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Abstract

We investigate the intraday dependence pattern between tick data of stock price

changes using a new time-varying model for discrete copulas. We let parameters of

both the marginal models and the copula vary over time using an observation driven

autoregressive updating scheme based on the score of the conditional probability mass

function with respect to the time-varying parameters. We apply the model to high-

frequency stock price changes expressed as discrete tick-size multiples for four liquid

U.S. financial stocks. Our modeling framework is based on Skellam densities for the

marginals and a range of different copula functions. We find evidence of intraday

time-variation in the dependence structure. After the opening and before the close

of the stock market, dependence levels are lower. We attribute this finding to more

idiosyncratic trading at these times. The introduction of score driven dynamics in the

1



dependence structure significantly increases the likelihood values of the time-varying

copula model. By contrast, a fixed daily seasonal dependence pattern clearly fits the

data less well.

Key words: time-varying copulas, dynamic discrete data, score driven models, Skellam

distribution, dynamic dependence.
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1 Introduction

A key empirical finding from many analyses of intraday tick data is that stock price volatility

is higher during opening hours than during the rest of the day; see, for example, Andersen

and Bollerslev (1997) and Tsay (2005). Much less is known about the intraday pattern of the

dependence structure between stock price changes. The dependence structures are of direct

importance for intraday risk management, for example, when managing a book of multiple

stocks that are traded repeatedly over the course of the day. This is common practice

for many advanced players in today’s markets. In our study we investigate the pattern of

intraday dependence dynamics (beyond correlation structures) for a number of U.S. financial

stocks observed at the tick-by-tick frequency. In earlier studies, lower-frequency data (5

minutes) is typically analyzed using standard correlation models; see, for example, Allez and

Bouchaud (2011). We account for the discreteness of stock price changes in our analysis

of high frequency tick-by-tick data and adopt a flexible dynamic copula framework for the

modeling of the dependence structure.

There are at least two reasons why one can expect the dependence structure between

price changes to vary within the day. First, news may have accumulated overnight. As

many of the common macro announcement are scheduled during normal trading hours, a

relatively higher percentage of idiosyncratic, firm-specific news is impounded in stock prices

during the first minutes after the opening. Such increased information flows are known to

affect intraday volatilities upwards immediately after the opening of the exchange; see for

example Wood, McInish, and Ord (1985) and Admati and Pfleiderer (1988). Given the

relatively higher fraction of idiosyncratic information after the opening, price changes are

also likely to exhibit lower dependence during the first minutes after the opening compared
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to the rest of the day. Towards the end of the day, idiosyncratic components may also play

an important role and thus result in lower levels of dependence. In particular, we expect

many players to unwind inventory positions that are built up over the course of the day in

order to limit the (overnight) risk. The positions at the end of the day are therefore likely to

contain relatively higher idiosyncratic components. Hence the expected dependence between

price changes at the end of the trading day is lower.

We study intraday dynamics in price changes using tick-by-tick data observed at the

one-second frequency over the year of 2012 for four financial stocks that are heavily traded.

As the tick-size for our stocks is 1 dollar cent, prices as well as price changes move on a

discrete grid. It is widely established that intraday price changes are subject to time-varying

volatility and hence a time-varying marginal distribution. Many econometric challenges

arise in the modeling of the dependence structure between discrete variables in case both

the marginal distributions and the dependence structure are allowed to vary over time. The

main methodological contribution of our current paper is that we provide a novel framework

to address this issue in a way that is congruent with the empirical data. In particular, the

dynamic parameters in our model, including stock return volatilities and dependence param-

eters, are updated using an observation driven, autoregressive updating function based on

the score of the conditional observation probability mass function; for an introduction to the

score driven approach, see Creal, Koopman, and Lucas (2011, 2013) and Harvey (2013), and

for successful applications see, for example, De Lira Salvatierra and Patton (2013), Lucas,

Schwaab, and Zhang (2014), Harvey and Luati (2014), and Creal, Schwaab, Koopman, and

Lucas (2014). As is known from the literature, score driven models have three main advan-

tages: (i) they possess information theoretic optimality properties, see Blasques, Koopman,
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and Lucas (2015); (ii) they have similar forecasting performance as their parameter driven

counterparts, even when the latter constitute the true data generating process, see Koopman,

Lucas, and Scharth (2015); and (iii) as score driven models are observation driven rather

than parameter driven in the classification of Cox (1981), the model’s static parameters can

be estimated in a straightforward way using maximum likelihood methods.

We adopt a dynamic Skellam distribution to model the tick-size price changes on the

grid . . . ,−2,−1, 0, 1, 2, . . .; see Irwin (1937) and Skellam (1946). The Skellam distribution

has also been used to model price change series in other recent contributions; see Barndorff-

Nielsen, Pollard, and Shephard (2012) for Skellam Lévy processes, and Shahtahmassebi

(2011) for a Bayesian analysis of a parameter driven Skellam model. Rather than only having

a dynamic generalization of the Skellam distribution for the marginal models, our main focus

is on formulating a time-varying specification for the dependence structure in discrete data

based on a copula framework. Discrete copulas and, in particular, dynamic discrete copulas

pose a number of challenges. First, copulas for discrete marginals are not unique over the

entire domain of the unit hypercube. Second, the copula density is no longer well-defined for

discrete marginals, but is replaced by a copula probability mass function. Third, given the

time-varying nature of the marginal distributions, the grid that defines the copula uniquely

changes from one time period to the next. We address these issues by using a parametric

copula specification that parsimoniously describes the copula surface. This function should

cover grid points over which the copula at the current time point is uniquely defined but also

grid points that may become relevant at future time points given the time-varying nature of

the marginal distributions. We further allow for time-variation in the dependence structure

by endowing the copula parameters with autoregressive dynamics that are a function of the
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score of the copula probability mass function. In a Monte Carlo study, we show that our

dynamic copula approach works well in uncovering the true parameter dynamics if the model

is correctly specified; we can extract the path of the dynamic parameters with high precision.

But also when the model is not correctly specified, we show that our approach accurately

extracts the correct parameter path.

In our empirical study, we investigate the dependence in tick-by-tick price changes for a

selection of four U.S. financial stocks traded on the NYSE. We present evidence that sig-

nificant intraday time-variation in the dependence structure of these four stocks is present.

The intraday dependence in all trading days of 2012 quickly increases during the first 30

minutes after the opening. After the first 30 minutes, the average intraday dependence re-

mains relatively constant until, say, 15 minutes before the close when a sharp decrease in the

dependence takes place for the six stock pairs considered in our analysis. As an alternative

approach, we can specify the intraday pattern of the dependence as a fixed intraday season-

ality pattern based on some flexible spline function. However, we show that our score driven

time-varying copula methodology significantly outperforms the alternative spline-based ap-

proach. This indicates that time-variation in the intraday dependence is captured accurately

by the score driven model and varies substantially between days. Furthermore it suggests

that substantial day-to-day deviations from the average intraday pattern occur regularly.

The remainder of this paper is organized as follows. We introduce the model in Section

2. Section 3 presents simulation results on the model’s adequacy. Our empirical analysis is

presented in Section 4, while Section 5 contains the conclusions. The Appendix gathers a

number of the more technical background expressions for the score-dynamics of the different

marginals and copulas used in this paper.
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2 Score driven dynamic discrete copula model

Consider a d-dimensional integer-valued vector yt = (y1,t, . . . , yd,t)
′ ∈ Zd with time-varying

conditional marginal distributions Fi(yi,t | Ft−1; θmi,t) for i = 1, . . . , d and t = 1, . . . , T ,

where θmi,t is a time-varying parameter vector for the ith marginal distribution, and Ft =

{yt, yt−1, . . .}. The elements of yt may for instance consist of counts, such as Poisson or bi-

nomial counts, or alternatively of changes in counts, such as the Skellam distributed discrete

(tick-size) price changes in our empirical application in Section 4. The mean and variance

of the Skellam distribution for stock i are then part of θmi,t. We characterize the dependence

structure by a parametric conditional d-dimensional copula function

C
[
F1(y1,t | Ft−1; θm1,t) , . . . , Fd(yd,t | Ft−1; θmd,t) | Ft−1 ; θct

]
, (1)

where θct is the parameter vector defining the copula function C; see Sklar (1959). The time-

varying nature of θct allows us to study settings where the dependence structure changes over

time. For example, in Section 4 we study the intraday dependence between discrete stock

price changes. For notational simplicity, we suppress the dependence on the conditioning set

Ft−1 and write the marginal distributions as

Fi := Fi(yi,t; θ
m
i,t) ≡ Fi(yi,t | Ft−1; θmi,t), i = 1, . . . , d,

and copula function as C
[
F1(y1,t; θ

m
1,t), . . . , Fd(yd,t; θ

m
d,t); θ

c
t

]
. The dynamic specifications of

the parameter vectors θmi,t and θct are provided below. The dynamic conditional copula

formulation presented in equation (1) is obtained from Patton (2002, 2006).
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A discrete data analysis based on dynamic copulas faces several challenges; see also the

review of Genest and Nešlehová (2007) on the use of static copulas for discrete marginals.

For example, standard summary dependence measures such as Kendall’s τ or Spearman’s

ρ are no longer guaranteed to lie in the [−1, 1] interval and need to be used with caution

in a discrete setting. In addition, we can no longer guarantee the uniqueness of the copula

function in the standard Sklar (1959) representation of a distribution in terms of its marginal

distributions and a copula function. The copula is only uniquely determined on the set

RanF1×. . .×RanFd, where RanFi denotes the range of the cumulative distribution function

(cdf) Fi, i = 1, . . . , d. This stands in sharp contrast with the case of continuous marginal

distributions, where the copula function is unique over the entire unit hypercube [0, 1]d.

Despite its non-uniqueness, discrete copulas can still be usefully applied in an empirical

setting; see, for example, Zimmer and Trivedi (2006). At one extreme, we can model the

value of the copula function at each point of its domain separately. This method can work

in simple settings where the discrete data only takes a small number of different values; for

example, in case of Bernoulli variables. This approach becomes infeasible, however, when the

copula is defined over many different points as is the case in the empirical setting of Section

4. First, the price changes in our empirical example take values on Z, and are therefore

defined on (countably) infinitely many points. Second, and most importantly, the marginal

distributions are time-varying. As a result, also the ranges RanFi(·; θmi,t) and therefore the

domain over which C is uniquely identified are time-varying. Consequently, it is no longer

feasible to estimate the value of the copula function over all points in the domain across all

time periods, as there will be infinitely many of them. A possible solution is to model the

copula in a parsimonious way. For example, we can use a parametric copula function defined
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over the entire [0, 1]d space even though uniqueness is only guaranteed over a set of discrete

points. This is the approach we will adopt in our analyses below.

The dynamic specifications for θmi,t and θct in (1) are based on the score driven approach

of Creal et al. (2011, 2013) and Harvey (2013). We collect the time-varying parameters

in θ′t = (θm′1,t, . . . , θ
m′
d,t, θ

c′
t ). The score driven model represents a class of models in which the

update of θt over time is formulated as a function of past data yt−1, yt−2, . . . and past realized

parameter values θt−1, θt−2, . . .. At time t we can write the update function as

θt+1 = θt+1 (yt, yt−1, . . . , θt, θt−1, . . . ;ψ) ,

where ψ is an unknown parameter vector that contains the update coefficients and the

remaining static parameters of the marginal distributions and the copula function. It follows

that θt is Ft−1-measurable and the approach is observation driven in the classification of Cox

(1981). The estimation of the static parameter vector ψ is typically carried out by the method

of maximum likelihood in a straightforward manner. A score driven model updates θt in the

direction of the steepest increase of the log conditional probability mass function (pmf) at

time t given the past information set Ft−1. Updating θt in this way possesses information

theoretic optimality properties as shown by Blasques et al. (2015).

Let p(yt|Ft−1; θt) denote the pmf of yt, which we again write in short-hand notation

as p(yt; θt), suppressing its dependence on the parameter vector ψ. Using the so called

‘inclusion-exclusion’ formula, we obtain from equation (1) that

p(yt; θt) =
∑
j1=0,1

. . .
∑
jd=0,1

(−1)j1+...+jd × C
[
F1(y1t − j1; θm1,t), . . . , Fd(ydt − jd; θmd,t) ; θct

]
. (2)
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For instance, for the bivariate case (d = 2), the pmf becomes

p(yt; θt) = C
[
F1(y1,t; θ

m
1,t), F2(y2,t; θ

m
2,t); θ

c
t

]
− C

[
F1(y1,t − 1; θm1,t), F2(y2,t; θ

m
2,t); θ

c
t

]
− (3)

C
[
F1(y1,t; θ

m
1,t), F2(y2,t − 1; θm2,t); θ

c
t

]
+ C

[
F1(y1,t − 1; θm1,t), F2(y2,t − 1; θm2,t); θ

c
t

]
,

where the evaluation of equation (2) requires 2d evaluations of the copula function, for any

t, and is feasible for low values of d as in (3). The evaluation of (2) clearly becomes more

challenging for larger values of d; see, for example, Panagiotelis, Czado, and Joe (2012). The

score-based update function for θt takes the form

θt+1 = ω + A∇t +Bθt, ∇t =
∂ log p(yt; θt)

∂θt
, (4)

where ∇t is the score vector of the (predictive) density p(yt; θt) in (2), ω is a vector of

constants, and A and B are fixed coefficient matrices. These coefficients are functions of the

parameter vector ψ that also includes the unknown parameters of the marginal distributions

Fi and the copula function C in (2). Since p(yt; θt) relies on ψ, it follows that ∇t is also

a function of ψ. The derivative ∇t in (4) is straightforward to obtain because the pmf

is typically differentiable in the time-varying parameters θt. The updating equation (4)

corresponds to the unit scaling option of Creal et al. (2013) and can be generalized in

different ways; for example, by adding more lagged values of θt and ∇t.

The time-varying parameter vector θt is initialized at θ1, which we include in the pa-

rameter vector ψ. In the case of a bivariate copula, the individual components of θt con-

sist of two marginal parameter vectors and one copula dependence parameter. To intro-

duce further parsimony, we assume diagonal matrices for A and B, such that each element
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of θt is updated by its own score function only. The static parameter vector ψ becomes

ψ = {θ′1, ω′, diag(A)′, diag(B)′}, where diag(M) denotes the vector of the diagonal elements

of any matrix M . A more parsimonious specification is obtained by having θ1 as to the

unconditional mean of θt, that is θ1 = ω � (1 − diag(B)) where � denotes the Hadamard

division (pointwise division).

The score function for ∇′t = (∇m′
1,t, . . . ,∇m′

d,t,∇c′
t ) has an analytical solution that is given

by the elements

∇m
k,t =

∂ log p(yt; θt)

∂θmk,t
=

∑
j1=0,1 . . .

∑
jd=0,1(−1)j1+...+jd

∂C(u1,t, . . . , ud,t; θ
c
t )

∂uk,t
· uk,t
∂θmk,t∑

j1=0,1 . . .
∑

jd=0,1(−1)j1+...+jdC(u1,t, . . . , ud,t; θct )
, (5)

∇c
t =

∂ log p(yt; θt)

∂θct
=

∑
j1=0,1 . . .

∑
jd=0,1(−1)j1+...s+jd∂C(u1,t, . . . , ud,t; θ

c
t )/∂θ

c
t∑

j1=0,1 . . .
∑

jd=0,1(−1)j1+...+jdC(u1,t, . . . , ud,t; θct )
, (6)

for k = 1, . . . , d, and with ui,t = Fi(yi,t−ji; θmi,t), for ji ∈ {0, 1}, i = 1, . . . , d, and t = 1, . . . , T .

The denominators in (5) and (6) are equal to the pmf as given in (2). In case of the

Gaussian copula as well as the commonly encountered copulas from the Archimedean class,

analytical expressions for ∇t are available. We refer to Appendix A for further details and to

Schepsmeier and Stöber (2014) for expressions for a range of derivatives of bivariate copulas.

Given that θt is Ft−1-measurable and our model specification is observation driven in the

classification of Cox (1981), we obtain the likelihood function in closed form by a standard

prediction error decomposition,

L(y;ψ) =
T∑
t=1

log p(yt; θt), (7)

with y = (y1, . . . , yT ). We define the corresponding maximum likelihood estimator (MLE)
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of ψ as ψ̂ = arg maxψ L(y;ψ). In practice we obtain the MLE of ψ via the direct numerical

maximization of L(y;ψ) with respect to ψ.

Example: Frank copula with Skellam marginals

As a concrete example, consider the bivariate Frank copula with Skellam marginals. This

combination of copula and marginals is used to perform the simulation study in Section 3.

The Frank copula is a symmetric copula given by

CFr(u1,t, u2,t; θ
c
t ) =

1

θct
log

[
1 +

(exp(−θctu1,t)− 1)(exp(−θctu2,t)− 1)

exp(−θct )− 1

]
, (8)

with θct ∈ R\{0}; see Frank (1979) and Nelsen (2006). When θct → 0, the Frank copula

converges to the independence copula CFr(u1,t, u2,t; 0) = u1,tu2,t.

A Skellam pmf with location parameter µt and scale parameter σ2
t is given by

Pr(Yt = yt;µt, σ
2
t ) = exp

(
−σ2

t

)(µt + σ2
t

σ2
t − µt

)yt/2
I|yt|

(√
σ4
t − µ2

t

)
, (9)

with yt ∈ Z and where I|yt|(·) is the modified Bessel function of order |yt|. The shape of the

Skellam distribution depends on µt and σ2
t and is symmetric for µt = 0, skewed right when

µt > 0, and left-skewed for µt < 0. The excess kurtosis of the Skellam pmf is 1/σ2
t , and it has

the Gaussian distribution as a limiting case. The Skellam distribution was originally derived

by Irwin (1937) and Skellam (1946) as a distribution for the difference between two Poisson

variables. Our parameterization in equation (9) is a reparameterization of the original version

and can be transformed back by substituting µt = λ1,t−λ2,t and σ2
t = λ1,t+λ2,t in (9), where

λ1,t and λ2,t are the means of the underlying Poisson distributions; see also Alzaid and Omair
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(2010).

The mean µt and variance σ2
t in the full model in equation (9) are time-varying. In our

application of Section 4, however, the mean turns out to be insignificantly different from

zero and not time-varying, while the variance remains time-varying. In this case, equation

(9) simplifies to

Pr(Yt = yt;σ
2
t ) = exp

(
−σ2

t

)
I|yt|(σ

2
t ). (10)

We then obtain a Frank copula function C(u1t, u2t; θ
c
t ) with θmi,t = σ2

i,t and

ui,t = Pr(Yi,t ≤ k;σ2
i,t) = exp

(
−σ2

i,t

) k∑
j=−∞

I|j|(σ
2
i,t), i = 1, 2. (11)

3 Simulation study

To investigate the properties of our model in a controlled setting, we carry out two simu-

lation studies. In our first study, we assume that the score driven model of equations (2)

and (4) is the true data generating process and verify the finite sample behaviour of the

maximum likelihood estimates for the parameter vector ψ. In the second study, we consider

a misspecified model setting. We assume that the marginal parameters and the dependence

parameter come from some exogenous dynamic patterns that do not rely on the score func-

tion. We then verify to what extent the score driven framework is able to recover the true

underlying dynamics of the time-varying parameter vector θt. In both simulation studies, we

focus on a positive dependence between two series, that is θct ∈ R+. We specify θ̄ct = log(θct )

as the time-varying parameter rather than θct itself. We adopt the same specification for

the variance of the Skellam distribution, that is θ̄mi,t = log(θmi,t) = log(σ2
i,t) and θ̄mi,t varies
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over time. The score function ∇t in (5) and (6) adapt to this reparameterization into θ̄t by

pre-multiplying ∇t by ∂θ′t/∂θ̄t. This reparameterization yields an estimation procedure that

is numerically more stable. In both simulation studies, the observation series are simulated

from a bivariate Frank copula with Skellam marginals as discussed in Section 2.

3.1 Estimating parameters when model is correctly specified

We simulate S = 500 series of correlated Skellam observations. The length of the sample is

set to T ∈ {250, 1000, 3000}. To generate the data, we apply the algorithm of Nelsen (2006,

p.41) using a numerical inverse cdf of the Skellam distribution. For the log-transforms of

the dynamic parameters θt, we consider equation (4). The estimates of the parameter vector

ψ are obtained via the numerical maximization of the loglikelihood function (7) using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

Table 1 presents the results. The method of maximum likelihood is able to estimate the

parameters in ψ accurately, even for the small sample size T = 250. For T ∈ {1000, 3000},

the maximum likelihood estimates for the unconditional mean θ̄1 and the score loadings

(a1, a2, a3)
′ in the updating equations are virtually equal to the corresponding true parame-

ters. In the case of T = 250, the persistence parameters b1, b2, b3 are underestimated, which

matches small sample biases encountered in similar studies for standard linear time series

models. The biases disappear for larger sample sizes. In the case of T = 3000, the b1, b2, b3

parameters are estimated close to their true values. Finally, we can conclude from the av-

erage computing times t(s) for estimation, also reported in Table 1, that the score driven

methodology applied to the bivariate Frank copula is quite fast. The computing times for

parameter estimation ranges from less than 18 seconds, on average, for T = 250, to approx-
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Table 1: Simulation results under correct model specification

This table reports simulation averages of maximum likelihood estimates of the static parameters for the
Skellam-Frank score driven model of Section 2. The results use S = 500 replications of time series of length
T ∈ {250, 1000, 3000}. The intercepts ω in (4) are set to (I − B)θ̄1 = ω, such that θ̄1 is the unconditional
mean of θ̄t, where θ̄t contains the logs of the elements of θt. The matrices A and B are diagonal with
elements (a1, a2, a3) and (b1, b2, b3), respectively. Standard deviations of the estimates over the Monte Carlo
simulations are in parentheses. The column t(s) denotes the average computation time (in seconds) for
finding the maximum of the log likelihood function. Computations are carried out on a i7-2600, 3.40 GHz
desktop PC using four cores.

T θ̄1,1 θ̄2,1 θ̄3,1 a1 a2 a3 b1 b2 b3 t(s)

true 1.00 1.00 2.00 0.10 0.05 0.10 0.90 0.95 0.98 -

250 1.00 1.01 2.03 0.11 0.06 0.11 0.74 0.77 0.87 17.76
(0.14) (0.14) (0.28) (0.08) (0.06) (0.08) (0.28) (0.27) (0.21) -

1000 1.00 1.00 2.00 0.10 0.05 0.10 0.87 0.91 0.97 59.98
(0.07) (0.07) (0.15) (0.03) (0.03) (0.03) (0.09) (0.09) (0.03) -

3000 1.00 1.00 2.00 0.10 0.05 0.10 0.89 0.94 0.98 108.30
(0.04) (0.04) (0.06) (0.02) (0.02) (0.02) (0.04) (0.08) (0.01) -

imately 108 seconds, for T = 3000. The computations are carried out by an i7-2600, 3.40

GHz desktop PC using four cores.

3.2 Estimating time-varying paths when model is misspecified

Next we deviate from the assumption that the score driven model (2) and (4) is the data

generation process. In our second Monte Carlo study, the time-varying Skellam variances

and the time-varying dependence parameter are generated as sinusoidal patterns with dif-

ferent periods and amplitudes. We investigate to what extent our misspecified score driven

framework is able to identify these time-varying patterns. We generate S = 500 time series

of length T ∈ {250, 1000, 3000} and estimate the parameters in vector ψ by the method of

maximum likelihood.

In Figure 1, we present the true time-varying parameters σ2
1t, σ

2
2t and θct together with

their estimated counterparts σ̂2
1t, σ̂

2
2t and θ̂ct , respectively. The results for T = 1000 and

T = 3000 show that the score driven model is able to capture the true paths of the time-
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Figure 1: Simulation results under mis-specification

The figure presents the point wise Monte Carlo averages (solid fat) over 500 replications of the Skellam
variances σ2

1,t and σ2
2,t, and of the Frank copula parameter θct . All three parameters are parametrized in log

form in the score driven specification. Each panel also contains the true time varying parameter (solid thin)
and a band of two times the point wise standard deviations (dotted). From left to right the panels show
time series length of T = 250, 1000, 3000, respectively.

varying parameters accurately, despite its misspecification. Only in the case of the small

sample size T = 250 and the rapidly changing parameter paths for σ2
1,t, the estimates are

less accurate. In our empirical study in Section 4, we have more than 40,000 observations

per month. Hence we expect the score driven model to perform sufficiently accurately in our

empirical study.
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4 Dependence between discrete price changes

The dependence measures between price changes of individual stocks or assets are the key

ingredients in, for instance, portfolio risk management. In our empirical study, we establish

the intraday dependence structure in high-frequency price changes. Whereas most studies

concentrate on the intraday dynamics of volatility, our study is, to the best of our knowledge,

the first to concentrate on the intraday dynamics of the dependence structure using a copula

approach in a tick-by-tick data analysis.

The data sets consist of price changes of stocks traded at the New York Stock Exchange

(NYSE). The resulting series consist of discrete, integer multiples of the tick-size of one

dollar cent. The observations take values in Z. We model the discrete tick-size price changes

instead of the returns. Münnix, Schäfer, and Guhr (2010) argue that the discrete nature

of the price grid affects the empirical distribution of returns severely. This distribution

concentrates around the actual tick-sizes, is severely multi-modal and, consequently, highly

non-Gaussian.

Several models for data in Z are available in the literature. For example, the model of

Rydberg and Shephard (2003) decomposes stock price movements into activity, direction of

moves, and size of the moves. Freeland (2010), Alzaid and Omair (2014) and Andersson and

Karlis (2014) extend the integer autoregressive (INAR) model for N variables to the case

of Z variables. They propose the Skellam distribution and use static Skellam parameters.

Barndorff-Nielsen et al. (2012) analyze Skellam Lévy processes for intraday price changes.

Shahtahmassebi (2011) present a Bayesian analyses based on a Skellam model for Z variables.

The dynamic Skellam model for time series observations in Z is developed by Koopman, Lit,

and Lucas (2014) based a non-Gaussian state space analysis. In our current framework, we
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adopt the Skellam distribution for the marginals and allow the corresponding parameters to

vary over time using the score driven model of Section 2.

Although the Skellam distribution is an important ingredient of our analysis, our main

focus is on the dependence structure as this feature has received much less attention in other

related studies so far. Our analysis proceeds in two steps. First, we study the dependence

characteristics between price changes of four major NYSE listed financials over a period

of one trading month for a variety of copulas. We consider Bank of America Corporation

(BAC), Citigroup Inc. (C), JPMorgan Chase & Co. (JPM) and Wells Fargo & Company

(WFC). Based on our initial findings for these four stocks, we select the best copula for the

second part of our analysis: an analysis of the intraday dependence dynamics over the long

time span of an entire calendar year.

4.1 Data description

We first analyze intraday stock prices obtained from the TAQ database for April 2012. We

clean the high-frequency data by following the standard procedures described in Brownlees

and Gallo (2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) for TAQ data.

This database has a time stamp precision of 1 second so that for many seconds we obtain

a number of transactions with the same time stamp. It is common practice to merge these

transactions and to replace them by the median price rounded to the nearest tick.

Figure 2 presents the intraday tick price changes for our four selected stocks. We present

the results for a typical trading day, April 23, 2012. We find that more trades with relatively

large price changes occur at the beginning of the day and a quiet period with small or no

price changes takes place during lunch-time. Appendix B contains additional descriptive
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Figure 2: Tick price changes of Bank of America Corporation (BAC), Citigroup Inc. (C), JPMorgan Chase
& Co. (JPM) and Wells Fargo & Company (WFC) on April 23, 2012.

plots of the data.

Table 2 presents descriptive statistics of the tick-size price changes. We find that Citi-

group and JPMorgan are the most liquid stocks in terms of the number of trades, followed

by Wells Fargo and Bank of America. The absolute price level has a clear impact on the

tick-size volatility: the minimum and maximum tick-size changes as well as the tick-size

variance are substantially lower for Bank of America than for the other three institutions.

We account for this effect by using different parameters in the marginal models for each

stock.
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Table 2: Descriptive statistics

The table reports company name, ticker symbol (Code), the number of trades (#Trades), the opening price
at 9:30 AM of the first trading day in the sample (Popen), the closing price at 16:00 PM of the last trading
day in the sample (Pclose), the largest up-tick (↑) measured in multiples of the tick-size, the largest down-tick
(↓), the variance (Var) and mean (Mean) of the tick-size price changes, and the percentage of 0-trades (%0).

Company Code #Trades Popen Pclose ↑ ↓ Var Mean %0

Apr 2012
Bank of America Corp. BAC 41,640 9.53 8.09 7 -6 0.242 -0.004 76.84
Citigroup Inc. C 93,872 36.34 33.03 8 -11 0.753 -0.004 55.93
JPMorgan Chase & Co. JPM 90,936 45.79 42.95 8 -8 0.747 -0.001 54.12
Wells Fargo & Company WFC 64,529 33.85 33.40 8 -9 0.575 0.000 60.77

Jan 2012 - Dec 2012
Bank of America Corp. BAC 560,102 5.76 11.62 7 -6 0.232 0.001 77.30
Citigroup Inc. C 1,084,943 27.20 39.59 11 -15 0.663 0.001 57.87
JPMorgan Chase & Co. JPM 1,029,844 34.10 44.00 20 -16 0.725 0.001 55.30
Wells Fargo & Company WFC 766,712 28.00 34.22 13 -14 0.510 0.001 63.30

4.2 Missing values

Our observation driven model is formulated for a time frequency in seconds. Since we do

not observe a trade for every second during the trading day, we encounter many missing

observations. We distinguish four situations that can occur at second t during a day.

Situation 1: At time t, stock 1 trades while stock 2 does not trade so that the price change

for series 2 is missing at time t. The copula dependence parameter cannot be updated as

we require two observations to update the parameter related to instantaneous dependence.

Furthermore, the marginal variance σ2
1,t cannot be updated by taking derivatives from the

copula mass function in (6) since both observations from series 1 and 2 are needed as input.

In this case, variance σ2
1,t is updated by only using the score of the marginal Skellam log

pmf in (10). No score updating takes place for σ2
2,t and θct and hence these parameters mean

revert by setting ∇m
2,t and ∇c

t to zero in (5) and (6). The contribution to the likelihood at

time t is given by the logarithm of the pmf in (10) with σ2
1,t and y1,t as input.
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Situation 2: At time t, stock 1 does not trade while stock 2 is traded. This is the converse

of Situation 1 and has an analogous solution.

Situation 3: At time t, both stocks trade. The whole time-varying parameter vector θt is

updated according to (4), where the score is obtained by taking derivatives from the copula

mass function in equation (6). The contribution to the likelihood at time t is made by the

logarithm of the copula mass function in (5).

Situation 4: At time t neither stock 1 nor stock 2 trades. In this case, none of the parameters

is updated and there is no contribution to the likelihood.

For the purpose of estimating a dependence parameter, situation 3 has clearly the most

impact. We therefore present in Figure 3 the number of simultaneous trades per half hour

of the trading day. The numbers are averaged over all 250 trading days of the year 2012.

Figure 3 reveals more joint trades at the beginning and the end of the day compared to the

middle of the day. We may therefore expect more information in the data on the dependence

parameter θct at the start and at the end of the day. Figure B.2 in the Appendix reveals that

the same increased trading intensity at the start and end of the trading day occurs for other

stock combinations as well.

4.3 Copula selection

We take the independence copula as a benchmark and verify for a range of copulas whether

they improve the model fit. The model fits are compared by means of the Bayesian Infor-

mation Criterion (BIC) for both static dependence θc and time-varying dependence θct . For

all models considered, the marginal parameters of the Skellam distribution, σ2
1t and σ2

2t are

allowed to vary over time. Our selection of copula functions includes the independence cop-
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Figure 3: The figure displays the number of simultaneous trades per half hour of the trading day as well
as the the number of trades if only CitiGroup or JPMorgan trade. The numbers are averaged over all 250
trading days of the year 2012.

ula (Indep), the symmetric Ali-Mikhail-Haq (AMH), Frank, and Gaussian copulas, and the

asymmetric Clayton (lower tail dependence), Gumbel (upper tail dependence), Joe (upper

tail dependence), and Symmetrized Joe Clayton (SJC) copula (upper and lower tail depen-

dence); see, for instance, Nelsen (2006) and Patton (2006) for the functional specifications

of the these copulas.

For each day, the vector of time-varying parameters θt is initialized at θ1 which is esti-

mated as part of the vector of static parameters ψ. Table 3 presents the model selection

results for all trading days in April 2012. Entries indicate the number of points by which

the corresponding copula outperforms the BIC of the independence copula. Higher entries

are thus preferred.

From Table 3 we learn that dynamic dependence is preferred over static dependence for
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Table 3: BIC Improvements Compared to the Independence Copula over April 2012

The table reports the difference in Bayesian information criterion for the independence copula vis-à-vis
the Gaussian, Ali-Mikhail-Haq (AMH), Frank, Clayton, Gumbel, Joe, and Symmetrized-Joe-Clayton (SJC)

copulas: DBs = BICIndeps − BICτs , with s ∈ {st, dy} and where τ denotes the copula under consideration.
The data are tick price change series for Bank of America (BAC), Citigroup (C), JPMorgan (JPM), and
Wells Fargo (WFC), observed during April 2012. #st and #dy denote the number of parameters in the
case of static and dynamic dependence model, respectively. The marginal Skellam distributions are always
dynamic. The largest difference in BIC compared to the independence copula is boxed for static dependence
and highlighted in gray for dynamic dependence.

BAC/C BAC/JPM BAC/WFC
Copula #st #dy DBst DBdy DBst DBdy DBst DBdy

Gaussian 9 12 367.72 492.44 454.74 430.19 309.00 320.44
AMH 9 12 348.47 456.91 428.41 407.31 288.07 294.79
Frank 9 12 338.51 465.47 416.51 398.64 283.25 283.45
Clayton 9 12 284.95 398.11 368.14 337.74 257.40 255.70
Gumbel 9 12 253.44 369.16 322.37 301.15 222.86 216.10
Joe 9 12 151.58 260.74 190.49 168.69 136.11 119.80
SJC 10 16 268.74 407.11 350.56 353.04 262.81 233.91

C/JPM C/WFC JPM/WFC
Copula #st #dy DBst DBdy DBst DBdy DBst DBdy

Gaussian 9 12 4545.80 4793.97 3593.87 3771.53 3929.64 4108.64
AMH 9 12 4264.01 4421.15 3336.53 3441.86 3660.14 3770.96
Frank 9 12 4469.20 4694.16 3593.59 3751.12 3895.69 4029.04
Clayton 9 12 3447.26 3680.29 2653.37 2836.15 3027.43 3200.86
Gumbel 9 12 3868.24 4083.63 3174.97 3311.71 3468.41 3612.73
Joe 9 12 2693.09 2889.16 2294.63 2410.84 2474.92 2621.57
SJC 10 16 4227.30 4413.54 3411.32 3500.54 3733.42 3835.32

five out of the six pairwise data sets based on the BIC. The symmetric copulas, Gaussian,

AMH, and Frank, are generally preferred over the asymmetric ones. It confirms the some-

what symmetric patterns in the pairwise up and down tick movements encountered in the

scatter plots of the data; see the Appendix for more evidence. The main conclusion of our

first analysis is clear: both for static dependence as well as for dynamic dependence, the

Gaussian copula fits the data best for all stock pairs. The Gaussian copula exhibits zero tail

dependence. Given that copula functions with upper and/or lower tail dependence, such as

Clayton, Gumbel, Joe, and Symmetrized Joe Clayton copulas, fit the data less well, we infer

that tail dependence is not a dominant feature in tick-size price change series.
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4.4 Full year results

In this section we extend our analysis over the entire year 2012. Descriptive statistics for this

larger time span were given in Table 2. The characteristics of the data for all trading days

in 2012 are broadly similar to those for the trading days in April 2012 only. Therefore, we

use the Gaussian copula as our best fitting specification based on our preliminary analysis

in Section 4.3. For the Gaussian copula correlation parameter ρt, we use the time-varying

parameter θct , with

ρt = θct

/√
1 + (θct )

2 . (12)

This parameterization of ρt via θct ensures that the copula dependence parameter is always

within the appropriate interval, that is ρt ∈ (−1, 1). The likelihood for a full year of tick

price changes is maximized in approximately 4 to 15 hours (depending on starting values

and data sets) on a i7-2600, 3.40 GHz desktop PC using four cores. The parameter estimates

are presented in the Appendix.

We are mainly interested in the intraday pattern of the copula dependence parameter.

Therefore, we first compute the point-wise sample mean of the intraday path of the copula

dependence parameter over all 250 trading days of 2012. Figure 4 presents these sample

means together with the confidence bands based on the corresponding sample variances.

We compare our estimates of the intraday Gaussian dependence with an adjusted version

of Spearman’s rank correlation coefficient. This non-parametric rank correlation measure is

computed for a rolling window of 600 seconds using only the observations with simultaneous

trades. The observations are ordered while ties in ranks are corrected in the usual way by

averaging the ranks. The resulting ranks are divided by 1 plus the number of observations.
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Finally we transform the ranks through the inverse normal cdf. The Pearson correlation

between these transformed ranks are presented in Figure 4.
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Figure 4: Point wise mean copula dependence intraday patterns over the 250 trading days in 2012 based on
the Gaussian copula with Skellam marginals (smooth line). The smooth bounds are based on two sample
standard deviations. The noisy series is the adjusted version of Spearman’s non-parametric rank based
estimator.

We find that the dependence between tick-size price changes exhibits a clear daily pat-

tern across all stocks. We see that the trading day starts with a relatively small positive

dependence level. But within the first hour of trading, the average dependence increases to

a higher level where it remains throughout the trading day. Only during the last 15 min-

utes of trading, the dependence drops abruptly to a somewhat lower value. This pattern is

found across all stock pairs. The point wise sample mean of the non-parametric rank-based

dependence measure is much less smooth than our model-based measure. We also observe

that the rank-based measure is significantly lower than the score driven dependence implied
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by the Gaussian copula, which is partly due to the problems with rank-based statistics such

as Spearman’s rho for discrete data. We may conclude that our copula framework uses the

data more efficiently. We emphasize that the estimated dependence patterns are not due

to a lack of observation pairs at the end of the day. By contrast, Figure 3 shows that the

number of joint observations is relatively higher at the start and at the end of the day.

The empirical intraday pattern for the dependence parameter can be expected given

the flow of information over the 24 hour cycle. Throughout the trading day, information

becomes available and can immediately be processed and impounded into stock prices due

to active trading. The accumulated overnight information can only be impounded at the

opening of the trading day. While most of the common macro announcements are made

during the trading day, most major firm-specific information is revealed after the active

trading hours. The information available at the opening may therefore have a relatively

larger idiosyncratic component. This causes the lower dependence level at the start of the

trading day. Interestingly, the lower level in dependence at the opening mirrors the typically

higher levels of intraday volatility during the opening.

It is likely that the short, sudden drop in dependence at the end of the day is related

to the unwinding of open positions by market participants built up over the trading day.

Such unwinding may be spurred by the need to satisfy overnight risk constraints. Hence it

comprises a relatively larger idiosyncratic component and therefore also results in a decrease

in the dependence parameter.
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4.5 Comparison with intraday spline

The smooth patterns for the estimated intraday dependence across all stock pairs may

prompt the question whether we can alternatively consider a smooth function to capture

intraday dependence. We therefore compare our score driven updating function for the cop-

ula dependence parameter ρt with a basic cubic spline function to account for the intraday

seasonal pattern. The width of the confidence bands around the sample averages of the

intraday dependence estimates presented in Figure 4 indicate that there exists considerable

variation in the dependence parameter across the 250 trading days of 2012. For example,

according to the 95% confidence bands the dependence parameter can vary between 0.1 and

0.3 at Noon.

To investigate whether a spline suffices to model the dependence parameter, we keep

our score driven approach for the marginal Skellam distributions, but model the copula

dependence path by a cubic spline regression function as proposed by Poirier (1973). For

the cubic spline regression, we specify the copula parameter by θct = κ ′Wt where κ is a

q × 1 vector of parameters associated with the location of the q spline knots, and Wt is the

t-th column of the weight matrix W as constructed in Poirier (1973). We have considered

different numbers of knots and different locations for the knots in order to control for the

possible sensitivity of the approach. The elements of κ become part of the parameter vector

ψ and are jointly estimated by the method of maximum likelihood.

Table 4 presents the results for a range of different models. We report the loglikelihood

gains and BIC reductions (in parentheses) for the considered spline model compared to

the dynamic score driven Skellam-Gaussian copula model. For almost all combinations,

the loglikelihood gains are reported to be negative, indicating that the score driven model
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Table 4: Model comparison: intraday dependence spline versus score driven dynamics

The entries reflect the gain in log likelihood points (and improvements in BIC in parentheses) of the spline
model compared to the dynamic score driven Skellam-Gaussian copula model. The time points between
braces are the positions of the spline knots. #ψ denotes the number of estimated parameters, i.e., the
dimension of ψ. Stocks are Bank of America (BAC), Citi (C), JPMorgan (JPM), and Wells Fargo (WFC).

Model description #ψ BAC/C BAC/JPM BAC/WFC

Spline {09:30, 12:00, 16:00} 11 -60.13 -54.61 -31.27
(106.06) (95.05) (48.53)

Spline {09:30, 10:00, 16:00} 11 -54.97 -45.84 -19.97
(95.72) (77.50) (25.94)

Spline {09:30, 10:00, 13:00, 16:00} 12 -54.76 -44.23 -18.61
(109.52) (88.45) (37.23)

Spline {09:30, 10:00, 12:00, 14:00, 16:00} 13 -13.89 4.88 25.89
(41.99) (4.41) (-37.77)

C/JPM C/WFC JPM/WFC

Spline {09:30, 12:00, 16:00} 11 -845.33 -604.49 -571.95
(1676.28) (1194.70) (1129.65)

Spline {09:30, 10:00, 16:00} 11 -768.95 -538.29 -504.24
(1523.50) (1062.30) (994.22)

Spline {09:30, 10:00, 13:00, 16:00} 12 -736.52 -513.78 -470.66
(1473.03) (1027.57) (941.32)

Spline {09:30, 10:00, 12:00, 14:00, 16:00} 13 -525.16 -343.89 -254.51
(1064.71) (702.06) (523.27)

outperforms the spline-based dynamic copula model in terms of fit. Although the models are

not nested, the loglikelihood reductions are considerable. It comes as no surprise therefore

that when we compare the models in terms of BIC reductions, we conclude that a fixed

intraday spline does not capture the intraday dependence dynamics between discrete price

changes as accurately as a model with a time-varying score driven dependence parameter.

The score driven approach provides a better statistical description of our high-frequency

data. To provide further evidence, we graphically display the dynamic copula parameter in

Figure 5, for three randomly chosen trading days in 2012. These graphs also reveal that the

daily pattern of θct may deviate substantially from the average intraday seasonal pattern.
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Figure 5: Copula dependence intraday patterns for a random selection of three days in 2012 based on the
Gaussian copula with Skellam marginals. The selected days are 18 January 2012, 6 June 2012 and 12
November 2012. The panels show that the dependence pattern of a single day can be substantially less
smooth than the point wise mean copula dependence path as presented in Figure 4.

5 Conclusions

Many empirical studies have concentrated on extracting high-frequency intraday volatility

measures using tick-by-tick data. Here we have extended this literature to capture the

intraday dynamic features of dependence using an observation driven model-based copula

approach with discrete marginals. We have developed a new model to capture the intraday

seasonal pattern of dependence between discrete tick-size price changes of different stocks.

The complete dependence model is composed of dynamic Skellam marginal distributions for

the discrete price changes combined with a time-varying copula structure. The dynamic

specifications rely on the score of the predictive loglikelihood with respect to the relevant
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dynamic parameters. The model performs well both in a controlled Monte Carlo setting

and in an empirical study using high-frequency data. For four liquid U.S. financial stocks

we found that the dependence structure varies over time during the trading day. There is

a steep increase in dependence within the first hour of trading, and a steep decrease within

the last 15 minutes of trading. We attribute these changes in dependence to the existence

of more idiosyncratic risk components in the discrete price changes during the opening and

closing hours of trading, in particular overnight firm-specific information accumulation when

the market opens and the unwinding of inventory positions when the market closes.
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APPENDICES

A Derivation of the score vector

The derivations presented here focus on bivariate copulas but can easily be extended to higher

dimensions. We assume a time-varying factor θt that consist of three elements, where the first

two elements correspond to the marginal parameters and the third element corresponds to

the copula dependence parameter. We have θt = (θm1,t, θ
m
2,t, θ

c
t )
′. The derivative of a bivariate

copula with respect to θm1,t is given by

∂C(u1,t, u2,t; θ
c
t )

∂θm1,t
=
∂C(u1,t, u2,t; θ

c
t )

∂u1,t
· ∂u1,t
∂θm1,t

. (A.1)

We observe that for the continuous parametric copula functions used in this paper, the first

component on the right hand side of (A.1) can be written as a conditional copula

P (U2,t ≤ u2,t|U1,t = u1,t) =
∂C(u1,t, u2,t; θ

c
t )

∂u1,t
. (A.2)

The second component on the right hand side of (A.1) is the derivative of the first marginal

cdf, u1,t = F1(y1,t; θ
m
t,1), with respect to θm1,t. The derivative of a bivariate copula with respect

to θct is denoted by
∂C(u1,t,u2,t;θct )

∂θct
.

As a concrete example, consider a bivariate Gaussian copula with Skellam marginals,

where θmi,t = log(σ2
i,t), and ρt = θct/

√
1 + (θct )

2. This combination of copula, marginals,

and parameterization is used in the application of Section 4. The Skellam distribution is

discussed is Section 2. The bivariate Gaussian copula is given by

CGa(u1,t, u2,t; ρt) = Φ2

(
Φ−1(u1,t),Φ

−1(u2,t); ρt
)
, (A.3)

where Φ2 is a bivariate standard normal cdf, Φ−1 a univariate inverse standard normal cdf,

and ρt ∈ (−1, 1) is a correlation parameter. The first expression on the right hand side of

(A.1) follows directly from a bivariate normal cdf, we have

∂CGa(u1,t, u2,t, ρt)

∂u1,t
= Φ

(
Φ−1(u2,t)− ρtΦ−1(u1,t)√

1− ρ2t

)
. (A.4)

A probably less well-known, but very useful result is given by Plackett (1954). It states that
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for a bivariate standard Gaussian cdf, we have

∂Φ2(x, y; ρ)

∂ρ
= (2π)−1(1− ρ2)−1/2exp

(
−(x2 − 2ρxy + y2

2(1− ρ2)

)
, (A.5)

where we can substitute x = Φ−1(u1,t), y = Φ−1(u2,t) and ρ = ρt to obtain the appropriate

expression for

∂C(u1,t, u2,t; θ
c
t )

∂θct
=
∂CGa(u1,t, u2,t; ρt)

∂ρt
· ∂ρt
∂θct

= (1 + θct )
−3/2 · ∂CGa(u1,t, u2,t; ρt)

∂ρt
. (A.6)

The first derivatives of the marginal Skellam cdfs in (A.1) are given by

∂ui,t
∂σ2

i,t

= exp
(
−σ2

i,t

) k∑
ν=−∞

[(
ν
σ2
i,t
− 1
)

I|ν|(σ
2
i,t) + I|ν+1|(σ

2
i,t)
]
, (A.7)

with
∂ui,t
∂θmi,t

=
∂ui,t
∂σ2

i,t

∂σ2
i,t

∂θmi,t
= σ2

i,t ·
∂ui,t
∂σ2

i,t

, (A.8)

for i = 1, 2.
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B Further tables and figures
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Figure B.1: The figure shows discrete scatter plots of the bivariate tick price change series of 20 trading
days in April 2012 analysed in Section 4. The diameter of the circle represents the bivariate observation
frequency in the data. We emphasize that the panels only show the situation where both price change series
have a trade at time t. Both axes are for the interval [−3, 3] since tick price changes outside this interval do
not occur frequently enough to become visible in this plot. The reported value between parenthesis in the
panel header is Pearson’s linear correlation between the series.
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Figure B.2: The figure displays the number of simultaneous trades per half hour of the trading day as well
as the the number of trades if only series 1 or series 2 trade. The numbers are averaged over all 250 trading
days of the year 2012. The panels show the six combinations of stocks under consideration. The numbers
on the x-axis represent the number of half hours in a trading day (13 in total).
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â
2

â
3

b̂ 1
b̂ 2

b̂ 3

B
A

C
/
C

-0
.2

63
0.

84
4

0.
11

6
-0

.1
15

-0
.0

02
2.

54
E

-0
4

0.
70

9
0
.0

6
0

0.
0
30

0.
9
10

0
.9

9
7

0.
9
99

(0
.0

32
)

(0
.0

34
)

(0
.0

32
)

(0
.0

02
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

1
1
)

(0
.0

0
1
)

(0
.0

0
3
)

(0
.0

0
3
)

(1
.2

4
E

-0
4
)

(2
.0

1
E

-0
4
)

B
A

C
/
J
P

M
-0

.2
4
9

1.
16

7
0
.0

89
-0

.1
1
6

-0
.0

02
4.

97
E

-0
4

0.
69

5
0.

0
63

0
.0

3
6

0
.9

1
0

0.
9
96

0
.9

9
8

(0
.0

32
)

(0
.0

34
)

(0
.0

32
)

(0
.0

02
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

1
0
)

(0
.0

0
1
)

(0
.0

0
6
)

(0
.0

0
2
)

(1
.3

2
E

-0
4
)

(0
.0

0
1
)

B
A

C
/
W

F
C

-0
.3

0
5

0
.9

1
6

0
.0

4
9

-0
.1

32
-0

.0
04

0.
00

1
0.

67
7

0.
0
83

0.
0
50

0
.8

9
9

0.
9
94

0
.9

9
7

(0
.0

30
)

(0
.0

31
)

(0
.0

30
)

(0
.0

02
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
9
)

(0
.0

0
2
)

(0
.0

0
4
)

(0
.0

0
3
)

(2
.0

3
E

-0
4
)

(3
.5

9
E

-0
4
)

C
/
J
P

M
0
.8

3
1

1.
14

1
0.

10
3

-0
.0

02
-0

.0
02

0.
00

1
0.

05
7

0.
0
61

0.
0
30

0
.9

9
7

0.
9
97

0.
9
99

(0
.0

08
)

(0
.0

08
)

(0
.0

08
)

(1
.8

8E
-0

5
)

(1
.8

8
E

-0
5
)

(1
.8

8
E

-0
5
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
1
)

(9
.6

1
E

-0
5
)

(1
.0

7
E

-0
4
)

(7
.8

7
E

-0
5
)

C
/
W

F
C

0.
83

2
0.

89
8

0.
10

0
-0

.0
02

-0
.0

03
0.

00
1

0.
05

7
0
.0

8
0

0.
0
33

0.
9
97

0
.9

9
6

0.
9
99

(0
.0

08
)

(0
.0

08
)

(0
.0

08
)

(2
.1

5E
-0

5
)

(2
.1

5
E

-0
5
)

(2
.1

5
E

-0
5
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
2
)

(1
.1

0
E

-0
4
)

(2
.4

0
E

-0
4
)

(2
.6

3
E

-0
4
)

J
P

M
/W

F
C

1.
14

5
0.

87
2

0
.1

16
-0

.0
0
2

-0
.0

03
0.

00
1

0.
06

2
0.

0
76

0
.0

3
4

0
.9

9
6

0.
9
96

0
.9

9
8

(0
.0

08
)

(0
.0

08
)

(0
.0

08
)

(2
.0

5E
-0

5
)

(2
.0

5
E

-0
5
)

(2
.0

5
E

-0
5
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
2
)

(1
.1

9
E

-0
4
)

(2
.0

6
E

-0
4
)

(2
.1

6
E

-0
4
)

38


