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Abstract

We extend the models in “Competition in two-sided markets” of Armstrong (2006, Rand

Journal of Economics) by adding within-group externalities. In the monopoly and duopoly

cases, positive within-group externalities reduce the price of the own group. Negative ex-

ternalities have an opposite price effect. In the case of a competitive bottleneck, we show

by examples that within a certain range of parameter values, a novel phenomenon arises

that the platform attracts more agents from one of the groups compared with the social

optimum.
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1 Introduction

Many markets with network externalities, if not most, are two-sided. Following Rochet and

Tirole (2006) we can say that “Two-sided (or, more generally, multi-sided) markets are roughly

defined as markets in which one or several platforms enable interactions between end-users and

try to get the two (or multiple) sides ‘on board’ by appropriately charging each side. That is,

platforms court each side while attempting to make, or at least not lose, money overall.” For

instance, credit cards companies such as Visa, Mastercard must capture both cardholders and

merchants. A wide acceptance of merchants will facilitate the cardholders. More cardholders

will reversely stimulate wider acceptance of credit card among merchants. To succeed, platforms

in industries such as software, portals, media, payment systems and internet shops must get

both sides of the market on board. A special feature of Facebook, YouTube, WhatsApp and

other social media is that users experience a higher value if more other users, their peers, use it.

This is an example of positive within-group externalities. In contrast, sellers of almost identical

goods and bidders for these goods on internet auction eBay experience more competition if more

users of their own side participate in the auction. This is an example of negative within-group

externalities. The investigation of two-sided markets with within-group externalities is the main

topic of this note.

Although Rochet and Tirole (2006) define “a two-sided market as one in which the volume

of transactions between end-users depends on the structure and not only on the overall level

of fees charged by the platform”, the literature on two-sided market mainly focuses on the

pricing strategy used by the platforms. Armstrong (2006) investigates the pricing strategy for

a monopoly platform and the case of two platforms competing for users. In the latter case, he

differentiates between “single-homing” and “multi-homing”. An user is “single-homing” when

he uses only one platform and “multi-homing” when he chooses several platforms. For the case

of two competing platforms, Armstrong (2006) investigates the following two situations: (i) both

groups are “single-homing”, (ii) one group is “single-homing” and the other is “multi-homing”.

The case of multiple platforms is also considered in van Cayseele and Reynaerts (2011), where

one side of the market has to use all platforms (thus “multi-homing”) for either cultural or

legal reasons and the other side is “single-homing”. They show that in presence of independent

platforms, the platform and industry profits are lower compared with the situation of joint

ownership of platforms.

In the literature on two-sided markets, most of the focus is on cross-group externalities and

little attention has been paid to within-group externalities. Although the key part is the push-

up mechanism and price adjustment due to cross-group externalities, within-group externalities

should also be taken into consideration, since their interactive effects may influence the final

result. In the setting of one-sided markets, typically negative within-group externalities exist.

For instance, more cars on a highway increase the possibility of traffic jams and therefore the
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expected traveling time. For a two-sided market we already discussed examples of pure positive

and negative within-group externalities. Intermediate cases may also exist. For example, when

a heterosexual club has only a few females, an increase in females will attract more males and

this in turn makes it more attractive for females. So, at low numbers there are positive within-

group externalities. However it might also be that when the number of females increases beyond

some number, the competition between females becomes so tense that it wipes out the positive

externalities of attracting more males and for high numbers the within-group externalities might

become negative. In this context, it might be appropriate to use a single-peaked form, say

quadratic, of within-group externalities. To focus our analysis, we mainly focus on such single-

peaked externalities. The other mentioned examples can be derived in a straightforward manner.

In this note we will investigate how within-group externalities affect the results obtained for

the three different models considered by Armstrong (2006). In Section 2 we analyze the effect

of within-group externalities for the pricing strategy of a monopoly platform. In Section 3 we

consider the case of two competing platforms with “single-homing” platforms on both sides.

Finally, in Section 4 we analyze within-group externalities for the competitive bottleneck, i.e.,

one side is “single-homing” and the other side is “multi-homing”.

2 Monopoly platforms

In this section we analyze the effects of within-group externalities for a monopoly platform as

discussed in Section 3 of Armstrong (2006). For instance, buyers and sellers in a small town can

only use one shopping mall to transact commodities. With a rich variety of sellers, consumers can

get easy access to what they are searching for, while retailers profit from an increasing number

of consumers. Hence, there exist positive cross-group externalities between the two sides of the

market. However, we also observe that more retailers in the mall will intensify the competition

among similar product providers, so there may exist within-group externalities among the sellers.

In this section, we allow for within-group externalities for both groups.

Following Armstrong (2006), we refer to the two sides of the market as group 1 and group 2

respectively. We index these groups by i, j = 1, 2 with j 6= i. In this model, utilities are the main

decision variables instead of prices. The utility for agents of group i, i = 1, 2, provided by the

platform is denoted as ui, the entrance fee or price for agents of group i as pi, and the number of

group i agents attracted by the platform as ni. There is an unlimited “pool” of agents on both

sides and agents have heterogenous outside options or reservation values drawing from a certain

distribution. Given the utility provided by the platform, the number of agents on the platform

is given by

ni = φi(ui), i = 1, 2, (1)
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where φi is some exogenous function with the property that φ′i > 0. This means that a higher

utility attracts more agents. Cross-group externalities are positive and an agent in group i gets

a fractional utility αi > 0 from the number of agents of group j on the platform. Novel are

within-group externalities associated with the number of agents of his group. For an agent of

group i these externalities are given by a nonnegative function gi : R+ → R+, satisfying gi(0) = 0

and gi
′(0) ≥ 0. Further we assume that for sufficiently large x̄i > 0, possibly x̄i is infinite, gi is

differentiable on the interval [0, x̄i] and gi(xi) = 0 when xi > x̄i. The utility for an agent reads,

ui = αinj + gi(ni)− pi, i = 1, 2. (2)

It could be that pi < 0, for instance when the manager of a mall in a small town wants to

stimulate the customers to visit the mall. The profit realized by the platform is given by

π = n1(p1 − f1) + n2(p2 − f2), (3)

where fi is some constant marginal costs for the platform to serve an agent of group i. Solving

pi, i = 1, 2, from equation (2) we obtain

pi = αinj + gi(ni)− ui, (4)

and substituting equations (1) and (4) into equation (3) we obtain

π(u1, u2) =
∑
i=1,2

(φi(ui) (αiφj(uj) + gi(φi(ui))− ui − fi)) .

Taking first-order conditions with respect to ui, i = 1, 2, yields

φ′i(ui) [αiφj(uj) + gi(φi(ui))− ui − fi] + φi(ui)
[
g′i(φi(ui))φ

′
i(ui)− 1

]
+ φj(uj)αjφ

′
i(ui) = 0. (5)

For the monopoly platform, the optimal utility levels ui provided by the platform are obtained

by solving the two equations (5) for i = 1, 2. Then the numbers of agents ni are obtained by

substituting ui in (1) and the prices pi from substituting ui and ni in equation (4).

When substituting (2) back into (5) we obtain

pi = fi − αjφj(uj)− φi(ui)g′i(φi(ui)) +
φi(ui)

φ′i(ui)
, i = 1, 2. (6)

Compared with equation (3) of Armstrong (2006) and noticing that φj(uj) = nj, equation (6) has

the additional term −φi(ui)g′i(φi(ui)). So, in addition to reducing the price for a group i agent by

his contribution to group j due to positive cross-group externalities, reflected by the second term

αjφj(uj), the price for a group i agent is also adjusted for his within-group externalities given
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by the −φi(ui)g′i(φi(ui)). If g′i > 0, then within-group externalities are positive and joining the

platform benefits other members of his group and the price should be reduced by a downward

factor that is the product of the number of group i agents and his marginal contribution to

his own group. If g′i < 0, then within-group externalities are negative and the participation of

another agent i decreases the utility of agents of his own group and hence the platform should

charge him a higher price.

Note that the optimal utility levels u1 and u2 are second-best in the sense that they maximize

the monopoly profit of the platform, ignoring the benefits of the customers. We therefore also

consider social welfare and maximize the sum of the platform profit and the consumer surplus

(CS hereafter),

W (u1, u2) = π(u1, u2) + CS1(u1) + CS2(u2),

where CSi(ui) =
∫ ui
0
φi(z)dz, i = 1, 2. Noticing that CS ′i(ui) = φi(ui), the socially-optimal price

bundle {p1, p2} should satisfy the first-order condition

pi = fi − αjφj(uj)− φi(ui)g′i(φi(ui)), i = 1, 2.

The social optimal price for group i equals the cost of serving a group i agent, adjusted by the

external benefit that an additional group i agent brings to the group j agents on the platform

and the within-group externalities he imposes on his own group members. Compared with the

second-best result, the social optimal price level is reduced by φi(ui)

φ
′
i(ui)

> 0, which confirms common

intuition in monopoly cases. We summarize the results in the next proposition.

Proposition 2.1. The price pi offered by the platform to an agent of group i is reduced by

cross-group externalities αjφj(uj) and adjusted by within-group externalities −φi(ui)g′i(φi(ui)).

Depending on group i agent’s marginal contribution to his own group, the latter is a price re-

duction in case of positive within-group externalities, and a price increase otherwise. Finally,

the monopoly platform charges a higher price for both group agents compared with the social

optimum.

Proposition 2.1 extends the results reported in Armstrong (2006) by adding within-group

externalities. When taking gi(xi) = 0 for every xi ≥ 0, equation (6) reduces to equation (3) of

Armstrong (2006).

3 Duopoly platforms with single-homing agents

In this section, we generalize the monopoly model to the duopoly case of two platforms competing

for two groups of agents that are all “single-homing” in the presence of within-group externalities.
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We modify the procedure for the monopoly case to demonstrate how it can be easily adapted to

solve the duopoly case in terms of equilibrium utilities. Our duopoly model extends the model

discussed in Section 4 of Armstrong (2006) in two ways that we allow for general functional

forms and within-group externalities. We conclude this section with an example in which we add

within-group externalities to the model discussed in Section 4 of Armstrong (2006).

3.1 The duopoly model

There are two platforms that we index as h, k = A, B and we distinguish platform h from

platform k, i.e., h 6= k. As before, the two groups of agents are indexed as i, j = 1, 2 and j 6= i.

Platform h, h,= A,B offers agents of group i, i = 1, 2, a utility of uhi , an entrance fee of phi
and the platform attracts nhi of group i agents. Generalizing both our monopoly model and

Armstrong (2006), who considers the Hotelling specification of our example below, we consider

the general situation that agents are attracted to the platforms by the utilities they receive.

Given the utilities (uhi , u
k
i ) offered by the platforms to a consumer of group i, the number nhi of

group i agents attracted by platform h is given by the differentiable function,

nhi = φhi (u
h
i , u

k
i ), (7)

where
∂φhi
∂uhi

> 0 and
∂φhi
∂uki

< 0. This captures that the number of agents of any group that uses

platform h is increasing in the utility offered by this platform and decreasing in the utility offered

by its competitor. Generalizing Armstrong (2006), we also consider the situation that there are

not only cross-group externalities, but also within-group externalities for both groups. For an

agent of group i, these externalities are given by a nonnegative function ghi : R+ → R+ that has

the same properties as the function gi of the monopoly case. The utilities of the agents of group

i on platform h are given by

uhi = αin
h
j + ghi (nhi )− phi , (8)

or equivalently we have

phi = αin
h
j + ghi (nhi )− uhi . (9)

Platform h has constant marginal costs fhi to serve a customer of group i. So, the profit for

platform h reads

πh = (ph1 − fh1 )nh1 + (ph2 − fh2 )nh2 . (10)

Similar as for the monopoly case, after substituting equations (7) and (9) into the profit function
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(10) we get

πh(uh1 , u
h
2 ;uk1, u

k
2) =

∑
i=1,2

(
αiφ

h
j (u

h
j , u

k
j ) + ghi (φhi (u

h
i , u

k
i ))− uhi − fhi

)
φhi (u

h
i , u

k
i ).

Both platforms in the duopoly are profit maximizers and the utilities that they offer are their

decision variables. Taking the partial derivatives with respect to all utilities, we obtain the

first-order conditions for h, k = A,B and i, j = 1, 2,

∂φhi
∂uhi

[
(α1 + α2)φ

h
j (u

A
j , u

B
j ) + ghi (φhi (u

A
i , u

B
i ))− uhi − fhi + (ghi )′φhi (u

A
i , u

B
i )
]
−φhi (uAi , uBi ) = 0. (11)

The optimal utility levels uhi provided by both platforms are obtained by solving the system

of equations (11). Then, the numbers of agents and the prices in the duopoly equilibrium are

obtained by substituting the optimal utilities equations (7) and (9). If we substitute equation

(8) back into expression (11), we obtain

phi = fhi − αjφhj (uAj , uBj )− (ghi )′φhi (u
A
i , u

B
i ) + (∂φhi /∂u

h
i )
−1φhi (u

A
i , u

B
i ). (12)

This expression for the entrance fee of group i agents on platform h is similar to the monopoly

case except that the utilities uki and ukj of the competing platform enter a platform’s price setting.

If platform k offers a higher utility to group j agents, then platform h will attract less group j

agents and one single group i agent on platform h contributes less to his cross groups due to the

fact that there are less group j agents on the platform h, therefore the price phi will increase.

The impact of the utility that platform k offers to group i agents enters phi through the following

two terms −(ghi )′φhi (u
A
i , u

B
i ) and (∂φhi /∂u

h
i )
−1φhi (u

A
i , u

B
i ).

We conclude the above discussion with the following proposition.

Proposition 3.1. The price phi offered by platform h to an agent of group i is reduced by cross-

group externalities αjφ
h
j (u

A
j , u

B
j ), adjusted by within-group externalities −(ghi )′φhi (u

A
i , u

B
i ) and

(∂φhi /∂u
h
i )
−1φhi (u

A
i , u

B
i ). Depending on group i agent’s marginal contribution to his own group,

the influence of within-group externalities is a price reduction in case of positive within-group

externalities, and a price increase otherwise.

Note that the duopoly equilibrium utility levels are second-best in the sense that they maxi-

mize the profits on each platform, ignoring the benefits of the customers. For duopolies with a

fixed group size and platforms that serve the entire market, such as for the Hotelling specifica-

tion, it is meaningless to discuss social welfare. Since if both platforms have the same constant

marginal costs, social welfare is constant. If a platform sets a higher price and loses one customer,

this customer does not disappear from the market but instead joins the competing platform.
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3.2 An example

In this example, we revisit the model of Section 4 in Armstrong (2006) with the Hotelling

specification and extend it by adding within-group externalities.

Suppose that for each group the customers are shared between the two platforms according

to the Hotelling specification. Let the size of group i, i = 1, 2, be ki > 0 and each agent has

per-unit transportation costs of ti > 0. According to the Hotelling specification, the number of

group i agents is shared between the platforms according to

nhi = φhi (u
A
i , u

B
i ) =

(
1

2
+
uhi − uki

2ti

)
ki. (13)

Note that nhi + nki = ki, so all group i agents are served. Suppose that the pattern of within-

group externalities is the same on both platforms such that ghi (nhi ) = −ai(nhi )2 + 2bin
h
i , where

ai, bi > 0 allows that groups may have different values for ai and bi. So, before the peak bi
ai

the within-group externalities are positive and beyond this peak within-group externalities are

negative. The first-order conditions given in equation (11) become for h = A,B and i = 1, 2,

1

2ti

[
(α1 + α2)

(
1

2
+
uAj − uBj

2tj

)
kj − ai

(
1

2
+
uAi − uBi

2ti

)2

k2i + 2bi

(
1

2
+
uAi − uBi

2ti

)]

+
1

2ti

[
−uAi − fAi − 2ai

((
1

2
+
uAi − uBi

2ti

)
ki −

bi
ai

)(
1

2
+
uAi − uBi

2ti

)]
−
(

1

2
+
uAi − uBi

2ti

)
= 0.

(14)

As a special case, we consider the situation that two groups have the same group size and we

normalize this size to one, thus k1 = k2 = 1, and that the two platforms have the same constant

marginal costs, i.e., fhi = fki = fi. Consider the symmetric equilibrium with uhi = uki = ui. Then

it follows that nhi = nki = 1
2
. From equation (14) we obtain

ui = 1
2
αi + 1

2
αj + gi

(
1
2

)
− fi −

(
1
2
ai − bi

)
− ti.

It follows that1

pi = fi + ti +
(
1
2
ai − bi

)
− 1

2
αj.

1Expression (7) in Armstrong (2006), where a1 = b1 = 0, states p1 = f1 + t1 − α2. This result
is obtained if utilities are substituted out before taking the first-order conditions, which we think is
the incorrect order of deriving the Nash equilibrium in this model. Our results are derived under the
opposite order.
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The equilibrium price in the duopoly is adjusted by both the cross-group externalities and the

within-group externalities. In response to the positive cross-group externalities, the price of

an group i agent is adjusted downward proportional to his marginal contribution, αj, to the

cross-group agents. For instance, the price for group 1 agents is pushed downward by 1
2
α2. An

explanation for the fraction 1
2

is that in the Hotelling specification, if the price charged on one

group by the platform decreases by one unit, the number of agents only increases by a half unit.

Moreover, in equilibrium only half of the interval of each group is captured by each platform.

So the price charged on group 1 should be lowered by his contribution to only half of the total

group 2 agents. The equilibrium price is also determined by his own within-group externalities

−(ghi )′(1
2
) = ai − 2bi according to (12). The sign of these externalities depends upon the peak

bi
ai

. For bi
ai
< 1

2
, within-group externalities are locally negative and the price is adjusted upward.

For bi
ai
> 1

2
, within-group externalities are locally positive and the price is adjusted downward.

For the special case of linear within-group externalities in both groups, i.e., a1 = a2 = 0, the

analysis above remains valid and the only difference is that ai drops out of the expression for pi.

Because the coefficient bi is positive, the within-group externalities of group i are always positive

and each platform lowers its equilibrium price to this group by bi to attract group i agents.

4 Competitive bottleneck platforms

In this section we analyze within-group externalities for the competitive bottleneck model dis-

cussed in Section 5 of Armstrong (2006). In this model one of the groups is still “single-homing”,

while the other group is “multi-homing”.

In a setting of competing mobile telecommunications networks, Armstrong (2006) differenti-

ates between mobile subscribers and people on fixed telephony networks who wish to call mobile

subscribers. In general, each subscriber (“single-homing”) uses only one mobile network and pays

the subscription fees and those people on the fixed telephony network (“multi-homing”) should

have access to all mobile networks and pay termination charges. In equilibrium, mobile networks

will charge a low subscription fee and a high call termination fee. The mobile networks pass

on the profits from high call termination charges to subsidize the mobile subscribers. Putting it

differently, the equilibrium call termination charge is chosen to maximize the profits of mobile

network and subscribers while ignoring the benefits of people on the fixed telephony network.

The feature that the “single-homing” side is treated well and the interests of “multi-homing”

side are ignored in equilibrium is present in a competitive bottleneck setting.

According to Proposition 4 of Armstrong (2006), there are too few “multi-homing” agents

served on the platform given the distribution of “single-homing” agents on the platform. In

general this implies a market failure. It does not make sense to explain the market failure

in terms of competition effects. The position each platform holds is different from two sides.
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From the “single-homing” side, the platform faces a more or less competitive market. From

the “multi-homing” side, it holds a local monopoly. The profits the platform collects from the

“multi-homing” side might pass on to the competitive side, i.e., the “single-homing” agents

on the platform. Armstrong further argues that the market failure is a special feature of this

competitive bottleneck, i.e., the “single-homing” side is treated well and the “multi-homing” side

is priced aggressively by the platform. In the whole analysis of Armstrong (2006), he ignores the

effects of within-group externalities. In the following analysis, we add two forms of within-group

externalities.

We focus on the following example in our setting. One customer might use only one airline

reservation system to book air tickets. The reason might be that he got good services from

previous experiences and is very satisfied with this airline reservation system, therefore he refrains

from searching other airline reservation options. So on this airline reservation system, there is

a fixed number of market shares of customers in this example. Under this scenario, airline

companies are “forced” to deal with all airline reservation systems (i.e., platforms) in order to

gain access to as many customers as possible. Moreover, an airline company’s decision to join

one reservation system is independent from his decision to join another reservation system. In

this setup, we model customers as group 1 agents and airline companies as group 2 agents. Note

that in this setup, there is no competition between platforms to attract group 2 agents. This

differs from the previous section, where group 2 agents are also shared by the two platforms.

This can be modeled, by slightly modifying (7) to specify nh2 = φh2(uh2), where
∂φh2
∂uh2

> 0 as before.

This specification can be seen as the boundary case
∂φh2
∂uk2

= 0 of the model in Section 3. Again,

this captures that the share of agents of group 2 that uses platform h is increasing in the utility

offered by this platform and it is independent of the utility offered by its competitor.

We consider within-group externalities only among “multi-homing” group 2 agents and not

among “single-homing” group 1 agents, i.e., gh1
(
nh1
)

= 0. For notational convenience, we write

g2(n
h
2) for gh2 (nh2). What differs from Section 3, is that we perform the analysis in terms of

the number of agents attracted to the platforms, where we mainly focus on the “multi-homing”

agents. For computational convenience, we further specify that the number of group 2 agents

attracted by platform h, given that nh1 group 1 agents are present, is

nh2 = α2n
h
1 − ph2 + g2(n

h
2), (15)

where g2(n
h
2) captures the within group externalities among group 2 agents. We assume g2(0) = 0.

Because (9) and (10) still hold, we can express the profit of platform h in terms of the number

of agents it attracts. The profit function for the platform h reads,

πh = nh1(α1n
h
2 − uh1) + nh2(α2n

h
1 − nh2 + g2(n

h
2))− (nh1f

h
1 + nh2f

h
2 ).

10



Because the platforms do not compete for group 1 agents, it is without much loss of generality

to write that platform h offers group 1 agents their equilibrium utility ûh1 and, doing so, attracts

the equilibrium number n̂h1 of group 1 agents. In order to achieve this, platform h needs to adjust

its price ph1 to the number of group 2 agents it attracts, which means that ph1 = α1n
h
2− ûh1 similar

as in previous sections.

Given n̂h1 , platform h chooses nh2 to maximize

rh(nh2) = n̂h1α1n
h
2 + nh2(α2n̂

h
1 − nh2 + g2(n

h
2))− (n̂h1f

h
1 + nh2f

h
2 ), (16)

and the above expression maximizes the joint interests of group 1 agents (i.e., n̂h1 û
h
1) and the

platform while the interests of group 2 agents are ignored. The first-order condition is given by

∂rh

∂nh2
= α1n̂

h
1 + α2n̂

h
1 − 2nh2 + g2(n

h
2) + nh2g

′
2(n

h
2)− fh2 = 0. (17)

Note that in equilibrium p̂h2 = α2n̂
h
1 − n̂h2 + g2(n̂

h
2), where n̂h2 solves (17).

Next, we consider social welfare generated by platform h. First, note that the aggregate

surplus generated by group 2 agents on platform h is given by
∫ nh

2

0
ph2(x)dx, where ph2(x) expresses

that the inverse demand function depends upon the number x of group 2 agents on platform h.

Hence, the aggregate surplus of group 2 agents given n̂h1 and nh2 on platform h is∫ nh
2

0

(
α2n̂

h
1 − x+ g2(x)

)
dx = α2n̂

h
1n

h
2 − 1

2
(nh2)2 +G2(n

h
2)−G2(0),

here G′2(x) = g2(x). The aggregate surplus of group 1 agents on platform h includes the price

the platform collects from group 1 agents and also the utility for group 1 agents on the platform.

Given n̂h1 , the aggregate surplus of group 1 agents on platform h is n̂h1α1n
h
2 . Hence, the total

surplus on platform h is given by

vh(nh2) = n̂h1α1n
h
2 + α2n̂

h
1n

h
2 − 1

2
(nh2)2 +G2(n

h
2)−G2(0)− (n̂h1f

h
1 + nh2f

h
2 ). (18)

The first-order condition for the maximal total surplus is

∂vh

∂nh2
= α1n̂

h
1 + α2n̂

h
1 − nh2 + g2(n

h
2)− fh2 = 0. (19)

We narrow the welfare analysis to the question whether platform h attracts the socially optimal

number of group 2 agents in the duopoly equilibrium. From equations (17) and (19), we obtain

∂rh

∂nh2
=
∂vh

∂nh2
+ nh2

[
g′2(n

h
2)− 1

]
. (20)
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In the following, we investigate two specific forms of within-group externalities.

4.1 Linear within-group externalities

In this subsection we consider the case of linear within group externalities, given by g2(n
h
2) =

β2n
h
2 . It follows that G2(n

h
2) = 1

2
β2(n

h
2)2 + c, where c is a constant. For β2 > 0 the within-group

externalities are positive. Note that both (16) and (18) are in quadratic form.

When g′2(n
h
2) − 1 < 0, i.e., β2 < 1, the right-hand side of equation (20) is smaller than the

left-hand side for any number of nh2 and the coefficient of the term of degree 2 in equations (16)

and (18) is negative. Let nh∗2 be the solution for (17) and ∂rh

∂nh
2
(nh∗2 ) = 0. Then ∂vh

∂nh
2
(nh∗2 ) > 0.

Therefore, the maximizer of (16) is always smaller than the maximizer of (18). There are too few

group 2 agents served on the platform compared with the social optimum in case of linear within

group externalities when β2 < 1. This includes the class of negative within-group externalities

(β2 < 0) and the case with an absence of these externalities (β2 = 0) in Section 5 of Armstrong

(2006).

When β2 > 1, the coefficient of the term of degree 2 in equations (16) and (18) is positive.

Only the minimizer is attained at the saddle point. In this situation, the maximizers are attained

at either 0 or the maximal number of group 2 agents.

4.2 Quadratic within-group externalities

We now consider the case of quadratic within-group externalities that are given by g2(n
h
2) =

−(nh2)2 + 2b2n
h
2 , where b2 > 0. The within-group externalities are positive before the peak point

b2 and negative beyond. We have G2(n
h
2) = −1

3
(nh2)3 + b2(n

h
2)2 + c, where c is a constant that is

irrelevant for the analysis. By substituting g2(n
h
2) in (16) and (17) we obtain the platform profit

rh(nh2) = −(nh2)3 + (2b2 − 1)(nh2)2 +
(
(α1 + α2)n̂

h
1 − fh2

)
nh2 − n̂h1fh1

and the first-order condition for profit maximizing

∂rh

∂nh2
= −3(nh2)2 + 2(2b2 − 1)nh2 + c2 = 0,

12



Figure 1: The regions defined in Table 1 in the (b2, c2) space

where c2 = (α1 + α2)n̂
h
1 − fh2 . Solving for the profit-maximizing number of group 2 agents, we

obtain2

n̂h2 =
(2b2 − 1) +

√
(2b2 − 1)2 + 3c2
3

.

Similarly, we obtain from (18) and (19), the social welfare

vh(nh2) = −1
3
(nh2)3 + (b2 − 1

2
)(nh2)2 +

(
(α1 + α2)n

h
1 − fh2

)
nh2 − n̂h1fh1

and the first-order condition for welfare maximization

∂vh

∂nh2
= −(nh2)2 + (2b2 − 1)nh2 + c2 = 0. (21)

Then we obtain the welfare-maximizing number of group 2 agents by solving (21),

ˆ̂nh2 =
(2b2 − 1) +

√
(2b2 − 1)2 + 4c2
2

.

Next, we investigate the question whether the number of group 2 agents on the platform is

smaller or bigger compared with the situation of social optimum. In case the platform serves not

the same group 2 agents as the social optimum, this implies a market failure. In the following,

when we mention the social or platform optimum, we always mean the number of group 2 agents

in the platform optimum or social optimum. The ranking of the social and platform optimum

depends on b2 and c2. We summarize the results in Table 1 and plot the corresponding regions

2The necessary condition for a profit maximum is always satisfied. Alternatively, the profit function is a
polynomial of third degree with a negative coefficient in front of the term of third degree. Hence, the optimal
number nh2 is given by the largest root, which is a local maximum.
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Table 1: The characterization of all regions and the optima

Region range of b2 and c2 social and platform optimum

A 0 < b2 <
1
2 and c2 > 0 social optimum>platform optimum>0

B 1
2 < b2 and − 3

16(2b2 − 1)2 < c2 social optimum>platform optimum>0

C − (2b2−1)2
4 < c2 < − 3

16(2b2 − 1)2 platform optimum>social optimum=0

D −1
3(2b2 − 1)2 ≤ c2 < − (2b2−1)2

4 and b2 >
1
2 Both are 0.

E c2 < −1
3(2b2 − 1)2 Both are 0.

F −1
3(2b2 − 1)2 < c2 ≤ −1

4(2b2 − 1)2 and 0 < b2 <
1
2 Both are 0.

G 0 < b2 <
1
2 and −1

4(2b2 − 1)2 < c2 < 0 Both are 0.

in Figure 1.

In the following, we sketch the calculations. Let N2 be the maximal number of group 2 agents

that could be served.

In region A and B, both optimal number of group 2 agents on the platform are positive and
ˆ̂nh2 > n̂h2 > 0.3 There are too few group 2 agents served on the platform compared with the social

optimum.

In region C, both optimal number of group 2 agents are positive, but rh(n̂h2) > rh(0) and

vh(ˆ̂nh2) < vh(0). Hence, the social optimum yields 0 number of group 2 agents and the platform

optimum has a positive number of group 2 agents. This leads to a “novel” phenomenon that too

much group 2 agents are served on the platform compared with the social optimum. By taking

the advantage of the positive within-group externalities among group 2 agents, the platform

could serve more group 2 agents in equilibrium.

In region D, the discriminant for ˆ̂nh2 is negative. No real root for (21) exists. Also, the

coefficient of the term of degree 2 for ∂vh

∂nh
2

is negative. So, ∂vh

∂nh
2

is always negative for any nh2 and

the social welfare is decreasing in the number of group 2 agents on the platform. The social

optimum has 0 group 2 agents. Meanwhile, we have n̂h2 > 0 and rh(n̂h2) < rh(0). Hence, both

the platform and social optimum are achieved at 0 number of group 2 agents. In region E, both

the discriminant for n̂h2 and ˆ̂nh2 are negative. Following the same reasoning, it can be shown that

the platform and social optimum are 0. In region F, the discriminant for ˆ̂nh2 is negative, so the

social optimum is 0. Moreover, n̂h2 is negative and the coefficient of the term of degree 3 in rh

is negative, hence rh is decreasing in the interval for nh2 ∈ [0, N2]. We illustrate this in Figure 2.

Therefore, the platform optimum is also achieved at 0. In region G, both n̂h2 and ˆ̂nh2 are negative.

3By simulation, we can show vh(ˆ̂nh2 ) > vh(0) and rh(n̂h2 ) > rh(0) for region A. And we can show the same for
region B by analysis. This is the only reason we differentiate regions A and B.
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Figure 2: rh(nh2) for region F

Hence, both rh and vh are decreasing in the interval [0, N2] and the platform and social optimum

are 0.

We summarize above discussions in the following proposition.

Proposition 4.1. In the competitive bottleneck model, taking quadratic within-group externalities

among group 2 agents into account,

1. for sufficiently large c2, e.g., regions A and B, platform serves too few group 2 agents

compared with the social optimum;

2. In region C, social optimum predicts 0 number of group 2 agents on the platform while the

platform is still serving a positive number of group 2 agents for its own benefits;

3. for sufficiently small c2, e.g., regions D, E, F and G, both platform and social optimum

predict 0 group 2 agents on the platform.

In Case 1, we get the same results as Armstrong (2006) that there are too few group 2 agents

served on the platform. Note that in this case, both the platform and social optimum are positive

numbers. For a large b2, we need a small c2 to sustain positive numbers of group 2 agents on the

platform. Putting it differently, for a sufficiently large positive within-group externalities among

group 2 agents, we need less group 1 agents on the platform to attract group 2 agents for a fixed

constant marginal cost to serve group 2 agents. In Case 2, by adding within-group externalities,

we get opposite result as Armstrong (2006), i.e., the platform still serves group 2 agents in the

optimum but social optimum predicts 0 group 2 agents. For sufficiently small c2, e.g., a higher

fixed constant marginal cost to serve each group 2 agent or relatively less group 1 agents on the

platform, both the platform and social optimum admit 0 group 2 agents.

15



References

Armstrong, M. (2006). Competition in two-sided markets. RAND Journal of Economics 37 (3),

668–691.

van Cayseele, P. and J. Reynaerts (2011). Complementary platforms. Review of Network Eco-

nomics 10 (1), 1–33.

Rochet, J.-C. and J. Tirole (2006). Two-sided markets: a progress report. RAND Journal of

Economics 37, 645–667.

16


