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1 Introduction

An economist, when asked to model decision making under risk or uncer-

tainty for normative purposes, would typically work within the expected

utility framework with constant relative risk aversion (that is, power util-

ity). A statistician, on the other hand, would model economic catastrophes

through probability distributions with heavy tails. Unfortunately, expected

power utility is fragile with respect to heavy-tailed distributional assump-

tions: expected utility may fail to exist or it may imply conclusions that are

‘incredible’.

Economists have long been aware of this tension between the expected

utility paradigm and distributional assumptions (Menger, 1934), and the

discussions in Arrow (1974), Ryan (1974), and Fishburn (1976) deal explic-

itly with the trade-off between the richness of the class of utility functions

and the generality of the permitted distributional assumptions. Compelling

examples in Geweke (2001) corroborate the fragility of the existence of ex-

pected power utility with respect to minor changes in distributional assump-

tions.

The combination of heavy-tailed distributions and the power utility fam-

ily may not only imply infinite expected utility, but also infinite expected

marginal utility, and hence, via the intertemporal marginal rate of substi-

tution (the pricing kernel), lead to unacceptable conclusions in cost-benefit

analyses. For example, with heavy-tailed log-consumption and power utility,

the representative agent should postpone any unit of current consumption

to mitigate future catastrophes. The latter aspect was recently emphasized

by Weitzman (2009) in the context of catastrophic climate change. Weitz-

man also argues that attempts to avoid this unacceptable conclusion will

necessarily be non-robust.1

1Related questions about the validity of expected utility analysis in a catastrophic

climate change context were analyzed by Chichilnisky (2000) and Tol (2003), and, more

recently, by e.g., Horowitz and Lange (2009), Karp (2009), Arrow (2009), Nordhaus (2009,

2011), Pindyck (2011), Buchholz and Schymura (2012), and Chanel and Chichilnisky
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In this paper we contribute to this literature on the question of how to

conduct expected utility analysis in the presence of catastrophic risks by de-

riving general theoretical compatibility results on the utility function of the

expected utility model, leaving probability distributions unrestricted. Our

theoretical results are context-free, and are relevant and allow application to

many fields encountering catastrophic risk analysis, such as, perhaps most

noticeably, risk management and insurance, but also finance and economet-

rics, hydrology, meteorology and environmental economics.

1.1 Four Principles

Our paper is built on four principles, which will recur in our analysis:

(i) Catastrophic risks are important. To study risks that can lead to

catastrophe is important in many areas, e.g., financial (insurer, bank, trader)

distress, traffic accidents (bridge collapse, airplane crash, flight control sys-

tem failure), dike bursts, killer asteroids, nuclear power plant disasters, and

extreme climate change. Such low-probability high-impact events should

not be ignored in cost-benefit analyses for policy making.

(ii) A good model ‘in the center’ is not necessarily good ‘at the edges’.

Suppose we have estimated a function C = a+ bY , relating consumption C

to disposable income Y . The dots in Figure 1 represent the data and the

line gives the resulting ordinary least squares prediction Ĉ = â + b̂Y . For

incomes in the center, roughly between 40 and 80, the consumption function

can be well approximated by the regression line. How useful is this result

for very low (or very high) incomes? Not very useful. For very low incomes,

predicted consumption would be negative! This does not mean that a linear

consumption function is useless. But it is only useful in the center of the

domain. Models are approximations, not truths (cf. Goovaerts, Kaas and

Laeven, 2010, p. 301), and approximations may not work well if we move

too far away from the point of approximation. Examples are abundant and

easy to find.2 In quantitative risk management, it has become common

(2013).
2Newton’s theory works fine for cars and trains, but not for space ships. Pharmaceutical

testing is typically performed on adult men, and may (and often does) work differently

for women and children (Litt, 1997).
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Figure 1: A consumption function

practice to use separate models for the central part of the data and for

the extremes, and to ‘glue’ the models together at a carefully chosen order

statistic; see Peng (2001), Johansson (2003) and Necir and Meraghni (2009)

and the references therein.

(iii) The price to reduce catastrophic risk is finite. Are we willing to

spend all our wealth to avoid children being killed at a dangerous street?

Or the dikes to burst? Or a power plant to explode? Or a killer asteroid to

hit the Earth? Or climate to change rapidly? No, we are not. To assume

the opposite (that a society would be willing to offer all of its current wealth

to avoid, mitigate or insurance against catastrophic risks) is not credible,

not even from a normative perspective. There is a limit to the amount of

current consumption that the representative agent is willing to give up in

order to obtain one additional certain unit of future consumption, no matter

how extreme and irreversible a catastrophic risk may be. In other words:

the expected pricing kernel is finite.

(iv) Light-tailed risks may result in heavy-tailed risk. When x is normally

distributed (light tails) then 1/x has no moments (heavy tails). Also, when

x is normally distributed then ex has finite moments, but when x follows a

Student distribution, then ex has no moments. Even if physical processes do
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not have heavy tails in their distribution, this does not, however, imply that

functions of these physical processes cannot have heavy tails. For example,

it may well be reasonable to use heavy-tailed distributional assumptions to

model future (log) consumption.

1.2 Contribution and Outline

Specifically, our analysis delivers necessary and sufficient conditions on the

utility function of the expected utility model to avoid fragility of an expected

utility based cost-benefit analysis to its distributional assumptions. The

conditions we derive ensure that expected utility and expected marginal

utility remain finite also under heavy-tailed distributional assumptions, and

are context-independent. They guarantee a valid axiomatization of expected

utility and avoid incredible consequences in a cost-benefit analysis. We

are not aware of other work on this problem in the literature that is of

comparable degree of generality.

By leaving distributional assumptions unrestricted, we accommodate

principles (i) and (iv) above; by ensuring that expected (marginal) util-

ity remains finite, we account for (iii); and by inspecting the necessary and

sufficient conditions we derive, we conclude that the widely adopted power

utility function should not be used with catastrophic (heavy-tailed) risks

that have non-negligible support ‘at the edges’, confirming (ii). Instead,

the exponential utility (see e.g., Gerber, 1979, Ch. 5, and Goovaerts et al.,

2004) or Pareto utility (Ikefuji et al., 2013) are more appropriate.

The remainder of the paper is organized as follows. Section 2 introduces

the setting and notation. Section 3 studies expected (marginal) utility and

catastrophic risk in a general setting, deriving results on the trade-off be-

tween permitted distributional assumptions and the existence of expected

(marginal) utility. Section 4 generalizes the main result of Section 3 (to

arbitrary order of differentiation). Section 5 concludes. Proofs are relegated

to the Appendix.
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2 Setting and Notation

We formulate our cost-benefit analysis as a decision under uncertainty prob-

lem, in Savage (1954) style. We fix a set S of states of nature and we let A
denote a σ-algebra of subsets of S. One state is the true state. We also fix

a set C of consequences (outcomes, consumption) endowed with a σ-algebra

F . Since we are only interested in monetary outcomes, we may take C = R+.

A decision alternative (policy bundle) X is a measurable mapping from S
to C, so that X−1(A) ∈ A for all events A ∈ F . We assume that the class

of all decision alternatives X is endowed with a preference order �.

Definition 2.1. We say that expected utility (EU) holds if there exists

a measurable and strictly increasing function U : C → R on the space of

consequences, referred to as the utility function, and a probability measure

P on A, such that the preference order � on X is represented by a functional

V of the form X �→ ∫
S U(X(s)) dP = V (X). Thus, the decision alternative

X ∈ X is preferred to the decision alternative Y ∈ X if, and only if, V (X) ≥
V (Y ).

In the Von Neumann and Morgenstern (1944) framework, the utility

function U is subjective, whereas the probability measure P associated with

A is objective and known beforehand (decision under risk). In the more

general framework of Savage (1954) adopted here, the probability measure

itself can be, but need not be, subjective (decision under uncertainty). We

henceforth assume that U is defined for x ≥ 0, twice differentiable, and such

that U ′(x) > 0 and U ′′(x) < 0 for x > 0.

Since the axiomatization of EU by Von Neumann and Morgenstern

(1944) and Savage (1954), numerous objections have been raised against it.

These objections relate primarily to empirical evidence that the behavior of

agents under risk and uncertainty does not agree with EU. Despite impor-

tant developments in non-expected utility theory, EU remains the dominant

normative decision theory (Broome, 1991; Sims, 2001), and the current pa-

per stays within the framework of EU. Our results presented below provide

compatibility conditions under which expected utility theory may reliably

provide normatively appealing results, also in the presence of catastrophic
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risks. Of course, one may legitimately question whether EU is the appro-

priate normative theory for decision making under catastrophic risks and

(continue a) search for better theories; see e.g., Chichilnisky (2000). This

is, however, beyond our scope.

Definition 2.2. We say that a risk ε : S → R is heavy-tailed to the left

(right) under P if its moment-generating function is infinite: E (eγε) = ∞
for any γ < 0 (γ > 0).

Examples of heavy-tailed risks are the Student, lognormal, and Pareto

distributions. Heavy-tailed risks provide appropriate mathematical models

for low-probability high-impact events, such as financial or environmental

catastrophes; see e.g., Laeven, Goovaerts and Hoedemakers (2005) and the

references therein.

3 Finite Expected (Marginal) Utility and Heavy

Tails

We state the following result, which dates back to Menger (1934).

Proposition 3.1. If EU is to discriminate univocally among all possible

alternative outcome distributions, the utility function must be bounded.

Proposition 3.1 states that the EU functional is finite for all outcome

distributions if, and only if, the utility function is bounded. Moreover, it

follows as a direct corollary that the axiomatization of EU is valid for all

outcome distributions if, and only if, the utility function is bounded. The

implications are non-trivial: boundedness of the utility function must hold

not just in exotic situations but also in more familiar and economically

relevant settings involving high levels of uncertainty. Only a combination of

utility function and outcome distribution that leads to finite expected utility

is covered by the axiomatic justification of EU.

Now consider, in a simple one-period setting, a representative agent with

time-additive EU preferences and time-preference parameter ρ > 0. Con-

sumption at time t = 1, C1, is commonly restricted to a budget-feasible
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consumption set which is subject to uncertainty (ε1). We assume that the

budget restriction takes the generic form

C∗
1 (ε1) ≤ B exp(Aε1), B,A > 0, (1)

which need not be best-possible and thus accommodates essentially all prac-

tical applications. Here C∗
1 is optimal consumption at t = 1. We exploit (1)

to derive compatibility conditions on the utility function.

We normalize without loss of generality the agent’s time t = 0 consump-

tion, C0, by setting C0 = 1, and we define the pricing kernel (or intertem-

poral marginal rate of substitution) as follows:

P (C∗
1 ) =

U ′(C∗
1 )

(1 + ρ)U ′(1)
. (2)

The expectation E(P ) represents the amount of consumption in period 0

that the representative agent is willing to give up in order to obtain one

additional certain unit of consumption in period 1.

Let RRA(x) = −xU ′′(x)/U ′(x) and ARA(x) = −U ′′(x)/U ′(x) denote

relative and absolute risk aversion, respectively, and let

α∗ = inf
x>0

RRA(x), β∗ = sup
x>0

ARA(x).

The following result states that the expectation of the pricing kernel is

finite for all outcome distributions whenever the concavity index ARA(x) is

bounded.

Proposition 3.2. Assume that EU holds and that the budget feasibility

restriction (1) applies.

(a) If α∗ > 0 and ε1 is heavy-tailed to the left under P, then E(P ) = ∞;

(b) If β∗ < ∞ and α∗ = 0, then E(P ) < ∞ for any ε1.

If the EU maximizer has decreasing absolute risk aversion and increasing

relative risk aversion, as is commonly assumed (Eeckhoudt and Gollier, 1995,

Section 4.2, Hypotheses 4.1 and 4.2), a complete and elegant characterization

of boundedness of the expected pricing kernel can be obtained, as follows.

Proposition 3.3. Assume that EU holds and that the budget feasibility

restriction (1) applies. Assume furthermore that RRA(x) exists and is non-

negative and non-decreasing for all x ≥ 0 and that ARA(x) is non-increasing

9



for all x > 0. Then, E(P ) < ∞ for any ε1 if and only if
∫ γ
0 ARA(x) dx < ∞

for some γ > 0.

Remark 3.1. Notice that, when
∫ γ
0 ARA(x) dx = ∞ for some γ > 0, both

α∗ > 0 and α∗ = 0 can hold. If α∗ > 0 then we do not need the full force

of Proposition 3.3; it is sufficient that ε1 is heavy-tailed to the left. Then

E(P ) = ∞ by Proposition 3.2(a). If α∗ = 0 then heavy-tailedness alone is

not sufficient, but we can always find an ε1 such that E(P ) = ∞. When∫ γ
0 ARA(x) dx = ∞ then β∗ = ∞. But when

∫ γ
0 ARA(x) dx < ∞, both

β∗ < ∞ and β∗ = ∞ can occur.

Example 3.1. An example of an ARA satisfying
∫ γ
0 ARA(x) dx = ∞ and

α∗ > 0 is that of power utility. An example of an ARA with
∫ γ
0 ARA(x) dx =

∞ and α∗ = 0 is a function which behaves as −1/(x log x) for values of x

close to 0 and in addition satisfies the conditions of the proposition.

Example 3.2. An example of an ARA satisfying
∫ γ
0 ARA(x) dx < ∞ and

β∗ = ∞ occurs when ARA(x) = x−δ (0 < δ < 1). An example of an ARA

satisfying
∫ γ
0 ARA(x) dx < ∞ and β∗ < ∞ occurs in the case of exponential

utility in which ARA(x) = β (0 ≤ β < ∞), or Pareto utility (Ikefuji et al.,

2013). A sufficient condition for
∫ γ
0 ARA(x) dx < ∞ to hold is that there

exists 0 ≤ δ < 1 such that lim supx↓0 xδARA(x) < ∞.

The above propositions provide necessary and sufficient conditions on

the utility function to ensure that expected utility and expected marginal

utility (hence the expected pricing kernel) are finite, also in the presence of

heavy tails. These compatibility results are readily applicable to standard

welfare maximization problems. The importance of the results lies in the

fact that (a) if (minus) expected utility is infinite, the axiomatic justification

of EU is not valid, and (b) if the expected pricing kernel is infinite, then the

amount of consumption in period 0 which the representative agent is willing

to give up in order to obtain one additional certain unit of consumption in

period 1 is infinite, which is not credible in most settings.

Remark 3.2. Weitzman (2009) recently noted, in a highly stylized setting of

extreme climate change, that heavy-tailed uncertainty and power utility are

incompatible, since this combination of uncertainty and preferences implies

an infinite expected pricing kernel. To avoid this, Weitzman introduces a
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lower bound on consumption, argues that this lower bound is related to a

parameter that resembles the value of a statistical life (VSL), and proves that

the expected pricing kernel approaches infinity as the value of this parameter

approaches infinity (the ‘dismal theorem’). Weitzman further argues that

this VSL-like parameter is hard to know.

Incompatible pairs of utility functions and distribution functions indeed

exist, in the sense that the expected pricing kernel or other important policy

variables become infinite. In fact, our results above provide necessary and

sufficient conditions on the utility function for the expected pricing kernel

to exist, also under heavy tails. But we object to the dismal theorem for the

following reason: our results explicate that the dismal theorem is based on

an ex ante incompatible (invalid) model specification. It is avoided when the

economic model (utility function) is compatible with the statistical model

(heavy tails). Note that only then Savage’s axiomatization of EU is valid.

4 Generalization to Arbitrary Order

Assume U is differentiable for all degrees of differentiation. We denote

by U (m) the mth derivative of U , m = 0, 1, . . .. Furthermore, assume

(−1)mU (m)(x) < 0, for x > 0 and m = 0, 1, . . .. Proposition 3.3 readily

generalizes to the following result, valid for any order of differentiation:

Proposition 4.1. Arbitrarily fix m = 0, 1, . . .. Assume that EU holds and

that the budget feasibility restriction (1) applies. Assume furthermore that

−xU (m+1)(x)/U (m)(x) exists and is non-negative and non-decreasing for all

x ≥ 0 and that −U (m+1)(x)/U (m)(x) is non-increasing for all x > 0. Then,

E
(
U (m)(C∗

1 )/U
(m)(1)

)
< ∞

for any ε1 if and only if∫ γ

0
−U (m+1)(x)/U (m)(x) dx < ∞

for some γ > 0.

Remark 4.1. For m = 0, −U (m+1)(x)/U (m)(x) is connected to the (re-

ciprocal of the) fear of ruin index (Foncel and Treich, 2005). For m = 1,
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−U (m+1)(x)/U (m)(x) is the ARA(x). For m = 2, −U (m+1)(x)/U (m)(x) is

the index of absolute prudence (see e.g., Gollier, 2001, p. 265).

Remark 4.2. For m = 0, Theorem 4.1 imposes conditions on the (reciprocal

of the) fear of ruin index, rather than directly on the utility function, as in

Proposition 3.1. In view of the fact that the utility function is a cardinal

(or interval) scale, which is unique up to positive affine transformations, one

may argue that it is more appealing to consider and restrict the “normalized”

function −U (m+1)(x)/U (m)(x).

5 Concluding Remarks

We have derived necessary and sufficient conditions in the EU model to

avoid fragility of the model to distributional assumptions in an EU based

cost-benefit analysis. Based on our generic results regarding the relationship

between the richness of the class of utility functions and the generality of the

permitted distributional assumptions, applications should restrict to utility

functions that are compatible with distributional assumptions. This guar-

antees a valid axiomatization of EU and avoids the unacceptable conclusion

that society should sacrifice an unlimited amount of consumption to reduce

the probability of an economic catastrophe by even a small amount.

The analysis in our paper applies to many policy making settings involv-

ing catastrophic risks, such as the development of new financial incentive

schemes to mitigate the risk of extreme systemic failures and resulting fi-

nancial economic crises, policies concerning medical risks (pandemic flu and

vaccination risks), and economy-climate catastrophe. Furthermore, appli-

cations to insurance premium calculation and risk measurement using the

equivalent (or zero) utility principle or the certainty equivalent (or mean

value) principle (see Goovaerts, De Vylder and Haezendonck, 1984, and De-

nuit et al., 2006) are straightforward.

In future work, one may analyze the same problem for the dual theory

of choice under risk (Yaari, 1987). Also, one could assume more structure

on the permitted stochasticity (yet still allow for heavy tails), such as the

existence of some moments as in Arrow (1974), in order to broaden the

constraints on the utility function.
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Appendix: Proofs

Proof of Proposition 3.1: See Menger (1934, p. 468) in the context of St.

Petersburg-type lotteries, and also Arrow (1974, p. 136) and Gilboa (2009,

pp. 108-109). Menger (implicitly) assumes boundedness from below and

demonstrates that boundedness from above should hold, and it is straight-

forward to generalize his result to an a priori unrestricted setting.

Proof of Proposition 3.2: Let α∗ > 0. The EU maximizer is then more

risk-averse in the sense of Arrow-Pratt than an agent with power (CRRA)

utility of index α∗. It follows from (2) that

P ′(C∗
1 )

P (C∗
1 )

=
U ′′(C∗

1 )

U ′(C∗
1 )

= −ARA(C∗
1 ).

Since ARA(x) = RRA(x)/x ≥ α∗/x, we then have

E(P ) =
1

1 + ρ
Eexp

(
−
∫ 1

C∗
1

d log P (x)

)
=

1

1 + ρ
Eexp

(∫ 1

C∗
1

ARA(x) dx

)

≥ 1

1 + ρ

∫
C∗

1≤1
exp

(∫ 1

C∗
1

(α∗/x) dx

)
dF (ε1)

=
1

1 + ρ

∫
C∗

1≤1
(C∗

1 )
−α∗

dF (ε1) ≥ B−α∗

1 + ρ

∫
C∗

1≤1
e−Aα∗ε1 dF (ε1) = ∞,

using (1) and the fact that ε1 is heavy-tailed to the left. This proves part (a).

Intuitively, if agent 1 is more risk-averse in the sense of Arrow-Pratt than

agent 2, and if it is optimal to postpone all consumption for agent 2, then

this will also be optimal for agent 1.

Next let α∗ = 0 and β∗ < ∞. The EU maximizer is then less risk-averse

in the sense of Arrow-Pratt than an agent with exponential (CARA) utility

of index β∗. Since α∗ = 0, we have 0 ≤ ARA(x) ≤ β∗ and hence

E(P ) =

∫
C∗

1≤1
P dF (ε1) +

∫
C∗

1>1
P dF (ε1)

≤ 1

1 + ρ

∫
C∗

1≤1
exp

(∫ 1

C∗
1

β∗ dx

)
dF (ε1)

+
1

1 + ρ

∫
C∗

1>1
exp

(
−
∫ C∗

1

1
ARA(x) dx

)
dF (ε1)

≤ eβ
∗
Pr(C∗

1 ≤ 1) + Pr(C∗
1 > 1)

1 + ρ
< ∞.
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Proof of Proposition 3.3: To prove the ‘only if’ part, we assume that∫ γ
0 ARA(x) dx is infinite for every γ > 0, and then show that there exist

(S,A,P) and ε1 defined on it such that E(P ) = ∞. We note that β∗ = ∞.

Define a function g : (0, 1] → [1,∞) by

g(y) = exp

(∫ 1

y
ARA(x) dx

)
.

Then,

E(P ) ≥ 1

1 + ρ

∫
C∗

1≤1
g(min(C∗

1 , 1)) dF (ε1).

Recall from (1) that C∗
1 ≤ BeAε1 , and let ε∗1 be such that BeAε∗1 = 1, so that

0 < BeAε1 ≤ 1 if and only if ε1 ≤ ε∗1. Define u : (−∞,∞) → [0,∞) by

u(ε1) =

⎧⎨
⎩g(BeAε1)− 1 if ε1 ≤ ε∗1,

0 if ε1 > ε∗1.

Since ARA(1) > 0, g is monotonically decreasing and we obtain∫
C∗

1≤1
g(min(C∗

1 , 1)) dF (ε1) ≥
∫
ε1≤ε∗1

g(BeAε1) dF (ε1)

=

∫
ε1≤ε∗1

(u+ 1) dF (ε1) = E(u) + Pr(ε1 ≤ ε∗1).

Strict monotonicity of g implies its invertibility. Hence we can choose u to

be any non-negative random variable whose expectation does not exist (for

example, the absolute value of a Cauchy distribution), and then define ε1

through B1e
τε1 = g−1(u+ 1). With such a choice of ε1 we have E(P ) = ∞.

To prove the ‘if’-part we assume that
∫ γ
0 ARA(x) dx is finite. This im-

plies that
∫ 1
0 ARA(x) dx is finite, so that

E(P ) =
1

1 + ρ

∫
C∗

1≤1
exp

(∫ 1

C∗
1

ARA(x) dx

)
dF (ε1)

+
1

1 + ρ

∫
C∗

1>1
exp

(
−
∫ C∗

1

1
ARA(x) dx

)
dF (ε1)

≤ Pr(C∗
1 ≤ 1)

1 + ρ
exp

(∫ 1

0
ARA(x) dx

)
+

Pr(C∗
1 > 1)

1 + ρ
< ∞,

using the fact that α∗ = RRA(0) = 0.
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