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ABSTRACT 

In a laboratory experiment, we compare two auction mechanisms that determine the sequence 

of service to queued customers. In the server-initiated auction, the server, when idle, sells the 

right to be served next to the highest bidding customer in the queue and distributes the 

proceeds among the remaining customers. We show that this mechanism has an efficient 

equilibrium. In the customer-initiated auction, new arrivals can sequentially trade places with 

queued customers. This mechanism does not have an efficient equilibrium. We use two novel 

experimental protocols to examine the behavioral properties of both auction mechanisms. We 

find that, on average, the server-initiated auction and the customer-initiated auction perform 

equally well in terms of efficiency gain. Moreover, participants indicate that they find the 

server-initiated auction a fairer mechanism than the customer-initiated auction. When voting 

between the two auctions, participants tended to favor the server-initiated auction. We also 

find evidence of endowment and sunk-cost effects, which partially explains deviations from 

standard theory predictions. 
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1. Introduction 

It is well-known that queues where customers are served on a first-come first-served basis are 

an inefficient way to ration scarce service time. The reason is that the queuing order does not 

guarantee that customers with high waiting costs are served before those with low waiting 

costs. Allowing customers to, literally, trade places could increase the queue’s efficiency. In 

this paper, we study the efficiency-enhancing properties of two auction mechanisms that 

facilitate customers’ trading places using a laboratory experiment. In practice, many settings 

may exist where such mechanisms could be implemented, ranging from the allocation of 

houses, spots in daycare centers, and access to sport facilities to the short-term trading of 

landing and take-off slots in airports, repair services after a natural disaster, and server 

allocation in Internet hosting centers. Also, in physical waiting lines such auction mechanisms 

could be implemented when customers make use of apps on their smartphones that allow 

them to trade positions using an online platform. 

Kleinrock (1967) shows that a queue’s efficiency may be restored if customers’ positions 

depend on how much they pay the server. In Kleinrock’s model it is assumed that upon arrival 

each customer pays a ‘bribe’ to the server. The server places the customer in the queue behind 

all customers who offered a higher bribe and in front of those who paid a smaller bribe. 

Assuming that in the steady state customers use the same bribing function that is strictly 

increasing in marginal waiting costs, Kleinrock shows that steady-state waiting times are 

minimized, which results in efficient queues.
1
 However, the assumption that customers use 

the same, strictly increasing bribing function may be a strong one in practice. It may be 

unrealistic if customers are heterogeneous in dimensions other than only marginal waiting 

costs (such as risk attitude or beliefs about others’ waiting costs). Moreover, results from 

economic experiments show that, in general, human bidding behavior is ‘noisy’ so that even 

in a setting that satisfies Kleinrock’s assumptions, inefficiencies are still likely to occur.
2
 

In this paper, we compare two auction mechanisms that could be used to determine the 

sequence of service to queued customers: the server-initiated auction and the customer-

initiated auction. In the server-initiated auction, the server, when idle, invites each queuing 

customer to submit a bid. The server will then serve the customer who has submitted the 

highest bid. This customer shares her bid equally among each of the remaining customers in 

the queue. In the customer-initiated auction, a new arrival can sequentially trade places with 

customers currently in the queue. The arriving customer offers money to the current 

customers in the queue, from the back to the front. The current customers indicate 

simultaneously the minimum amount they are willing to accept. A new arrival trades places 

with a customer in front of her if and only if the latter is willing to accept her offer. This 

                                                      
1
 Lui (1985), Glazer and Hassin (1986), and Afèche and Mendelson (2004) back up Kleinrock’s (1967) result by 

showing that an efficient queue order emerges in a Bayesian-Nash equilibrium in settings where customers incur 

waiting costs that are linear in waiting time. Hassin (1995) shows this can be achieved with exponential waiting 

cost functions. Kittsteiner and Moldovanu (2005) generalize the equilibrium analysis, allowing for convex and 

concave waiting cost functions. See Hassin and Haviv’s (2003) book for a discussion of some of this literature. 
2
 See Kagel (1995) for an overview of results from the experimental auctions literature. In most auction formats, 

inefficiencies arise because participants employ different bidding strategies, even after ample learning 

opportunities. 
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process stops as soon as the new arrival does not trade places with the customer in front of 

her. 

We focus on the two particular auction mechanisms for the following reasons. First of all, an 

efficient ordering is feasible for both mechanisms if customers act non-strategically.
3
 The 

server-initiated [customer-initiated] auction implements the selection sort [insertion sort] 

algorithm that ensures an efficient queuing order if customers’ bids perfectly reveal their 

marginal waiting costs. Moreover, both mechanisms can be straightforwardly used in a 

dynamic setting where customers arrive while the server is busy. In addition, both 

mechanisms are budget-balanced from the viewpoint of the customers, in contrast to 

Kleinrock’s (1967) ‘bribing mechanism.’ As both auction mechanisms have the potential to 

decrease total waiting costs, they increase the ‘pie’ compared to a setting where customers 

cannot trade places. Because all gains-from-trade remain in the customers’ hands, entry into 

the queue is not discouraged, in contrast to a mechanism where customers pay the server to 

obtain priority.
4
 Furthermore, as discussed below, the two auction mechanisms are predicted 

to differ in terms of attractive properties like efficiency and fairness. Finally, comparing the 

two mechanisms may reveal which mechanism is more attractive for marketing purposes in 

the sense that a firm offering relatively efficient or relatively fair queues may be more 

attractive for new potential consumers. 

We compare the behavioral properties of the two mechanisms in a laboratory experiment. In 

contrast to Kleinrock (1967) and most of the theoretical queuing literature, we analyze the 

mechanisms in a static environment. In this environment there is a fixed and commonly 

known number of customers waiting in line to be served by the server. The server only opens 

as soon as all customers have arrived in the queue.
5
 We have chosen this setup for two 

reasons. First, it is hard, if not impossible, to find analytical results for dynamic processes in a 

transient state, so that our experimental study would become a fishing expedition without 

clear testable hypotheses. Second, it is practically impossible to invite so many participants in 

a laboratory setting to implement a dynamic process that evolves reasonably close to a steady 

state. 

We evaluate the two auction mechanisms along two dimensions: efficiency and perceived 

fairness. To develop testable hypotheses regarding efficiency, we derive the theoretical 

properties of the mechanisms in an independent private waiting costs model. In our model, 

customers face constant marginal waiting costs per unit of time. A customer’s initial position 

is independent of her marginal waiting costs. We show that the server-initiated auction has an 

efficient (Bayesian-Nash) equilibrium, in contrast to the customer-initiated auction. The latter 

finding is not surprising in light of Myerson and Satterthwaite’s (1983) impossibility result 

                                                      
3
 A priority queue is an example of a mechanism that cannot guarantee an efficient ordering. While opening a 

priority queue may improve the efficiency compared to the situation where only the original queue exists, 

inefficiencies still remain because the two queues may still be ordered inefficiently. 
4
 Yang et al. (2015) study mechanisms where queued customers compensate an intermediary for the opportunity 

to trade positions. 
5
 As a consequence, our setting translates into a scheduling problem. Mitra (2001), Wellman et al. (2001), Kayı 

and Ramaekers (2010), and Gershkov and Schweinzer (2010) also study auctions mechanisms used for job 

scheduling. 
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which shows that in a large range of settings efficient trade between an incompletely informed 

buyer and seller is not feasible. In our setting, customers at the front of the initial queue ‘own’ 

their position so that trade with late arrivals will not occur as often as efficiency requires. In 

contrast, users may perceive the customer-initiated auction as a fairer mechanism than the 

server-initiated auction because only the former grants them ownership rights over their initial 

position. 

To examine the behavioral properties of the two auction mechanisms, we use two novel 

experimental protocols. Our first protocol implements induced waiting costs. Before bidding 

in the auctions, participants are privately informed of their own marginal waiting costs. 

Depending on the number of turns participants have to wait before being served, we subtract 

the resulting waiting costs from their starting capital. The efficiency gain resulting from the 

auctions can be readily measured because the induced waiting costs are known to the 

experimenter. The second protocol involves actual waiting. We used this protocol to 

determine the order by which participants could leave the laboratory. Participants vote for 

either of the two auction mechanisms and a majority rule determines which auction is actually 

implemented. In addition, participants were asked in a questionnaire to rate the auctions in 

terms of fairness on a seven-point Likert scale. 

Besides studying the outcomes of the auction mechanisms, we also check whether 

psychological biases like endowment and sunk-cost effects have an impact on bidding 

behavior. We do so by varying the arrival process as part of our experimental design. On the 

basis of the literature, we conjecture that the endowment effect and the sunk-cost effect can 

simultaneously affect behavior in a setting where customers can trade places in a queue. The 

endowment effect occurs when the sheer possession of an object increases a person’s value 

for it. Indeed, significant endowment effects (measured by a willingness-to-

accept/willingness-to-pay gap) are observed in many other contexts.
6
 Anecdotal evidence 

suggests that people standing in line feel entitled to their queue position, which in turn could 

result in an endowment effect.
7
 Specifically, if customers feel that they own their current 

position in the queue, they may be willing to bid a higher amount when their position is up for 

auction than standard theory predicts.  

Someone falls prey to the sunk-cost bias if her decision depends on unrecoverable costs that 

are economically irrelevant for the decision at stake.
8
 Time spent waiting in a queue is such a 

sunk cost. Standard economic theory assumes that waiting costs do not affect a customer’s 

                                                      
6
 Knetsch (1989) and Kahneman et al. (1990) provide early examples. 

7
 Mann (1969) observes queue jumping being discouraged in waiting lines for tickets to watch the “world series” 

of Australian rules football in Melbourne, Australia. Helweg-Larsen and LoMonaco (2008) find similar 

responses in a survey among fans of the Irish rock band U2 queuing for concert tickets. Milgram et al. (1986) let 

confederates impose themselves into queues in train stations and other public locations in New York and report 

customers’ defensive reactions varying from expressing verbal objections to physical actions against the 

intruders. Oberholzer-Gee (2006) finds many customers willing to let someone jump the queue when offered a 

monetary compensation. However, when approached for a second time, all “individuals rejected my request, 

most of them appeared upset, some angry, a few outright hostile, suggesting that it was probably not safe to 

continue the experiment.” 
8
 See the seminal paper by Arkes and Blumer (1985). Phillips et al. (1991), Offerman and Potters (2006), 

Friedman et al. (2007), and Baliga and Ely (2011) present further experimental evidence on the sunk-cost bias. 
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willingness-to-pay for queue positions. In the case of a sunk-cost effect, a customer’s 

valuation of queue position depends on how much time she has spent waiting in the queue. 

The existence of endowment and sunk-cost effects in a queuing setting implies that auctions 

that allow trading places cannot guarantee that the final queuing order is efficient. 

Our main results are the following. First of all, the two considered auction mechanisms do not 

differ in a statistical meaningful way with respect to the average efficiency gain, irrespective 

of the arrival protocol. This is surprising in light of our theoretical findings that the server-

initiated auction has an efficient equilibrium while the customer-initiated auction does not. In 

a deeper examination of our data, we do observe differences between the auctions in terms of 

efficiency gains: Efficiency gains are significantly greater [lower] in the server-initiated 

auction than in the customer-initiated auction if the initial queuing order is relatively 

inefficient [efficient]. Neither auction comes close to always reaching an efficient outcome. 

For the server-initiated auction, this result is rooted in noisy individual bidding behavior that 

is partly explained by a sunk-cost effect but not by a noticeable endowment effect. Noisy 

behavior in the server-initiated auction explains why efficiency gains are low and often even 

negative if the initial queuing order is already relatively efficient. In the customer-initiated 

auction, the queuing order remains relatively inefficient because customers bid more 

aggressively for their current position than arriving bidders do. In addition, we find evidence 

of both an endowment effect and a sunk-cost effect in the customer-initiated auction, both 

contributing to the auction mechanism’s modest efficiency gain. On the positive side, the 

observed bidding behavior implies that it is unlikely that a customer is able to trade places if 

the queue is already in an efficient order. This explains why the customer-initiated auction 

outperforms the server-initiated auction if the initial queue’s order is relatively efficient. 

Finally, when given the choice between the two auction mechanisms, participants tended to 

favor the server-initiated auction. This may be partly explained by participants evaluating the 

server-initiated auction as fairer than the customer-initiated auction. 

Our paper speaks to several literatures. First of all, it contributes to the behavioral operations 

literature.
9
 Several papers within this literature examine queuing processes in the lab. 

Rapoport et al. (2004), Seale et al. (2005), and Stein et al. (2007) study participants’ decisions 

as to when to enter a queue, if at all, to test whether participants’ arrival times are consistent 

with Nash equilibrium predictions. Kremer and Debo (2012) examine queue herding in a 

setting where participants can decide whether or not to enter a queue to obtain a good of an 

uncertain quality. As far as we know, we are the first to experimentally study priority auctions 

in queuing systems. Our paper also contributes to the behavioral economics literature by 

examining the endowment effect and the sunk-cost effect in a setting involving waiting lines. 

We find some evidence of an endowment effect and strong and consistent sunk-cost effects. 

Finally, our paper adds to the experimental industrial organization literature in that it studies 

the behavioral properties of two specific auction mechanisms.
10

 

                                                      
9
 See Bendoly et al. (2010) for a recent overview of this literature. 

10
 See, e.g., Katok and Roth (2004), Chen-Ritzo et al. (2005), and Engelbrecht-Wiggans et al. (2007). Kagel 

(1995) and Kagel and Levin (forthcoming) provide surveys of the experimental auctions literature. 
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The structure of our paper is as follows. In section 2 we present our theoretical model and 

derive the equilibrium properties of the two mechanisms. Section 3 includes our experimental 

design and our hypotheses. We discuss our experimental findings in section 4. Section 5 

concludes the paper. 

2. Theory 

Consider a queuing system where 𝑁 ≥ 2 risk-neutral customers, labeled 𝑖 = 1, … , 𝑁, arrive 

sequentially in a queue to get served by a server. Each customer is privately informed of her 

waiting costs per unit of time, which we will denote by 𝑐𝑖. We assume that the 𝑐𝑖’s are 

independently drawn from a differentiable distribution function 𝐹 on an interval [𝑐, 𝑐], 

𝑐 > 𝑐 ≥ 0, with 𝐹′(𝑐) > 0 for all 𝑐 ∈ [𝑐, 𝑐]. The draws are independent of any of the other 

stochastic processes including the process leading to the initial queue order. Before being 

served, customers interact in an auction mechanism that allows them to trade places. 

Interacting in the auctions is assumed not to cost any (additional) time for the customers. 

Customer 𝑖’s utility from interacting in the auction is given by 

𝑈𝑖 = ∑(𝑃𝑗𝑖 − 𝑃𝑖𝑗)

𝑁

𝑗=1
𝑗≠𝑖

− 𝑐𝑖𝑤𝑖 

where 𝑃𝑙𝑚 denote payments from customer 𝑙 to customer 𝑚 and 𝑤𝑖 customer 𝑖’s total waiting 

time (i.e., time spent in the queue). We assume customers’ service time to be equal to one 

time unit. Thus, if a customer is the 𝑘th to be served, she waits 𝑘 − 1 time units in the queue, 

𝑘 = 1, … , 𝑁. We assume that all customers arrive before the server opens. A customer leaves 

the system after being served. 

We consider two auction mechanisms, the ‘server-initiated auction’ and the ‘customer-

initiated auction.’ While our environment is essentially static (in the sense that all customers 

arrive before the server opens), we describe both auctions in such a way that they could be 

straightforwardly applied in a dynamic setting (where customers arrive while the server is 

active). 

Server-initiated auction. When idle, the server initiates an auction if two or more customers 

are in the queue. In this auction, each customer in the queue independently submits a bid. The 

server starts serving the customer who has submitted the highest bid. In the case of a tie, a fair 

lottery determines which customer gets served.
11

 This customer pays each of the 𝑟 remaining 

customers a fraction 1/𝑟 of her bid. The winning bids are revealed to all customers. The 

losing bids are not revealed. Table 1 illustrates the rules of the server-initiated auction on the 

basis of a numerical example.  

 

                                                      
11 In equilibrium, a tie is a zero-probability event so that all results hold true under other tie-breaking 
rules.  
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Table 1 Numerical example for the rules of the server-initiated auction 

 First auction  Second auction  

Initial 

queue 

order 

Bids Transfers Queue 

order 

Bids Transfers Final  

queue 

order 

A 18 +82 C   C 

B 50 +82 A 15 +42 B 

C 164 -164 B 42 -42 A 
Notes. Three customers are in the queue when the server becomes idle. In the first auction, all three place a 

bid. In this case customer C submits the highest bid (164) and moves to position 1. His bid is distributed 

equally among the other two bidders. In the second auction, customer B places the highest bid (42) and 

moves to position 2. Customer B pays her bid to customer A.  

 

Customer-initiated auction. Suppose there are 𝑛 ≥ 1 customers in the queue when a new 

customer arrives. The arriving customer is located at the end of the queue. She then trades 

places with the existing customers on the basis of the following algorithm:  

1. 𝑖 ≡ 𝑛. 

2. Both the arriving customer and the customer directly in front of her independently 

submit a bid, which is denoted by 𝑏𝑛+1
𝑖  and 𝑏𝑖 respectively. 

3. If the customer in the queue in front of the arriving customer has submitted a bid 

𝑏𝑖 > 𝑏𝑛+1
𝑖 , the arriving customer remains in her current position and the process ends. 

Otherwise, go to step 4. (The bids are not revealed to any of the other customers.) 

4. The arriving customer pays 𝑏𝑛+1
𝑖  to the customer in front of her. If 𝑖 = 1, she stops. 

Otherwise, 𝑖 ← 𝑖 − 1. Return to step 2. 

Table 2 contains a numerical example illustrating the rules of the customer-initiated auction.  

Table 2 Numerical example for the rules of the customer-initiated auction 

 First auction  Second auction  

Initial 

queue 

order 

Bids Transfers Queue 

order 

Bids Transfers Final  

queue 

order 

A 76 +158 B   B 

B 158 -158 A 100 0 A 

   C 50 0 C 
Notes. Three customers arrive in the queue. The first auction is initiated when customer B enters the queue. 

Customers A and B both submit a bid. As customer B places the higher bid, she swaps positions with 

customer A in return for a payment equal to customer B’s bid. A second auction is initiated when customer 

C arrives. Both customer A, the second in line, and customer C submit a bid. Because the bid of the 

arriving customer is lower than the bid of the customer in front, there is no swap and, thus, there is no 

monetary transfer between the two customers. 

 

As soon as the server completes serving one customer, it starts serving another, either the 

highest bidder (in the server-initiated auction) or the one at the front of the queue (in the 

customer-initiated auction). Note that both auctions are sequential games with incomplete 

information. We solve the games using the perfect Bayesian Nash equilibrium (henceforth: 

equilibrium). We obtain the following results. First of all, the server-initiated auction has a 
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symmetric equilibrium. Let 𝐵𝑛(𝑐) denote the bid for a customer with waiting costs 𝑐 in the 

case that 𝑛 other bidders are in the queue.
12

 

PROPOSITION 1. Let 𝑐𝑛
(1)

 represent the highest-order statistic among 𝑛 independent draws 

from 𝐹, 𝑛 = 2,3, … , 𝑁. The following iteratively defined set of bidding functions constitutes 

an equilibrium of the server-initiated auction: 

𝐵1(𝑐) =
1

2
𝐸 {𝑐2

(1)
|𝑐2

(1)
≤ 𝑐} 

𝐵𝑛(𝑐) =
𝑛

𝑛 + 1
𝐸 {𝐵𝑛−1(𝑐𝑛+1

(1)
) + 𝑐𝑛+1

(1)
| 𝑐𝑛+1

(1)
≤ 𝑐} , 𝑛 = 2,3, … , 𝑁 − 1. 

In our experiment, we let the customers draw waiting costs from a uniform distribution. The 

following proposition establishes the resulting equilibrium. 

COROLLARY 1. Suppose 𝐹 = 𝑈[0, 𝑐] where 𝑐 > 0. Then 

𝐵𝑛(𝑐) =
𝑛𝑐

3
, 𝑛 = 1,2, … , 𝑁 − 1 

constitutes an equilibrium of the server-initiated auction. 

Observe that in equilibrium all customers in the queue use the same strictly increasing bidding 

function for each position the server auctions. As a consequence, the highest bidder is always 

the customer with the highest waiting costs so that the bidders are served in order of waiting 

costs. The following result is then immediate. 

COROLLARY 2. The server-initiated auction has an efficient equilibrium. 

In contrast, for the customer-initiated auction, no efficient equilibrium exists. This result 

follows immediately from the analysis by Gershkov and Schweinzer (2010) who show that in 

our setting no efficient individually rational and budget-balanced mechanism exists if 

individual rationality is with respect to the initial first-come, first-served order. 

PROPOSITION 2. The customer-initiated auction does not have an efficient equilibrium. 

Proof: Follows directly from Proposition 2 in Gershkov and Schweinzer (2010). 

Proposition 3 illustrates this result by comparing equilibrium bids for the first position in the 

queue. It shows that a customer in position 1 at any point in the auction process bids more 

aggressively than the customer currently in position 2. As a consequence, for a non-zero mass 

of cost realizations, the arriving customer bids less than the first in line even if the arriving 

customer has higher marginal waiting costs. So, the two do not trade places, resulting in an 

inefficient queue order. 

                                                      
12

 Proofs of propositions 1 and 3 and corollary 2 are relegated to Appendix A. 
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PROPOSITION 3. In any equilibrium of the customer-initiated auction, a customer in position 2 

bids strictly less than the customer in position 1 conditional on the two having the same 

waiting costs 𝑐 > 𝑐. 

The finding that the customer-initiated auction does not guarantee an efficient queue order is 

not surprising in light of the Myerson-Satterthwaite (1983) impossibility theorem. The 

theorem states that no efficient trade is feasible between a seller and a buyer if both are 

incompletely informed about each other’s value for the good owned by the seller and the 

range of possible buyer and seller valuations overlap. The impossibility result applies to the 

customer-initiated auction because the arriving customer is a potential buyer of the position in 

front of her and the range of values for two customers overlap.  

3. Experimental design and hypotheses 

3.1. Experimental design 

We ran the computerized laboratory experiments at the Center for Experimental Economics 

and political Decision making (CREED) of the University of Amsterdam.
13

 Each session 

consisted of four parts. In all parts, participants interacted within groups of the same five 

participants (no re-matching). In the first part, participants interacted five times in either the 

server-initiated auction or the customer-initiated auction. In the second part, they interacted 

five times in the other auction mechanism. In part 3, the participants were asked to vote 

between the auction mechanisms played in the first two parts. Majority voting determined 

which of the two auction mechanisms was played in part 4, where we took the votes from all 

participants in a session together. In part 4, the participants interacted in the chosen auction 

mechanism where they could bid any amount their remaining budget would allow them to. 

Table 3 Experimental design and number of participants 

  Arrival time 

  𝑡 = 0 
Simultaneous 

𝑡~𝑈[−4,0] 
Sequential 

Order of auction 

mechanisms 

Server – Customer  20 (4) 20 (4) 

Customer – Server  30 (6) 25 (5) 
Note. Number of groups in parentheses. 

 

We exploit a 2x2 between-subjects design where the treatments vary on two dimensions: the 

order of the auction mechanisms and the arrival process (see Table 3). In all treatments, the 

server initiates service at time 0 and service time is fixed at 1. Before entering the queue, 

participants drew their waiting costs per unit of time from the uniform distribution on the 

integer values from 0 to 100. All draws throughout the experiment were independent of each 

other and of any of the other stochastic processes. For the sake of comparison between the 

treatments, we kept the waiting cost draws constant across participant groups. We used the 

following two arrival processes. The first implements simultaneous arrivals: all customers 

arrive at time 0 and are put in a queue in random order. The second arrival process is a 

modification of Stein et al.’s (2007) sequential arrival protocol. All participants draw an 
                                                      
13

 Appendix B contains a translation of the experimental instructions. 



10 

 

arrival time according to the uniform distribution on the time interval [−4,0]. Upon arrival, 

each customer is located at the end of the queue and incurs waiting costs equal to the time she 

has to wait until the server initiates service multiplied by her waiting costs per unit of time. 

At the end of the experiment, we paid the participants their experimental earnings in the order 

determined in part 4. We left five minutes between paying each participant in the same 

participant group. As a consequence, the last student left the experiment 20 minutes after the 

first. By doing so, we induced actual waiting costs for the participants. Before we paid the 

participants, we asked them to fill out a questionnaire that included questions about 

background characteristics such as age, gender, and field of studies. In addition, the 

participants had to indicate on a seven-point Likert scale to what extent they considered the 

two auction mechanisms to be fair. Only when all participants in a session had finished the 

questionnaires did we start paying them.  

At the start of the experiment, participants obtained a starting capital equal to 4,000 [3,000] 

‘francs’ in the case of the sequential [simultaneous] arrival process. In all treatments, the 

exchange rate was 100 francs = €1. Earnings varied between €5.60 and €44.20, with an 

average of €20.97.
14

 We could conclude all sessions within two hours, including the 20 

minutes the students at the end of the queue in part 4 had to wait. 

3.2. Hypotheses 

Our experimental design allows us to test several hypotheses. Our main theoretical finding is 

that the server-initiated auction has an efficient equilibrium, in contrast to the customer-

initiated auction. This result implies the following testable hypothesis.  

HYPOTHESIS 1. The server-initiated auction results in a more efficient outcome than the 

customer-initiated auction. 

Hypothesis 1 may be rejected if bidding behavior is ‘noisy’ in the sense that customers do not 

bid according to the same, strictly increasing bidding function. Consider the extreme case that 

the initial queue is already in the efficient order. Adding independent noise to the equilibrium 

bidding functions of the server-initiated auction implies that the actual service order may be 

inefficient. For the customer-initiated auction, the effect of adding independent noise may be 

more innocent than for the server-initiated auction when an arriving customer bids less 

aggressively than customers in front of her so that inefficient trade may be less likely to occur. 

As a consequence, noisy bidding behavior may imply that for relatively efficient initial queue 

orders, the customer-initiated auction is at least as efficient as the server-initiated auction so 

that hypothesis 1 is rejected. 

In addition, as discussed in the introduction, the endowment effect and the sunk-cost effect 

may play a role in auctions that reallocate queuing positions. If an endowment effect is 

present, the alternative hypothesis is that a customer’s bid depends on her initial position in 

the queue. In the case of a sunk-cost effect, bids may depend on the arrival process because 

                                                      
14

 Participants earned on average €20.93 in the treatments with the simultaneous arrival process and €21.02 in 

the treatments with the sequential arrival process. There is no significant difference (independent samples t-test, 

𝑡(93) = −0.07, 𝑝 = 0.94). 
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customers sink more costs before they get served in the case of a sequential arrival process 

than under a simultaneous arrival process. In contrast, the theory is based on the assumption 

that bidding behavior does not depend on either the customers’ initial positions or the costs 

customers sink before the server opens, which leads to the following hypotheses. 

HYPOTHESIS 2. A customer’s bids in the server-initiated auction do not depend on her initial 

position in the queue. 

HYPOTHESIS 3. A customer’s bids in the server-initiated auction do not depend on the waiting 

costs she sinks before the server opens. 

The endowment effect might emerge differently in the customer-initiated auction. A salient 

difference between the server-initiated auction and customer-initiated auction is the ability to 

exercise position rights. Although customers in the server-initiated auction are assigned a 

rivalrous queue position, it is not possible to maintain the position because customers have no 

ability to defend it. On the contrary, customers in the customer-initiated auctions are assigned 

positions that can be defended. Customers can defend their position by submitting a very high 

bid if their position is contested without having to pay this bid. Thus, positions in the 

customer-initiated auction in terms of possession are ‘stickier’ than in the server-initiated 

auction. Reb and Connolly (2007) show that the endowment effect is more pronounced in 

cases of actual possession than in cases of perceived ownership. Therefore, it is more likely to 

find an endowment effect in the customer-initiated auction than in the server-initiated auction 

even though standard economic theory predicts that neither will appear. 

The presence of position rights might also affect how sunk-costs affect bidding behavior. 

Baliga and Ely (2011) note that the sunk-cost effect can result in a willingness-to-pay that is 

higher or lower than standard theory predicts. They argue that the sunk-cost effect is rational 

if decision-makers are assumed to have limited memory. The effect is either negative (the pro-

rata effect) or positive (the Concorde effect) depending on how decision-makers use sunk 

costs as a signal about the future value of the ‘project.’ In the customer-initiated auction 

customers might perceive time spent in the queue as the price of obtaining position rights, 

while in the server-initiated auction customers cannot obtain these rights. Following Baliga 

and Ely (2011), time spent in the queue might lead to the Concorde effect in the customer-

initiated auction and in the server-initiated auction it might lead to pro-rate effect. Both effects 

would be deviations from standard economic theory.  

HYPOTHESIS 4. A customer’s bids in the customer-initiated auction, conditional on her current 

position and the history of play, do not depend on her initial position. 

HYPOTHESIS 5. A customer’s bids in the customer-initiated auction, conditional on her current 

position and the history of play, do not depend on the waiting costs she sinks before the server 

opens. 

Our final hypothesis concerns customers’ choice between the two auctions. In part 3 of the 

experiment we asked the participants to vote for one of the two auctions before they knew 

their actual position in the queue. Because the theory predicts that the server-initiated auction 
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outperforms the customer-initiated auction in terms of efficiency gain, and because the 

efficiency gains are shared among the customers, we expect participants to prefer the server-

initiated auction. 

HYPOTHESIS 6. The participants will vote for the server-initiated auction rather than the 

customer-initiated auction. 

4. Results 

In this section, we present our experimental observations. We start in section 4.1 by 

discussing the realized efficiency gains in the two auctions. In sections 4.2 and 4.3, we zoom 

in on individual bidding behavior in the server-initiated auction and the customer-initiated 

auction respectively. Section 4.4 contains a discussion of decisions in parts 3 and 4 that 

involved actual waiting.
15

  

4.1. Efficiency gains 

Firstly, we provide an overview of the two auctions’ ability to improve the queue’s efficiency. 

Customers enhance the queue’s efficiency if a customer trades places with a customer behind 

her who has higher waiting costs. So, a natural measure of the queue’s efficiency gain is the 

decrease in the sum of the customers’ waiting costs after customers have traded places. More 

precisely, we define an auction’s realized efficiency gain ∆𝐸 as 

∆𝐸 ≡
𝑊𝑠𝑡𝑎𝑟𝑡 − 𝑊𝑒𝑛𝑑

𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛
 

where 𝑊𝑠𝑡𝑎𝑟𝑡 [𝑊𝑒𝑛𝑑] represents the sum of the customers’ waiting costs when served 

according to the initial [final] queue order. For the sake of comparison between instances, we 

normalize an auction’s efficiency gain by defining it as a fraction of the range of feasible 

efficiency levels, 𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛, where 𝑊𝑚𝑎𝑥 [𝑊𝑚𝑖𝑛] stands for the highest [lowest] possible 

total waiting costs, i.e., the sum of the customers’ waiting costs in the case that customers are 

served in increasing [decreasing] order of waiting costs.
16

 Note that an auction’s efficiency 

gain can be negative if the realized waiting costs are higher than the waiting costs that would 

have emerged if the customers had not traded places.  

Table 4 shows that both auction mechanisms enhance queue efficiency on average. There 

were significantly more queues with a positive efficiency gain than a zero or negative 

efficiency gain in both auction mechanisms (server-initiated auction: Binomial, 62% positive, 

p < 0.023; customer-initiated auction: Binomial, 66% positive, p < 0.002). A single sample t-

test shows that the average realized efficiency gain is significantly greater than zero for both 

auctions (server-initiated auction: 𝑡(94) = 7.70, 𝑝 < 0.001; customer-initiated auction: 

𝑡(94) = 7.07, 𝑝 < 0.001). Also at the group level, the efficiency gain is significantly greater 

                                                      
15

 We find that bids in the first part are on average higher than in the second part. However, this effect is not 

dependent on the order of the auction mechanisms. Therefore, in our analysis we pool all data in parts 1 and 2. 

Our results are not qualitatively affected if the order of the auction mechanisms is controlled for. 
16

 See, e.g., Goeree and Offerman (2002) for a similar measure of realized efficiency in auctions. 
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than zero (server-initiated auction: 𝑡(18) = 14.72, 𝑝 < 0.001; customer-initiated auction: 

𝑡(18) = 16.19, 𝑝 < 0.001). 

Table 4 Average efficiency gains 

Auction mechanism All 

Low initial 

efficiency 

(< 0.50) 

High initial 

efficiency 

(≥ 0.50) 

Server-initiated  0.33 (0.05)  0.68 (0.03)   -0.18 (.03)  

Customer-initiated 0.28 (0.04)  0.50 (0.03)  -0.06 (.02)  

Difference 0.05 (0.06)  0.17 (0.04) 
*** 

-0.12 (.03) 
*** 

N (Queues) 190  114  76  
Notes. Numbers represent the average efficiency gain (standard errors are in parentheses).  
***

/
**

/
*
 Significant at the 1%/5%/10% level

 
(two-sided Mann-Whitney U test) 

 

We only find weak support for hypothesis 1. Table 4 shows that on average, the efficiency 

gain in server-initiated auction is equal to 0.33 while the average efficiency gain in the 

customer-initiated auction equals 0.28. So, queues using server-initiated auctions experience 

higher efficiency gains than queues using customer-initiated auctions. However, the 

difference is not statistically significant (𝑝 = 0.24, one-sided Mann-Whitney U test). 

Further analysis shows that the initial queue efficiency determines to what extent the 

mechanisms are able to enhance efficiency. In the last two columns of Table 4 and in Figure 

1, we distinguish between queues with low and high initial efficiency, where initial efficiency 

is defined as 

𝐸𝑠𝑡𝑎𝑟𝑡 ≡
𝑊𝑠𝑡𝑎𝑟𝑡 − 𝑊𝑚𝑖𝑛

𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛
. 

We find that server-initiated auctions are significantly more effective in increasing queue 

efficiency than customer-initiated auctions if the initial efficiency is low. In contrast, if the 

initial efficiency is high, queues using server-initiated auctions result on average in a 

significantly lower efficiency gain than queues using customer-initiated auctions. The 

regressions in Table 5 confirm that efficiency gains depend on the type of auction and initial 

efficiency. Customer-initiated auctions seem to be more rigid than server-initiated auctions, 

which is advantageous if the initial efficiency is high but impedes efficiency if this is low. 

Our finding has the following intuitive explanation. Queues with a low initial efficiency can 

potentially gain more in terms of efficiency than queues with a high initial efficiency. Also, 

queues with a high initial efficiency risk decreasing in efficiency in the case of inefficient 

swaps. Both efficiency gains and efficiency losses are more likely to occur in the server-

initiated auction than in the customer-initiated auction. The reason is that in contrast to the 

server-initiated auction, the customer-initiated auction protects position rights in the sense that 

the current position holder can retain her own position by submitting a high bid. In queues 

using the customer-initiated auction changes are expected to be less pronounced because 

incumbents are likely to block inefficient swaps. 
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Figure 1 Efficiency gains depend on the auction and the initial efficiency 

 
Note. Initial efficiency is low [high] if it is less than [at least] 0.50. 

  

 

Table 5  Estimation of efficiency gains 

Variable Coefficient (S.E.) 

Constant 0.50 (0.03) 
*** 

Initial efficiency (1 = High, 0 = Low) -0.56 (0.04) 
*** 

Auction mechanism  

(1 = Server-initiated, 0 = Customer-initiated) 

0.17 (0.05) 
*** 

Initial efficiency × Auction mechanism -0.30 (0.05) 
*** 

F 206.00 
*** 

R
2
 0.77 

 

N 190 
 

Notes. OLS regressions with standard errors clustered at the group level. Initial efficiency is low [high] if it is 

less than [at least] 0.50. 
***

/
**

/
*
 Significant at the 1%/5%/10% level 

 

4.2. Individual bidding behavior in the server-initiated auction 

In this and the next sections, we take a deeper look into individual bidding behavior in the two 

auction mechanisms to answer the question of why the two auction mechanisms do not differ 

significantly in terms of average efficiency gain. In this section we focus on the server-

initiated auction. Standard economic theory predicts that the auction outcome is efficient 

because for each position customers bid according to the same bidding functions that are 

strictly increasing in waiting costs. Table 6 presents the results of five regressions on the bids 

submitted in the server-initiated auction. The estimated coefficients of the interaction term 
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between waiting costs and the number of remaining other bidders are all significantly greater 

than zero and estimates range from 0.30 to 0.33, which is very close to the predicted value of 

1/3 (see Corollary 1). However, the predicted intercept is zero while the estimated intercepts 

are all significantly greater than zero, which implies systematic overbidding. More 

importantly, bidding is very noisy in the sense that the 𝑅2 is only about 0.25. Indeed, 

participants are not even close to using the same bidding function, which explains why the 

auctions do not always render efficient queues. 

Table 6  Estimations of bids in the server-initiated auction 

 
Whole sample 

 Sequential arrival 

process 

Model I II III  IV V 

Variable 

Coefficient 

(S.E.) 

Coefficient 

(S.E.) 

Coefficient 

(S.E.) 

 Coefficient 

(S.E.) 

Coefficient 

(S.E.) 

Constant 24.69  

(3.03) 

*** 
25.72 

(3.21)  

*** 
24.73 

(3.05) 

*** 
 26.44 

(3.93)
 

*** 
34.94 

(7.85)
 

*** 

Waiting costs ×  

Number of bidders left 

0.30  

(0.01) 

*** 
0.30 

(0.03) 

*** 
0.26 

(0.03) 

*** 
 0.33 

(0.04)
 

*** 
0.33 

(0.04)
 

*** 

Bid on initial position  
 

-5.35 

(0.03) 

** 
 

     ** 

Arrival process ×  

Number of bidders left 

× Waiting costs 

 
 

 
 

0.08 

(0.05) 

*      

Arrival time  
 

 
 

 
    

4.46 

(1.85)
 

** 

F 439.91 
*** 

221.1

6 

*** 
236.76  

*** 
 238.5

9
 

*** 
123.2

1
 

*** 

R
2
 0.25 

 
0.25 

 
0.26 

 
 0.28

  
0.28

  

N 1330  1330  1330 
 

 630
  

630
  

Notes. OLS regressions with standard errors clustered at the group level. Arrival process is a dummy which 

equals 1 if and only if the observation concerns a sequential arrival process. 
***

/
**

/
*
 Significant at the 1%/5%/10% level 

 

To what extent could an endowment effect explain the noise observed in participants’ bidding 

behavior? According to hypothesis 2, a customer’s initial position in the queue should not 

affect bidding behavior. The hypothesis implies that bids do not correlate with a customer’s 

initial position in the queue. However, Model II in Table 6 shows that the initial position 

significantly affects bidding behavior (𝑝 = 0.03). Specifically, bids tend be lower if the bid is 

placed on the initial position of the customer, which is quite the opposite of the endowment 

effect. Thus, this finding allows us to reject hypothesis 2, albeit not in favor of an endowment 

effect. 

To identify potential sunk-cost effects, we test whether the arrival process affects bidding 

behavior. According to hypothesis 3, it should not because arrival costs are sunk at the time of 

bidding. Figure 2 suggests that we can reject this hypothesis as bidders submitted significantly 

higher bids on any position when arriving before the server opens than when all arrived at 

time 0. For example, in the case of a sequential arrival process, the average bid for the first 
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position is significantly higher (+29.7%) than with a simultaneous arrival process (𝑝 < 0.001, 

two-tailed Mann-Whitney U test). Moreover, bids are significantly more likely to be higher 

than the equilibrium bid when customers arrived sequentially rather than simultaneously 

(sequential: 68.4%; simultaneous: 58.6%; Fisher’s exact, 𝑝 < 0.001).
17

 Figure 2 indicates that 

the observed sunk-cost effect is relevant for any of the auctioned positions. The regression 

analysis in Table 6, Model III, confirms that the arrival process has a significant effect on the 

steepness of the used bidding curves.  

Figure 2 Average bids in the server-initiated auction by position and arrival process 

 
Notes. Numbers represent average bid for each queue position in server-initiated auctions.  

 

To have a further look into the sunk-cost effect, we restrict the sample to only bids in the 

treatment with a sequential arrival process in Table 6. Because arrival time is exogenously 

determined, it is possible to analyze how the magnitude of sunk costs affects bidding 

behavior. A sunk-cost effect emerges if participants’ bids depend on their arrival time. The 

estimated coefficient of arrival time is significantly positive (see Table 6, Model V), i.e., the 

more waiting costs a customer sinks, the less aggressively she bids.
18

 This finding conforms 

to Baliga and Ely’s (2011) pro-rate effect. However, explained variance as expressed by the 

R
2
 hardly increases compared to Model IV which does not correct for arrival time. 

                                                      
17

 In the last part, all participants ‘arrived’ at the same time in the queue, even if in the previous parts a sequential 

arrival process was used. Therefore, the last part functions as a manipulation check because the average bid in 

this part is expected not to differ between treatments. Indeed, the average bid is not significantly higher in 

treatments with a sequential arrival process in the previous parts (independent samples t-test, 𝑡(264) = −0.27, 

𝑝 = 0.79). Thus, higher bids in treatments with a sequential arrival process can only be attributed to the presence 

of arrival costs. 
18

 Recall that arrival time is a negative number in the interval [−4,0]. The absolute value of arrival time 

measures how long a customer has to wait before the server opens. 
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4.3. Individual bidding behavior in the customer-initiated auction 

Similar to bidding behavior in the server-initiated auction, in the customer-initiated auction, 

the bids are significantly correlated with marginal waiting costs (see Table 7). We distinguish 

between attacking customers and defending customers. An attacking customer is a bidder who 

initially arrived at the back of the queue and bids to be able to swap with the customer in front 

of her, whom we refer to as the defending customer. Inefficiencies emerge in the customer-

initiated auction for two reasons. First, we find that attacking customers and defending 

customers adhere to different bidding strategies. Specifically, defending customers tend to bid 

consistently higher than attacking customers despite bidding according to a less steep bidding 

function. Second, only defending customers seem susceptible to a sunk-cost bias, which 

results in significantly higher bids if customers arrived relatively early. No such effect was 

found for attacking customers. These findings suggest that the sunk-cost effect is more salient 

in cases when customers can protect the ownership of their position.  

Table 7  Regressions explaining bids in the customer-initiated auction 

 Defending Attacking 

 Whole sample Sequential Whole sample Sequential 

Model I II III IV 

Variable Coefficient (S.E.) Coefficient (S.E.) Coefficient (S.E.) Coefficient (S.E.) 

Constant 34.01 (7.64) 
*** 

21.27 (10.59) 
** 

14.87 (4.53) 
*** 

18.03 (7.04) 
** 

Waiting costs 0.53 (0.12) 
*** 

0.59 (0.23) 
** 

0.70 (0.07) 
*** 

0.65 (0.13) 
*** 

Arrival time  
 

-5.74 (2.91) 
** 

 
 

-3.02 (3.32) 
 

F 32.80 
*** 

7.23 
*** 

140.02 
*** 

22.36 
*** 

R
2
 0.05 

 
0.05 

 
0.18 

 
0.13 

 

N 635  297 
 

635 
 

297 
 

Notes. OLS regressions with standard errors clustered at the group level. The dependent variable is the bid. 
***

/
**

/
*
 Significant at the 1%/5%/10% level 

 

An endowment effect in the customer-initiated auction would result in a higher willingness-

to-accept than standard economic theory would predict. When the final customer arrives, the 

customer in the penultimate position (i.e., position 4) has a weakly dominant strategy to bid 

her waiting costs in the absence of a sunk-cost bias. Thus, correlation between customers’ 

initial positions and the likelihood of bidding more than their waiting costs indicates the 

existence of an endowment effect in the customer-initiated auction. As Figure 3 illustrates, 

overbidding by the last customer in line is more likely if the initial position is closer to 

position 4. A Logit regression shows that overbidding by the last customer in line is 

significantly correlated with one’s initial position (𝑝 = 0.043). This finding suggests that 

there is evidence of an endowment effect in the customer-initiated auction, which leads us to 

reject hypothesis 4. 

To study potential sunk-cost effects, we now focus on whether the type of arrival process 

affects bidding behavior in the customer-initiated auction. Figure 4 suggests that customers 

bid more aggressively in the case of a sequential arrival process, which is confirmed in the 

statistical analysis (independent sample t-test, 𝑡(1268) = −2.67, 𝑝 < 0.01). Like in the 

server-initiated auctions, average bids are higher for any of the positions auctioned under a 

sequential arrival process than under a simultaneous arrival process (Figure 4). In support of 
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the sunk-cost bias and in conflict with hypothesis 5, we find that arrival time significantly 

affects bidding behavior in the case of a sequential arrival process (Table 7, Model II). Bids 

are increasing in the amount of waiting time before the server opens, which can be interpreted 

as evidence of the Concorde effect. 

Figure 3 Overbidding in the customer-initiated auction 

 
Notes. Fraction of defending bids in the customer-initiated auction for the penultimate position (position 4) that 

exceeds waiting costs; N = 95. 

 

Figure 4 Bids in the customer-initiated auction by position and arrival process 

 
Notes. N = 1261. Numbers represent average bid for each queue position in customer-initiated auctions. Nine 

extremely high bids (b = bmax = 500) were excluded from this visualization.  

4.4. Preferred auction mechanism and actual waiting 

In the third part of a session, participants were asked to vote for which auction mechanism to 

play in an experimental protocol that involved actual waiting. Sixty-three percent of all 
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participants voted for implementing the server-initiated auction in the last part of the 

experiment, which differs statistically significantly from 50% (p = 0.007, one-tailed binomial 

test). In fact, in all sessions a majority voted for the server-initiated auction. This finding 

provides some support to hypothesis 6 which states that customers will vote for the server-

initiated auction rather than the customer-initiated auction. 

Participants were asked at the end of the experiment to indicate to what extent they considered 

the two auctions ‘fair’ on a five-point Likert scale. The average score for the server-initiated 

auction [customer-initiated auction] is 3.36 (standard deviation 1.07) [2.89 (standard deviation 

1.11)]. The difference is statistically significant (𝑝 = 0.001, paired sample t-test). 

Furthermore, participants who considered the server-initiated auction to be strictly more fair 

than the customer-initiated auction were also more likely to vote for the server-initiated 

auction (𝑝 = 0.019, two-tailed Fisher’s exact test). These findings suggest that fairness 

considerations partially underpin the preference for the server-initiated auction. In Table 8 the 

likelihood of voting for the server-initiated auction is estimated. We find that only fairness 

considerations significantly affect the likelihood of voting for the server-initiated auctions. A 

participant’s vote does not depend in a statistically significant way on differences in earned 

payoffs in the two auction mechanisms, the order of the auctions or the arrival protocol. This 

suggests that our finding that the majority of the participants favor the server-initiated auction 

over the customer-initiated auction is quite robust. 

Table 8 Estimations of likelihood voting for server-initiated auction 

Model I II 

Variable 

Estimate 

(S.E.) 

Estimate 

(S.E.) 

Constant 0.24 

(0.38) 

 
-0.13 

 (0.42)  

 

Gender  

(1 = Female) 

0.30  

(0.45) 

 
0.23 

(0.46) 

 

Payoff difference 0.01 

(0.01) 

 
0.01 

(0.01) 

 

Auction order 

(1 = Server-initiated first) 

0.16 

(0.45) 

 
0.25 

(0.46) 

 

Arrival protocol 

(1 = Sequential) 

0.18 

(0.44) 

 
-0.01 

(0.45) 

 

Fairness  
 

1.09 

(0.47) 

** 

χ
2
 1.94 

 
7.58 

 

Nagelkerke’s R
2
 0.03 

 
0.11 

 

Percentage correct 61.7% 
 

68.1% 
 

N 94  94  

Notes. Logit regression with standard errors between parentheses. Payoff difference stands for customer’s payoff 

in the server-initiated auction minus her payoff in the customer-initiated auction. Fairness – a dummy variable 

where 1 stands for perceived fairness of the server-initiated auction – is strictly higher than that of the customer-

initiated auction. Similar results are found if perceived fairness is weakly higher (B = 1.52, p = 0.01). One 

participant is excluded due to nonresponse.  
***

/
**

/
*
 Significant at the 1%/5%/10% level 
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We also analyze bidding behavior in this last part. According to Corollary 1, the optimal bid 

in equilibrium in the server-initiated auction correlates positively with the number of other 

remaining customers. We find indeed that, on average, bids decrease by about 9.21 as the 

number of other bidders decreases (𝑝 < 0.001). If we assume that bidders employ the 

equilibrium bidding functions presented in Corollary 1, then the implied average waiting costs 

are about €0.28 per five minutes, or €3.32 per hour, which is about 85% of the gross 

minimum hourly wage for 18-year-old employees at the time of the experiment. 

5. Conclusion 

In this paper, we have experimentally studied two auction mechanisms that allow customers 

to trade places in queues. In the server-initiated auction, the server sequentially auctions the 

right to be served next and pays all customers who remain in the queue an equal share of the 

winning customer’s bid. In the customer-initiated auction, arriving customers iteratively offer 

money to customers in the queue in order to swap positions. We have used two novel 

experimental protocols to examine the behavioral properties of both auction mechanisms. One 

protocol implements induced waiting costs, which allows us to compare the two auction 

mechanisms in terms of efficiency gains. In the second protocol, participants could trade 

places in a queue where they had to wait before they could leave the lab. We applied this 

protocol to determine which auction mechanism participants would prefer in a context that 

involved actual waiting. 

Our most important findings are the following. First of all, on average, the server-initiated 

auction and the customer-initiated auction perform equally well in terms of efficiency gain. 

This result is surprising because only the server-initiated auction has an efficient equilibrium. 

Second, the participants indicated that they found the server-initiated auction a fairer 

mechanism than the customer-initiated auction. In a way, this result is surprising, too, because 

the customer-initiated auction protects customers’ initial positions in contrast to the server-

initiated auction. Third, when voting between the two auctions, the participants tended to 

favor the server-initiated auction. 

We also studied the extent to which sunk-cost and endowment effects emerge in both auction 

mechanisms. In the server-initiated auction, we observed a sunk-cost effect but we found no 

evidence of the endowment effect. In the customer-initiated auction, we also provided strong 

evidence of the existence of a sunk-cost effect. In contrast to the server-initiated auction, we 

do find evidence of the endowment effect in the customer-initiated auction. A possible 

explanation as to why the endowment effect is found in the customer-initiated auction but not 

in the server-initiated auction could be attributed the presence of property rights.
19

 Because in 

the server-initiated auction incumbents are not able to defend ‘their’ positions, perceived 

entitlement might be less than in the customer-initiated auction in which incumbents can 

defend their current positions by submitting high bids.  

The contribution of this study to the extant literature is threefold. To our knowledge, this 

paper is the first to experimentally study priority auctions in queuing systems. Although a 
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 Reb and Connolly (2007) find similar results in another context. 
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large number of papers have studied such auctions theoretically,
20

 an empirical investigation 

was lacking. As predicted in previous studies, we find that priority auctions can substantially 

increase a queue’s efficiency. At the same time, we observe that substantial inefficiencies 

emerge even in theoretically efficient auction mechanisms. 

The second contribution is that our study illustrates the importance of considering 

mechanisms that do not have an efficient equilibrium. Even though doing so results in a lack 

of a precise hypothesis based on standard economic theory, it allows for the evaluation of 

mechanisms that might be considered in practice such as the customer-initiated auction. 

Interestingly, the customer-initiated auction mechanism improved efficiency on average as 

much as the server-initiated auction mechanism, while only the latter has an efficient 

equilibrium.  

Third, our experimental design allows one to study endowment effects and sunk-cost effects 

in an environment involving queues. Endowment effects have been found in a large range of 

contexts (see, e.g., Knetsch, 1989; Kahneman et al., 1990) including queues where customers 

discourage queue jumping (Mann, 1969; Milgram et al., 1986; Oberholzer-Gee, 2006; 

Helweg-Larsen and LoMonaco, 2008). We add to this literature that endowment effects may 

be weak in environments where customers’ positions are not protected by default, like in the 

server-initiated auction. The sunk-cost effect has also been documented extensively in the 

empirical literature (e.g., Arkes and Blumer, 1985; Phillips et al., 1991; Offerman and Potters, 

2005; Friedman et al., 2007; Baliga and Ely, 2011). This paper is the first to study the sunk-

cost effect by manipulating waiting costs for queued customers. Using an experimental 

protocol that determines time spent waiting in the queue before service starts, we have 

observed that such sunk costs induce customers to bid more aggressively on average 

compared to a setting where customers do not sink costs before the server opens. 

We envision the following avenues for further research. First of all, how do the auctions 

perform when entry into the queue is endogenous? The increased efficiency of the queue may 

attract additional customers to the queue. On the one hand, this may be efficiency enhancing 

as more customers use the valuable service provided by the server. On the other hand, 

additional entrants impose a negative externality on other customers in that they may have to 

wait longer. In particular, some may enter the queue only to collect payments by other 

customers without having a genuine interest in the offered service. In addition, and relatedly, 

it would be insightful to test the auction mechanisms in practice using field experiments. In a 

field setting, the question of endogenous entry could be naturally answered.  

This study has several implications for the management of queuing systems in the field. 

Queues are ubiquitous in the public and private sectors. Queues are typically very costly to 

avoid in the case of consistent demand or supply shocks and they may be the only politically 

feasible way to ration scarce demand like social housing. The results from our experiment 

demonstrate that customers can benefit from auction mechanisms that allow them to trade 

                                                      
20

 See, e.g., Kleinrock (1967), Lui (1985), Glazer and Hassin (1986), Rosenblum (1992), Mitra (2001), Afèche 

and Mendelson (2004), Kittsteiner and Moldovanu (2005), Gershkov and Schweinzer (2010), Kayı and 

Ramaekers (2010), and Yang et al. (2015). 
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places. We have shown that priority auctions can improve a queue’s efficiency considerably 

while the customers retain all gains from trade. Furthermore, we find that customers prefer the 

server-initiated auction to the customer-initiated auction. Our results suggests that public or 

private companies interested in offering their customers the opportunity to trade places while 

waiting to get served should use the server-initiated auction rather than the customer-initiated 

auction. 
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Appendix A: Proofs of propositions 

 

Proof of Proposition 1. Suppose, for the moment, that 𝐵𝑛 is a strictly increasing function for 

all 𝑛 = 1, … , 𝑁 − 1. Because after each auction, the winner’s bid is revealed, the remaining 

customers can infer the winner’s waiting costs. Therefore, if 𝑛 + 1 customers are left, it is 

common knowledge that their 𝑐𝑖’s are drawn from 𝐹 conditional on 𝑐𝑖 being in the interval 

[𝑐, 𝑐𝑛] where 𝑐𝑛 are the waiting costs from the winner of the previous auction with 𝑛 + 2 

bidders. Let 

𝐺(𝑥) ≡ (
𝐹(𝑥)

𝐹(𝑐𝑛)
)

𝑛

 

denote the cumulative distribution function of the highest-order statistic among 𝑛 draws from 

𝐹 conditional on the draw being in the interval [𝑐, 𝑐𝑛]. Define 𝑘𝑛(𝑐, 𝑥) as the expected costs 

of not being served in an auction with 𝑛 remaining competitors for a bidder having waiting 

costs 𝑐, where 𝑥 denotes the highest costs among her competitors. 

A customer with cost parameter 𝑐 pretending to have cost parameter �̃� obtains expected utility 

𝑈𝑛(𝑐, �̃�, 𝑐𝑛) = ∫ (
𝐵𝑛(𝑥)

𝑛
− 𝑘𝑛(𝑐, 𝑥)) 𝑑𝐺(𝑥)

𝑐𝑛

𝑐̃

− 𝐵𝑛(�̃�)𝐺(�̃�) 

where the first [second] term on the right-hand side refers to the case that the customer does 

not win [wins] the auction. 

In equilibrium, for 𝑐 > 𝑐, 

𝜕𝑈𝑛(𝑐, �̃�, 𝑐𝑛)

𝜕�̃�
|

𝑐̃=𝑐

= − (
𝐵𝑛(𝑐)

𝑛
− 𝑘𝑛(𝑐, 𝑐)) 𝐺′(𝑐) − 𝐵𝑛(𝑐)𝐺′(𝑐) − 𝐵𝑛

′ (𝑐)𝐺(𝑐) = 0 ⇔ 

𝐵𝑛
′ (𝑐)𝐺(𝑐) + (1 +

1

𝑛
) 𝐵𝑛(𝑐)𝐺′(𝑐) = 𝑘𝑛(𝑐, 𝑐)𝐺′(𝑐)  ⇔ 

𝐵𝑛
′ (𝑐)𝐺(𝑐)1+

1
𝑛 + (1 +

1

𝑛
) 𝐵𝑛(𝑐)𝐺′(𝑐)𝐺(𝑐)

1
𝑛 = 𝑘𝑛(𝑐, 𝑐)𝐺′(𝑐)𝐺(𝑐)

1
𝑛 ⇔ 

𝐵𝑛(𝑐)𝐺(𝑐)1+
1
𝑛 = ∫ 𝑘𝑛(𝑥, 𝑥)𝐺(𝑥)

1
𝑛𝑑𝐺(𝑥)

𝑐

𝑐

⇔ 

𝐵𝑛(𝑐) =
𝑛

𝑛 + 1
∫ 𝑘𝑛(𝑥, 𝑥)𝑑 (

𝐺(𝑥)

𝐺(𝑐)
)

1+
1
𝑛𝑐

𝑐

=
𝑛

𝑛 + 1
∫ 𝑘𝑛(𝑥, 𝑥)𝑑 (

𝐹(𝑥)

𝐹(𝑐)
)

𝑛+1𝑐

𝑐

. 

 (Check the case 𝑐 > 0.) Note that 𝑘1(𝑐, 𝑥) = 𝑐 and 𝑘𝑛(𝑐, 𝑥) = −𝑈𝑛−1(𝑐, 𝑐, 𝑥) + 𝑐 for 

𝑛 = 2,3, … , 𝑁 − 1. Now, the proposition follows because 𝑘𝑛(𝑥, 𝑥) = −𝑈𝑛−1(𝑥, 𝑥, 𝑥) + 𝑥 =



26 

 

𝐵𝑛−1(𝑥) + 𝑥 for 𝑛 = 2,3, … , 𝑁 − 1. (It is readily verified that 𝐵𝑛 is a strictly increasing 

function for all 𝑛 = 1, … , 𝑁 − 1, which is the assumption we started with.) 

Proof of corollary 2. The proof is by induction. Note that 

𝐵1(𝑐) =
1

2
𝐸 {𝑐2

(1)
|𝑐2

(1)
≤ 𝑐} =

𝑐

3
. 

Now, fix 𝑛 = 2,3, … , 𝑁 − 1 and assume that 𝐵𝑛−1(𝑐) =
𝑛−1

3
𝑐. It is well-known that for 

𝐹 = 𝑈[0, 𝑐], 𝐸 {𝑐𝑛
(1)

|𝑐𝑛
(1)

≤ 𝑐} =
𝑛

𝑛+1
𝑐. Therefore, 

𝐵𝑛(𝑐) =
𝑛

𝑛 + 1
𝐸 {𝐵𝑛−1(𝑐𝑛+1

(1)
) + 𝑐𝑛+1

(1)
| 𝑐𝑛+1

(1)
≤ 𝑐} 

=
𝑛

𝑛 + 1
𝐸 {

𝑛 + 2

3
𝑐𝑛+1

(1)
| 𝑐𝑛+1

(1)
≤ 𝑐} 

=
𝑛

𝑛 + 1

𝑛 + 2

3

𝑛 + 1

𝑛 + 2
𝑐 =

𝑛

3
𝑐. 

 

Proof of Proposition 3. Let 𝐵𝑘(𝑐𝑘) denote a customer’s equilibrium bid as a function of her 

waiting costs 𝑐𝑘, where 𝑘 = 2 refers to an arriving customer reaching position 2 and 𝑘 = 1 to 

the current customer in position 1. According to a standard argument, both the arriving 

customer and the bidder in front of her use strictly increasing bidding functions in 

equilibrium. Without loss of generality, we may assume that at the boundaries, 𝐵1(𝑐) = 𝐵2(𝑐) 

and 𝐵1(𝑐) = 𝐵2(𝑐). Let Φ𝑘(𝑏) ≡ 𝐵𝑘
−1(𝑏) denote the inverse function of the bidding functions 

(𝑘 = 1, 2). Note that bidders need not only obtain utility from the auction itself, but also from 

later auctions when trading places with customers who arrive later. Let 𝑈1(𝑐, 𝑥) denote a 

customer’s expected additional utility she obtains when occupying the first position after the 

auction if her [the other customer’s] waiting costs equal 𝑐 [𝑥]. 𝑈2(𝑐) represents a customer’s 

expected additional utility if her waiting costs are equal to 𝑐 and she ends up in position 2 

after the auction. 

The arriving customer having waiting costs 𝑐 > 𝑐 solves 

𝐵2(𝑐) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑏 ∫ 𝑈2(𝑐)
𝑐

Φ1(𝑏)

𝑑𝐹1(𝑐1) + ∫ (𝑐 + 𝑈1(𝑐, 𝑐1) − 𝑏)
Φ1(𝑏)

𝑐

𝑑𝐹1(𝑐1). 

The first-order condition of the maximization problem is given by  

𝐹1
′(Φ1(𝐵2(𝑐)))Φ1

′ (𝐵2(𝑐))(−𝑈2(𝑐) + 𝑐 + 𝑈1(𝑐, Φ1(𝐵2(𝑐))) − 𝐵2(𝑐)) − 𝐹1 (Φ1(𝐵2(𝑐)))

= 0, 

which implies 
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𝐵2(𝑐) = 𝑐 − 𝑈2(𝑐) + 𝑈1 (𝑐, Φ1(𝐵2(𝑐))) −
𝐹1 (Φ1(𝐵2(𝑐)))

𝐹1
′ (Φ1(𝐵2(𝑐))) Φ1

′ (𝐵2(𝑐))
. 

When defending her position, a customer having waiting costs 𝑐 > 𝑐 solves 

𝐵1(𝑐) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑏 ∫ 𝑈1(𝑐, 𝑐2)
Φ2(𝑏)

𝑐

𝑑𝐹2(𝑐2) + ∫ (𝐵2(𝑐2) − 𝑐 + 𝑈2(𝑐))
𝑐

Φ2(𝑏)

𝑑𝐹2(𝑐2). 

The first-order condition: 

𝑈1 (𝑐, Φ2(𝐵1(𝑐))) − 𝐵1(𝑐) + 𝑐 − 𝑈2(𝑐) = 0 

which implies that in equilibrium, 

𝐵1(𝑐) = 𝑈1 (𝑐, Φ2(𝐵1(𝑐))) + 𝑐 − 𝑈2(𝑐). 

Suppose that 𝐵1(𝑐) ≤ 𝐵2(𝑐). As both 𝐵1 and 𝐵2 are strictly increasing, Φ2(𝐵1(𝑐)) ≤

Φ1(𝐵2(𝑐)) so that 

𝐵1(𝑐) = 𝑈1 (𝑐, Φ2(𝐵1(𝑐))) + 𝑐 − 𝑈2(𝑐) ≥ 𝑈1 (𝑐, Φ1(𝐵2(𝑐))) + 𝑐 − 𝑈2(𝑐) > 𝐵2(𝑐) 

which establishes a contradiction. Therefore, 𝐵1(𝑐) > 𝐵2(𝑐) for all 𝑐 > 𝑐. 
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Appendix B: Translation of the experimental instructions 

 

General instructions 

Welcome to this experiment! You can earn money in this experiment. The amount that you 

will earn depends on your decisions and the decisions of other participants in the same 

experiment. Your earnings are paid to you privately at the end of the experiment. 

It is impossible for us to relate your name to your decisions. Therefore, your anonymity is 

guaranteed. Keep your decisions private. Talking with the other participants during the 

experiment is not allowed. 

During the experiment you can gain and lose points. At the end of the experiment these points 

are exchanged for euros. 100 points is equal to €1.00. 

At the beginning of the experiment you will receive a deposit of [starting capital] points. The 

points that you earn during the experiment are added to your deposit. The points you lose are 

subtracted from your deposit. 

The experiment consists of four parts. The first and second parts consist of five rounds each. 

At the beginning of a round you and four others will be given a random position in a queue. 

You can change positions using auctions. The type of auction in the first part differs from the 

type of auction in the second part. 

In the third part, you can vote for the type of auction that you prefer. The type of auction with 

the most votes will be used to determine the order of a queue. Your position in this queue will 

determine when you can leave the experiment. 

Instructions for parts 1 and 2 

[Simultaneous arrival process: This part consists of five rounds. In each round you will be 

placed with four others in a queue. Your starting position within the queue is determined 

randomly.] 

[Sequential arrival process: This part consists of five rounds. In each round you will be 

placed with four others in a queue, where your position depends on your arrival time. Your 

arrival time equals the number of turns that you need to wait before the first customer is 

served. The arrival time is determined randomly. At the beginning of each round, you will 

find your arrival time and starting position on the screen.] 

You can change positions using auctions. Your final position determines how many turns you 

will have to wait before being served. You will incur waiting costs for each turn that you have 

to wait. Waiting costs are subtracted from your deposit. 

The customer in position 1 does not have to wait and, therefore, does not incur any waiting 

costs. The customer in position 2 has to wait one turn. The customer in position 3 has to wait 

two turns. The customer in position 4 has to wait three turns. And the customer in position 5 

has to wait four turns.  



29 

 

Your waiting cost per turn is an integer between 0 and 100. This is also true for the other four 

participants in the queue. For each round the waiting costs are randomly drawn by the 

computer for all customers, where every value between 0 and 100 has the same likelihood to 

be drawn. In each round the waiting costs are independent from the waiting costs in the 

previous rounds and the waiting costs of other participants.  

Example: Imagine that your waiting costs are equal to 10 and that at the end of the round your 

position is 5. You have to wait four turns. The total waiting costs for that round are: 10*4 = 

40.  

Server-initiated auction 

In this part, you can bid on each position in the queue. The round starts with an auction for 

position 1. The winner is the customer with the highest bid. (In case of a tie, the computer will 

determine who wins using a fair lottery.) The winner gets position 1 and distributes his bid 

evenly among the other bidders. The next auction is for position 2. The winner is again the 

customer with the highest bid. The winner’s bid is distributed evenly among the customers 

behind him or her. The customer in position 1 does not get anything. Positions 3 and 4 are 

auctioned the same way. Winners cannot participate in the remaining auction within the same 

round. 

Example: Imagine that position 2 is auctioned. The customers with position 2, 3, 4 and 5 can 

place a bid. Imagine that the customer with position 3 places the highest bid: 75. This 

customer goes to position 2 while the customer in position 2 moves to position 3. The three 

bidders, who now stand behind the customer in position 2, receive each 75/3 = 25.  

Test questions 

Imagine that your current position is 5 and that you can bid on position 1. Your bid is 10 and 

among the four other bids, 20 is the highest bid. What is the outcome? 

1. You win the auction and pay 10. 

2. You lose the auction and receive nothing 

3. You lose the auction and receive 5 (correct answer) 

 

Imagine that your current position is 5 and that you can bid on position 4. You bid 50 and the 

other remaining bidder bids 25. What is the outcome? 

 

1. You win the auction and pay 50 (correct answer) 

2. You lose the auction and receive 25 

3. You win the auction and pay nothing 

Customer-initiated auction 

In this part, every customer gets the chance to swap positions using an auction. The round 

starts with the customer in position 2 (W2) joining the customer in position 1 (W1). W1 and 

W2 both place a bid. If the bid of W2 is higher than the bid of W1, then W1 and W2 swap 

positions. If the bid is lower then there is no swap. (In case of a tie, there is a 50% chance of a 

swap.) If W1 and W2 swap positions, then W2 pays his or her own bid to W1.  
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Then the third customer (W3) joins the queue (on position 3). He or she places a bid on 

position 2. The customer currently in position 2 also places a bid. W3 wins if his or her bid is 

higher. In that case, W3 and the customer in position 2 swap places and W3 pays this 

customer his or her bid. If W3 moves to position 2 then an auction starts for position 1. If W3 

loses the auction for position 2 then there is no auction for position 1. In a similar way, the 

fourth and fifth customers are able to move forward in the queue. 

Example: A fifth customer (W5) joins the queue in position 5. The first possible swap is with 

the customer in position 4 (W4). Imagine that W5 bids 100 and W4 bids 50. Because W5 

placed a higher bid, W5 and W4 swap positions. W4 receives 100 from W5. W5 is now in 

position 4 and W4 is in position 5. Subsequently, W5 has the opportunity to swap positions 

with W3, who is in position 3. Because W3 placed a higher bid, there is no swap. The round is 

now completed. The customers will be served in the current order.  

Test questions 

Imagine that your current position is 5 and that you bid on position 4. You bid 10 and the 

customer in position 4 (W4) bids 22. What is the outcome? 

1. You win the auction, pay 10 and swap positions 

2. You lose the auction, receive nothing, and positions are not swapped (correct answer) 

3. You win the auction, pay nothing, and positions are not swapped 

 

Imagine that your current position is 1 and that you can bid on your own position. You bid 10 

and the customer currently in position 2 bids 5. What is the outcome? 

 

1. You win the auction, pay 10, and swap positions 

2. You lose the auction, receive nothing, and positions are not swapped 

3. You win the auction, pay nothing, and positions are not swapped (correct answer) 

 

Instructions for part 3 

In this part you can vote for the type of auction that will be used in the next part to determine 

the queue for leaving the experiment. In the next part you are put in a queue with four others. 

These are the same participants with whom you interacted in parts 1 and 2. The starting 

positions in this queue are determined randomly. You can change positions using auctions. 

Your final position determines when you can leave the experiment. In this part, you do not 

pay for any waiting costs, but you will be required to wait longer depending on your position 

in the queue. Every turn takes 5 minutes. 

The customer in position 1 does not have to wait and can leave the experiment right away. 

The customer in position 2 has to wait a single turn, which takes 5 minutes. The customer in 

position 3 has to wait two turns, which takes 10 minutes. The customer in position 4 has to 

wait three turns, which takes 15 minutes. And the customer in position 5 has to wait four 

turns, which takes 20 minutes.  

The bids are still displayed in terms of points. 100 points is equal to €1.00. 
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As previously mentioned, in this part you do not pay any waiting costs. You do pay any 

winning bids from your deposit. Payments by other participants are added to your deposit. 

Your deposit is paid to you if it is your turn. 

You can vote for the type of auction that was used in part 1 and for the type of auction that 

was used in part 2. The auction with the most votes of all participants in the laboratory will be 

used to determine the queue order. If both types get the same number of votes, then the 

auction type is picked randomly. 


