
TI 2015-025/VIII 
Tinbergen Institute Discussion Paper 

 
Miles, Speed and Technology:  
Traffic Safety under Oligopolistic Insurance 
 
 
Maria Dementyeva  
Erik T. Verhoef  
 
 
 
 
 
 
 
 
 
Faculty of Economics and Business Administration, VU University Amsterdam, and Tinbergen 
Institute, the Netherlands. 

 



 
 
 
 
 
 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 



Miles, speed, and technology: Traffic safety under

oligopolistic insurance

Maria Dementyeva∗, Erik T. Verhoef∗

Department of Spatial Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105,
1081 HV Amsterdam, The Netherlands,

and Tinbergen Institute, Gustav Mahlerplein 117, 1082 MS Amsterdam, The Netherlands

Abstract

We study road safety when insurance companies have market power, and
can influence drivers’ behavior via insurance premiums. We obtain first- and
second-best premiums for different insurance market structures. The insur-
ance program consists of an insurance premium, and marginal dependencies
of that premium on speed and own safety technology choice of drivers. A pri-
vate monopolist internalizes collision externalities up to the point where com-
pensations to users’ benefit matches the full (intangible) costs; in oligopolistic
markets, insurers do not fully internalize collision externalities. Analytical
results demonstrate how insurance firms’ incentives to influence traffic safety
coincide with or deviate from socially optimal incentives. Our results may be
useful for design of pay-as-you-speed and alike insurances as well as policies
related to driving safety.

Keywords: Road safety, collision externality, traffic regulation, congestion
externality, second-best, car accident, car crash
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1. Introduction

Collision externalities are among the most important external costs of
road transport: Parry et al. (2007) estimate that the social costs of road
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crashes for the US correspond to around 4.3% of the GDP, Elvik (2000) con-
cludes that “rough estimates of road accident costs amounting both to 2 and
1% of GNP can be defended as reasonable, depending on whether or not an
economic valuation of lost quality of life is included in the accident costs”,
and Peden et al. (2004) provides in Chapter 2 a survey on the total an-
nual costs of road crashes to high-, middle- and low-income countries. Both
drivers’ behaviour (such as speeding, distance to the next car, attention paid
towards the other road users) and technical characteristics (such as safety
belts, advanced braking systems, windshields, lights, weight, etc.) of vehicles
heavily influence the safety of the car driver and passengers, as well as of oth-
ers on the road. This conclusion has been drawn from both empirical1 and
theoretical works.2 Reanalysis (Aarts and van Schagen (2006)) of the data
from Kloeden et al. (2001) revealed an exponential function between individ-
ual speed and the risk of being involved in a crash on urban roads. Also, on
urban roads the accident rate increases more with increasing speed than on
rural roads. Cohen and Einav (2003) state that seat belt usage enforcement
greatly reduced traffic fatalities: “We estimate that a 1-percentage-point
increase in usage saves 136 lives (using a linear specification), and a 1% in-
crease in usage reduces occupant fatalities by about 0.13% (using a log-log
specification)”.

Furthermore, Delhaye (2007), Rizzi (2008), and Hultkrantz et al. (2012),
observe that incentives stemming from insurance can change drivers’ be-
haviour. However, the effect of insurance companies efforts and incentives to
affect driver behaviour remain under-investigated in the economic literature.
For instance, based on Steimetz (2004), and Gossner and Picard (2005), Rizzi
(2008) considers a rational driver who optimally chooses risk-reducing efforts
(care), such as speed, distance between the cars etc., in a model where car
insurance is available. Rizzi clearly shows that insurance influences drivers’
efforts to drive safely. However, in his work insurance agents do not play
an active role controlling drivers’ choice, and only drivers’ utility functions
are maximized, that is, the insurance agents disregard the external costs the
drivers impose.

The insurance model we consider is inspired by car tracking technologies,

1see, for example, Lave (1985), Cohen and Einav (2003), Aarts and van Schagen (2006),
Steimetz (2008), Hultkrantz and Lindberg (2011), Hultkrantz et al. (2012)

2see, for instance, Jansson (1994), Verhoef and Rouwendal (2004), Nitzsche and
Tscharaktschiew (2013), Wang (2013)
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such as GPS. The latest developments allow tracking tools to be cheap and
efficient, and nowadays many vehicle producers include such equipment in the
default versions of their cars. Bigger insurance companies offer Pay-As-You-
Drive (PAYD) and its extension Pay-As-You-Speed (PAYS) insurances in a
few countries by now, among them the United Kingdom, Spain, Israel, and
the Netherlands. In Japan, car sharing companies charge the rates according
to their customers’ driving behavior. The trial in Bolderdijk et al. (2011)
shows that “PAYD resulted in modest, but significant reduction in speeding
of young drivers”. Lahrmann et al. (2012) studies combination of PAYS
insurance providing economic incentive to drive within speed limits, with
warning from intelligent speed adaptation system if speeding. The authors
conclude that the decrease in speeding was statistically significant, although
the effect decreased over time and had no educating effect. Hultkrantz and
Lindberg (2011a) reported an economic field-experiment that also resulted in
significant reduction of speed-limit violations made by participants compared
to non-participants. The study suggested that economic incentive schemes
may be an effective tool to increase road safety. Hultkrantz et al. (2012) build
an analytical model of self-selected PAYS extension of a mandatory insurance
and illustrate their findings using Swedish data. It was established that
PAYS insurance makes up for the gap between external cost of speeding and
expected revenue of speeding tickets. Insurances based on the actual vehicle
use and intelligent tracking systems, are more actuarially accurate. This
neutralizes asymmetric information in insurance market and may decrease
social costs of driving and make road use safer.

Dementyeva et al. (2015) study the efficiency of regulated and unregulated
insurance markets, taking into account the interactions between the markets
for road trips and the market for traffic safety insurance. In that model, we
assumed that road users’ behaviour involves just one margin: how much to
drive. In this paper we extend the model, and insurance companies can now
also influence road users’ choices in terms of investments in private car safety
for drivers, and speed. The latter may benefit the driver as well as a possible
“partner” in a collision. A social regulator, in turn, has instruments to
affect insurance providers, and thus indirectly also the drivers. We consider
insurance to be mandatory.

Our model describes a two-stage game between obligatory car insurance
providers and road users. First, insurance companies maximize their profit
by optimizing aggregate kilometrage via insurance premium levels, and the
choices of speed and technology via dependency of premiums on these choices,
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subject to equilibrium constraints. Then, each atomistic road user opts for
a safety technology and speed, in order to minimize its generalized price
per kilometer driven. (We assume drivers to be symmetric in terms of their
travel cost functions.) Next, an aggregate kilometrage results from the in-
verse demand function for trips, given this optimized generalized price. This
generalized price includes time costs, investments in own safety technology,
insurance premiums, and a (possibly intangible) part of the expected collision
costs in so far as it is not covered by insurance.

The crash cost per kilometer grows with aggregate kilometrage reflecting
increasing chances of collisions, and thus the generalized price of driving de-
pends on it. We furthermore assume that an individual’s speed choice affects
both one’s own and other road users’ safety, while the technology affects only
the former. The technology chosen by a driver could in reality also influence
the safety level of other road users, but distinguishing between a strictly
internal safety measures (technology investment) and a combined internal-
external safety measure (speed) is helpful for a clear interpretation of our
results. In our terminology, ‘own safety technologies’ include, for example,
air bags, interior head-impact protection, seat belts, child car seats, flamma-
bility of interior materials, etc. Advanced braking systems, tire-pressure
monitoring system, high intensity lamps would rather be included into the
other characteristics of driving, affecting also the safety of others. We refer
to such characteristics as ‘speed’. Because a higher investment in technology
reduces the safety benefits of slowing down, our model reflects the well-known
regularity that drivers may behave more recklessly when being better pro-
tected.3

Following and extending the reasoning provided in Verhoef and Rouwen-
dal (2004) and Dementyeva et al. (2015), we obtain marginal conditions
for the first- and second-best premiums, and their marginal dependencies
of technology and speed.4 In our model we thus acknowledge that com-
panies influence drivers’ behavior via insurance programs. We consider a

3Another important feature that could have been included into the model is the weight
of vehicle: Heavier vehicles increase the damage suffered by other vehicles in the event of
a collision between vehicles while being safer for its own driver. However, mathematical
properties would stay similar, and no additional fundamental insights would be delivered.

4A social regulator can then impose taxes or subsidies on companies and/or road users,
fines for speeding over a certain speed limit, and other regulations. For the sake of trans-
parency, we do not explicitly consider speed limits or other speed policies.
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social welfare-maximizing planner; a private profit-maximizing monopoly;
and oligopolistic markets of firms playing Nash in a Cournot fashion assum-
ing that firms choose their premiums and quantities5 taking quantities (not
premiums) of others fixed. Note that the crucial difference between Cournot
and Bertrand behaviour is not the choice between using price or quantity
as a instrument, but the assumption on which of these two is believed to
be constant for other players. To the best of our knowledge, there has been
no empirical study on the question of whether insurance markets are better
characterized as Cournot or Bertrand oligopolies. Therefore, the more basic
model in Dementyeva et al. (2015) considers both, noting that Cournot can
be considered a polar case where the severity of competition is minimized,
given the number of firms, and that Bertrand outcomes have extra specific
additive terms comparing to Cournot outcomes. Our analysis can thus be
extended to Bertrand competition without, however, delivering new insights
and at a cost of a higher analytical complexity.

A number of conclusions stand out: For each type of market structure,
the insurance premium (function) that drivers face is defined by an insur-
ance premium level in the equilibrium point, and the marginal dependence
of that premium function on speed and technology, given by what we will
call optimal “gradients” of the premium function with respect to the indi-
vidual driver’s choice of speed, and choice of technology (the latter is also
modeled as a continuous variable). Although such a sophisticated, continu-
ous design of insurance premiums may appear unrealistic, we model it this
way in order to identify whether and how the company would prefer to affect
speed and technology choices of its insurees, in an analytical setting that
does not introduce additional second-best distortions arising from imperfect
instruments.

The insurance premiums we derive reflect that monopolists fully internal-
ize the collision externalities imposed by their drivers upon one another, while
competing firms provide only partial internalization. The same is true for the
optimal “gradients” of the premium with respect to the speed and technol-
ogy choices of the road users, but the interactions naturally lead to different
types and degrees of failures, and therefore corrections. These conclusions
thus extend Dementyeva et al. (2015), who considered total kilometrage as
the only margin of behaviour. By assumption made in the current model, a

5In this model, quantities refer to vehicle kilometers driven.
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safer technology may only influence driver’s own crash costs, and does not
directly affect the chance to be guilty of a collision. A driver’s choice to
reduce speed, on the other hand, decreases the risk to cause a collision and
therewith other drivers’ risks, and this fact is reflected in the publicly optimal
use of the gradient of the premium.

The policy implications of the results vary. Both public and private insur-
ers’ objectives depend on the safety level on the road; however, the distinc-
tion between their objective functions causes different insurance premiums
and gradients with respect to speed and technology choices. In order to com-
pensate for non-optimal pricing (and, correspondingly, to fill the gap between
the first- and second-best aggregate kilometrage), a social regulator can intro-
duce subsidies and/or taxes, imposed on either the firms or the drivers. Such
regulation was considered in Dementyeva et al. (2015), for both parametric
and manipulable taxes. Correcting the speed and safety technology choices
with socially imperfect incentives from privately set premiums requires the
social regulator to have the ability to directly affect these same margins.

The paper is organized as follows: We introduce the model in section 2.
Then we start the analysis by finding the first-best social optimum in sec-
tion 3. We continue with the analysis of an oligopolistic market of insurance
firms, competing in Nash–Cournot manner. Section 4 provides us with the
profit-optimizing insurance premiums, as well as the optimal (from insurers’
point of view) regulations of speed and technology choices. Firms that do
not have perfect control over all choices of their clients are considered in
section 5. Section 6 concludes.

2. Model description

There are three types of actors in this model: Road users consume kilome-
ters driven, and choose the speed at which to drive and vehicle technology. In-
surance companies provide auto insurance to (partially) cover collision costs
of the drivers. In doing so, they choose the premium per kilometer, which
they can make dependent on speed and technology chosen by the insuree.
Since it is the marginal dependence of the premium on speed and technology
that matters in equilibrium, we will refer to this dependence as the “gradi-
ents” of the premium, with respect to speed and technology. Finally, the
regulator aims to maximize social welfare; for instance by setting taxes or
subsidies for drivers or insurers.
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One of the main assumptions of the model is that road users are homoge-
neous in costs, and are individually indefinitely small. Due to the atomistic
nature of the drivers, we may assume that individual kilometrage driven by
each of them is infinitesimal compared to the aggregate kilometrage driven
in the network, so that there are no self-imposed accidents, and that each
unit of consumption corresponds to a different driver.6 The terms “driver”
and “atomistic distance driven”, thus, may and will be used interchange-
ably, unless it causes confusion. Because aggregate kilometrage remains price
sensitive, our assumption does not preclude total mobility to vary between
scenarios and hence to co-determine their welfare properties. In order to em-
phasize the atomistic nature of units of consumption, we will also speak of
“particles” in the continuum of kilometers driven. This aspect is important
in the context of our paper, as it defines which part of marginal costs are
internal and which are external to a driver.

We denote with K̄m the set of the drivers/kilometers driven insured by
firm m, m = 1, . . . , N , where N is the total number of firms on the mar-
ket; K̄ =

⋃
mKm. The cardinal number Km = |K̄m| is the total distance

driven by insurees of firm m. K = |
⋃N
m=1 K̄m| =

∑N
m=1Km is the aggregate

kilometrage of all drivers in the network.
Individual road user k faces the following costs of driving: expected col-

lision cost CAk
, travel time cost CTk , and cost of investment into own safety

technology CMk
, all per kilometer driven.

The per-kilometer collision cost for driver k is an additive function CAk
(·) =∑N

m=1Kmc
m
k (Sk, µk; S̄m), where subscript k refers to driver k (and atom-

istic distance dk driven by driver k). The term Kmc
m
k (·) gives the expected

costs of collision between individual k and drivers insured by firm m. The
function CAk

(·) represents the collision cost per kilometer driven, and, thus,
functions cmk (·), for all m = 1, . . . , N , are collision costs “per kilometer, per
other drivers’ kilometer”. Here, speed Sk and technology µk (both scalar)
are chosen by the driver k. The notation S̄m stands for a scalar function
of generalized speed of all drivers insured by firm m taking the continuum

6The assumption of atomistic drivers allows us to disregard decisions on personal total
kilometrage. It is consistent with the idea of individual drivers being too small to influence
the equilibrium outcomes, and avoids tedious specifications needed to prevent that an
individual creates, while driving a certain kilometer, a possibility of hitting herself when
driving another kilometer.
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of all particles’ speeds from the set K̄m as argument.7 Because drivers are
symmetric by assumption, in equilibrium, generalized speed S̄m is equal to
the equilibrium speed S∗m of every driver insured by the firm m. Collision
costs rise with individual and generalized speed going up, and decrease with
growing own level of technology.

The time cost CTk is a decreasing function of individual speed Sk of driver
k. The safety investment CMk

has the own safety technology level µk as
its argument, and it grows while technology increases. The economic life-
time of a car is assumed to be proportional to distance driven, therefore
the total spending on car is considered to be variable costs, proportional to
kilometrage.

Insurance firms cover an exogenous (legally determined) share α of the
drivers’ collision costs. The assumption 0 < α < 1 reflects that insurance
companies may fully cover material/monetary costs of drivers, but leave other
intangible costs, such as emotional costs of drivers and valuation of life, limb
and suffering, at least partly unreimbursed.

A driver k insured by firm l (i.e. k ∈ K̄l) minimizes his generalized price
of driving when choosing Sk and µk:

min
Sk,µk

pk(Sk, µk, ·) = πl(·) + (1− α)CAk
(·) + CTk(Sk) + CMk

(µk), (1)

where πl(·) is the insurance premium charged by the firm. The premium
function depends on many parameters and variables, including individual
speed Sk, speed functions S̄m, for every insurance company m, and own
technology µk, which the firm can affect via the premium gradients. We
first assume that firms can affect both individual speed and technology using
the appropriate gradients of the premium ( ∂πl

∂Sk
and ∂πl

∂µk
), and then section 5

and Appendix B assume that insurers have imperfect control and cannot set
each of the three instruments (premium gradients and levels). Note that the
premium gradients ∂πl

∂Sk
and ∂πl

∂µk
can be set independent of the equilibrium

premium level, and both the premium level and its gradient are present in
the individual’s minimization problem (1).

We assume that, for a given crash, the probabilities of guilt of both par-
ties depend on their speeds. This is reflected by introducing a function

7This implies that marginal change in driver k’s generalized costs CAk
when individual

speed Sn of driver n insured by firm l changes is
∂CAk

∂Sn

∣∣∣
k 6=n

= Kl
∂clk
∂S̄l
· ∂S̄l

∂Sn
, for n and k

being insured by the same firm l.
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γmk (Sk, S̄m), which assigns the probability of guilt of driver k for a given col-
lision between driver k and any other driver insured by firm m.8 (Driver k
does not have to be insured by firm m.) In order to present the insurance
firm’s objective function, we assume that the drivers’ cost functions are con-
tinuous on K̄, which is satisfied for identical drivers, as we assume is the
case, but also if distributions of preferences over drivers or kilometers are
continuous. Insurer’s profit is the difference between the firm’s revenue, i.e.
insurance premiums collected from all drivers k ∈ K̄l, and its payments of
two sorts. One type of payments is coverage of the collision costs of own cus-
tomers when they are guilty of causing a crash; the other type of payments
is coverage of the collision costs of non-guilty parties who suffer from crashes
caused by drivers of that firm. Firm’s l profit function Πl is then as follows:

Πl(·) =

∫
K̄l

πl(Sk, µk)dk

− α
∫
K̄l

N∑
m=1

γmk (Sk, S̄m)Kmc
m
k (Sk, µk, S̄m)dk

− α
N∑
m=1

∫
K̄m

(
1− γlx(Sx, S̄l)

)
Klc

l
x(Sx, µx, S̄l)dx.

(2)

Let us go through equation (2) in more detail. The first integral in (2)
sums up insurance premiums collected from every driver k ∈ K̄l, and, thus,
gives the firm’s revenue. The other two terms reflect the firm’s expenses. An
insurance firm covers collision costs if its client is the guilty party. The term
on the second line represents the compensation paid to firm l’s customers k
when having caused a crash. For each atomistic distance dk driven by driver
k of firm l, α

∑N
m=1 γ

m
k (·)cmk (·) is the expected payment from firm l to driver

k if a collision occurs and that driver k is guilty (otherwise it is covered by
the insurer of the “collision partner”). The first integral represents the total
expenses of this kind, and it thus integrates over the drivers k insured by the
firm.

The final term in (2) represents the aggregate payment of the firm to non-

8Hence, γkm(·) = 1− γmk (·) is the probability of individual k not being guilty of a crash
with a driver insured by firm m, so that other driver is guilty. We choose the risk to cause
a crash to be independent of safety technology choice µk in order to emphasize that µk
only influences own expected collision costs of driver k.
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guilty parties of crashes. The term under the integral sign is the expected
payment to the second driver x, when not guilty, who is involved in each
crash caused by a guilty insuree of firm l. The non-guilty driver might be a
client of firm l, or from any other firm m on the market. Hence, we integrate
over the sets K̄m to sum up the expected collision costs of the victims of
customers of firm l. For m = l, the integral covers the same drivers as the
integral in the second term; for m 6= l, other drivers are covered, and we
emphasize this by integrating over x in the last integral. The values of the
integrals in (2) depend on the domain of integration, and, hence, differ for
K̄m, for all m = 1, . . . , N , even though the functional form of the expected
collision costs is the same due to symmetry of the drivers.

Let B(K1, . . . , KN) be the social benefit function, giving the user benefits
of trips. Firm l maximizes the profit (2) with respect to its total kilome-
trage Kl, speed Sk and technology µk choices of its customers k ∈ K̄l, sub-
ject to equilibrium conditions where driver’s willingness to pay for road use
Dl(K1, . . . , KN) ≡ ∂B(·)

∂Kl
, is equal to the generalized price of road use:

π∗l = Dl(·)− (1− α)CA(S∗l , µ
∗
l , S

∗
l )− CT (S∗l )− CM(µ∗l ). (3)

Here we skip the subscript k referring to individual drivers, since homoge-
neous drivers insured by same firm make equal equilibrium speed and tech-
nology choices, and face equal costs.

From driver’s minimization problem (1) we have following conditions:

∂pk
∂Sk

= 0,
∂pk
∂µk

= 0, ∀k ∈ K̄l. (4)

The f.o.c. ∂Πl

∂Kl
= 0, subject to the equilibrium condition (3), gives the

profit-maximizing insurance premium level; equations ∂Πl

∂Sk
= 0, and ∂Πl

∂µk
= 0,

for all k ∈ K̄l, subject to the individual driver’s conditions (4), define the
optimal sensitivity (or gradient) of the premium with respect to the speed
and technology choices for every road user insured by firm l. Together, the
optimal equilibrium premium level and the optimal gradients ∂πl

∂Sk
and ∂πl

∂µk
,

for all k ∈ K̄l, determine the optimal insurance premium program for firm l.

3. Social optimum

A natural reference and benchmark is the first-best social optimum. We
find this by solving the maximization problem for what we call the “social
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regulator”, who maximizes social surplus, taken as the measure for social
welfare:

maxW(·) = B(K)−
∫
K̄

(
CAk

(·) + CTk(Sk) + CMk
(µk)

)
dk. (5)

The equilibrium condition (3) also applies in the social optimum:9

πfb(·) = D(Kfb)− (1− α)CA(Sfb, µfb, Sfb)− CT (Sfb)− CM(µfb). (6)

In addition, every driver n ∈ K̄ chooses own safety technology µn and indi-
vidual speed Sn such that the conditions (4) hold:

∂π

∂µn
= −(1− α)

∂CAn(µn, ·)
∂µn

− ∂CMn(µn)

∂µn
, (7)

∂π

∂Sn
= −(1− α)

∂CAn(Sn, ·)
∂Sn

− ∂CTn(Sn)

∂Sn
. (8)

In case of a monopolistic market, the collision cost function can be rewrit-
ten as follows: CAn(·) = Kc1

n(Sn, µn, S̄). Then, given first-best choice of
speed and technology Sfb, µfb, the f.o.c. is

∂W
∂K

= D(Kfb)− (CA(·) + CT (Sfb) + CM(µfb))−
∫
K̄

∂CAk
(·)

∂K
dk = 0, ∀n.

Using equilibrium constraint (6), we can rewrite this equation and get the
first-best equilibrium premium level:

πfb = αCA(Sfb, µfb, ·) +Kfb∂CA
∂K

, (9)

which essentially implies full internalization of the collision externalities that
the drivers impose on each other plus a correction for the moral hazard
problem of not considering all collision cost when a part of it is insured and,
thus, borne by the insurer. Note that insurance premium level guaranties
the optimal aggregate kilometrage, but does not directly motivate drivers to
optimally choose their speeds and technologies.

9We use superscript fb to refer to the first-best, and sb for second-best outcomes.
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Let us therefore consider the socially optimal regulation towards speed
and technology choices. The technology-related social optimality condition
for driver n is:

∂W
∂µn

=− ∂

∂µn

∫
K̄

(
CAk

(µ, ·) + CTk(·) + CMk
(µk)

)
dk

=− ∂CAn(µn·)
∂µn

− ∂CMn

∂µn
= 0, (10)

reflecting that µn only affects collision cost for driver n. Substitution of (7)
into (10) gives:

∂π

∂µn
= α

∂CAn(µn, ·)
∂µn

. (11)

The first-best gradient captures the driver’s insured responsibility for collision
costs he is involved in, regardless of whether he will be guilty of the collision.

The first-order condition w.r.t. the driver’s speed choice is:

∂W
∂Sn

=− ∂

∂Sn

∫
K̄

(
Kc1

k(Sk, ·) + CTk(Sk) + CMk
(·)
)
dk

=−K∂c1
n(Sn, ·)
∂Sn

− ∂CTn(Sn)

∂Sn
−
∫
K̄\{n}

K
∂c1

k(·, S̄)

∂Sn
dk = 0. (12)

Combining conditions (8) and (12), we have:

∂π

∂Sn
= αK

∂c1
n(Sn, ·)
∂Sn

+

∫
K̄\{n}

K
∂c1

k(·, S̄)

∂Sn
dk. (13)

It is intuitive that a social regulator internalizes the full collision externality:
the first term in (13) reflects the part of expected collision costs covered by the
insurance and, thus, would not be taken into account by the driver himself,
and the second term accounts for the entire collision externality imposed by
the driver on all other drivers.

The reason why this second term is not weighted by α, to make it cor-
respond to the firm’s compensation to other drivers, is that all drivers are
insured with the same firm, and the uninsured collision cost that driver n
imposes on other drivers is fully translated into a reduced willingness to pay
premium. The firm therefore also fully faces that uninsured part of the exter-
nality: not because it should be compensated, but because it depresses the
willingness to pay premiums. Adding up the fractions α (compensation to
be paid by the firm) and 1−α (reduced willingness to pay for other insurees,
a term unity remains); hence, the second term.
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4. Firms playing Nash–Cournot fashion and controlling drivers’
choices of technology and speed

4.1. Profit-maximizing insurance premium

We now turn to the case of oligopolistic supply of insurance.
In order to choose a profit-maximizing insurance premium (per kilometer

driven), an insurance firm l solves the f.o.c.:

∂Πl

∂Kl

=
∂

∂Kl

∫
K̄l

(
Dl(·)− (1− α)CAk

(·)− CTk(·)− CMk
(·)
)
dk } 1st

− α ∂

∂Kl

∫
K̄l

N∑
m=1

γmk (·)Kmc
m
k (·)dk } 2nd (14)

− α
N∑
m=1

∂

∂Kl

∫
K̄m

(
1− γlx(·)

)
Klc

l
x(·)dx = 0, } 3rd

subject to the equilibrium condition, i.e. for equilibrium choice Sol of speed
and µol of technology (equal for all drivers of the same firm):

πol = Dl(Ko
l , ·)− (1− α)CA(Sol , µ

o
l , ·)− CT (Sol )− CM(µol ). (15)

We number the lines in (14) in order to make it easier to follow the
derivations and to interpret the terms in the final expression. Let us first do
the derivations:

∂Πl

∂Kl

=
(
Dl − (1− α)CA − CT − CM︸ ︷︷ ︸

πo
l

)
} 1st

+

∫
K̄l

(∂Dl
∂Kl

− (1− α)
∂CAk

∂Kl

)
dk } 1st

− α
N∑
m=1

γmn Kmc
m
n − α

∫
K̄l

γlkc
l
kdk } 2nd (16)

− α
N∑
m=1

∫
K̄m

(1− γlx)clxdx− α(1− γln)Klc
l
n = 0, } 3rd
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therefore, given the equilibrium (Sol , µ
o
l ), the optimal premium level is:

πol =−Ko
l

∂Dl
∂Kl

+ (1− α)Ko
l

∂CAn

∂Kl

} 1st (17)

+ α
N∑
m=1

γmn (·)Ko
mc

m
n (·) + αKo

l γ
l
n(·)cln(·) } 2nd

+ α

N∑
m=1

Ko
m(1− γlm)clm(·) + α(1− γln)Ko

l c
l
n(·). } 3rd

In (16), the insurance premium (per kilometer driven) is followed by the
demand related mark-up, plus a term that captures the marginal customer’s
depressing effect on firm l’s other customers’ aggregate willingness to pay.
The latter mimics the motivation of private road operators to internalize
congestion externalities (Edelson (1971); Mills (1981)). The terms in the
second line refer to additional payments from firm l to its own customers when
these are guilty. The first of these is the (expected) payment to the additional
driver when guilty. The second term represents the increase in payments to
firm l’s inframarginal drivers, which have an increased probability of being
guilty in a crash due to the marginal increase in Kl. The terms on the third
line refer to additional payments from firm l to non-guilty drivers, possibly
insured by l and possibly by other firms. The first term covers payments
when insured driver is guilty; it sums over all other drivers on the road,
including those insured by firm l. The second term represents the additional
payments on the firms’ inframarginal insurances, when these drivers cause
a crash and the marginal driver is the non-guilty partner and must still be
compensated by firm l, because the guilty driver is also insured by firm l.

Let us note that for private profit-maximizing monopoly case, N = 1, the
insurance premium (17) reduces to:

πmon = −Kmon ∂D
∂K

+ αCA(Smon, µmon, ·) +Kmon∂CA
∂K

. (18)

The private monopolist makes drivers compensate fully for their expected
collision costs, as well as for their impact on the other drivers on the road
due to negative externality. Quite intuitively, and as will be elaborated below,
on top of the market mark-up, a term is added which is equal to the socially
optimal price rule (9).
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4.2. Optimal speed and technology choice

Also for oligopolists, insurance programs include rules or gradients to
control drivers’ choices of speed and own safety technology.

Let us first analyze how insurance providers can influence individual
drivers’ choice of safety technology level. Each driver insured with firm l
(n ∈ K̄l) looks for a technology µn to balance the investments and the safety,
therefore, minimizing the own generalized price (1):

∂pn
∂µn

=
∂πl(·)
∂µn

+ (1− α)
∂CAn(·, µn)

∂µn
+
∂CMn(µn)

∂µn
= 0,

which is equivalent to

∂πl(·)
∂µn

= −(1− α)Kl
∂cln(µn, ·)
∂µn

− ∂CMn(µn)

∂µn
, ∀n ∈ K̄l. (19)

From firm l’s perspective, individual’s choice must optimize firm’s expected
profit (2):

∂Πl

∂µn
=

∂

∂µn

∫
K̄l

(
Dl(·)− (1− α)

N∑
m=1

Kmc
m
k (µk, ·)− CTk(·)− CMk

(µk)︸ ︷︷ ︸
πl

)
dk

}
1st

− α ∂

∂µn

∫
K̄l

N∑
m=1

γmk (·)Kmc
m
k (µk, ·)dk

}
2nd

− α
N∑
m=1

∂

∂µn

∫
K̄m

(
1− γlx(·)

)
Klc

l
x(µx, ·)dx = 0, ∀n ∈ K̄l.

}
3rd

(20)

In order to make the derivations more transparent, let us point out that
among all integrals in (20), only those taken over the domain K̄l have terms
depending on choice µn made by an individual n ∈ K̄l, and that each driver’s
choice appears among µk in the second line and among µx in the third. Let
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us do the derivations, and take into account the driver’s trade-off (19):

∂Πl

∂µn
=− (1− α)

N∑
m=1

Km
∂cmn (µn, ·)

∂µn
− ∂CMn(µn)

∂µn

}
1st

− α
N∑
m=1

γmn (·)Km
∂cmn
∂µn︸ ︷︷ ︸

2nd

−α(1− γln)Kl
∂cln
∂µn︸ ︷︷ ︸

3rd

=
∂πl
∂µn
− α

N∑
m=1

γmn Km
∂cmn (µn, ·)

∂µn
− α(1− γln)Kl

∂cln(µn, ·)
∂µn

= 0.

Hence, insurance firm’s control for the premium gradient w.r.t. personal
technology is as follows:

∂πl
∂µn

= α
N∑
m=1

γmn (·)Km
∂cmn
∂µn

+ α(1− γln)Kl
∂cln
∂µn

. (21)

To interpret this gradient condition, let us go back to equation (20). The
terms relating to the 1st line of (20) represent the impact of µn on driver
n’s private cost. Because this translates directly into willingness to pay
premium, the firm takes this effect fully into account. The term stemming
from the 2nd line can be seen as a moral hazard term: it is that part of
damage incurred by driver n himself when guilty that he would ignore in
setting µn because it is insured. Hence, it is α times the marginal impact
of µn upon self-inflicted collision costs. The 3rd line reflects the marginal
savings for firm l on compensation to particle n when other drivers insured
by firm l cause a crash with particle n. There is no further firm-internal
externalities involved for this particular firm, as the safety technology choice
only influences own safety and by assumption does not affect any other driver
directly. Of course, for cross-firm effects there are externalities, but those are
not taken into account by firm l.

Comparing condition (21) with formula (11) for the gradient of a regula-
tor maximizing social surplus, we can see that the oligopolistic gradient with
respect to technology lacks the part of a driver’s marginal collision costs
covered by the firm-insurer m 6= l of the driver guilty of a crash (in case
when driver n is the injured party). However, a private monopolist’s opti-
mal gradient coincides with the first-best one, and fully internalized driver’s
responsibility.
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Let us now turn to individual speed choice analysis. From driver’s n ∈ K̄l

perspective, in marginal terms the costs of driving have to be compensated
by benefits from speeding up:

∂pn
∂Sn

=
∂πl
∂Sn

+ (1− α)
∂CAn(Sn, ·)

∂Sn
+
∂CTn(Sn)

∂Sn
= 0, ∀n ∈ K̄l.

Equivalently,

∂πl
∂Sn

= −(1− α)
∂CAn(Sn, ·)

∂Sn
− ∂CTn(Sn)

∂Sn
, ∀n ∈ K̄l. (22)

An insurer maximizes its profit for each driver n it insures by taking the
partial derivative with respect to Sn:

∂Πl

∂Sn
=

∂

∂Sn

∫
K̄l

(
Dl(·)− (1− α)CAk

(Sk, S̄, ·)− CTk(Sk)− CMk
(·)
)
dk

}
1st

− α ∂

∂Sn

∫
K̄l

N∑
m=1

γmk (Sk, S̄m)Kmc
m
k (Sk, S̄m, ·)dk

}
2nd

− α
N∑
m=1

∂

∂Sn

∫
K̄m

(
1− γlx(Sx, S̄l)

)
Klc

l
x(Sx, µx, S̄l)dx = 0.

}
3rd

(23)
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Equivalently10:

∂πl
∂Sn

=

∫
K̄l\{n}

(1− α)Kl ·
∂clk
∂S̄l

∂S̄l
∂Sn

dk︸ ︷︷ ︸
1.1

+ α

N∑
m=1

∂γmn
∂Sn

Kmc
m
n︸ ︷︷ ︸

2.1

+α

N∑
m=1

γmn Km
∂cmn
∂Sn︸ ︷︷ ︸

2.2

+ α

∫
K̄l\{n}

∂γlk
∂S̄l

∂S̄l
∂Sn

Klc
l
kdk︸ ︷︷ ︸

2.3

+α

∫
K̄l\{n}

γlkKl
∂clk
∂S̄l

∂S̄l
∂Sn

dk︸ ︷︷ ︸
2.4

− α
N∑
m=1

∫
K̄m\{n}

∂γlx
∂S̄l

∂S̄l
∂Sn

Klc
l
xdx︸ ︷︷ ︸

3.1

+ α
N∑
m=1

∫
K̄m\{n}

(1− γlx)Kl
∂clx
∂S̄l

∂S̄l
∂Sn

dx︸ ︷︷ ︸
3.2

− α∂γ
l
n

∂Sn
Klc

l
n︸ ︷︷ ︸

3.3

+α(1− γln)Kl
∂cln
∂Sn︸ ︷︷ ︸

3.4

.

(24)

Here we have three channels of n’s speed choice influence: Sn directly affects
the probability of inflicting self-damage via the cost incurred given being
guilty, and via the probability of being guilty, and indirectly via the gen-
eralized speed S̄l as an argument of collision cost functions as well as the
probabilities of being involved in a crash when not being guilty.

The term 1.1 reflects changes of other drivers of firm l willingness to
pay for insurance, as speeding of n increases collision costs of other drivers
through the generalized speed S̄l. Comparing the other terms with those
obtained for technology choice in eq. (21), we spot some similarities. As such,
the term 2.2 mirrors the first term from (21), and being now accompanied by
terms 2.1, 2.3, and 2.4, it represents the moral hazard, namely, self-induced

10One can find detailed derivations in Appendix A
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collision cost covered by insurance and, thus, not taken into account by the
driver. The last term 3.4 of (24) mirrors the last term in (21), and now
together with 3.1,11 3.2, and 3.3, it is equal to a compensation to driver
n when another driver of firm l is guilty. Because, in contrast to what
we assumed for the technology, speed not only affects one’s own expected
collision costs but also those of fellow drivers, we get additional terms in (24)
compared to (21). In particular, terms 2.1 and 3.3 reflect that individual
speed Sn affects the probability γmn to cause a crash and to be involved in
one as a non-guilty party. When the guilty party is insured by firm l, the
cost are firm-internal, and hence firm l finds it optimal to adjust the gradient
accordingly. Terms 2.3, 2.4, 3.1, and 3.2 reflect indirect effect of individual
speed choice on collision costs and probabilities of guilt via generalized speed
S̄l.

The monopolistic gradient follows as a special case from (24) and is rep-
resented as follows:

∂π1

∂Sn
= αK

∂c1
n

∂Sn
+

∫
K̄\{n}

K
∂c1

k

∂S̄1

∂S̄1

∂Sn
dk. (25)

The difference between the first-best gradient (13) and monopolist’s one (25)
only stems from the difference between the first best and oligopolistic aggre-
gate kilometrage. This conclusion is in line with intuition as both the social
planner and a monopolist consider collision costs of all drivers regardless of
the drivers’ role in collisions (characterized by parameters γ1

k), and thus fully
internalize the external impact of driver’s n behaviour.

5. Insurance market with imperfect control of speed or technology
choice

Let us now consider the case where firms do not have perfect control
over all three margins. We assume now that firms charge drivers insurance
premiums that do not depend on speed choices. Firms therefore cannot
influence drivers’ speed directly, but can take into account drivers’ incentives
to balance marginal collision costs and time spent on the road, which is given
by:

(1− α)
∂CAn

∂Sn
+
∂CTn
∂Sn

= 0, ∀n ∈ K̄l. (26)

11In this term, K̄m \ {n} = K̄m, for all m 6= l, as n ∈ K̄l.
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This is equivalent to

(1− α)
N∑
m=1

Km
∂cmn
∂Sn

+
∂CTn
∂Sn

= 0, ∀n ∈ K̄l.

Furthermore, the equilibrium condition for aggregate kilometrage becomes:

π̃l = Dl(·)− (1− α)CAk
(·)− CTk(Sk)− CMk

(µk). (27)

Firm l maximizes its profit (2), where the premium πl is now substituted
by a new premium π̃l, which is not regulated by speed restrictions:

Π̃l(·) =

∫
K̄l

π̃l(·)dk

− α
∫
K̄l

N∑
m=1

γmk (Sk, S̄m)Kmc
m
k (Sk, µk, S̄m)dk

− α
N∑
m=1

∫
K̄m

(
1− γlx(Sx, S̄l)

)
Klc

l
x(Sx, µx, S̄l)dx,

(28)

with respect to the equilibrium conditions (26) and (27). The Lagrangian of
this maximization problem is

Ll = Π̃l + λS

(
(1− α)

N∑
m=1

Km
∂cmn
∂Sn

+
∂CTn
∂Sn

)
, (29)

where the Lagrangian multiplier λS is the shadow price reflecting the marginal
impact of condition (26) on optimized profits. The higher the shadow price,
the stronger the inability of insurance company to control drivers’ speed in-
fluences its profit, and so is the adjustment for the remaining instruments to
imperfectly compensate for this. Analysis of this Lagrangian will provide us
with a new, second-best insurance premium, as well as a second-best gradi-
ent with respect to the driver’s own safety technology. We discuss this and
the analytical representation of λS below, but first present the second-best
optimum premium and gradient for technology under this constraint, leaving
λS as a variable in our analytical expressions.
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The f.o.c. for the Lagrangian with respect to aggregate kilometrage Kl

is:

∂Ll
∂Kl

=
∂Π̃l

∂Kl

+ λS
∂

∂Kl

(
(1− α)

N∑
m=1

Km
∂cmn
∂Sn

+
∂CTn
∂Sn

)
=
∂Π̃l

∂Kl

+ λS(1− α)
∂cln
∂Sn

= 0. (30)

Because ∂Π̃l

∂Kl
in (30) takes on the same form as ∂Πl

∂Kl
in the original firm problem

(14), the new premium per kilometer driven is:

π̃l = πl − λS(1− α)
∂cln
∂Sn

, (31)

where πl represents the analytical expression in (17). The last term in (31)
corrects for the inability to directly affect speed choice, and only takes care
of the uninsured part of collision costs within the firm. The fact that the per
kilometer collision costs are different (typically, higher) when speed cannot
be affected will be reflected already in the different equilibrium values for the
variables in πl.

The f.o.c. with respect to individual safety technology choice µn is:

∂Ll
∂µn

=
∂Π̃l

∂µn
+ λS

∂

∂µn

(
(1− α)

N∑
m=1

Km
∂cmn
∂Sn

+
∂CTn
∂Sn

)
=
∂Π̃l

∂µn
+ λS(1− α)Kl

∂2cln
∂Sn∂µn

= 0. (32)

Comparing (32) to (20), the last term of (32) shows that the stronger in-
terrelation between driver’s speed and technology choices is, the higher the
indirect control of the firm is, and the more strongly it will adjust the gra-
dient with respect to µn in order to also affect Sn. Since drivers only react
to the change of uninsured part of the costs, assuming the rest covered by
the insurer, this cross-effect is multiplied by (1 − α). In this extra term,
the insurance firm internalizes only internal collision costs, and ignores those
crashes where other firms’ clients are involved. The latter implies that a
larger firm has more powerful instruments to influence its drivers’ behavior
as it fines drivers for a larger share of the collision externality they impose
on others.
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Finally, the f.o.c. with respect to individual speed Sn allows us to find
an analytical representation of the Lagrangian multiplier λ:

∂Ll
∂Sn

=
∂Π̃l

∂Sn
+ λS

∂

∂Sn

(
(1− α)

∂CAn

∂Sn
+
∂CTn
∂Sn

)
=
∂Π̃l

∂Sn
+ λS

(
(1− α)

∂2CAn

∂S2
n

+
∂2CTn
∂S2

n

)
= 0. (33)

From (33) we obtain the Lagrangian multiplier λ, equal to the marginal firm’s
profit over the marginal relaxation of the condition (26):

λS = − ∂Π̃l/∂Sn

(1− α)
∂2CAn

∂S2
n

+
∂2CTn

∂S2
n

. (34)

The magnitude of the shadow price λS (and so an incentive of insurance firm
to control its drivers’ speed choice via premiums and optimal “gradients” for
technology) is proportional to firm’s marginal profit with respect to individ-
ual speed choice, in the numerator of (34). The higher the losses a firm faces
due to speeding, the stronger will be its effort to use available instruments to
control the speed choice. On the other hand, λS is inversely proportional to
the marginal change of the equilibrium condition (26), which reflects the sen-
sitivity of the equilibrium perceived price with respect to speed. The closer
the denominator to zero, the higher is the speed change induced in reaction
to the firm’s manipulation of speed via the instruments available to the firm
(µn and Kl, here), because drivers will have to make a larger adjustment in
speed to achieve equilibrium again. The role of the denominator is thus to
reduce λ when perceived price reacts strongly to Sn, as this implies that a
change in that price will induce only a relatively small adjustment in Sn.

Lack of firm’s control over drivers’ choice of own safety technology in the
presence of (firm’s) speed regulation, as well as an inability to control either
of the variables Sn and µn, are not conceptually different from the case we
have just considered, and will therefore not be presented analytically. The
corresponding Lagrangian multipliers of the cross effects are the following:

λM = − ∂Π̄l/∂µn

(1− α)
∂2CAn

∂µ2n
+

∂2CMn

∂µ2n

, (35)

where Π̄l stands for the profit of firm whilst insurance premium is considered
to be dependent on speed but not on technology.
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Appendix B presents the case where the firm can only set a premium,
independent of individual’s speed or technology choice. The firm hence has
to compensate for lack of control over optimal gradients control by adapting
its insurance premium level.

6. Conclusion

In this paper we analyzed car insurance schedules that allow insurance
firms and a social regulator to influence safety on the road via multiple con-
trols over individual drivers’ behavior. We compare the first-best social op-
timum with an insurance market of private profit-maximizing firms, given
that insurance is obligatory. The insurance premium schedules that we con-
sider consist of the equilibrium insurance premium level, along with what we
call the “gradients” of the premium function with respect to the individual
driver’s choices of speed and own safety technology. Speed may be consid-
ered to represent all the individual choices of drivers that influence both the
drivers’ own and other drivers’ safety. Unlike speed, safety technology by
our assumption only decreases drivers’ own collision costs, without influenc-
ing other drivers’ safety directly. But it does affect other drivers’ behaviour
indirectly, through risk compensation mechanisms via speed adjustments.
Congestion was not considered, meaning that individual speed does not di-
rectly depend on the number of drivers entering the road, but indirectly there
is a channel via speed adjustment in the face of higher traffic volumes.

The expressions we derive for the three policy instruments in the different
scenarios are complex and hard to decompose, and thus hard to compare
between scenarios. In Appendix C, we try to give a systematic account. In
this concluding section we discuss the main conclusions just verbally.12

Our main framework assumes that insurance firms can control both speed
and technology choices of the drivers. In that case, companies offer insurance
at a certain premium per kilometer driven, and use the optimal gradients in
order to motivate drivers to choose a certain equilibrium speed and technol-
ogy. The insurance premium is thus characterized by three choices by the
insurance company: the level of the premium and the two gradients. The

12Tables C.2-C.5 explain the notations used in summarizing Table C.1, and provide
the intuition behind every term. Table C.1 includes formulas of optimal premium levels
and gradients with respect to driving characteristics, “rephrased” in the way that makes
comparison of the results more transparent.
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level is used to affect kilometrage. Similar to what was found in Dementyeva
et al. (2015), the profit maximizing premium internalizes part of the exter-
nality but not all of it, as long as there are more than one insurer on the
market. The implied tax regulation of insurance premium levels developed
there stays relevant in this extended model.

The internalization of externalities by an insurance firm is also reflected in
the marginal dependence of the premium functions on individual’s speed and
technology level (see formulae (11), (13), (21), and (24)). When setting the
optimal profit-maximizing gradients, the firm again only partly internalizes
marginal externalities imposed by its insurees upon other drivers. That is,
it takes care only of that part of the total collision costs it has to cover,
and ignores the costs covered by other firms, as well as other firms’ drivers’
own risks. For instance, in case of technology control, this implies that
an insurance firm’s optimal gradient is less steep than the one of a social
regulator; that is, a social regulator is stricter to an individual driver’s choice
of own safety technology, than a private firm, and a larger firm is stricter, than
a firm with lower market power. A private profit-maximizing monopolist’s
gradients coincide with the first-best ones, if aggregate kilometrage were the
same. We also note that a monopolist faces the full externality, and not
only the insured part of it which has to be compensated. The uninsured
part depresses the willingness to pay premiums by its own customers, and is
thus included into the optimal premium level and the optimal gradient with
respect to individual speed choice.

We also considered the case of imperfect control over drivers’ behavior.
When only one of the two “gradient” variables (e.g., technology choice) can
be controlled by the insurance firm directly, the other one (here, speed) can
still be controlled indirectly via the insurance premium, and by the gradi-
ent of the first one. The corresponding optimization problem represents a
second-best problem. The associated solutions for the insurance premium
and the remaining optimal gradient include, in the Lagrangian multiplier,
terms correcting for the lack of control over the third margin. The stronger
the mutual dependence between driver’s speed and technology is, the more
effective indirect control of insurance firm is. Also, a firm with larger mar-
ket power implies a higher degree of internalization of collision externalities.
Thus, a larger firm has better instruments of indirect control. The higher
the losses a firm faces due to speeding, the stronger will be its effort to use
accessible instruments to control the speed choice. The role of the correc-
tive term is reduced when the perceived price reacts strongly to individual
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speed, as this means that a change in that price will induce a relatively small
adjustment in speed.

The results achieved in this paper can be used for evaluation of road
safety policies. Adjustment of the insurance premium level was thoroughly
studied in Dementyeva et al. (2015). Depending on the number of insurance
firms in the market and their size, a social regulator can introduce subsidies
or taxes in order to correct for the collision externalities uninternalized by
insurance firms. A no-claim policy can be used as an instrument to imple-
ment the optimal gradients by the firms. According to our analysis, such
means as (upper) speed and (lowest) technology limits, as well as other pos-
sible regulative actions, are needed even when (oligopolistic) firms manage to
influence drivers’ behaviour directly. Only a private profit-maximizing mo-
nopolist would give the same incentive for drivers to choose their own safety
technology as a social regulator would, and only so if aggregate kilometrage
were the same.

Insurance schemes that implement premium gradients can be operational-
ized in multiple ways, including the use of penalties for risky driving. Like-
wise, drivers choosing PAYS insurance might get certain bonuses (against tra-
ditional insurance) for careful behavior. Such tools receive increasing atten-
tion and were discussed, among others, in Bolderdijk et al. (2011), Hultkrantz
and Lindberg (2011a), and Lahrmann et al. (2012).

This paper also offers some perspective on future research. Our model
includes a number of important assumptions. The first to mention is that the
model is deterministic. While in reality many processes and variables of the
road traffic are better described as stochastic, for the moment, we exclude any
of it from our consideration. Furthermore, we excluded possible congestion
(and so its influence on speed choice), the drivers were assumed to be sym-
metric, information about expected collision costs as well as about the depen-
dence of insurance premiums on speed and technology was full and available
equally to all actors on the market,and the parameter α is assumed to be
exogenous. Relaxation of these assumptions such as including drivers’ diver-
sity (they can have different value of time or safety, level of income, location,
be more or less dangerous and/or risk-averse), and considering asymmetric
information and stochastic elements (notably, crashes), gives possible direc-
tions to further develop the model. Heterogeneity of drivers would call for
product differentiation, for instance, for making insured share of crash costs
endogenous or even considering insurance deductibles; i.e. fixed amount that
drivers have to pay in the event of a crash rather than proportional shares
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of the costs.
These extensions will further complicate the analysis and may, indeed, be

viable only in numerical exercises, but there is no reason to expect they could
overturn or invalidate the conclusions that we have drawn with respect to
the social efficiency of the choice of premiums and gradients that imperfectly
competitive firms make in the context of car insurance policies.
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Appendix A.

Let us do the derivations of optimal premium gradient with respect to
individual speed (23):

∂Πl

∂Sn
=− (1− α)

∂CAn(Sn, ·)
∂Sn

− ∂CTn(Sn)

∂Sn
−
∫
K̄l\{n}

(1− α)
∂CAk

(Sk, S̄l, ·)
∂Sn

dk
}

1st

− α
N∑
m=1

(∂γmn
∂Sn

Kmc
m
n + γmn Km

∂cmn
∂Sn

) }
2nd

− α
∫
K̄l\{n}

( ∂γlk
∂Sn

Klc
l
k + γlkKl

∂clk
∂Sn

)
dk

}
2nd

− α
N∑
m=1

∫
Km\{n}

(
− ∂γlx
∂Sn

Klc
l
x + (1− γlx)Kl

∂clx
∂Sn

)
dx

}
3rd

− α
(
− ∂γln
∂Sn

Klc
l
n + (1− γln)Kl

∂cln
∂Sn

) }
3rd

=
∂πl
∂Sn
−
∫
K̄l\{n}

(1− α)Kl ·
∂clk(Sk, µk, S̄l)

∂Sn
dk

}
1st

− α
N∑
m=1

(∂γmn
∂Sn

Kmc
m
n + γmn Km

∂cmn
∂Sn

) }
2nd

− α
∫
K̄l\{n}

( ∂γlk
∂Sn

Klc
l
k + γlkKl

∂clk
∂Sn

)
dk

}
2nd

− α
N∑
m=1

∫
Km\{n}

(
− ∂γlx
∂Sn

Klc
l
x + (1− γlx)Kl

∂clx
∂Sn

)
dx

}
3rd

− α
(
− ∂γln
∂Sn

Klc
l
n + (1− γln)Kl

∂cln
∂Sn

)
= 0.

}
3rd

∂CAk
(Sk, S̄l, ·)
∂Sn

∣∣∣
k 6=n,n∈K̄l

=
N∑
m=1

Km
∂cmk (Sk, µk, S̄m)

∂Sn

∣∣∣
k 6=n,n∈K̄l

= Kl ·
∂clk(Sk, µk, S̄l)

∂Sn

∣∣∣
k 6=n

(A.1)
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Appendix B. Insurance market with no control over speed or tech-
nology choices

Once a private profit-maximizing firm does not have control of speed or
technology choice of its drivers, it solves the following constrained maximiza-
tion problem: max Π̂l with premiums that do not directly reflect individual
speed and safety technology. The equilibrium constraints are:

π̂l(·) = Dl − (1− α)CAn − CTn − CSn , (B.1)

(1− α)
∂CAn

∂µn
+
∂CMn

∂µn
= 0, (B.2)

(1− α)
∂CAn

∂Sn
+
∂CTn
∂Sn

= 0. (B.3)

We will use notations condM and condS for the expressions on the left-
hand side (B.2) and (B.3). We work with the corresponding Lagrangian
that includes λ̂M and λ̂S, the Lagrangian multipliers of condM and condS,
respectively:

L̂ = Π̂l + λ̂M · condM + λ̂S · condS.
From FOCs we conclude that the Lagrangian multipliers are a solution of
the following linear system:

∂Π̂l

∂Sn
+ λ̂M ·

∂ condM

∂Sn
+ λ̂S ·

∂ condS

∂Sn
= 0, (B.4)

∂Π̂l

∂µn
+ λ̂M ·

∂ condM

∂µn
+ λ̂S ·

∂ condS

∂µn
= 0. (B.5)

Solving the system, we get:

λ̂M = −

∣∣∣∣∣ ∂Π̂l

∂Sn

∂condS
∂Sn

∂Π̂l

∂µn
cross

∣∣∣∣∣/
∣∣∣∣ cross ∂condS

∂Sn
∂condM
∂µn

cross

∣∣∣∣ , (B.6)

λ̂S = −

∣∣∣∣∣ cross ∂Π̂l

∂Sn

∂condM
∂µn

∂Π̂l

∂µn

∣∣∣∣∣/
∣∣∣∣ cross ∂ condS

∂Sn
∂condM
∂µn

cross

∣∣∣∣ , (B.7)

where cross stands for the cross-effects ∂condM
∂Sn

and ∂condS
∂µn

, both being equal

to ∂2Cn

∂Sn∂µn
.

The resulting Lagrangian multipliers λ̂M and λ̂S are not (easily) repre-
sentable via the analytical forms of λS from (34) and λM from (35), and do
not allow clear intuitive interpretation. We therefore leave it out of the main
paper.
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Appendix C. Summarizing and comparing policy rules across sce-
narios
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Table C.1: Summarizing table
Social planner Private profit-maximizing

monopoly
Oligopoly

premium (9): αA+B (18): αA+B +M (17): Ml + (1− α)Bl + αγAl + αγBl
+α(1− γ)A−l + α(1− γ)Bl
= Ml +Bl + αγAl + α(1− γ)A−l

gradient wrt indi-
vidual technology
choice

(11): α∂A∂µ α∂A∂µ (21): αγ ∂Al

∂µ + α(1− γ)∂al∂µ

gradient wrt indi-
vidual speed choice

(13): α∂A∂S +H (25): α∂A∂S +H (24): (1− α)hl

+α ∂γ∂SAl + αγ ∂Al

∂S + α ∂γ∂S gl + αγhl
−α ∂γ∂SGl + α(1− γ)Hl − α ∂γ∂Sal + α(1− γ)∂al∂S
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Table C.2: Notations for summarizing Table C.1

Notation Interpretation Term Eq.
A full expected per-kilometer per-driver collision

costs
CA (9), (18)

B social marginal external expected collision costs K ∂CA

∂K
(9), (18)

M monopoly market-power mark-up −K ∂D
∂K

(18)

Ml oligopoly market-power mark-up −Kl
∂Dl

∂Kl
(17)

Bl firm-internal marginal external collision costs Kl
∂CA

∂Kl
(17)

γAl self-inflicted part of expected collision cost in-
curred by (guilty) driver n insured by firm l

∑N
m=1 γ

m
n (·)Kmc

m
n (·) (17)

(1− γ)A−l part of expected collision costs imposed by a guilty
driver of firm l on all other drivers

∑N
m=1 Km(1− γlm)clm(·) (17)

γBl firm-internal expected collision cost imposed by
driver n when guilty, on all other drivers insured
by firm l

Klγ
l
n(·)cln(·) (17)

(1− γ)Bl expected collision cost incurred by driver n, caused
by all (other) drivers insured by firm l when guilty

(1− γln)Klc
l
n(·) (17)
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Table C.3: Notations for summarizing Table C.1

Notation Interpretation Term Eq.

H social marginal external expected collision cost
with respect to driver n’s speed

∫
K̄\{n}K

∂c1k
∂S̄

∂S̄
∂Sn

dk (13), (25)

∂A
∂S

marginal private expected collision cost with re-
spect to own speed for driver n

∂CAn (Sn,·)
∂Sn

(13), (25)

∂A
∂µ

marginal private expected collision costs with re-
spect to own technology choice for driver n

∂CAn (µn,·)
∂µn

(11)

γ ∂Al

∂µ
self-inflicted part of marginal expected collision
cost with respect to own technology choice in-
curred by (guilty) driver n insured by firm l

∑N
m=1 γ

m
n (·)Km

∂cmn
∂µn

(21)

(1− γ)∂al
∂µ

expected marginal collision cost incurred by driver
n caused by all other drivers insured by firm l

(1− γln)Kl
∂cln
∂µn

(21)

hl firm-internal marginal external expected collision
cost imposed by driver n due to his speed choice
on all other drivers insured by firm l

∫
K̄l\{n}

Kl
∂clk
∂S̄l

∂S̄l

∂Sn
dk (24), 1.1
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Table C.4: Notations for summarizing Table C.1

Notation Interpretation Term Eq.
∂γ
∂S
Al self-inflicted part of marginal expected collision cost incurred

by (guilty) driver n with respect to speed choice, via the chan-
nel of guilt probability only

∑N
m=1

∂γmn
∂Sn

Kmc
m
n (24), 2.1

∂γ
∂S
al firm-internal part of marginal external expected collision cost

with respect to speed imposed by driver n’s choice of speed
via the channel of guilt probability only

∂γln
∂Sn

Klc
l
n (24), 3.3

∂γ
∂S
Gl ignored by firm l marginal external expected collision cost

imposed by driver n’s speed choice on other drivers via the
channel of guilt probability only

∑N
m=1

∫
K̄m\{n}

∂γlx
∂S̄l

∂S̄l

∂Sn
Klc

l
xdx (24), 3.1

∂γ
∂S
gl firm-internal marginal external expected collision

∫
K̄l\{n}

∂γlk
∂S̄l

∂S̄l

∂Sn
Klc

l
kdk (24), 2.3

cost imposed by driver n’s speed choice on other drivers
insured by firm l via the channel of guilt probability only

γ ∂Al

∂S
self-inflicted part of marginal expected

∑N
m=1 γ

m
n Km

∂cmn
∂Sn

(24), 2.2

collision cost incurred by driver n’s choice of speed
when guilty via the channel of (expected per-kilometer
per-driver) collision cost only
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Table C.5: Notations for summarizing Table C.1

Notation Interpretation Term Eq.

(1− γ)∂al
∂S

firm-internal part of marginal external expected
collision cost self-imposed by driver n’s choice of
speed when not being guilty via the channel of
(expected per-kilometer per-driver) collision cost
only

(1− γln)Kl
∂cln
∂Sn

(24), 3.4

γhl firm-internal marginal external expected collision
cost imposed by driver n’s choice of speed on all
other drivers insured by firm l when these drivers
are guilty via the channel of generalized group
speed only

∫
K̄l\{n}

γlkKl
∂clk
∂S̄l

∂S̄l

∂Sn
dk (24), 2.4

(1− γ)Hl marginal external expected collision cost imposed
on other non-guilty road users due to driver n’s
speed choice via the channel of generalized group
speed only when drivers insured by firm l are guilty

∑N
m=1

∫
K̄m\{n}(1− γ

l
x)Kl

∂clx
∂S̄l

∂S̄l

∂Sn
dx (24), 3.2
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