βt, low (σ2

η = 0.01), medium (σ2
η = 0.25), and high

(σ2
η = 0.75). For each of the 2×9 = 18 combinations, we plot the results for three different simulated sample

sizes T = {1000, 2500, 5000}. Each group of three box-plots corresponds to a combination of sample size,
degree of time-variation in βt, and severity of the endogeneity problem. The three box-plots correspond
to three different models: GaMM(1,1) (black), state space model with random walk dynamics (dark grey),
and state space model with autoregressive (AR) dynamics of order 1 (light grey). The results are based on
10,000 replications.

S.9



consider different degrees of time-variation in βt, from low (σ2
η = 0.01) to high (σ2

η = 0.75). For

each of the 2 × 9 = 18 combinations, we plot the results for three different simulated sample sizes

T = {1000, 2500, 5000}. Each group of three box-plots corresponds to a combination of sample

size, degree of time-variation in βt, and severity of the endogeneity problem. The three box-plots

correspond to three different models: GaMM(1,1) (black), state space model with random walk

dynamics (dark grey), and state space model with autoregressive (AR) dynamics of order 1 (light

grey).

Figure B.1 shows the in-sample performance in terms of the average bias. Typically, out of the

two state space models, the specification with random walk dynamics for the parameters performs

better and we continue with this model as our main benchmark.

In Panel A, we see that in most cases both the GaMM and the Kalman Filter estimates based on

random walk dynamics offer a similar bias performance for the parameter of the exogenous regressor.

The average and median biases are close to zero. It is also clear that the distribution of the average

bias for the GaMM approach has a higher spread. The relative differences in performance diminish

substantially as the sample size increases. For the largest sample sizes the results produced with

GaMM are often as accurate as the ones produced with the Kalman Filter.

In Panel B of Figure B.1 we see that GaMM clearly outperforms the Kalman Filter in terms of bias

of the estimator for the parameter corresponding to the endogenous variable. Regardless of sample

size, size of the time-variability, or magnitude of the endogeneity bias; the Kalman Filter estimates

are clearly biased (as expected), whereas the GaMM approach results in unbiased estimates of the

parameter path in almost all cases. As expected, the bias of the Kalman Filter estimates is larger

for σ2
εx

= 0.5 than for σ2
εx

= 4.0. In fact, the 5% of best results generated by the Kalman Filter

are in most cases worse than 95% of the results produced by GaMM. As before, the performance

of GaMM improves with the sample size, making the improvement over the biased least-squares

based methods even more apparent.

Figure B.2 focuses on average root-mean square errors produced by both methods. For both

the exogenous and endogenous variables, RMSEs produced by either method are comparable on

average. However, the distribution of RMSE produced by GaMM has a considerably heavier right

tail: in some cases, the RMSE behaviour of GaMM can be substantially worse than that of the

Kalman Filter methods. The number of simulations with poor RMSE produced by GaMM reduces

substantially as the sample size increases.
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B.2

RMSE of GaMM for a Simple Endogeneity Problem

The figure compares performance of GaMM (black) to Kalman Filter with AR1 (light grey) or Random
Walk (dark grey) dynamics for coefficients. We simulate observations and true parameters from a simple
linear model where all coefficients are time-varying:

yt = β0,t + xtβ1,t + εt

xt = 0.5zt + ϕt

βi,t+1 = 0.98βi,t + ηi,t

E [εtϕt] = 0.5 εt ∼ N (0, 1) , ϕt ∼ N (0, σϕ) zt ∼ N (0, 1) ηi,t ∼ N (0, ση)

We consider a moderate (σ2
εx

= 4.0; left-hand half of the figure) and a high (σ2
εx

= 0.5; right-hand half
of the figure) degree of the endogeneity problem. For both the moderate and the high endogeneity bias
case, we consider different degrees of time-variation in βt, low (σ2

η = 0.01), medium (σ2
η = 0.25), and high

(σ2
η = 0.75). For each of the 2×9 = 18 combinations, we plot the results for three different simulated sample

sizes T = {1000, 2500, 5000}. Each group of three box-plots corresponds to a combination of sample size,
degree of time-variation in βt, and severity of the endogeneity problem. The three box-plots correspond
to three different models: GaMM(1,1) (black), state space model with random walk dynamics (dark grey),
and state space model with autoregressive (AR) dynamics of order 1 (light grey). The results are based on
10,000 replications.
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Summarizing, the trade-off between the Kalman Filter and GaMM approach seems to mirror in the

dynamic parameter case the differences between OLS and IV estimation from the static parameter

case. The Kalman Filter produces results that are biased but with low sampling variability, whereas

paths estimated by GaMM appear to be unbiased, but at the cost of a higher sampling variance.
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