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Abstract

We consider treatment effect estimation via a difference-in-difference approach for data with
local spatial interaction such that the outcome of observed units depends on their own treat-
ment as well as on the treatment status of proximate neighbors. We show that under standard
assumptions (common trend and ignorability) a straightforward spatially explicit version of the
benchmark difference-in-differences regression is capable of identifying both direct and indirect
treatment effects. We demonstrate the finite sample performance of our spatial estimator via
Monte Carlo simulations.
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1 Introduction

The linear difference-in-differences (DID) model is a benchmark tool in the program evaluation
literature (e.g., Ashenfelter, 1978; Ashenfelter and Card, 1985). At its core, a treatment effect
is the difference between two potential outcomes, with potential outcomes being a function of
treatment status (Rubin, 1974). The fundamental problem is that units are never observed in both
treated and untreated states (Holland, 1986), and identification requires comparison of treated
units to untreated (control) units. In the standard DID design, observations i = (1, 2, . . . , n) are
observed in two time periods, T ∈ {0, 1}, and are grouped via D ∈ {0, 1} such that Di = 1 indicates
treatment. Given a vector of time-varying covariates, Xit, the standard DID equation is:

yit = α0 + α1Xit + α2Dit + α3Tit + α4DitTit + νi + εit, (1)

in which νi is an unobservable time-invariant individual effect and εit is a mean zero error term
that is uncorrelated with Dit and Tit. It is straightforward to accommodate additional time pe-
riods. The identifying assumptions require correct linear specification of the conditional mean, a
homogeneous effect of treatment, and the parallel-trends assumption that absent treatment both
treated and untreated units evolve along the same temporal path. Strong or weak ignorability
(unconfoundedness) is assumed as well, implying that treatment assignment is independent of the
outcome, eventually conditional on Xit and νi. Maintaining these assumptions and suppressing the
subscript, the conditional average treatment effect, ATE(x) is:

ATE(x) = {E[y|X = x,D = 1, T = 1]− E[y|X = x,D = 1, T = 0]}
−{E[y|X = x,D = 0, T = 1]− E[y|X = x,D = 0, T = 0]}, (2)

or the difference in the conditional differences over time between the treated and control units.
From equations (1) and (2) it follows that ATE = α4. Typically, equation (1) is estimated with
ordinary least squares (OLS), and a rejection of H0 : α4 = 0 via a t-test is evidence of a significant
causal effect.

One requirement embedded in this well-known design is that the stable unit treatment value
assumption (SUTVA) holds. The crucial relevance of this assumption has been established by
Rubin (1978, 1990). Angrist et al. (1996, p. 446) point out that “SUTVA implies that potential
outcomes for person i are unrelated to the treatment status of other individuals.” Identification
of causal effects in the traditional DID setup is no longer valid in situations in which the SUTVA
assumption is violated. Adjustments are clearly needed: in determining the treatment effect, it
no longer suffices to only consider one’s own treatment status, but the treatment status of other
observation units has to be taken into account as well. Violation of the SUTVA assumption is also
referred to as “interference” or “social interactions” and has been a topic of research in various
disciplines, including economics (Manski, 2013). Theoretical and empirical analyses that explicitly
consider the potential outcomes framework and its associated assumptions in a spatial context are
still few and far between (Verbitsky-Savitz and Raudenbush, 2012; Feser, 2013; Gibbons et al.,
2015).

It is obvious that in the case in which outcomes are at least in part the result of spatial in-
teractions, the SUTVA assumption is violated. Consider the following examples. In development
economics, imagine a farmer education program that has been designed to improve crop yields
by enhancing farming ability through education/experience. Casual communication among farm-
ers within a village may be sufficient to evoke indirect treatment effects, in which treated and
untreated farmers benefit from treatment (knowledge) of others. In environmental economics a
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pollution prevention program, in which participating firms focus on implementation of sustainable
management practices targeted at air-borne pollution, may affect the air quality of nearby areas,
depending on prevailing wind directions. In urban economics the implementation of urban planning
and building restrictions in a city will result in an interrelated web of impacts on land and housing
prices across different neighborhoods, eventually even including nearby cities.

Our contribution is to develop a spatially explicit DID model that takes into account the possi-
bility of spatial correlation in treatment assignment, and concurrently allows for the identification of
spatial interaction in treatment responses.1 The use of the term “spatial interaction” is deliberate.
It refers to the fact that both direct and indirect treatment effects exist. The latter are sometimes
referred to as “spillovers” or “network effects”, resulting from contagion, displacement, communi-
cation, social comparison, or signaling (Gerber and Green, 2012). The existence of such spillovers
or network effects obviously creates (additional) spatial correlation in the treatment responses. To
remain agnostic to the underlying mechanisms and to avoid confusion, we simply refer to treatment
effects as being either direct or indirect. We also note that the term “spatial interaction” implies
that a convincing causal mechanism should be available for the causal interpretation to be viable.
In other words, existing spatial patterns due to spatial sorting need to be excluded as a poten-
tial source for spatially correlated treatment effects. This is akin to the well known ignorability
assumption evoked in the traditional DID setup (see Imbens and Wooldridge, 2009).

We assume treatment is binary, and restrict our focus to spatial interaction in the treatment
effects that are “local”, as opposed to “global”. This means that the spatial effects are restricted
to immediate neighbors, defined on the basis of contiguity or distance.2 In effect, this amounts
to assuming that SUTVA holds outside the bounds of immediate neighbors. In the context of the
farming example one might assume that SUTVA holds between villages, but local spatial interaction
and hence SUTVA violation is allowed for within villages. Generally, however, the only requirement
for our approach to be valid is that SUTVA holds across some particular dimension of the sample
space; it is not necessarily restricted to a discernable within–between situation. Under these general
circumstances, a simple extension of the standard DID setup using spatial econometric tools allows
us to estimate the ATE, which we decompose into a direct (“own”) and indirect (“neighbor”)
treatment effect. Our spatial DID model is straightforward to implement, and our Monte Carlo
exercises illustrate excellent finite sample performance.

2 Spatial Difference-in-Differences

Maintaining the notation in equation (1), imagine a data setup where we have n cross-sectional,
spatial observations for two time periods. These spatial observations can either represent points or
areas. In the latter case, the spatial system can consist of a regular or irregular lattice structure.
We operationalize local spatial interaction in outcomes using the spatial lag operator Ls, defined
as Ws, where Ws is a (2n× 2n) block-diagonal row-standardized spatial weights matrix containing
non-zero elements for spatial units belonging to contiguity class s (Anselin, 1988). The contiguity
class can include immediate (or first-order) neighbors with a common border, or first- and higher-
order neighbors (neighbors of the neighbors, etc.), or observational units within a certain cut-off

1 In the spatial econometrics literature the terms “spatial correlation” and “spatial dependence” tend to be used
as synonyms, although dependence is a characteristic of the joint probability density function, which can only be
measured as correlation under additional assumptions such as normality, stationarity, etc. Spatial patterns on a map
may be generated through an underlying dependence mechanism that may or may not be not be known, but they
can also result from spatial heterogeneity (Anselin, 1988).

2 In the global case, indirect effects propel through the entire spatial system; everybody is a neighbor of everybody
else, with interactions (or correlations) subject to distance decay.
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distance—as long as the number of neighbors is restricted and does not extend to the entire spatial
system. Spatial interaction in outcomes is defined as DLT = (I + ρLs)D ◦ T = (I + ρWs)D ◦ T , in
which I is an appropriately sized identity matrix, ρ is the spatial autoregressive parameter, and ◦
signals element-by-element multiplication (Hadamard product). In addition we distinguish random
treatment assignment D from spatially correlated treatment assignment D̃.3

Four different situations are then easily defined. Equation (1) corresponds to the standard DID
approach; the other three cases are:

y = α0 + α1D̃ + α2T + α3D̃ ◦ T + ε, (3)

y = α0 + α1D + α2T + α3DL ◦ T + ε, (4)

y = α0 + α1D̃ + α2T + α3D̃L ◦ T + ε, (5)

which are defined combining random or correlated treatment assignment with spatially isolated or
spatially interacted treatment effects.

The question is whether the different constellations described above require a spatially explicit
reparameterization of equation (1). It is evident that in the case of equation (3) the SUTVA as-
sumption is not violated. Moreover, we know that even with the presence of spatially correlated
exogenous covariates the unbiasedness, consistency, and efficiency properties of OLS are unaltered
(Anselin, 1988). Hence, application of the standard DID approach should lead to proper identifi-
cation and estimation of the average treatment effect.

The situations with spatial interaction in the responses, equations (4) and (5), are different.
Obviously, the SUTVA assumption is violated and indirect effects should be explicitly modeled.
One common approach is to meticulously identify all treatment and control groups and apply a
difference-in-difference-in-differences technique (Imbens and Wooldridge, 2009).4 There are several
disadvantages to such an approach. First, the number of treatment and control groups becomes
unwieldy and makes the approach very inefficient in small samples. Second, since there are no
restrictions on the estimated parameters one may be confronted with illogical “bouncing beta’s”;
for instance, the situation where the treatment effect of having two treated neighbors may be
greater than the treatment effect of having four treated neighbors. We therefore suggest a slightly
more structured approach by explicitly modeling the spatial structure.

Without loss of generality we can describe the cases with spatial interaction in the responses
by the following model:

y = α0 + α1D + α2T + α3DL ◦ T + ε,

= α0 + α1D + α2T + α3(I + ρW )D ◦ T + ε,

= α0 + α1D + α2T + α3DT + α4WD ◦ T + ε, (6)

in which α4 = ρα3, and D now refers to random or spatially correlated treatments. We assume
ρ 6= 0 so that the model does not revert to the standard DID equation. Erroneously omitting the

3 The relationship between D and D̃ is not straightforwardly defined using the spatial lag operator, since both D
and D̃ are restricted to be binary. The dose variables simply provide information about the location of the treated
points or areas, and can in practice never be observed simultaneously. Given the binary nature of the dose variable,
join count statistics can be used to determine whether the dose exhibits spatial autocorrelation (Cliff and Ord, 1981).

4 A spatial setting with local indirect effects to and from neighbors implies that, instead of defining a single
treatment and a single control group, multiple treatment and control groups would have to be defined such that units
with different numbers of treated neighbors would fall into different treatment and control groups. In the simple case
of a (10 × 10) spatial grid and adjacency defined on the basis of sharing a border or a vertex, the number of groups
based on spatially interactive responses is already 9, and this needs to be multiplied by 2 depending on whether own
treatment is 0 or 1.
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spatially lagged term on the right hand side renders standard DID biased and inconsistent, because
of the omitted variable problem.

Given equation (6), it is straightforward to derive a conditional ATE in this spatial setting
as the difference between treated and control units. The treated units may be subject to indirect
treatment effects caused by treated neighbors (wd ∈ WD such that 0 < wd ≤ 1). The control
group is defined as the group that is not treated at all; neither directly, nor indirectly (WD = 0).

ATE(wd) = {E[y|D = 1, T = 1,WD = wd]− E[y|D = 1, T = 0,WD = wd]}
−{E[y|D = 0, T = 1,WD = 0]− E[y|D = 0, T = 0,WD = 0]}

= α3 + α4wd

= α3(1 + ρwd). (7)

The ATE is then obtained as:

ATE = E[ATE(wd)|WD] = α3

(
1 + ρWD

)
, (8)

where WD is the average proportion of treated neighbors, which can also be interpreted as the prob-
ability of the neighbors being treated. In many geographies and treatment settings, the probability
of your neighbors being treated will asymptotically be equal to the probability of own treatment.

Several interesting observations follow from equation (8). First, in the case of spatially in-
teractive treatment responses the ATE becomes a function of the magnitude of the direct effect
of treatment, the strength of the local spatial interaction, and the probability of being treated.
The relevance of treatment probability in our spatial approach resembles the pivotal role of the
probability of being treated in propensity score matching approaches. Second, the standard DID
estimator, ATE = α3, is clearly biased. Third, given equation (7), one can write the ATE as a
(non)linear dose-response-type function of indirect treatment. One advantage of this formulation is
that the ATE can be evaluated at any wd ∈ (0, 1). This may give rise to interesting comparisons,
for instance, the impact of (only) indirect treatment for some 0 < wd ≤ 1 can be compared to the
impact of direct treatment with wd = 0. Finally, it is easy to see that the ATE in equation (8) can
be decomposed into an average direct treatment effect (ADTE), and an average indirect treatment
effect (AITE).

The ADTE is defined as the difference between treated and control units, both differenced over
time:

ADTE = {E[y|D = 1, T = 1,WD = 0]− E[y|D = 1, T = 0,WD = 0]}
−{E[y|D = 0, T = 1,WD = 0]− E[y|D = 0, T = 0,WD = 0]}

= α3, (9)

where the ADTE is identified by setting indirect treatment WD to zero. The conditional AITE is
defined as the difference between indirectly treated units and control units, both differenced over
time:5

AITE(wd) = {E[y|D = 0, T = 1,WD = wd]− E[y|D = 0, T = 0,WD = wd]}
−{E[y|D = 0, T = 1,WD = 0]− E[y|D = 0, T = 0,WD = 0]}

= α4wd (10)

5 It is easy to show that the AITE is identical for treated and untreated units.
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which yields AITE = α4WD. It is important to notice that in all cases, the necessary control
group consists of units that are neither treated directly nor indirectly.

3 Monte Carlo Simulations

Our spatially explicit DID setup is a straightforward extension of the benchmark DID model,
and is easily estimated using standard regression and matrix multiplication tools. To provide a
brief illustration of the performance of our approach, we consider Monte Carlo simulations for the
following data generating process (DGP):

yit = α0 + α1Xit + α2Dit + α3Tit + α4Rit + εit, (11)

with Rit for the responses, and all other notation as before. We generate εit ∼ N (0, 1). Key aspects
of our DGP are as follows:

(a) Ẋit = aẊit−1 + νi common trend,

(b) X = (I + `W )Ẋ random or autocorrelated sorting,
(c) Dt = Dt−1 ∼ Bern(n,Φ(Xt−1)) random or autocorrelated binary treatment,
(d) R = (I + ρW )D ◦ T autocorrelated response due to interaction.

First, we draw Ẋit−1 from a standard normal and calculate Ẋit using a common trend for the treat-
ment and control group with a = 1.02 and νi ∼ N (0, (a− 1)2). Second, we stack these variables in
X and potentially allow this conditioning variable to be spatially autocorrelated through a given
autoregressive parameter `, and a row-standardized block-diagonal matrix with first-order queen
weights on a regular lattice. The parameter ` is not recovered in the estimation, but this condition-
ing variable allows us to incorporate an initial situation of spatial sorting into the model. Third, the
sorting variable is clearly correlated with the binary treatments defined in (c) above, which are gen-
erated using a Bernoulli distribution for the normally distributed treatment probabilities Φ(Xt−1).
As a result, we can investigate the impact of violating the ignorability assumption, because Dit

and yit are only conditionally independent, which implies that Xit should be included in the DID
model to maintain unconfoundedness. Finally, the responses are potentially autocorrelated due to
spatial interaction. The simulations are conducted with 1,000 replications, maintaining αk = 1,∀k,
and varying ` = {0, 0.9}, ρ = {0, 0.50, 0.90} and n = {100, 900, 2500}.6

We basically compare two different DID estimators: the traditional DID estimator from equation
(1), and our suggested spatial DID estimator given in equation (6). These are labeled DID and
SDID, respectively. In addition we investigate the same estimators, but we add the potentially
spatially correlated conditioning variable X to the estimated equation; these estimators are labeled
DIDX and SDIDX, respectively. Table 1 concisely presents the simulation results in terms of bias
and root mean squared error (RMSE) of the ATE estimator provided in equation (8).

Several interesting conclusions emerge from Table 1. In the situation with random treatment
assignment and no spatial interaction in outcomes, the performance of all estimators is satisfactory.
In particular, DIDX achieves the smallest bias and the lowest RMSE because in this case DIDX is
perfectly specified. This superior performance of DIDX is reinforced if we allow treatment assign-
ment to be spatially correlated. However, in that case our suggested SDID estimator is severely
biased, because it overestimates the ATE due to the violation of the ignorability assumption. That
is, the SDID estimator incorrectly interprets the spatial sorting in X to be spatial interaction in

6 A more extensive set of simulation results is presented in the Appendix.
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Table 1: Bias and RMSE for different ATE estimators.

` ρ ATE estimator Bias RMSE

n = 100 n = 900 n = 2500 n = 100 n = 900 n = 2500

0.0 0.0 DID 0.0350 0.0214 0.0249 0.2207 0.0770 0.0489
DIDX 0.0121 -0.0012 0.0023 0.2196 0.0745 0.0445
SDID 0.0342 0.0207 0.0306 0.3455 0.1198 0.0775
SDIDX 0.0069 -0.0062 0.0078 0.3033 0.1014 0.0625

0.5 DID -0.2227 -0.2254 -0.2281 0.2969 0.2263 0.2281
DIDX -0.2455 -0.2480 -0.2507 0.3108 0.2484 0.2507
SDID 0.0078 0.0273 0.0215 0.3694 0.1229 0.0738
SDIDX -0.0042 0.0037 -0.0008 0.3162 0.1046 0.0613

0.9 DID -0.4420 -0.4270 -0.4277 0.4573 0.4270 0.4277
DIDX -0.4647 -0.4495 -0.4503 0.4773 0.4495 0.4503
SDID 0.0151 0.0281 0.0249 0.3714 0.1230 0.0752
SDIDX -0.0002 0.0051 0.0018 0.3126 0.1043 0.0624

0.9 0.0 DID 0.0289 0.0205 0.0283 0.2214 0.0766 0.0505
DIDX 0.0043 -0.0040 0.0040 0.2204 0.0744 0.0449
SDID 0.5589 0.5491 0.5607 0.5876 0.5491 0.5607
SDIDX 0.0000 -0.0059 0.0071 0.2818 0.0932 0.0559

0.5 DID -0.1807 -0.1832 -0.1840 0.2819 0.1847 0.1840
DIDX -0.2055 -0.2080 -0.2087 0.2936 0.2110 0.2087
SDID 0.5513 0.5596 0.5560 0.5923 0.5547 0.5560
SDIDX -0.0072 0.0031 -0.0009 0.2901 0.0740 0.0559

0.9 DID -0.3614 -0.3500 -0.3510 0.3931 0.3500 0.3510
DIDX -0.3868 -0.3750 -0.3760 0.4125 0.3750 0.3760
SDID 0.5562 0.5605 0.5573 0.5856 0.5605 0.5573
SDIDX 0.0016 0.0050 0.0014 0.2835 0.0900 0.0573

the outcome. In the case where there is spatial interaction, DID and DIDX are obviously biased
and inconsistent. They underestimate the ATE, because the SUTVA assumption is violated and
these estimators do not account for the positive spatial interaction. In the case where there is both
spatial sorting and spatial interaction, the SDID estimator is biased and inconsistent, because even
although it accounts for the spatial interaction, it fails to recognize the violation of the ignorability
assumption. The effect of spatial sorting is picked up as a treatment effect, which it is not. Overall,
the situation of treatment assignment being spatially correlated rather than random does not affect
the different estimators much, except for the SDID estimator that erroneously attributes spatial
sorting to spatial interaction. The performance of the SDIDX estimator is superior, meaning it is
unbiased and consistent in all situations encompassed by our Monte Carlo design.

4 Conclusion

We develop a difference-in-differences estimator for data that exhibit local spatial interaction. As
long as the spatial interaction is local, it is possible to define a proper control group of observations
that are untreated, neither directly nor indirectly. We use this control group, as well as the
assumption of structured spatial interactions to identify the average treatment effect that depends
on a treated unit’s own treatment as well as the share of proximate neighbors that also receive
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treatment. This ATE parameter can be decomposed into an average direct and indirect treatment
effect. A logical next step will be to consider global spatial correlation and interaction in order to
see which changes to the standard approach are needed to develop an appropriate spatial difference-
in-difference estimator for the global case.

For the local case developed here, we consider an array of different spatial and a-spatial scenarios,
and show via Monte Carlo simulations that our spatial DID estimator performs well in finite
samples. The simulations do highlight that it is imperative to condition on pre-existing spatially
correlated sorting, especially if the sorting is correlated with treatment assignment. The spatial
DID estimator should always be implemented with conditioning variables that capture pre-existing
observed and unobserved differences across space. We emphasize that our SDIDX estimator draws
on a simple spatial correlation mechanism developed in the spatial econometrics literature, and is
straightforward for practitioners to apply using a variety of available software.
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Appendix: Detailed simulation results

The simulation results presented in the main text have demonstrated the finite sample performance
of our proposed estimator in each of the settings outlined in equations (1) and (3)–(5) for several
representative values of key parameters in our Monte Carlo design. In this appendix, we provide
a complete set of results for all of the simulations we conducted. In all cases, our DGP is defined
as in equation (11), except that here we consider a wider set of combinations of ` = {0, 0.5, 0.9},
ρ = {0, 0.25, 0.50, 0.75, 0.90, 1, 2, 3, 4, 5}, and n = {100, 225, 400, 900, 1600, 2500} corresponding to
square regular lattice grids of size {10, 15, 20, 30, 40, 50}. We note that under our assumed restriction
that spatial interaction is local, ρ is unconstrained. In addition to the ATE, we also report the
bias and RMSE for the ADTE and AITE for the SDID and SDIDX estimators.

The simulation results are reported in Table A1–A8. The caption of each table indicates whether
the numbers reported correspond to the bias or the RMSE, and provide the value for ` and the
range of values for ρ. All tables consider the full range of n, report the ATE for all four estimators,
and report the ADTE and AITE for our two proposed spatial estimators.

Our extended simulation results largely mimic the results summarized in the main text. An
additional insight gleaned from these extended simulation results is the performance of the SDID
estimator when there is spatial sorting via ` > 0. As shown previously, the SDID estimator
erroneously picks up spatial sorting as if it is spatial interaction; hence the ATE is biased. From
the extended simulation results we can see that both the ATE and AITE are indeed biased,
however the ADTE for this estimator is not (see, for instance, Table A3). It is clear that the bias
in the ATE in this scenario comes from bias in the AITE.

It is also apparent that the biases shown across the various misspecified models increases with
the magnitude of ` and ρ. For instance, the bias in the SDID estimator when ` > 0 increases
as ` increases; or, the bias in DID and DIDX induced by ρ increases as ρ increases. The poor
performance of DID and DIDX is particularly apparent for ρ ≥ 1, as shown in Tables A7 and A8.
It is worth pointing out that large values of ρ seem less plausible in an empirical setting. Consider,
for example, the case in which 50 percent of the neighbors are treated, but the observational unit
itself is not. Then, a value of ρ = 2 implies that the indirect interaction with one’s neighbors is
equivalent to direct treatment of the unit of observation. Clearly, in some empirical cases, and for
some values of ρ and WD, this may be plausible. However, we suspect that in general, the value
of ρ will not be so large as to imply that indirect treatment has a substantially larger impact than
direct treatment.
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Table A1: Bias for different ATE estimators with 0 ≤ ρ < 1 and ` = 0.

ρ Estimator n = 100 n = 225 n = 400 n = 900 n = 1600 n = 2500

0.00 DID ATE 0.0350 0.0254 0.0159 0.0214 0.0248 0.0249
DIDX ATE 0.0121 0.0030 -0.0066 -0.0012 0.0022 0.0023
S-DID ADTE 0.0369 0.0249 0.0159 0.0213 0.0248 0.0249
S-DID AITE -0.0026 0.0000 -0.0017 -0.0006 -0.0008 0.0057
S-DID ATE 0.0342 0.0249 0.0142 0.0207 0.0239 0.0306
S-DIDX ADTE 0.0122 0.0025 -0.0066 -0.0012 0.0022 0.0023
S-DIDX AITE -0.0053 -0.0026 -0.0047 -0.0050 -0.0011 0.0055
S-DIDX ATE 0.0069 -0.0001 -0.0113 -0.0062 0.0011 0.0078

0.10 DID ATE -0.0269 -0.0278 -0.0321 -0.0241 -0.0280 -0.0255
DIDX ATE -0.0494 -0.0505 -0.0547 -0.0468 -0.0506 -0.0481
S-DID ADTE 0.0238 0.0223 0.0182 0.0260 0.0220 0.0246
S-DID AITE 0.0042 0.0026 -0.0086 -0.0024 0.0011 -0.0013
S-DID ATE 0.0280 0.0249 0.0095 0.0236 0.0231 0.0233
S-DIDX ADTE 0.0013 0.0002 -0.0043 0.0032 -0.0006 0.0020
S-DIDX AITE 0.0033 -0.0006 -0.0021 0.0002 0.0004 0.0011
S-DIDX ATE 0.0046 -0.0004 -0.0064 0.0033 -0.0002 0.0031

0.25 DID ATE -0.1020 -0.1084 -0.1055 -0.1015 -0.1065 -0.1033
DIDX ATE -0.1246 -0.1308 -0.1280 -0.1241 -0.1290 -0.1259
S-DID ADTE 0.0244 0.0176 0.0211 0.0239 0.0186 0.0219
S-DID AITE -0.0233 0.0140 -0.0063 -0.0013 0.0012 0.0009
S-DID ATE 0.0011 0.0317 0.0148 0.0226 0.0198 0.0228
S-DIDX ADTE 0.0031 -0.0047 -0.0015 0.0012 -0.0039 -0.0007
S-DIDX AITE -0.0101 0.0118 -0.0042 0.0003 0.0019 -0.0011
S-DIDX ATE -0.0070 0.0071 -0.0057 0.0016 -0.0020 -0.0018

0.50 DID ATE -0.2227 -0.2248 -0.2246 -0.2254 -0.2314 -0.2281
DIDX ATE -0.2455 -0.2474 -0.2472 -0.2480 -0.2541 -0.2507
S-DID ADTE 0.0288 0.0273 0.0267 0.0251 0.0192 0.0219
S-DID AITE -0.0210 -0.0077 0.0042 0.0022 0.0027 -0.0004
S-DID ATE 0.0078 0.0196 0.0309 0.0273 0.0219 0.0215
S-DIDX ADTE 0.0075 0.0047 0.0041 0.0026 -0.0035 -0.0007
S-DIDX AITE -0.0117 -0.0062 0.0062 0.0011 0.0025 -0.0001
S-DIDX ATE -0.0042 -0.0015 0.0102 0.0037 -0.0010 -0.0008

0.75 DID ATE -0.3498 -0.3615 -0.3517 -0.3521 -0.3500 -0.3558
DIDX ATE -0.3722 -0.3839 -0.3744 -0.3746 -0.3724 -0.3783
S-DID ADTE 0.0277 0.0147 0.0267 0.0235 0.0251 0.0200
S-DID AITE 0.0005 0.0002 -0.0006 -0.0009 -0.0017 0.0009
S-DID ATE 0.0282 0.0149 0.0261 0.0226 0.0235 0.0209
S-DIDX ADTE 0.0083 -0.0084 0.0038 0.0010 0.0027 -0.0026
S-DIDX AITE 0.0017 0.0002 0.0008 -0.0008 -0.0003 -0.0004
S-DIDX ATE 0.0100 -0.0081 0.0046 0.0002 0.0024 -0.0030

0.90 DID ATE -0.4420 -0.4318 -0.4299 -0.4270 -0.4272 -0.4277
DIDX ATE -0.4647 -0.4544 -0.4524 -0.4495 -0.4497 -0.4503
S-DID ADTE 0.0164 0.0241 0.0208 0.0237 0.0237 0.0230
S-DID AITE -0.0013 -0.0022 0.0039 0.0044 0.0052 0.0018
S-DID ATE 0.0151 0.0219 0.0247 0.0281 0.0289 0.0249
S-DIDX ADTE -0.0061 0.0009 -0.0019 0.0013 0.0012 0.0005
S-DIDX AITE 0.0059 -0.0025 -0.0060 0.0038 0.0058 0.0012
S-DIDX ATE -0.0002 -0.0016 -0.0079 0.0051 0.0070 0.0018
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Table A2: RMSE for different ATE estimators with 0 ≤ ρ < 1 and ` = 0.

ρ Estimator n = 100 n = 225 n = 400 n = 900 n = 1600 n = 2500

0.00 DID ATE 0.2207 0.1552 0.1151 0.0770 0.0584 0.0489
DIDX ATE 0.2196 0.1533 0.1141 0.0745 0.0545 0.0445
S-DID ADTE 0.2216 0.1565 0.1156 0.0771 0.0584 0.0489
S-DID AITE 0.2688 0.1937 0.1437 0.0941 0.0728 0.0577
S-DID ATE 0.3455 0.2530 0.1874 0.1198 0.0928 0.0775
S-DIDX ADTE 0.2205 0.1542 0.1147 0.0746 0.0546 0.0445
S-DIDX AITE 0.2097 0.1450 0.1095 0.0706 0.0535 0.0438
S-DIDX ATE 0.3033 0.2169 0.1604 0.1014 0.0763 0.0625

0.10 DID ATE 0.2243 0.1461 0.1123 0.0756 0.0610 0.0505
DIDX ATE 0.2276 0.1495 0.1179 0.0836 0.0703 0.0614
S-DID ADTE 0.2239 0.1477 0.1107 0.0755 0.0591 0.0501
S-DID AITE 0.2816 0.1884 0.1382 0.0960 0.0692 0.0575
S-DID ATE 0.3725 0.2454 0.1783 0.1237 0.0885 0.0788
S-DIDX ADTE 0.2235 0.1458 0.1095 0.0728 0.0563 0.0464
S-DIDX AITE 0.2164 0.1411 0.1068 0.0714 0.0534 0.0455
S-DIDX ATE 0.3259 0.2053 0.1557 0.1037 0.0760 0.0661

0.25 DID ATE 0.2416 0.1756 0.1440 0.1141 0.1109 0.1053
DIDX ATE 0.2484 0.1859 0.1569 0.1315 0.1312 0.1268
S-DID ADTE 0.2314 0.1521 0.1124 0.0760 0.0582 0.0478
S-DID AITE 0.2836 0.1884 0.1385 0.0931 0.0696 0.0583
S-DID ATE 0.3679 0.2463 0.1771 0.1209 0.0911 0.0732
S-DIDX ADTE 0.2289 0.1517 0.1113 0.0738 0.0562 0.0448
S-DIDX AITE 0.2152 0.1418 0.1099 0.0729 0.0544 0.0439
S-DIDX ATE 0.3158 0.2088 0.1545 0.1051 0.0790 0.0612

0.50 DID ATE 0.2969 0.2439 0.2323 0.2263 0.2314 0.2281
DIDX ATE 0.3108 0.2619 0.2530 0.2484 0.2541 0.2507
S-DID ADTE 0.2347 0.1499 0.1138 0.0775 0.0599 0.0479
S-DID AITE 0.2699 0.1887 0.1410 0.0950 0.0701 0.0569
S-DID ATE 0.3694 0.2422 0.1838 0.1229 0.0931 0.0738
S-DIDX ADTE 0.2322 0.1475 0.1123 0.0750 0.0580 0.0452
S-DIDX AITE 0.2081 0.1470 0.1060 0.0744 0.0556 0.0431
S-DIDX ATE 0.3162 0.2135 0.1589 0.1046 0.0823 0.0613

0.75 DID ATE 0.3790 0.3657 0.3526 0.3521 0.3500 0.3558
DIDX ATE 0.3966 0.3872 0.3749 0.3746 0.3724 0.3783
S-DID ADTE 0.2277 0.1428 0.1136 0.0761 0.0596 0.0476
S-DID AITE 0.2806 0.1838 0.1424 0.0947 0.0720 0.0595
S-DID ATE 0.3618 0.2348 0.1816 0.1215 0.0905 0.0764
S-DIDX ADTE 0.2269 0.1414 0.1114 0.0738 0.0560 0.0446
S-DIDX AITE 0.2106 0.1420 0.1095 0.0740 0.0548 0.0448
S-DIDX ATE 0.3034 0.2027 0.1560 0.1039 0.0789 0.0639

0.90 DID ATE 0.4573 0.4334 0.4302 0.4270 0.4272 0.4277
DIDX ATE 0.4773 0.4555 0.4526 0.4495 0.4497 0.4503
S-DID ADTE 0.2288 0.1508 0.1128 0.0769 0.0585 0.0488
S-DID AITE 0.2833 0.1896 0.1370 0.0984 0.0720 0.0578
S-DID ATE 0.3714 0.2487 0.1835 0.1230 0.0981 0.0752
S-DIDX ADTE 0.2271 0.1491 0.1124 0.0748 0.0554 0.0451
S-DIDX AITE 0.2127 0.1459 0.1081 0.0754 0.0544 0.0438
S-DIDX ATE 0.3126 0.2147 0.1615 0.1043 0.0806 0.0624
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Table A3: Bias for different ATE estimators with 0 ≤ ρ < 1 and ` = 0.5.

ρ Estimator n = 100 n = 225 n = 400 n = 900 n = 1600 n = 2500

0.00 DID ATE 0.0346 0.0257 0.0176 0.0197 0.0238 0.0263
DIDX ATE 0.0111 0.0028 -0.0055 -0.0034 0.0006 0.0032
S-DID ADTE 0.0068 -0.0050 -0.0152 -0.0136 -0.0091 -0.0075
S-DID AITE 0.3659 0.3586 0.3734 0.3725 0.3694 0.3781
S-DID ATE 0.3726 0.3536 0.3582 0.3588 0.3603 0.3706
S-DIDX ADTE 0.0115 0.0027 -0.0053 -0.0033 0.0008 0.0027
S-DIDX AITE -0.0047 -0.0033 0.0004 -0.0029 -0.0027 0.0058
S-DIDX ATE 0.0068 -0.0006 -0.0049 -0.0062 -0.0019 0.0084

0.10 DID ATE -0.0271 -0.0209 -0.0242 -0.0185 -0.0227 -0.0217
DIDX ATE -0.0500 -0.0443 -0.0473 -0.0418 -0.0459 -0.0449
S-DID ADTE -0.0109 -0.0095 -0.0117 -0.0062 -0.0109 -0.0089
S-DID AITE 0.3722 0.3778 0.3656 0.3693 0.3750 0.3719
S-DID ATE 0.3613 0.3683 0.3540 0.3632 0.3642 0.3630
S-DIDX ADTE -0.0043 0.0011 -0.0019 0.0035 -0.0004 0.0009
S-DIDX AITE -0.0003 0.0002 -0.0011 0.0013 -0.0002 -0.0010
S-DIDX ATE -0.0046 0.0013 -0.0030 0.0049 -0.0006 -0.0001

0.25 DID ATE -0.0830 -0.0958 -0.0899 -0.0905 -0.0967 -0.0920
DIDX ATE -0.1062 -0.1189 -0.1130 -0.1138 -0.1200 -0.1152
S-DID ADTE 0.0070 -0.0132 -0.0082 -0.0097 -0.0159 -0.0104
S-DID AITE 0.3580 0.3872 0.3636 0.3725 0.3757 0.3737
S-DID ATE 0.3650 0.3740 0.3554 0.3628 0.3597 0.3634
S-DIDX ADTE 0.0099 -0.0054 0.0020 0.0002 -0.0061 -0.0008
S-DIDX AITE -0.0094 0.0146 -0.0069 0.0011 0.0025 -0.0008
S-DIDX ATE 0.0005 0.0092 -0.0048 0.0012 -0.0036 -0.0015

0.50 DID ATE -0.2054 -0.1980 -0.1972 -0.2014 -0.2077 -0.2049
DIDX ATE -0.2288 -0.2214 -0.2206 -0.2247 -0.2312 -0.2283
S-DID ADTE -0.0042 -0.0010 -0.0031 -0.0065 -0.0131 -0.0097
S-DID AITE 0.3451 0.3658 0.3736 0.3767 0.3758 0.3713
S-DID ATE 0.3409 0.3648 0.3705 0.3702 0.3626 0.3616
S-DIDX ADTE 0.0019 0.0074 0.0065 0.0035 -0.0029 0.0000
S-DIDX AITE -0.0185 -0.0048 0.0047 0.0019 -0.0002 -0.0018
S-DIDX ATE -0.0166 0.0026 0.0112 0.0054 -0.0031 -0.0018

0.75 DID ATE -0.3170 -0.3272 -0.3142 -0.3148 -0.3152 -0.3205
DIDX ATE -0.3402 -0.3506 -0.3378 -0.3382 -0.3386 -0.3439
S-DID ADTE -0.0031 -0.0190 -0.0044 -0.0076 -0.0075 -0.0112
S-DID AITE 0.3722 0.3691 0.3767 0.3725 0.3753 0.3738
S-DID ATE 0.3691 0.3500 0.3723 0.3649 0.3678 0.3626
S-DIDX ADTE 0.0044 -0.0096 0.0049 0.0029 0.0030 -0.0013
S-DIDX AITE -0.0007 0.0018 0.0050 0.0021 0.0016 -0.0004
S-DIDX ATE 0.0037 -0.0078 0.0099 0.0050 0.0046 -0.0017

0.90 DID ATE -0.3914 -0.3882 -0.3884 -0.3873 -0.3861 -0.3874
DIDX ATE -0.4152 -0.4119 -0.4119 -0.4108 -0.4095 -0.4109
S-DID ADTE -0.0054 -0.0053 -0.0134 -0.0111 -0.0101 -0.0104
S-DID AITE 0.3639 0.3665 0.3685 0.3783 0.3774 0.3758
S-DID ATE 0.3585 0.3611 0.3552 0.3671 0.3673 0.3654
S-DIDX ADTE -0.0018 0.0011 -0.0021 -0.0013 0.0001 -0.0004
S-DIDX AITE 0.0029 0.0021 -0.0098 0.0052 0.0047 0.0022
S-DIDX ATE 0.0011 0.0031 -0.0119 0.0039 0.0048 0.0018
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Table A4: RMSE for different ATE estimators with 0 ≤ ρ < 1 and ` = 0.5.

ρ Estimator n = 100 n = 225 n = 400 n = 900 n = 1600 n = 2500

0.00 DID ATE 0.2206 0.1509 0.1146 0.0761 0.0578 0.0500
DIDX ATE 0.2190 0.1493 0.1137 0.0733 0.0548 0.0452
S-DID ADTE 0.2230 0.1510 0.1153 0.0741 0.0568 0.0458
S-DID AITE 0.4201 0.3708 0.3760 0.3725 0.3694 0.3781
S-DID ATE 0.4616 0.3848 0.3682 0.3597 0.3603 0.3706
S-DIDX ADTE 0.2205 0.1507 0.1144 0.0736 0.0549 0.0453
S-DIDX AITE 0.1999 0.1321 0.1066 0.0674 0.0512 0.0412
S-DIDX ATE 0.2914 0.1974 0.1539 0.0957 0.0716 0.0586

0.10 DID ATE 0.2307 0.1456 0.1113 0.0758 0.0586 0.0503
DIDX ATE 0.2332 0.1498 0.1155 0.0819 0.0674 0.0601
S-DID ADTE 0.2333 0.1469 0.1115 0.0750 0.0576 0.0483
S-DID AITE 0.4259 0.3894 0.3674 0.3695 0.3750 0.3719
S-DID ATE 0.4634 0.3952 0.3645 0.3637 0.3642 0.3630
S-DIDX ADTE 0.2304 0.1451 0.1099 0.0746 0.0565 0.0472
S-DIDX AITE 0.2122 0.1390 0.1032 0.0673 0.0510 0.0415
S-DIDX ATE 0.3123 0.1935 0.1490 0.0964 0.0719 0.0608

0.25 DID ATE 0.2417 0.1677 0.1373 0.1068 0.1034 0.0951
DIDX ATE 0.2476 0.1777 0.1489 0.1234 0.1234 0.1166
S-DID ADTE 0.2339 0.1529 0.1176 0.0768 0.0574 0.0463
S-DID AITE 0.4152 0.3997 0.3660 0.3725 0.3757 0.3737
S-DID ATE 0.4593 0.4016 0.3626 0.3628 0.3597 0.3634
S-DIDX ADTE 0.2319 0.1494 0.1155 0.0755 0.0558 0.0443
S-DIDX AITE 0.2078 0.1346 0.1052 0.0710 0.0514 0.0413
S-DIDX ATE 0.2931 0.1920 0.1463 0.0998 0.0735 0.0585

0.50 DID ATE 0.2921 0.2237 0.2066 0.2023 0.2077 0.2049
DIDX ATE 0.3044 0.2412 0.2272 0.2250 0.2312 0.2283
S-DID ADTE 0.2402 0.1528 0.1140 0.0779 0.0586 0.0480
S-DID AITE 0.4034 0.3767 0.3751 0.3767 0.3758 0.3713
S-DID ATE 0.4530 0.3979 0.3784 0.3703 0.3627 0.3616
S-DIDX ADTE 0.2370 0.1510 0.1122 0.0761 0.0573 0.0468
S-DIDX AITE 0.1987 0.1396 0.1024 0.0694 0.0529 0.0416
S-DIDX ATE 0.3030 0.2023 0.1501 0.0981 0.0771 0.0590

0.75 DID ATE 0.3555 0.3358 0.3157 0.3148 0.3152 0.3205
DIDX ATE 0.3728 0.3571 0.3388 0.3382 0.3386 0.3439
S-DID ADTE 0.2320 0.1488 0.1141 0.0767 0.0573 0.0466
S-DID AITE 0.4306 0.3803 0.3787 0.3726 0.3753 0.3738
S-DID ATE 0.4629 0.3755 0.3782 0.3657 0.3678 0.3626
S-DIDX ADTE 0.2239 0.1465 0.1132 0.0751 0.0556 0.0454
S-DIDX AITE 0.2083 0.1343 0.1038 0.0702 0.0526 0.0418
S-DIDX ATE 0.2856 0.1903 0.1437 0.0959 0.0746 0.0592

0.90 DID ATE 0.4166 0.3908 0.3887 0.3873 0.3861 0.3874
DIDX ATE 0.4361 0.4137 0.4121 0.4108 0.4095 0.4109
S-DID ADTE 0.2303 0.1526 0.1165 0.0760 0.0560 0.0469
S-DID AITE 0.4076 0.3798 0.3714 0.3783 0.3774 0.3758
S-DID ATE 0.4540 0.3924 0.3647 0.3671 0.3673 0.3654
S-DIDX ADTE 0.2275 0.1496 0.1143 0.0738 0.0548 0.0454
S-DIDX AITE 0.1977 0.1350 0.1009 0.0709 0.0517 0.0421
S-DIDX ATE 0.3033 0.1947 0.1517 0.0961 0.0748 0.0597
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Table A5: Bias for different ATE estimators with 0 ≤ ρ < 1 and ` = 0.9.

ρ Estimator n = 100 n = 225 n = 400 n = 900 n = 1600 n = 2500

0.00 DID ATE 0.0289 0.0303 0.0198 0.0205 0.0255 0.0283
DIDX ATE 0.0043 0.0062 -0.0046 -0.0040 0.0012 0.0040
S-DID ADTE -0.0722 -0.0732 -0.0878 -0.0872 -0.0803 -0.0782
S-DID AITE 0.6311 0.6150 0.6337 0.6363 0.6330 0.6389
S-DID ATE 0.5589 0.5418 0.5459 0.5491 0.5527 0.5607
S-DIDX ADTE 0.0054 0.0068 -0.0037 -0.0035 0.0015 0.0034
S-DIDX AITE -0.0053 -0.0044 -0.0065 -0.0024 -0.0024 0.0037
S-DIDX ATE 0.0000 0.0024 -0.0102 -0.0059 -0.0009 0.0071

0.10 DID ATE -0.0224 -0.0164 -0.0150 -0.0159 -0.0178 -0.0167
DIDX ATE -0.0468 -0.0411 -0.0394 -0.0404 -0.0422 -0.0411
S-DID ADTE -0.0832 -0.0836 -0.0796 -0.0802 -0.0831 -0.0797
S-DID AITE 0.6318 0.6393 0.6216 0.6321 0.6381 0.6385
S-DID ATE 0.5485 0.5557 0.5420 0.5519 0.5550 0.5588
S-DIDX ADTE -0.0035 0.0001 0.0029 0.0009 -0.0007 0.0007
S-DIDX AITE -0.0094 0.0003 -0.0046 0.0017 0.0012 0.0005
S-DIDX ATE -0.0129 0.0004 -0.0017 0.0026 0.0004 0.0011

0.25 DID ATE -0.0761 -0.0822 -0.0796 -0.0782 -0.0848 -0.0828
DIDX ATE -0.1007 -0.1066 -0.1041 -0.1028 -0.1093 -0.1073
S-DID ADTE -0.0732 -0.0849 -0.0809 -0.0795 -0.0869 -0.0835
S-DID AITE 0.6155 0.6426 0.6260 0.6340 0.6384 0.6389
S-DID ATE 0.5423 0.5577 0.5451 0.5545 0.5515 0.5555
S-DIDX ADTE 0.0056 -0.0042 0.0017 0.0023 -0.0053 -0.0025
S-DIDX AITE -0.0087 0.0129 -0.0073 -0.0025 0.0020 -0.0001
S-DIDX ATE -0.0032 0.0086 -0.0056 -0.0001 -0.0033 -0.0027

0.50 DID ATE -0.1807 -0.1741 -0.1751 -0.1832 -0.1861 -0.1840
DIDX ATE -0.2055 -0.1989 -0.1998 -0.2080 -0.2110 -0.2087
S-DID ADTE -0.0695 -0.0712 -0.0746 -0.0804 -0.0850 -0.0799
S-DID AITE 0.6209 0.6250 0.6333 0.6400 0.6397 0.6359
S-DID ATE 0.5513 0.5537 0.5586 0.5596 0.5547 0.5560
S-DIDX ADTE 0.0076 0.0099 0.0072 0.0013 -0.0023 0.0007
S-DIDX AITE -0.0148 -0.0042 0.0041 0.0018 0.0006 -0.0016
S-DIDX ATE -0.0072 0.0057 0.0113 0.0031 -0.0018 -0.0009

0.75 DID ATE -0.2772 -0.2889 -0.2827 -0.2845 -0.2846 -0.2895
DIDX ATE -0.3019 -0.3138 -0.3079 -0.3095 -0.3095 -0.3144
S-DID ADTE -0.0675 -0.0872 -0.0771 -0.0807 -0.0785 -0.0813
S-DID AITE 0.6352 0.6293 0.6389 0.6394 0.6397 0.6385
S-DID ATE 0.5677 0.5420 0.5618 0.5587 0.5613 0.5572
S-DIDX ADTE 0.0130 -0.0031 0.0048 0.0026 0.0031 -0.0004
S-DIDX AITE 0.0002 -0.0030 0.0046 0.0013 0.0037 0.0001
S-DIDX ATE 0.0132 -0.0062 0.0094 0.0038 0.0068 -0.0003

0.90 DID ATE -0.3614 -0.3468 -0.3506 -0.3500 -0.3487 -0.3510
DIDX ATE -0.3868 -0.3720 -0.3757 -0.3750 -0.3737 -0.3760
S-DID ADTE -0.0830 -0.0766 -0.0883 -0.0826 -0.0815 -0.0811
S-DID AITE 0.6392 0.6257 0.6339 0.6430 0.6402 0.6383
S-DID ATE 0.5562 0.5491 0.5456 0.5605 0.5587 0.5573
S-DIDX ADTE -0.0102 0.0020 -0.0024 -0.0008 0.0007 0.0000
S-DIDX AITE 0.0118 0.0032 -0.0041 0.0058 0.0053 0.0014
S-DIDX ATE 0.0016 0.0053 -0.0065 0.0050 0.0060 0.0014

15



Table A6: RMSE for different ATE estimators with 0 ≤ ρ < 1 and ` = 0.9.

ρ Estimator n = 100 n = 225 n = 400 n = 900 n = 1600 n = 2500

0.00 DID ATE 0.2214 0.1541 0.1154 0.0766 0.0599 0.0505
DIDX ATE 0.2204 0.1522 0.1141 0.0744 0.0563 0.0449
S-DID ADTE 0.2451 0.1729 0.1391 0.1073 0.0904 0.0832
S-DID AITE 0.6437 0.6157 0.6337 0.6363 0.6330 0.6389
S-DID ATE 0.5876 0.5453 0.5468 0.5491 0.5527 0.5607
S-DIDX ADTE 0.2240 0.1556 0.1164 0.0750 0.0565 0.0452
S-DIDX AITE 0.1965 0.1323 0.1041 0.0656 0.0504 0.0401
S-DIDX ATE 0.2818 0.1890 0.1432 0.0932 0.0700 0.0559

0.10 DID ATE 0.2327 0.1503 0.1133 0.0762 0.0561 0.0475
DIDX ATE 0.2349 0.1537 0.1171 0.0825 0.0644 0.0570
S-DID ADTE 0.2508 0.1738 0.1339 0.1043 0.0924 0.0852
S-DID AITE 0.6439 0.6396 0.6216 0.6321 0.6381 0.6385
S-DID ATE 0.5914 0.5603 0.5425 0.5519 0.5550 0.5588
S-DIDX ADTE 0.2334 0.1515 0.1141 0.0759 0.0555 0.0457
S-DIDX AITE 0.2063 0.1368 0.0988 0.0657 0.0496 0.0406
S-DIDX ATE 0.3042 0.1915 0.1447 0.0926 0.0675 0.0564

0.25 DID ATE 0.2380 0.1635 0.1305 0.0994 0.0936 0.0872
DIDX ATE 0.2438 0.1726 0.1425 0.1157 0.1139 0.1093
S-DID ADTE 0.2462 0.1752 0.1373 0.1038 0.0960 0.0889
S-DID AITE 0.6257 0.6431 0.6260 0.6340 0.6384 0.6389
S-DID ATE 0.5768 0.5637 0.5457 0.5545 0.5515 0.5555
S-DIDX ADTE 0.2323 0.1517 0.1150 0.0757 0.0554 0.0459
S-DIDX AITE 0.2008 0.1332 0.1013 0.0684 0.0493 0.0412
S-DIDX ATE 0.2779 0.1872 0.1409 0.0953 0.0701 0.0571

0.50 DID ATE 0.2819 0.2074 0.1896 0.1847 0.1863 0.1840
DIDX ATE 0.2936 0.2243 0.2096 0.2086 0.2110 0.2087
S-DID ADTE 0.2555 0.1653 0.1349 0.1045 0.0940 0.0847
S-DID AITE 0.6318 0.6256 0.6333 0.6400 0.6397 0.6359
S-DID ATE 0.5923 0.5583 0.5589 0.5596 0.5547 0.5560
S-DIDX ADTE 0.2392 0.1500 0.1143 0.0759 0.0586 0.0455
S-DIDX AITE 0.1967 0.1346 0.0995 0.0667 0.0525 0.0407
S-DIDX ATE 0.2901 0.1876 0.1428 0.0920 0.0740 0.0559

0.75 DID ATE 0.3246 0.3025 0.2857 0.2847 0.2846 0.2895
DIDX ATE 0.3414 0.3242 0.3098 0.3096 0.3095 0.3144
S-DID ADTE 0.2407 0.1731 0.1381 0.1042 0.0915 0.0858
S-DID AITE 0.6496 0.6297 0.6389 0.6394 0.6397 0.6385
S-DID ATE 0.6043 0.5441 0.5626 0.5587 0.5613 0.5572
S-DIDX ADTE 0.2222 0.1481 0.1176 0.0745 0.0553 0.0463
S-DIDX AITE 0.2067 0.1293 0.1011 0.0668 0.0512 0.0397
S-DIDX ATE 0.2785 0.1843 0.1362 0.0908 0.0711 0.0562

0.90 DID ATE 0.3931 0.3523 0.3510 0.3500 0.3487 0.3510
DIDX ATE 0.4125 0.3761 0.3760 0.3750 0.3737 0.3760
S-DID ADTE 0.2404 0.1639 0.1419 0.1029 0.0924 0.0860
S-DID AITE 0.6454 0.6263 0.6339 0.6430 0.6402 0.6383
S-DID ATE 0.5856 0.5530 0.5458 0.5605 0.5587 0.5573
S-DIDX ADTE 0.2239 0.1462 0.1163 0.0724 0.0564 0.0467
S-DIDX AITE 0.1920 0.1309 0.0972 0.0679 0.0499 0.0409
S-DIDX ATE 0.2835 0.1811 0.1466 0.0900 0.0694 0.0573
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Table A7: Bias for different ATE estimators with 1 ≤ ρ ≤ 5 and ` = 0.

ρ Estimator n = 100 n = 225 n = 400 n = 900 n = 1600 n = 2500

1 DID ATE -0.4767 -0.4736 -0.4777 -0.4824 -0.4757 -0.4797
DIDX ATE -0.4996 -0.4961 -0.5003 -0.5049 -0.4982 -0.5022
S-DID ADTE 0.0369 0.0288 0.0239 0.0194 0.0243 0.0209
S-DID AITE -0.0026 -0.0034 -0.0058 -0.0042 -0.0024 0.0022
S-DID ATE 0.0342 0.0254 0.0181 0.0152 0.0219 0.0231
S-DIDX ADTE 0.0122 0.0065 0.0012 -0.0031 0.0018 -0.0016
S-DIDX AITE -0.0053 -0.0061 -0.0055 -0.0020 -0.0039 0.0001
S-DIDX ATE 0.0069 0.0003 -0.0043 -0.0052 -0.0021 -0.0015

2 DID ATE -0.9929 -0.9694 -0.9788 -0.9814 -0.9841 -0.9763
DIDX ATE -1.0154 -0.9919 -1.0014 -1.0039 -1.0066 -0.9989
S-DID ADTE 0.0238 0.0326 0.0272 0.0194 0.0201 0.0241
S-DID AITE 0.0042 0.0038 0.0079 -0.0024 -0.0012 0.0031
S-DID ATE 0.0280 0.0363 0.0350 0.0169 0.0188 0.0272
S-DIDX ADTE 0.0013 0.0095 0.0046 -0.0030 -0.0025 0.0016
S-DIDX AITE 0.0033 0.0025 0.0037 -0.0029 -0.0023 0.0023
S-DIDX ATE 0.0046 0.0120 0.0084 -0.0059 -0.0048 0.0039

3 DID ATE -1.5018 -1.4979 -1.4802 -1.4836 -1.4788 -1.4730
DIDX ATE -1.5244 -1.5204 -1.5027 -1.5062 -1.5014 -1.4956
S-DID ADTE 0.0244 0.0203 0.0275 0.0211 0.0217 0.0286
S-DID AITE -0.0233 0.0094 0.0019 0.0006 -0.0001 0.0003
S-DID ATE 0.0011 0.0296 0.0294 0.0217 0.0216 0.0289
S-DIDX ADTE 0.0031 -0.0022 0.0051 -0.0014 -0.0009 0.0059
S-DIDX AITE -0.0101 0.0095 0.0040 0.0008 -0.0013 0.0020
S-DIDX ATE -0.0070 0.0073 0.0091 -0.0005 -0.0022 0.0080

4 DID ATE -1.9994 -1.9829 -1.9790 -1.9789 -1.9854 -1.9822
DIDX ATE -2.0222 -2.0054 -2.0017 -2.0015 -2.0080 -2.0048
S-DID ADTE 0.0288 0.0241 0.0246 0.0252 0.0211 0.0211
S-DID AITE -0.0210 0.0036 0.0100 0.0032 -0.0032 0.0019
S-DID ATE 0.0078 0.0277 0.0346 0.0284 0.0179 0.0231
S-DIDX ADTE 0.0075 0.0010 0.0021 0.0026 -0.0014 -0.0015
S-DIDX AITE -0.0117 0.0053 0.0048 0.0034 -0.0027 0.0013
S-DIDX ATE -0.0042 0.0063 0.0070 0.0060 -0.0041 -0.0002

5 DID ATE -2.5108 -2.5095 -2.5023 -2.4785 -2.4820 -2.4800
DIDX ATE -2.5332 -2.5322 -2.5249 -2.5011 -2.5045 -2.5026
S-DID ADTE 0.0277 0.0108 0.0196 0.0255 0.0222 0.0221
S-DID AITE 0.0005 0.0077 0.0134 -0.0018 -0.0007 -0.0004
S-DID ATE 0.0282 0.0185 0.0330 0.0237 0.0215 0.0217
S-DIDX ADTE 0.0083 -0.0120 -0.0031 0.0028 -0.0003 -0.0005
S-DIDX AITE 0.0017 0.0043 0.0043 0.0021 -0.0002 -0.0006
S-DIDX ATE 0.0100 -0.0077 0.0012 0.0049 -0.0005 -0.0012
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Table A8: RMSE for different ATE estimators with 1 ≤ ρ ≤ 5 and ` = 0.

ρ Estimator n = 100 n = 225 n = 400 n = 900 n = 1600 n = 2500

1 DID ATE 0.4900 0.4740 0.4777 0.4824 0.4757 0.4797
DIDX ATE 0.5108 0.4962 0.5003 0.5049 0.4982 0.5022
S-DID ADTE 0.2216 0.1522 0.1124 0.0765 0.0588 0.0481
S-DID AITE 0.2688 0.1843 0.1440 0.0957 0.0718 0.0598
S-DID ATE 0.3455 0.2457 0.1846 0.1250 0.0929 0.0761
S-DIDX ADTE 0.2205 0.1501 0.1109 0.0751 0.0556 0.0457
S-DIDX AITE 0.2097 0.1409 0.1069 0.0756 0.0537 0.0444
S-DIDX ATE 0.3033 0.2111 0.1551 0.1074 0.0775 0.0645

2 DID ATE 0.9930 0.9694 0.9788 0.9814 0.9841 0.9763
DIDX ATE 1.0155 0.9919 1.0014 1.0039 1.0066 0.9989
S-DID ADTE 0.2239 0.1548 0.1179 0.0777 0.0590 0.0474
S-DID AITE 0.2816 0.1852 0.1438 0.0946 0.0719 0.0586
S-DID ATE 0.3725 0.2412 0.1867 0.1206 0.0940 0.0776
S-DIDX ADTE 0.2235 0.1517 0.1159 0.0766 0.0568 0.0433
S-DIDX AITE 0.2164 0.1394 0.1081 0.0722 0.0544 0.0438
S-DIDX ATE 0.3259 0.2049 0.1576 0.1040 0.0807 0.0633

3 DID ATE 1.5018 1.4979 1.4802 1.4836 1.4788 1.4730
DIDX ATE 1.5244 1.5204 1.5027 1.5062 1.5014 1.4956
S-DID ADTE 0.2314 0.1583 0.1170 0.0767 0.0585 0.0511
S-DID AITE 0.2836 0.1822 0.1402 0.0941 0.0716 0.0583
S-DID ATE 0.3679 0.2494 0.1820 0.1232 0.0925 0.0786
S-DIDX ADTE 0.2289 0.1573 0.1148 0.0748 0.0562 0.0456
S-DIDX AITE 0.2152 0.1437 0.1080 0.0729 0.0538 0.0455
S-DIDX ATE 0.3158 0.2196 0.1597 0.1028 0.0765 0.0654

4 DID ATE 1.9994 1.9829 1.9790 1.9789 1.9854 1.9822
DIDX ATE 2.0222 2.0054 2.0017 2.0015 2.0080 2.0048
S-DID ADTE 0.2347 0.1552 0.1122 0.0750 0.0572 0.0478
S-DID AITE 0.2699 0.1794 0.1380 0.0974 0.0738 0.0591
S-DID ATE 0.3694 0.2429 0.1760 0.1236 0.0910 0.0756
S-DIDX ADTE 0.2322 0.1536 0.1110 0.0718 0.0544 0.0453
S-DIDX AITE 0.2081 0.1378 0.1077 0.0757 0.0533 0.0457
S-DIDX ATE 0.3162 0.2090 0.1538 0.1069 0.0769 0.0640

5 DID ADTE 2.5108 2.5095 2.5023 2.4785 2.4820 2.4800
DIDX ADTE 2.5332 2.5322 2.5249 2.5011 2.5045 2.5026
S-DID ADTE 0.2277 0.1490 0.1148 0.0748 0.0595 0.0479
S-DID AITE 0.2806 0.1861 0.1426 0.0943 0.0719 0.0559
S-DID ATTE 0.3618 0.2439 0.1872 0.1223 0.0902 0.0728
S-DIDX ADTE 0.2269 0.1498 0.1141 0.0720 0.0559 0.0450
S-DIDX AITE 0.2106 0.1442 0.1086 0.0722 0.0560 0.0423
S-DIDX ATTE 0.3034 0.2112 0.1581 0.1041 0.0776 0.0601
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