
TI 2014-127/III 
Tinbergen Institute Discussion Paper 

 
The Forecast Combination Puzzle:  
A Simple Theoretical Explanation  
 
 
Gerda Claeskens1  
Jan Magnus2  
Andrey Vasnev3  
Wendun Wang4  
 
 

 
 
 
1 KU Leuven, Belgium; 
2 Faculty of Economics and Business Administration, VU University Amsterdam, and Tinbergen 
Institute, the Netherlands; 
3 University of Sydney, Australia; 
4 Erasmus School of Economics, Erasmus University Rotterdam, and Tinbergen Institute, the 
Netherlands.  
 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the 
ambition to support innovative research and offer top quality academic education in core areas of 
finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



The forecast combination puzzle:

A simple theoretical explanation

September 26, 2014

Gerda Claeskens
KU Leuven, Belgium

Jan R. Magnus
VU University, Amsterdam and Tinbergen Institute, The Netherlands

Andrey L. Vasnev
University of Sydney, New South Wales, Australia

Wendun Wang
Econometric Institute, Erasmus University Rotterdam and Tinbergen Institute, The

Netherlands

1



Abstract:

This papers offers a theoretical explanation for the stylized fact that forecast com-
binations with estimated optimal weights often perform poorly in applications.
The properties of the forecast combination are typically derived under the as-
sumption that the weights are fixed, while in practice they need to be estimated.
If the fact that the weights are random rather than fixed is taken into account dur-
ing the optimality derivation, then the forecast combination will be biased (even
when the original forecasts are unbiased) and its variance is larger than in the
fixed-weights case. In particular, there is no guarantee that the ‘optimal’ forecast
combination will be better than the equal-weights case or even improve on the
original forecasts. We provide the underlying theory, some special cases and an
application in the context of model selection.
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1 Introduction

When several forecasts of the same event are available, it is natural to try and find
a (linear) combination of the forecasts which is ‘best’ in some sense. Empirical
evidence and extensive simulations show that a simple average often performs
best — better than a theoretically derived optimum. This finding is known as the
‘forecast combination puzzle’. Its history is elegantly summarized in Section 4 of
Graefe et al. (2014). A particularly rigorous attempt to explain the puzzle, using
simulations and an empirical example, was undertaken by Smith and Wallis (2009)
who showed that the reason lies in the estimation error.

One important fact has, however, been overlooked in all (or almost all) previous
research, namely the fact that the optimal weight derivation and its estimation are
separated. This is the case in Bates and Granger (1969) and it remains the case
in later contributions, important and insightful as they may be, such as Hansen
(2008), Elliott (2011), Liang et al. (2011), and Hsiao and Wan (2014). This separa-
tion is quite common in econometrics, although its dangers have been highlighted,
specifically in the model-averaging literature which explicitly attempts to combine
model selection and estimation, so that uncertainty in the model selection proce-
dure is not ignored when reporting properties of the estimates; see for example
Magnus and De Luca (2014).

To better understand the problem, let us consider the well-known situation
of feasible generalized least squares. We have a linear regression model under
the simplest assumptions, except that the errors are not white noise but follow a
first-order autoregressive process with parameter r. We typically estimate r, say
by r̂, and then assume that r is fixed at r̂, thus ignoring the added noise caused
by the estimation of r. The resulting generalized least squares estimator is then
assumed to be normally distributed, even though this is clearly not the case. But
asymptotically all is well, assuming that r̂ is a consistent estimator of r.

In the forecast puzzle the role of r is played by the weights w, but now there
is no easy asymptotic justification for ignoring the noise generated by estimating
the weights. To begin with it is not clear what ‘asymptotic’ means here. What
goes to infinity? The number of forecasts? If so, then the number of weights also
goes to infinity. The number of observations underlying the total (but finite) set
of forecasts? That would make more sense, but it would be difficult to analyze.

In this paper we acknowledge explicitly that optimal weights should be derived
by taking the estimation step into account. In order to highlight our main findings
we provide graphical illustrations for the case of two forecasts, as analyzed in Bates
and Granger (1969). We thus linearly combine two forecasts of an event µ:

yc = wy1 + (1− w)y2. (1)

If the weight w is considered to be fixed, then the variance of the combination will
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be
var(yc) = w2σ2

1
+ (1− w)2σ2

2
+ 2w(1− w)ρσ1σ2, (2)

where σ2

1
and σ2

2
are the variances of y1 and y2 and ρ = corr(y1, y2) is the correla-

tion.

σ2

2

σ2

1

w∗0 1

F

Figure 1: Variance of forecast combination, two dimensions: fixed weights

The variance is a quadratic function of w, as plotted in Figure 1. If w = 0 we
obtain σ2

2
; if w = 1 we obtain σ2

1
. The optimum F is reached when w = w∗, the

optimal weight giving the smallest variance of the forecast combination.
Now suppose that the weights are estimated, so that they are random rather

than fixed. In the special case where (y1, y2, w) follows a trivariate normal distri-
bution, the combination is biased (even when the original forecasts are unbiased),
since

E yc = µ+ cov(w, y1 − y2), (3)

and the variance is given by

var(yc) = (Ew)2σ2

1
+ (1− Ew)2σ2

2
+ 2(Ew)(1− Ew)ρσ1σ2

+ var(w) var(y1 − y2) + (cov(w, y1 − y2))
2. (4)

In another special case where w is independent of (y1, y2), the combination is
unbiased (E yc = µ) and

var(yc) = (Ew)2σ2

1
+ (1− Ew)2σ2

2
+ 2(Ew)(1− Ew)ρσ1σ2

+ var(w) var(y1 − y2). (5)
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Figure 2: Variance of forecast combination, two dimensions: random weights under
normality

In either case the variance is shifted upwards, as shown in Figure 2. The dashed
curve is the same as in Figure 1, showing not only the optimum F but also the
equal-weights point E. The solid line gives the variance as a function of Ew and
the optimum is reached at the same point w∗ as before, but leading to a higher
variance of the forecast combination. For comparison we add the equal-weights
point w = 1/2 (point E), which is not optimal but its variance is smaller than
in the estimated-weights case (point R). This figure provides the essence of our
answer to the forecast combination puzzle.

In general, when the weights are estimated, the combined forecast will be
biased, as in (3), and its variance is now given by

var(yc) = (Ew)2σ2

1
+ (1− Ew)2σ2

2
+ 2(Ew)(1− Ew)ρσ1σ2

+ E [(w − Ew)(y1 − y2) ((Ew)y1 + (1− Ew)y2 − µ)]

+ E[(w − Ew)2(y1 − y2)
2]− (cov(w, y1 − y2))

2. (6)

There are additional terms now that shift and distort the fixed-weights curve of
Figure 1, and this is illustrated in Figure 3. The optimal weight is now given by
w∗∗ rather than by w∗. Note that if we would plot the mean squared error rather
than the variance, the story would be the same.
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Figure 3: Variance of forecast combination, two dimensions: random weights,
general case

These three graphs provide the essence of the paper. The underlying formulae
will be derived in m rather than in two dimensions, but the story remains the
same. In Section 2 we reiterate the classical forecast combination problem in a
multivariate setting assuming that the weights are fixed. In Section 3 we analyze
the properties of the forecast combination when the weights are random and the
estimation is explicitly taken into account. Some special cases are considered in
Section 4. Section 5 provides the connection between forecast combination and
forecast/model selection. Our explanation of the puzzle is summarized in Section 6
and some concluding remarks are offered in Section 7.

2 Moments of the forecast combination: fixed

weights

Thus motivated, let y = (y1, . . . , ym)
′ be a vector of unbiased forecasts so that

E yj = µ for all j, and let w = (w1, . . . , wm)
′ be a vector of fixed (nonrandom)

weights constrained by
∑

j wj = 1. Assuming that y has a finite variance Σyy , we
obtain the mean and variance of the forecast combination yc = w′y as

E yc = µ, var(yc) = w′Σyyw. (7)
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It is easy to show that the variance is minimized (as a function of w, under the
constraint

∑

j wj = 1) when w = w∗, where

w∗ =
Σ−1

yy ı

ı′Σ−1
yy ı

(8)

and ı denotes the vector of m ones. The optimal forecast is then y∗c = w∗′y and
its variance is

var(y∗c ) =
1

ı′Σ−1
yy ı

. (9)

These are well-established results; see Bates and Granger (1969) for the bivariate
case and Elliott (2011) for its multivariate extension.

Denote the diagonal elements of Σyy by σ2

1
, . . . , σ2

m. Then, for each j,

var(y∗c ) ≤ σ2

j . (10)

This follows by considering the vectors aj = Σ
1/2
yy ej and b = Σ

−1/2
yy ı, where ej

denotes the m-dimensional vector with one in its j-th position and zeros elsewhere.
Then, by Cauchy-Schwarz,

1 = (e′jı)
2 = (a′jb)

2 ≤ (a′jaj)(b
′b) = (e′jΣyyej)(ı

′Σ−1

yy ı) = σ2

j / var(y
∗
c ). (11)

Hence the optimally combined forecast has smaller variance than each of the in-
dividual forecasts. Equality can occur for at most one of the individual forecasts,
because Σyy is assumed to remain positive definite. Equality for the j-th fore-
cast occurs if and only if aj and b are linearly dependent, that is, if and only if
cov(yi, yj) = var(yj) for i = 1, . . . , m.

We note that we imposed the restriction that the weights add up to one, but
not that each weight lies between zero and one. If all covariances are zero so
that Σyy is diagonal, then the optimal weights are given by (1/σ2

j )/
∑

i(1/σ
2

i )
(j = 1, . . . , m), and these clearly lie between zero and one. But this holds only if
Σyy is a diagonal matrix. Even in the case where only one covariance is not zero,
say cov(yi, yj) = cov(yj, yi) 6= 0 for some i and j, the optimal weights w∗

i and w∗
j

do not necessarily lie between zero and one; they do if and only if

corr(yi, yj) <
min(σi, σj)

max(σi, σj)
. (12)

Apparently, the combination of a high positive correlation with a high variation
in reliability forces the optimal weights outside the (0, 1) interval. Of course, it is
possible to choose a positive definite matrix, say V , such that the components of
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V −1ı are all positive, for example the diagonal matrix V = diag(σ2

1
, . . . , σ2

m). An
alternative set of weights can then be defined as

w† =
V −1ı

ı′V −1ı
, (13)

and these weights lie between zero and one, but they are — in general — not
optimal. The forecast combination y†c = w†′y is still unbiased, but its variance is
now

var(y†c) =
ı′V −1ΣyyV

−1ı

(ı′V −1ı)2
. (14)

Letting x = V −1/2ı and P = V −1/2ΣyyV
−1/2, we obtain

var(y†c)

var(y∗c )
=

x′Px

x′x
·
x′P−1x

x′x
(15)

and hence, by Kantorovich’s inequality (Abadir and Magnus, 2005, Exercise 12.17),

1 ≤
var(y†c)

var(y∗c )
≤

(λ1 + λm)
2

4λ1λm
, (16)

where λ1 and λm denote the largest and smallest eigenvalue of P , respectively.
This provides an estimate of the loss of precision caused by choosing w† instead
of w∗. In the most common case where we choose V = diag(σ2

1
, . . . , σ2

m), we note
that P is the correlation matrix associated with Σyy. Although important, the
issue of optimal weights outside the (0, 1) interval is not considered further in the
current paper.

When weights are fixed, the optimal forecast combination y∗c is an improvement
over individual forecasts, because it remains unbiased and has smaller variance.
In applications, however, the weights will typically be random and we now turn to
this more realistic case.

3 Moments of the forecast combination: random

weights

As in the previous section, let y = (y1, . . . , ym)
′ be a vector of unbiased forecasts

with E yj = µ, and let w = (w1, . . . , wm)
′ be a vector of weights constrained

by
∑

j wj = 1, but now random rather than fixed. Let ∆yj = yj − E yj and
∆y = (∆y1, . . . ,∆ym)

′. Assuming that y and w are jointly distributed with finite
fourth-order moments, and writing

var

(

y
w

)

=

(

Σyy Σyw

Σwy Σww

)

, (17)
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we have
yc = w′y = µ+ w′∆y, (18)

and hence
E yc = µ+ E(w′∆y) = µ+ trΣwy, (19)

so that yc is in general a biased forecast. Also,

var(yc) = var(w′∆y), MSE(yc) = var(w′∆y) + (trΣwy)
2. (20)

This is not yet very informative. To gain more insight we let ∆wj = wj − Ewj

and ∆w = (∆w1, . . . ,∆wm)
′. Then, w = Ew +∆w and hence

w′∆y = (Ew)′(∆y) + (∆w)′(∆y), (21)

so that

var(w′∆y) = (Ew)′Σyy(Ew)+2(Ew)′E[(∆y)(∆y)′(∆w)]+var[(∆w)′(∆y)]. (22)

This leads to the following proposition.

Proposition 3.1. The mean, variance, and mean squared error of the forecast
combination yc = w′y are given by

E yc = µ+ trΣwy,

var(yc) = (Ew)′Σyy(Ew) + 2(Ew)′d+ δ − (trΣwy)
2,

and
MSE(yc) = (Ew)′Σyy(Ew) + 2(Ew)′d+ δ,

where the vector d and the scalar δ denote third- and fourth-order moments respec-
tively, and are defined as

d = E [(∆y)(∆y)′(∆w)] , δ = E [(∆w)′(∆y)]
2
.

We note the generality of this proposition. The only two things assumed (apart
from the existence of moments) are that each individual forecast is unbiased and
that the weights add up to one, and it is precisely the combination of these two
assumptions that leads to the simplicity of the formulas. It is not assumed that the
weights lie between zero and one. There is no problem in deriving the counterpart
of Proposition 3.1 for biased forecasts, but the formulae become cumbersome and
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they are not needed for the story we wish to tell. In Section 5 (Proposition 5.1)
we do discuss the case of biased forecasts, but then in terms of conditional expec-
tations.

The distribution of the weights w is given by their location (Ew) and by their
shape (moments of ∆w). We can choose the location optimally by minimizing
MSE(yc) with respect to Ew under the restriction that the weights add up to one,
and this leads to Ew = w∗∗, where

w∗∗ =

(

1 + ı′Σ−1

yy d

ı′Σ−1
yy ı

)

Σ−1

yy ı− Σ−1

yy d. (23)

It is important to note that the ‘optimal’ weights w∗ given in Equation (8) are no
longer optimal in the random-weights case, unless d = 0 which occurs for example
when Σww = 0 (so that ∆w = 0, the fixed-weights case) or under joint symmetry
(so that third-order moments vanish). With Ew chosen optimally as w∗∗, the
variance of yc is given by

var(yc) =
1 + 2ı′Σ−1

yy d− [(ı′Σ−1

yy ı)(d
′Σ−1

yy d)− (ı′Σ−1

yy d)
2]

ı′Σ−1
yy ı

+ δ − (tr Σwy)
2. (24)

When weights are random rather than fixed the analysis and the conclusions
are less straightforward. First, the forecast combination yc will generally have a
larger variance when weights are random, because of the additional randomness
in the weights, but this is not always so. Second, it is no longer the case that the
variance of yc is necessarily smaller than the variance of each individual forecast,
even when we choose the weights ‘optimally’, say Ew = w∗ or Ew = w∗∗. Some
special cases will be instructive and highlight these differences.

4 Special cases

We consider three special cases.

Symmetry. If the joint distribution of (y, w) is symmetric, then the mean and
variance of the forecast combination yc = w′y are given by

E yc = µ+ trΣwy (25)

and
var(yc) = (Ew)′Σyy(Ew) + δ − (trΣwy)

2. (26)

This follows from the fact that the third-order moments d = E [(∆y)(∆y)′(∆w)]
vanish under symmetry, so that w∗ = w∗∗ and

MSE(yc) = (Ew)′Σyy(Ew) + δ (27)
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contains only two terms. In this case, the combined forecast does not necessarily
have smaller variance than each individual forecast. The first term is smaller than
the individual variance σ2

j , see Equation (10), but the fourth-order term δ is posi-
tive and if it is large enough, then MSE(yc) > σ2

j .

Normality. The variance of the weights Σww plays a key role in the variance
of the combination. This is why it may be good to select an estimator with small
variation in weights even when this is not the optimal estimator. For example, the
estimator based on w† may be ‘better’ than the estimator based on w∗.

The effect of Σww is well brought out in the case of joint normality. The mean
and variance of the forecast combination yc = w′y are then given by

E yc = µ+ trΣwy (28)

and
var(yc) = (Ew)′Σyy(Ew) + tr(ΣwwΣyy) + tr(ΣwyΣyw). (29)

This follows from the fact that multivariate normality implies symmetry, so that
d = 0, and also, using Anderson (1958, p. 39),

δij ≡ E[(∆wi)(∆yi)(∆wj)(∆yj)] = cov(wi, yi) cov(wj, yj)

+ cov(wi, wj) cov(yi, yj) + cov(wi, yj) cov(yi, wj), (30)

so that
δ =

∑

ij

δij = (trΣwy)
2 + tr(ΣwwΣyy) + tr(ΣwyΣyw). (31)

The result then follows from Proposition 3.1.

Independence. One naturally expects the estimated weights w and the forecasts y
to be correlated, because they are typically estimated from the same data set. In
some cases, however, it may be possible to estimate the weights independently from
the forecasts. When this happens, that is, when y and w are independent with
finite second-order moments, then the forecast combination yc = w′y is unbiased,

E yc = µ, (32)

and its variance and mean squared error are given by

var(yc) = MSE(yc) = (Ew)′Σyy(Ew) + tr(ΣwwΣyy). (33)
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5 Model-selection weights

The random-weights framework provides a natural connection between forecast
combination and model selection. In this case we consider m models, each model
leading to a forecast. We then select one of the m models — the one we like best,
based on some criterion. Next we take the forecast of the selected model, ignoring
all other forecasts.

This procedure can be interpreted in terms of forecast combinations, be it of a
rather special nature: all weights are zero except one, which is one. Of course, the
weights are random, not fixed, and are defined via a zero-one indicator that takes
the value one for the forecast of the selected model and zero for all other forecasts.
This case is of particular interest to study post-selection forecasts.

It is well-known that ignoring the uncertainty involved with the selection
procedure leads to incorrect inference (Kabaila, 1995; Pötscher, 1991; Hjort and
Claeskens, 2003; Danilov and Magnus, 2004). For our purpose, the precise type of
model selection is irrelevant, and our results hold for any model-selection criterion,
for example AIC (Akaike, 1973), BIC (Schwarz, 1978), or Mallows’ Cp (Mallows,
1973). The proposition below also covers ‘smooth’ weights: values proportional
to the value of an information criterion assigned to the model (Burnham and
Anderson, 2002), but we shall not consider smooth weights explicitly.

Before we can state our result for model-selection based forecasting, we have
to extend Proposition 3.1 to the case of biased forecasts, because model selection
typically occurs within a framework where all (or almost all) forecasts will be
biased, unless all models are overspecified. Thus we define E yj = µ+ θj so that

E y = µı+ θ (34)

and
∆y = y − E y = y − µı− θ. (35)

The forecast combination is then given by

yc = w′y = µ+ w′∆y + w′θ. (36)

We could extend Proposition 3.1 straightforwardly by separating Ew and ∆w as
before, but the formulae become cumbersome. Instead, it will prove useful to
define the following two conditional expectations:

aw = E(∆y | w), Aw = E((∆y)(∆y)′ | w). (37)

Given these definitions, we obtain the following result.
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Proposition 5.1. When the forecasts are biased with bias θj = E yj − µ, the
mean, variance, and mean squared error of the forecast combination yc = w′y can
be expressed as

E yc = µ+ E(a′ww) + (Ew)′θ,

var(yc) = E(w′Aww)− (E a′ww)
2 + 2 [E(a′www

′)− (E a′ww)(Ew)′] θ + θ′Σwwθ,

and
MSE(yc) = E(w′Aww) + 2E(a′www

′)θ + θ′ [Σww + (Ew)(Ew)′] θ.

In the special case where all forecasts are unbiased, we have θ = 0 and we
obtain E yc = µ+ E(a′ww) and

var(yc) = E(w′Aww)− (E a′ww)
2, MSE(yc) = E(w′Aww). (38)

This is the counterpart to Proposition 3.1, dealing with the same situation but
expressed differently.

Proposition 5.1 can be applied directly to the case of model selection. In model
selection we have

Pr(w = ej) = pj (j = 1, . . . , m),
∑

j

pj = 1, (39)

where we recall that ej denotes the m-dimensional vector with one in its j-th
position and zeros elsewhere. The first two moments of the weights w are then
given by

Ew = p, Eww′ = diag(p), Σww = diag(p)− pp′, (40)

and the first two moments of the selected forecast are as follows.

Proposition 5.2. When the weights are chosen through model selection, so that
Pr(w = ej) = pj (j = 1, . . . , m), the mean, variance, and mean squared error of
the selected forecast yc are given by

E yc = µ+ θ̄1, var(yc) = v̄ + θ̄2 − θ̄2
1
, MSE(yc) = v̄ + θ̄2,

where

θ̄1 =
∑

j

pj(θj + ηj), θ̄2 =
∑

j

pj(θj + ηj)
2, v̄ =

∑

j

pj(vj − η2j ),

and
ηj = E(∆yj | w = ej), vj = E((∆yj)

2 | w = ej).

13



We see this immediately by letting

aj = E(∆y | w = ej), Aj = E((∆y)(∆y)′ | w = ej). (41)

Then, in the notation of Proposition 5.1,

E(a′ww) =
∑

j

pj(a
′
jej) =

∑

j

pjηj, (42)

E(w′Aww) =
∑

j

pj(e
′
jAjej) =

∑

j

pjvj, (43)

and
E(a′www

′) =
∑

j

pj(a
′
jeje

′
j) =

∑

j

(pjηj)e
′
j, (44)

and the result follows from Proposition 5.1.
We note that θj + ηj is the conditional bias of the j-th model’s forecast con-

ditional on the j-th model, and that vj − η2j is the conditional variance of the
j-th model’s forecast conditional on the j-th model. The bias θ̄1 is thus written
as the weighted sum of the conditional biases in each of the models, each time
conditioning on the specific model used. The variance is more complicated, be-
cause the unconditional variance is not simply the sum of the weighted conditional
variances; hence we express the variance as MSE−(bias)2. But the mean squared
error can be interpreted as the sum of the weighted conditional MSE-values of the
j-th model’s forecast conditional on the j-th model. Even though only a single
model is selected, in the mean squared error all models’ conditional MSE-values are
combined. This highlights the important (but often ignored) fact that conditional
inference, thus ignoring model selection, is incorrect and can be harmful.

6 Explanation of the puzzle

In their ‘simple explanation of the forecast puzzle’ Smith and Wallis (2009) offer
three main conclusions in terms of mean squared error of the forecast (MSFE). We
now analyze these conclusions in the context of the theory developed in Section 3.
Their first conclusion is that

‘[. . . ] a simple average of competing forecasts is expected to be more
accurate, in terms of MSFE, than a combination based on estimated
weights.’

14



This is the situation illustrated for two dimensions in Figures 1–3 of Section 1.
The combination with equal weights is unbiased and its variance has only one
component: ı′Σyyı/m

2. In many situations this leads to a smaller mean squared
error than a biased combination with additional components d and δ, as given in
Proposition 3.1 for the case when the weights are estimated.

The second conclusion is that

‘[. . . ] if estimated weights are to be used, then it is better to neglect any
covariances between forecast errors and base the estimates on inverse
MSFEs alone, than to use the optimal formula originally given by Bates
and Granger for two forecasts, or its regression generalization for many
forecasts.’

Apart from the fact that including covariances may lead to negative weights, we
have seen that estimating the covariances increases the variance of the weights, as
also illustrated by Figures 2 and 4 in Smith and Wallis (2009). For fixed weights
the relationship between the two variances (with and without covariances) is given
by (16), but the additional terms from Proposition 3.1 are likely to be larger for
the optimal weights based on estimated covariances. The special cases in Section 4
emphasize this point by showing explicitly how the variance of the weights, Σww,
appears in the formulae.

σ2

2

σ2

1

w∗0 11/2 w†

E

R†

R

Figure 4: Variance of forecast combination, two dimensions: random weights under
normality with and without covariances
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Figure 4 provides a stylized illustration in two dimensions. The figure is iden-
tical to Figure 2, except that the middle curve has been added and the minimum
point F on the lowest curve has been removed. It gives the variance of the forecast
combination as a function of Ew. The bottom curve plots the variance when the
weights are nonrandom; the point E on the curve (not the minimum) gives the
variance when w = 1/2: equal weights. The top curve plots the variance according
to Proposition 3.1 and the minimum of the curve is in R, representing the point
where the optimal choice for Ew is estimated. The middle curve represents the
restricted case without covariances, where Ew is an estimate of σ2

2
/(σ2

1
+ σ2

2
), as

in (13). The minimum on the middle curve does not occur at R†, but because
the three variance curves move parallel to each other and fewer parameters are
required to estimate the variance in the middle curve than in the top curve, R† is
typically smaller than R.

The third conclusion of Smith and Wallis (2009) is:

‘When the number of competing forecasts is large, so that under equal
weighting each has a very small weight, the simple average can gain
in efficiency by trading off a small bias against a larger estimation
variance. Nevertheless, in an example from Stock and Watson (2003),
[. . . ] the forecast combination puzzle rests on a gain in MSFE that has
no practical significance.’

This statement is based on simulations and empirical findings, but now it can be
assessed in any situation by comparing the variance of the combination with equal
weights, ı′Σyyı/m

2, with the variance of the combination with estimated weight
w†, given by the general formula in Proposition 3.1.

7 Concluding remarks

In analyzing the properties of a combined forecast, this paper follows an integrated
approach where the estimation of the weight is explicitly accounted for from the
start. Weight estimation always increases the variance of the combination. In some
situations this increase may be small, but in the case where the optimal weight
is estimated the increase is substantial and this explains the forecast combination
puzzle. The special case of model selection is naturally accommodated in the
integrated approach.

We analyzed the bias, variance, and mean squared error of the combined fore-
cast, but other functions of the moments can be similarly analyzed, for example
the absolute percentage error, mean absolute deviation, or directional accuracy.
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