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Abstract

We propose a new methodology for designing flexible proposal densities for the

joint posterior density of parameters and states in a nonlinear, non-Gaussian state

space model. We show that a highly efficient Bayesian procedure emerges when these

proposal densities are used in an independent Metropolis-Hastings algorithm or in im-

portance sampling. Our method provides a computationally more efficient alternative

to several recently proposed algorithms. We present extensive simulation evidence

for stochastic intensity and stochastic volatility models based on Ornstein–Uhlenbeck

processes. For our empirical study, we analyse the performance of our methods for

corporate default panel data and stock index returns.
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1 Introduction

Empirical studies based on nonlinear non-Gaussian state space models are widespread

in economics and finance. It is well known that Bayesian parameter estimation in this

type of models can be difficult. One of the complications is that the joint posterior

density of the parameter and state vectors is typically high-dimensional which makes it

cumbersome to develop successful proposal distributions and Monte Carlo algorithms. It

is standard practice to overcome this difficulty by disentangling the target density into

lower dimensional densities and develop proposal densities for each of them. However,

this approach leads to other problems. Although the curse of dimensionality may be

resolved to some extent, it is rather demanding to design a proposal density on a case by

case basis for each lower dimensional target density. Furthermore, these separately defined

proposal densities may not adequately characterize the properties of the joint posterior

density, possibly resulting in unsatisfactory computational performance of the method and

possibly leading to biased estimates of posterior moments and marginal likelihoods.

The aim of our study is to develop flexible proposal distributions for the joint posterior

distribution of the parameters and states in nonlinear non-Gaussian state space models.

Our proposed Extended Mixture of t by Importance Sampling weighted Expectation Max-

imization (EMitISEM) method extends the Mixture of t by Importance Sampling weighted

Expectation Maximization (MitISEM) method of Hoogerheide et al. (2012) for the case

when the likelihood is not available in closed form. We differentiate two categories of

nonlinear non-Gaussian state space models based on the transition density of the states.

In case of a linear Gaussian state equation we propose a joint candidate for the posterior

of the parameters and states. The proposal density in our EMitISEM method in this

case consists of two components: (i) a mixture of Student’s t-densities that targets the

marginal posterior density of the parameters, and (ii) a different approximating density

that targets the density of the states given the observations and the parameters. The

mixture of Student’s t-densities is constructed by means of an extension of the MitISEM

method; see Hoogerheide et al. (2012). The proposal density for the states is then based

on a given set of parameters. We can take any reasonable approximating density for

the states including those developed by Shephard and Pitt (1997), Durbin and Koopman

(1997), Richard and Zhang (2007), Koopman et al. (2015) and McCausland (2012). We

can use these proposal densities in an independent MH algorithm or in an importance

sampling procedure to estimate the marginal likelihood and parameters. The resulting

procedure can be fully automated without requiring user intervention. If the transition

density is not Gaussian, we propose to replace the likelihood used in the MitISEM method

by an unbiased estimator of the likelihood in which the states are integrated out using a

particle filter.

We argue and show that our approach is computationally efficient and robust and can
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be regarded as an effective alternative to existing Markov chain Monte Carlo (MCMC)

methods. Our method provides at least two advantages. First, the methodology can be

fully automated. There is no need for case by case fine tuning of the algorithm whenever

a different model specification with a possibly different observation density is considered.

Second, the necessary computations can be implemented in a parallel manner. This implies

that we can use state-of-the-art computer technology based on graphics cards to further

reduce the computing time of our method. In addition we also show that in case of

the nonlinear non-Gaussian state space model with non-Gaussian transition equation, the

performance of our method is comparable to the performance of some of the recently

developed sequential importance sampling procedures.

Our work relates to two strands in the literature. First, we contribute to the recent

literature on Bayesian estimation for nonlinear non-Gaussian state space models by jointly

sampling parameters and state paths. McCausland (2012) suggests a proposal density

based on a higher order approximation of the states given the parameter vector. Although

this sampler appears to be efficient, it relies on the assumption that the state vector is

univariate. Chan and Strachan (2012) propose a method that overcomes this restriction.

Their proposal density for the state vectors, however, is derived from a local approximation

of the smoothed density, which can lead to reduced performance in higher dimensional

problems.

Second, our results relate to the literature on the Bayesian estimation of nonlinear non-

Gaussian state space models using particle filters. Andrieu et al. (2010) develop a collection

of Particle Markov Chain Monte Carlo (PMCMC) methods for parameter estimation. As

argued by Flury and Shephard (2011), the key idea of several PMCMC methods is that the

unknown true likelihood can be replaced by an unbiased estimator of the likelihood within

a Metropolis-Hastings iteration. Although PMCMC methods provide a general solution

to parameter and state estimation in nonlinear non-Gaussian state space models, they

require the application of a particle filter for each iteration, see for example Doucet et al.

(2015). To overcome this computational burden, Lindsten and Schön (2012) propose a

modified version of the particle Gibbs sampler. For the same motivation, Pitt et al. (2012)

develop an adaptive version of the particle independent Metropolis-Hastings algorithm

with partially adapted auxiliary particle filters. In an extensive simulation study we show

that our EMitISEM method is a viable alternative to other recently developed methods

including the Adaptive Independent Metropolis-Hastings method of Pitt et al. (2012) and

the particle filter MCMC methods of Andrieu et al. (2010). We compare the methods in

detail for two cases: the stochastic intensity model and the Gamma Ornstein–Uhlenbeck

(OU) stochastic volatility model. For these cases, we provide evidence that our method

provides posterior draws and estimates of posterior moments in a computationally more

efficient manner than the state-of-the-art alternatives that we consider. We conclude that

3



our proposed method may be a more efficient and more robust approach than particle

filters in empirically relevant cases.

The remainder of this article is organized as follows. In Section 2 we introduce the new

methodology. In Section 3 we demonstrate the performance of the methodology against

state-of-the-art alternatives in a Monte Carlo study designed for the parameter and state

estimation in a stochastic intensity model and a Gamma OU stochastic volatility model.

In Section 4, we empirically illustrate the methods by considering a large panel data set of

U.S. corporate defaults and estimating a Gamma OU stochastic volatility model on major

stock indices. Section 5 concludes.

2 The EMitISEM method for state space models

2.1 EMitISEM in case of linear Gaussian state equations

For a time series of observations y1, . . . , yT , we define the nonlinear non-Gaussian state

space model by the observation density and the state equation

yt ∼ py(yt|xt; θ), xt = ct + Ztαt, (1)

αt+1 = dt + Ttαt + ηt, ηt ∼ NID (0, Qt) , (2)

where py is the observation density, xt is the latent dynamic signal, θ is the parameter

vector, αt is the state vector, for t = 1, . . . , T . Moreover the ηt disturbance vectors are

normally distributed and independent for t = 1, . . . , T . We discuss generalizations in

Section 2.3. The signal xt is a linear function of the state vector αt, with scalar intercept

ct and loading vector Zt both possibly depending in a deterministic way on time and on the

parameter vector θ, i.e. ct = c(t; θ) and Zt = Z(t; θ). The state vector αt evolves as a linear

Gaussian dynamic process given by (2) where the intercept vector dt = d(t; θ), transition

matrix Tt = T (t; θ) and variance matrix Qt = Q(t; θ) are deterministic functions of t and θ.

We assume that all vectors and matrices have appropriate dimensions. Bayesian inference

for the model given by equations (1) and (2) involves the estimation of the properties of

interest of the posterior density p(θ|y) of the parameter vector θ and the smoothed density

of the signal p(x|y), where y = (y1, . . . , yT )′ and x = (x1, . . . , xT )′.

In the original MitISEM procedure, Hoogerheide et al. (2012) propose to approximate

the posterior density p(θ|y) (of which only a kernel is required) by considering the Student’s

t mixture qζ′(θ|y) where ζ ′ includes mode vectors, scale matrices, degrees of freedom and

mixing weights for the Student’s t-distributions in the candidate mixture qζ′(θ|y), and

minimizing the Kullback and Leibler (1951) divergence∫
p(θ|y) log p(θ|y)dθ −

∫
p(θ|y) log qζ′(θ|y)dθ. (3)
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Since the first term does not depend on the proposal, an approximation of the Kullback-

Leibler divergence can be minimized by maximizing

1

N

N∑
j=1

p(θ(j)|y)

qζ(θ(j)|y)
log qζ′(θ

(j)|y), (4)

where θ(j) ∼ qζ(θ|y) is a sequence of independent and identically distributed (i.i.d) draws

from a previous proposal density, for j = 1, . . . , N . Unfortunately, in nonlinear non-

Gaussian state space models we do not know (a kernel of) the posterior density p(θ(j)|y)

in closed form, so that we have to modify the original MitISEM method.

The Kullback-Leibler divergence between our target density p(x, θ|y) and the joint

proposal density qζ′(x, θ|y) is given by∫
p(x, θ|y) log p(x, θ|y)dxdθ −

∫
p(x, θ|y) log qζ′(x, θ|y)dxdθ. (5)

Minimizing the KL divergence is therefore equivalent to maximizing∫
p(x, θ|y) log qζ′(x, θ|y)dxdθ =

∫
p(x, θ|y)

qζ(x, θ|y)
qζ(x, θ|y) log qζ′(x, θ|y)dxdθ, (6)

where qζ(x, θ|y) is a previous proposal density. As our proposal density, we use qζ′(x, θ|y)

= q(x|θ, y)qζ′(θ|y), where we obtain q(x|θ, y) from an approximation to the smoothed state

density. For example, the approximation from the NAIS method proposed by Koopman

et al. (2015) appears to be sufficiently accurate. Substituting qζ′(x, θ|y) = q(x|θ, y)qζ′(θ|y)

into the right-hand side of (6) we get∫
p(x, θ|y)

qζ(x, θ|y)
qζ(x, θ|y) log q(x|θ, y)dxdθ +

∫
p(x, θ|y)

qζ(x, θ|y)
qζ(x, θ|y) log qζ′(θ|y)dxdθ. (7)

The first term in (7) does not depend on ζ ′. Hence we maximize the second term in (7),

with respect to ζ ′ using the approximation∫
p(x, θ|y)

qζ(x, θ|y)
qζ(x, θ|y) log qζ′(θ|y)dxdθ ≈ 1

N

N∑
j=1

p(x(j), θ(j)|y)

qζ(x(j), θ(j)|y)
log qζ′(θ

(j)|y), (8)

where (x(j), θ(j)) ∼ qζ(x, θ|y) is an i.i.d. sequence for j = 1, . . . , N .

If we compare (4) with (8), we see that the difference with the original MitISEM

approach is that we replace the weight p(θ(j)|y)/qζ(θ
(j)|y) by p(x(j), θ(j)|y) /qζ(x

(j), θ(j)|y).

This novel result implies that we can use the MitISEM algorithm as described in Appendix

A, with only a slight modification. We note that the new weights

w(j) =
p(x(j), θ(j)|y)

qζ(x(j), θ(j)|y)
∝ p(y|x(j), θ(j))p(x(j)|θ(j))p(θ(j))

q(x(j)|θ(j), y)qζ(θ(j)|y)
(9)

can be replaced by

w(j) ∝ q(y|θ(j))
p(y|x(j), θ(j))p(θ(j))

q(y|x(j), θ(j))qζ(θ(j)|y)
, (10)
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where we used the relations

q(x(j)|θ(j), y) =
q(y|x(j), θ(j))q(x(j)|θ(j))

q(y|θ(j))
, (11)

and p(x(j)|θ(j)) = q(x(j)|θ(j)), which follow from the fact that we use the same linear

Gaussian state equation for the true model and the approximating linear Gaussian state

space model upon which our proposal density for the signal is based; see Appendix B

for the details on this approximating model and the proposal density for the signal. The

formulation in (10) is more convenient than (9), as we do not have to evaluate the density

q(x(j)|θ(j), y). The algorithmic details of the EMitISEM method are presented in Appendix

C.

There is a trade-off between the quality of the proposal and the speed of the estimation

procedure. When more draws are used, the approximation generally becomes better, but

at the cost of an increased computation time. Fortunately, the draws and corresponding

weights can be recycled such that we do not require the sampling of new draws when going

through the iterations to obtain the mixture components. To be able to recycle previous

draws, we need to implement a slight modification when computing the coefficient of

variation of the importance weights that correspond to the latest candidate. Given the

draws (x(2,1), θ(2,1)), . . . , (x(2,N), θ(2,N)) from the proposal qζ(2)(x, θ|y) = q(x|θ, y)qζ(2)(θ|y)

with only one Student’s t component, we can evaluate the coefficient of variation of the

weights in iteration i > 2 based on the new proposal qζ(i)(x, θ|y) by estimating the mean

of the weights as∫
p(x, θ|y)

qζ(i)(x, θ|y)
qζ(i)(x, θ|y)dθdx =

∫
p(x, θ|y)

qζ(2)(x, θ|y)
qζ(2)(x, θ|y)dθdx, (12)

and the variance of the weights as∫ (
p(x, θ|y)

qζ(i)(x, θ|y)

)2

qζ(i)(x, θ|y)dθdx =

∫
p(x, θ|y)2

qζ(i)(x, θ|y)
dθdx (13)

=

∫
p(x, θ|y)

qζ(i)(x, θ|y)

p(x, θ|y)

qζ(2)(x, θ|y)
qζ(2)(x, θ|y)dθdx.

Based on these results the mean and variance of the importance weights corresponding to

the importance density at iteration i > 2 can then be estimated via

mean(i) =
1

N

N∑
j=1

p(x(j), θ(j)|y)

qζ(2)(x(j), θ(j)|y)
(14)

and

var(i) =
1

N

N∑
j=1

[
p(x(j), θ(j)|y)

qζ(i)(x(j), θ(j)|y)

p(x(j), θ(j)|y)

qζ(2)(x(j), θ(j)|y)

]
−
[
mean(i)

]2
, (15)

respectively, where (x(j), θ(j)) ∼ qζ(2)(x, θ|y) is an i.i.d. sequence for j = 1, . . . , N . We

emphasize that qζ(i)(x
(j), θ(j)|y) in (15) can be easily evaluated via q(x|θ, y)qζ(i)(θ|y) as

6



q(x|θ, y) is the same as in qζ(2)(x, θ|y). This modification of the procedure leads to our

modified algorithm, from which we realize a substantial gain in speed. The algorithmic

details of our modified algorithm are presented in Appendix C.

2.2 EMitISEM for nonlinear or non-Gaussian state equations

In the previous section we have shown how we can use our approach to estimate the

parameters and states of a nonlinear non-Gaussian state space model with linear Gaussian

state equation. This assumption can be somewhat restrictive. Here we present a brief

sketch of how we can estimate the model parameters for models with a nonlinear non-

Gaussian state equation, that is

yt ∼ py(yt|αt; θ), (16)

αt ∼ pα(αt|αt−1; θ). (17)

To obtain a Gaussian approximation of the state can be problematic because the

smoothed state density can be very different from the Gaussian density. When the transi-

tion density (17) differs from the normal, the approximation is less accurate. However we

can still use the fact that using an unbiased estimator of the likelihood p̂(y|θ) instead of

the true likelihood p(y|θ) in (4) yields a consistent estimator of the Kullback-Leibler di-

vergence between p(θ|y) and qζ′(θ|y). Hence as long as we can compute p̂(y|θ), we can use

the original MitISEM approach but with the replacement of the likelihood by its unbiased

estimator in the calculation of the weight.

ŵ(j) =
p̂(θ(j)|y)

qζ(θ(j)|y)
. (18)

It is fortunate that an unbiased estimator of the likelihood p̂(y|θ) can be calculated by

a particle filter applied to the model given by equations (16) and (17). The algorithmic

details are presented in Appendix C.

2.3 Discussion and relation to other methods

In this section we discuss the possible computational gains from our procedure and relate

it to previously proposed methods.

2.3.1 Gaussian transition density

The proposal density constructed via EMitISEM can be used in importance sampling

or in an independent Metropolis-Hastings procedure. Using the EMitISEM proposal in

an independent Metropolis-Hastings iteration and the Adaptive Independent Metropolis-

Hastings method proposed by Pitt et al. (2012) are similar in spirit. The independent

Metropolis-Hastings algorithm is the core of both algorithms. However, there are several
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clear differences between the two estimation routines. First, our method is not adaptive,

which means that it is easier to parallellize as the proposal density is constant throughout

the MCMC phase. Candidate draws are fully independent both within each training

phase and within the MCMC phase. Second, in the Gaussian transition density case we

sample one state path at each iteration; we do not need to integrate out the state. We also

emphasize that our method in this case directly provides the smoothed state estimates; we

do not require additional algorithms for this task. Finally, we use a mixture of Student’s

t-distributions instead of a mixture of normals to approximate the posterior distribution

of the parameters.

Since the most intensive part of the computations in our algorithm is the generation

of the signal paths x conditional on the parameters and observations, it is interesting to

compare the number of signal draws that are required in our algorithm and in the PMCMC

based methods. Our modified EMitISEM procedure requires 3×N + I draws where N is

the size of the training sample and I is the number of iterations in the MCMC phase. In

contrast, the PMCMC methods require I×S signal draws where S is the number of draws

used to estimate the likelihood. In the two examples in our simulation and empirical

studies, we use I =25,000, N =10,000 and S = 50. It implies that PMCMC requires

around 20 times more signal paths than our modified EMitISEM method, whereas our

modified EMitISEM method yields a better accuracy in less computation time in these

two examples.

The choice of the mixture of Student’s t-densities as a proposal for the posterior of

the parameters has several theoretical and practical advantages over other choices. First,

under certain regularity conditions any density can be approximated by a mixture of Stu-

dent’s t-densities if we use a sufficient number of mixture components as shown by Zeevi

and Meir (1997). Second, sampling from a mixture of Student’s t-densities is fast. Third,

the fat tails make the Student’s t-distribution (with small enough degrees of freedom)

a robust importance sampler. We are less prone to importance weights with an infinite

variance, so posterior estimates are more reliable and more efficient. Finally, the construc-

tion of Student’s t-distributions in the mixture and the mixing weights can be carried out

efficiently by means of the extension of the MitISEM procedure.

The exposition above concentrated on the case of a univariate signal. However, the

method can be extended when the observation and signal are vectors by using the approach

of Koopman et al. (2015). This extended version of the NAIS method is able to treat the

signal vector via the use of quasi-random numbers for the numerical evaluation of the

variance of the log weights and subsequently for its minimization.

A promising feature of EMitISEM is that the evaluation of marginal likelihoods can

take place in a straightforward manner via importance sampling. Given the proposal
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density obtained in the training phase we can approximate the marginal likelihood by

p(y) =

∫
p(y|x, θ)p(x|θ)p(θ)

qζ(x, θ|y)
qζ(x, θ|y)dθ ≈ 1

N

N∑
j=1

w(j), (19)

where w(j) is defined as the right-hand side of (10), and N is the number of draws used

to evaluate the marginal likelihood.

We are faced with a possible limitation of our method when the time dimension T in-

creases. In this case the variance of the importance weights also increases and the Monte

Carlo approximation (8) may become less reliable. However, we point out that our simu-

lated and empirical data sets have a considerable size, consisting of 1,260 trading days (for

the estimation of a stochastic volatility model) or 40 years of defaults (for the estimation

of a stochastic intensity model). For both datasets the EMitISEM works smoothly and

without particular difficulties.

2.3.2 Non-Gaussian transition density

Our EMitISEM proposal density can be used as a proposal in an independent particle

Metropolis-Hastings iteration. This method is conceptually close to the Density-Tempered

Marginalized Sequential Monte Carlo (DTMSMC) sampler proposed by Duan and Fülöp

(2015). In a similar set-up, they suggest to integrate out the states using a particle filter.

Their move step utilizes an independent particle Metropolis-Hastings step. However, they

approximate the posterior density of the parameters by a Sequential Monte Carlo sampler,

which forms a bridge between the prior and the posterior density. Our method instead

takes advantage of the fact that we can estimate the likelihood, such that we have a

reasonable initial candidate for the posterior of the parameters early on in the procedure.

3 Simulation study

3.1 EMitISEM proposal for Independent Metropolis-Hastings

We base our analysis on an independent Metropolis-Hastings sampler; see Metropolis et al.

(1953) and Hastings (1970) for the original contributions. We draw from the joint posterior

density of the parameters and states p(x, θ|y). Our procedure consists of two phases: the

training phase and the Markov chain Monte Carlo (MCMC) phase.

In the training phase we use EMitISEM for the construction of a proposal density

that approximates the joint posterior p(x, θ|y). We construct the approximation from

proposal densities q(x|θ, y) and qζ′(θ|y), where q(x|θ, y) is the conditional proposal density

of x given θ, and where qζ′(θ|y) is the marginal proposal density for θ which is obtained

using EMitISEM. We take qζ′(θ|y) as a mixture of Student’s t-densities and use it as an

approximation of p(θ|y), We take q(x|θ, y) as a Gaussian density from the numerically
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accelerated importance sampling (NAIS) method of Koopman et al. (2015). NAIS is

numerically more efficient than alternative approximations such as the ones proposed by

Richard and Zhang (2007), Shephard and Pitt (1997), or Durbin and Koopman (1997).

In the Markov chain Monte Carlo phase we use the candidate as the proposal density

in an independent Metropolis-Hastings algorithm to draw from the joint posterior density

p(x, θ|y). We sample the joint candidate draws (θ(j), x(j)) by first sampling

θ(j) ∼ qζ′(θ|y), (20)

and then, conditioning on θ(j), sampling

x(j) ∼ q(x|θ(j), y). (21)

Let (θ(i−1), x(i−1)) and (θ+, x+) denote the previous accepted draw of the Markov chain

and the new candidate draw, respectively. We set (θ(i), x(i)) = (θ+, x+) with probability

α = min

{
p (θ+, x+|y) q(x(i−1)|θ(i−1), y)qζ′(θ

(i−1)|y)

p
(
θ(i−1), x(i−1)|y

)
q(x+|θ+, y)qζ′(θ+|y)

, 1

}
, (22)

and (θ(i), x(i)) = (θ(i−1), x(i−1)) otherwise.

We carry out a detailed simulation experiment to demonstrate the performance of

our estimation procedure against two alternative procedures. We estimate parameters

for a stochastic intensity model using simulated data sets. This model illustrates a new

and interesting application of a nonlinear non-Gaussian state space model for which the

full conditional density of the parameter vector is not known in closed form. Stochastic

intensity models are particularly useful in portfolio credit risk modeling, see Koopman

et al. (2008), Duffie et al. (2009) and Azizpour et al. (2010) for interesting illustrations of

the problem. The details of the stochastic intensity model are given in Section 3.2.

We compare the performance of our proposed EMitISEM method with state-of-the-

art alternatives rather than with some feeble benchmark procedures. In particular, we

compare the performance of parameter estimation using our proposed EMitISEM method

versus using two competing methods of Pitt et al. (2012). The first competing method is

the adaptive random walk Metropolis-Hastings (ARWMH) algorithm and is an extension

of the method of Roberts and Rosenthal (2009). Our second benchmark method is the

adaptive independent Metropolis-Hastings (AIMH) algorithm, where the proposal is a

mixture of normals. It is an extension of the method of Giordani and Kohn (2010).

These two recently developed and advanced methods provide fast and efficient solutions to

parameter estimation for nonlinear non-Gaussian state space models by taking advantage

of the powerful framework provided in Andrieu et al. (2010). To further enhance the

numerical efficiency of the benchmark methodologies, we use a modified version of these

methods by introducing the numerically accelerated importance sampling (NAIS) method

of Koopman et al. (2015) for integrating out the signal vector. For the purpose of likelihood
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estimation, the NAIS method is used as an alternative to the partially adapted auxiliary

particle filter that was used by Pitt et al. (2012).

We use NAIS as a state sampler for the following three reasons: (i) it provides an

approximation to the state smoothing density that minimizes the variance of the log

importance weights; (ii) the approximating linear Gaussian state space model can be

constructed in a computationally efficient way by taking advantage of standard Kalman

filter methods and deterministic integration methods for one-dimensional integrals; (iii)

the simulated signal paths can be efficiently computed via the simulation smoothers of

de Jong and Shephard (1995) or Durbin and Koopman (2002). In an illustrative stochastic

volatility model with normally distributed errors we have found that NAIS yields estimates

of the likelihood with lower variance in less computing time than methods based on the

particle filter; these findings are discussed in Appendix F. In Appendix B we provide the

details of NAIS. For its use in the ARWMH and AIMH methods, we use 50 simulated

paths of the signal for likelihood estimation. We notice that EMitISEM requires one

simulated signal path from NAIS only at each iteration. Further implementation details

of the competitive benchmark methods are discussed in Appendices D and E.

We estimate the parameters for 56 data sets on an 8-core computer. The data sets

are generated with parameter values that are close to those estimated from the empirical

data sets of Section 4. For each simulated data set, we re-estimate parameters by using

the EMitISEM method, its modified version (which we denote by EMitISEM mod.), the

ARWMH method and the AIMH method. For the modified EMitISEM method, the

candidate draws are recycled after the first MitISEM update in the training phase. After

5,000 burn-in draws we perform 20,000 iterations of the algorithms. We calculate medians

and interquartile ranges (over the 56 simulated data sets) of the parameter estimates,

acceptance rates, and inefficiencies. In order to assess the quality of the simulation methods

we compute the inefficiency factor (IF ), which is defined as the variance of the parameter

estimate divided by the variance in case the sampling scheme would generate independent

posterior draws. The IF statistic is discussed, amongst others, by Pitt et al. (2012). In

our case, we define the inefficiency factor as

IF = 1 + 2

max(L,1000)∑
j=1

rj , (23)

where rj is the j-th order sample serial correlation of the 20,000 parameter draws, and

where L is the lowest order j for which rj is not significant.

3.2 Stochastic intensity model

For our first simulation experiment, we consider a stylized version of the point processes

model with stochastic intensity as used in our second empirical application in Section 4.1.
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Koopman et al. (2008) and Duffie et al. (2009) consider the stochastic intensity model for

studying the systematic dynamics of U.S. corporate defaults and credit rating migrations.

In this section we only provide the necessary details of the model needed for the

simulations. The full model set-up is deferred till Section 4.2. For the simulation, we use

the following version of the model. We consider a pool of K firms and a jump process

yk(t) for each firm k = 1, . . . ,K with common jump intensity λ(t) as given by

λ(t) = exp
[
ω + β′c(t) + γx(t)

]
, (24)

where ω is the base log-intensity, β is a vector of regression parameters, c(t) is a vector

of covariates and γ is a scale factor for the unobserved signal x(t). The cumulative jump

process over all firms is given by

y(t) =

K∑
k=1

yk(t). (25)

The signal x(t) is often referred to as an unobserved frailty factor. We follow standard

practice and model it as a zero mean Ornstein-Uhlenbeck (OU) process, standardized to

have unit variance at t = 1,

dx(t) = −ρx(t) dt+
√

2ρ dW (t), (26)

where ρ > 0 is a persistence parameter and W (t) is a standard Brownian motion. The set

of covariates we use in the simulation is the same as in the empirical section, namely the (i)

one year difference of the S&P500 index, (ii) term spread between the 10-year and 1-year

Treasury Bond (with constant maturity rates), (iii) secondary market rate on 3 month

Treasury Bills, and (iv) year-to-year percentage change of US industrial production (final

output), all at the monthly frequency over the period from January 1, 1970 to March 4,

2010; compare Duffie et al. (2007), Lando and Nielsen (2010) and Azizpour et al. (2010).

The covariates are obtained from the FRED and CRSP databases. We set the parameters

to ω = −4.75, β = (−0.85, 0.01,−0.055,−5.1), γ = 1.15 and ρ = 0.12, which are close to

the empirical estimates from Section 4.

We simulate data for K =3,000 firms over the period January 1, 1970 to March 4,

2010. As K is kept fixed, a firm can jump repeatedly over the sample. If a jump is

interpreted as default, this implies that the firm is directly re-started after default at the

same pre-default intensity. In the empirical application, we depart from this construction

and allow for an absorbing default state as well as for firms that enter the sample or leave

the sample for other reasons than default.

The simulations are conditional on the four covariates and are sampled by using a

discretization of the continuous time processes y(t), x(t) and λ(t), where the discretization

takes steps of 1/32 part of a day, i.e., 45 minutes. Over each 45 minutes slot, we use a

Bernoulli approximation to generate defaults. We generate 56 data sets in this way. For
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the estimation, we use (weakly informative) uniform priors on relatively wide intervals:

[−8,−2] for ω, [0.01, 3] for γ, [0.01, 1] for ρ, and [−20, 20] for each of the elements of β.

We consider the ith event time ti and define the indicator variable Dki to be one,

Dki = 1, if firm k jumps to default at the ith event time ti, and zero otherwise. The

number of jumps at event time ti over all firms is given by Di =
∑K

k=1Dki. The discrete

time approximation of the jump process y(t) leads to the following dynamic model in event

time,

p(yi|xi, θ) = exp [Di log λi − λiK∆i] , (27)

xi = e−ρ∆ixi−1 + ηi, ηi ∼ N
(
0, 1− e−2ρ∆i

)
,

where p(yi|xi, θ) is the density of yi = y(ti) conditional on signal xi = x(ti) and parameter

vector θ, with λi = λ(ti) and ∆i = ti− ti−1. Further details of the model are presented at

the empirical application in Section 4.2.

Table 1 presents the means and interquartile ranges of the parameter estimates for the

56 simulated data sets. The different simulation methods provide similar results, which

suggests that none of the methods provides biased estimates. Table 2 presents the means

and interquartile ranges of acceptance rates and inefficiency factors. We find that the

ARWMH algorithm is clearly outperformed by the other methods. Moreover, the AIMH

algorithm performs generally less favourable compared to EMitISEM. Further, the AIMH

method appears to be less robust for certain simulated data sets. The median inefficien-

cies are higher and also the interquartile ranges of the inefficiencies are larger compared

to EMitISEM. A possible explanation is that AIMH uses a mixture of normal distribu-

tions, where the thin tails of the normal distribution imply that the AIMH algorithm

can sometimes get stuck for a considerable time when a rare candidate draw is simulated

from the tails and accepted, after which many consecutive candidate draws are rejected

and the same accepted draw is repeated many times. In contrast, the EMitISEM method

uses a mixture of Student’s t-densities to approximate the posterior distribution of the

parameters. The fat tails of the Student’s t-density prevent that the MH method repeats

a draw from one of the tails for a long sequence of iterations.

The performance of the modified versions of EMitISEM are again comparable to the

standard version. According to the results in Table 2, the size of the training sample can

be reduced to obtain higher efficiency gains.

Table 2 shows that the acceptance rate and inefficiencies of the modified version of

EMitISEM are only somewhat worse than those for the standard version; the relative gain

in computing time is larger. The same observation can be made when comparing the

acceptance rates, inefficiencies and computing times of the modified EMitISEM methods

with 10000 and 5000 parameter draws in the training sample.

The computation times can be further split out (not shown) in the time to compute

the proposal density and the time for generating the actual samples. Typically, the time to
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construct the proposal density is higher for the EMitISEM. After that, however, the Effec-

tive Sample Size (ESS) or put differently the number of hypothetical independent draws

that would yield estimation results with the same precision starts to increase relatively

slowly for the AIMH and ARWMH methods, whereas the increase is steep for EMitISEM.

The difference would be even larger if we would take full advantage of the parallellization

posibilities for EMitISEM.

We conclude from the results presented for the stochastic intensity model that using

the EMitISEM algorithm to construct a proposal density for independent Metropolis-

Hastings iterations offers an efficient alternative to PMCMC. Substantial improvements

can be obtained with respect to computational speed, accuracy, numerical efficiency, and

robustness.

3.3 EMitISEM proposal for Importance Sampling

In this section we present a simulation experiment which assesses the performance of

the EMitISEM proposal on a state space model with non-Gaussian transition density.

In this second simulation study we have chosen to use the EMitISEM proposal within

an importance sampling procedure. We compare its efficiency to competing sequential

importance sampling procedures, namely the SMC2 by Chopin et al. (2013) and the density

tempered marginalized sequential Monte Carlo sampler of Duan and Fülöp (2015).

In the experiment we consider a Gamma Ornstein–Uhlenbeck (OU) stochastic volatility

model for a simulated data set. The Gamma OU model has been proposed by Barndorff-

Nielsen and Shephard (2001) and the inference for these models has been first developed

by Barndorff-Nielsen and Shephard (2002). The model can be formulated in state space

form with a non-Gaussian state equation. The analysis and estimation are challenging as

the transition density is intricate; see Griffin and Steel (2006) and Chopin et al. (2013).

The state space representation of the model is given as follows

yn = µ+ βσ2
n + σnεn,

k ∼ Poi(λξ2/ω2), ci ∼ U(n, n+ 1), ei ∼ Exp(ξ/ω2), i = 1, . . . , k,

zn+1 = e−λzn +

k∑
j=1

e−λ(n+1−cj)ej , σ2
n =

1

λ

zn − zn+1 +

k∑
j=1

ej

 ,
where Poi(a) is the Poisson distribution with intensity a, U(a, b) is the uniform distribution

with support on interval (a, b) and Exp(a) is the exponential distribution with mean a−1.

We simulate 1000 observations from the Gamma OU model. We use the parameter

values µ = 0, β = 0, ξ = 0.5, ω2 = 0.065 and λ = 0.01. Subsequently we estimate

the parameters 10 times by using the SMC2 method, the density tempered marginalized

sequential Monte Carlo sampler (DTMSMC), and our EMitISEM procedure. In the prior
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specification we follow Chopin et al. (2013) and we assume standard normal priors for µ

and β, Exp(1/5) for ξ and ω2, and Exp(1) for λ.

The EMitISEM procedure uses an auxiliary model to construct the initial proposal.

In the auxiliary model we replace the non-Gaussian state equation and model the log

variance as a standard AR(1) process which has a normal unconditional distribution. We

estimate the parameters by using the method of maximum likelihood. We transform these

estimates to estimates of the parameters from the Gamma OU model and obtain their

corresponding standard errors using the delta method that requires the inverse negative

Hessian matrix, evaluated at the likelihood estimate. We obtain the mean and variance

of our initial distribution from these estimates. In the DTMSMC procedure, we use

a random walk proposal in the move step with variance proportional to the estimated

covariance matrix based on the current particle approximation as described in Duan and

Fülöp (2015). Moreover, we adaptively set the tempering using the method described

in Moral et al. (2012) and we set the decay rate to 0.9. In the move step of the SMC2

algorithm we use an independent normal proposal as suggested by Chopin et al. (2013)

and we adaptively set the number of state particles. All methods use 2000 particles and

200 state particles in the particle filter runs except the SMC2 procedure where we start

with 100 particles. The SMC2 does not exceed 200 particles in any run.

Using the same simulated data set, we run every method 10 times and we record

the median of the posterior distribution of the parameters and the total time of the

estimation. Table 3 summarizes the results of the experiment. The results show that the

SMC2 procedure takes about 55 minutes to finish on average while the estimation takes

about 125 and 164 minutes with EMitISEM and DTMSCM, respectively. We compute the

standard deviations of the 10 estimates of the posterior median for each parameter. This

shows that EMitISEM yields estimates of which the standard deviations are between 4 and

11 times smaller than DTMSMC (in less computation time). EMitISEM gives estimates of

which the standard deviations are between 1.2 and 3 times smaller than SMC2 (in roughly

twice the computation time), where the inefficiency factors are roughly comparable across

these methods. In this setting, the efficiency of EMitISEM and SMC2 may be considered

comparable whereas both methods are more efficient than DTMSMC.

4 Two empirical studies

In this section we illustrate the performance of the EMitISEM proposal in a Metropolis-

Hastings procedure as part of two empirical studies. First, we estimate the parameters

in a stochastic intensity model using a large panel of U.S. corporate defaults. Second, we

consider the Gamma OU stochastic volatility model for time series of daily returns on five

well-known stock indices.
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4.1 Stochastic intensity model

In our first empirical illustration we consider the stochastic intensity model for a large

panel data set of U.S. corporate defaults obtained from Moody’s. The core of the model

is the same as in Section 3.2, with a slight change to account for sample extension and for

attrition due to other reasons than default. The dummy variable Dki is defined as before,

with Dki = 1 if firm k jumps into default at time ti, and Dki = 0 otherwise. We introduce

the new dummy variables Rki, with Rki = 1 if firm k is at risk of defaulting at time ti− ε,
for ε > 0 arbitrarily small, and Rki = 0 otherwise. An event time ti occurs when one of

the control variates changes its value (e.g., at the end of the month or quarter), when a

firm is added to the sample, or when a firm leaves the sample, either due to default or due

to other reasons. We denote the default intensity of firm k at time ti as λki = λk(ti).

The conditional density of the observations given the complete paths of the covariates

ci = c(ti), i = 1, . . . , T and the complete path of the unobserved process xi = x(ti), i =

1, . . . , T is given by

p(y|x, θ) =
T∏
i=1

p(yi|xi, θ) =
T∏
i=1

K∏
k=1

exp [Dki log λki −Rkiλki∆i] , (28)

where ∆i = ti − ti−1, for y = (y1, . . . , yT )′ and x = (x′1, . . . , x
′
T )′. Firm k only contributes

to the likelihood function when it is at risk of defaulting, that is when Rki = Rk(ti) = 1.

The state equation remains as in Section 3.2, for details, see Koopman et al. (2008).

Our data set contains 1,627 defaults from 12,881 U.S. firms observed daily over the

period January 1, 1970 to March 4, 2010. The number of firms in the portfolio increases

over time from about 1,000 firms at the beginning of the sample to around 5,000 firms

around 2010. Defaults originating from parent-subsidiary relationships are excluded: if

there are multiple defaults with the same parental ID, we only keep the oldest firm as

this is likely to be the parent firm. Event times and durations are measured in business

days. As in Koopman et al. (2008), we winsorize the number of defaults per day to one

to account for outliers and other data irregularities.

The top panel of Figure 1 shows the number of defaults per day before winsorizing.

The concentration of the vertical lines clearly presents evidence of default clustering over

time. In particular, we find high levels of defaults during 1989-1991 at the end of the

savings and loan crisis and during the subsequent recession, in 2001 after the burst of the

dot-com bubble, and after the 2008 financial crisis and during the subsequent recession.

The increasing numbers of defaults in the last two decades do not immediately imply an

increase in the frailty process x(t), because also the number of firms increased substantially

in the later part of the sample. Furthermore, the covariates may also partly explain the

movements in the data. The covariates are S&P500 returns, Treasury Bond spreads, 3

month Treasury Bill yields, and yearly changes in U.S. industrial production, see also

Section 3.2.
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The parameter estimates and the inefficiency factors for the chains of the EMitISEM

draws are presented in Table 4. The 90% credible intervals of the coefficients β2 (for

the term spread) and β3 (for the U.S. Treasury Bill rate) include zero, which indicates

that these parameters are not significantly different from zero. The signs of the param-

eters are consistent with what we expect. Both lower returns on the S&P500 index and

lower percentage changes in industrial production imply a higher default intensity. The

mean reversion parameter ρ is estimated as 0.12. At the yearly frequency, this implies

an autoregressive coefficient e−ρ ≈ 0.9, such that the frailty process has a high persis-

tence. The inefficiency factors have values around 3 and the acceptance rate is 71.04%.

The bottom panel of Figure 1 displays the smoothed estimate of the frailty process to-

gether with the 90% credible interval. We emphasize that the credible interval includes

all uncertainties due to the observation noise, the randomness of the frailty process, and

the uncertainty about the parameter vector θ. This contrasts with the confidence bands

around the estimated frailty process which are shown in most of the literature as part of

a classical analysis where the parameter uncertainty is typically ignored. The estimated

frailty process represents the credit cycle dynamics in excess of the dynamics caused by the

observable controls in c(ti). We clearly recognize the local peaks of the 1991 recession, the

burst of the dot-com bubble, and the aftermath of the financial crisis of 2008. Apparently,

the control variables do not explain all of the clustering behaviour of the defaults.

4.2 Gamma OU stochastic volatility model

For our second empirical application we estimate Gamma OU stochastic volatility models

on daily returns on major stock indices. We downloaded the daily returns of S&P500

(SPX), Dow Jones Industrial Average (DJIA), FTSE 100 (FTSE), Deutsche Boerse AG

German Stock Index (DAX) and Amsterdam Exchange Index (AEX) indices from 2nd

January 2012 till 5th March 2015 from the Oxford-Man Institute Realized Library. Table

5 presents the descriptive statistics of the data. All five series exhibit similar features,

with modest excess kurtosis and negative skewness.

We estimate the Gamma OU models using the EMitISEM procedure with 2000 pa-

rameter draws and 2000 state particles in each particle filter run. The estimation results

are given in Table 6. The estimates of β, the loading on the variance in the observation

equation, are negative for all indices, which suggests negative skewness of the return dis-

tribution. In three cases out of five, however, zero is also in the 95% credible interval. The

persistence parameter λ is estimated with large uncertainty, but the estimation results are

indicative of high persistence especially for DAX and AEX.
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5 Conclusion

We have introduced a new Extended Mixture of t by Importance Sampling weighted Expec-

tation Maximization (EMitISEM) algorithm to construct a flexible proposal for the joint

posterior density of the parameters and the states in nonlinear non-Gaussian state space

models. We conclude that using the EMitISEM proposal in an independent Metropolis-

Hastings procedure is a computationally efficient alternative to competing MCMC meth-

ods such as the adaptive particle independent Metropolis-Hastings method. In a Monte

Carlo study, we have shown that our method outperforms competing methods in terms

of efficiency and computation time. Moreover we have showed that using the EMitISEM

proposal in an importance sampling procedure leads to better performance compared to

the density tempered marginalized sequential Monte Carlo sampler in our experiment, and

that the efficiency is comparable with the SMC2 procedure. An interesting extension for

future research is to explore the sampling of state paths with the backward smoothing

algorithm described in Lindsten and Schön (2012).
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Table 1: Stochastic intensity model: parameter estimates for different Metropolis-Hastings algorithms. The table

presents the medians and interquartile ranges (within parentheses) over 56 simulated data sets. The estimates are

based on 20,000 draws after a burn-in sample of 5,000 observations. We use 50 simulated draws to evaluate the

likelihood in the ARWMH and AIMH algorithms.

Estimates

ω β1 β2 β3 β4 γ ρ

True values -4.75 -0.85 0.01 -0.055 -5.1 1.15 0.12

Algorithm:

ARWMH -4.559 -0.909 0.021 -0.044 -4.611 1.307 0.154
(1.212) (0.498) (0.202) (0.107) (2.280) (0.400) (0.111)

AIMH -4.621 -0.895 0.026 -0.043 -4.546 1.256 0.149
(1.247) (0.501) (0.206) (0.103) (2.330) (0.459) (0.111)

EMitISEM 10k -4.624 -0.896 0.025 -0.044 -4.591 1.286 0.151
(1.183) (0.483) (0.209) (0.108) (2.182) (0.382) (0.106)

EMitISEM mod.10k -4.580 -0.899 0.024 -0.044 -4.562 1.283 0.150
(1.220) (0.482) (0.211) (0.105) (2.219) (0.389) (0.107)

EMitISEM mod. 5k -4.599 -0.897 0.023 -0.044 -4.559 1.302 0.145
(1.189) (0.477) (0.206) (0.106) (2.115) (0.394) (0.106)

Table 2: Stochastic intensity model: We compare the Adaptive Random Walk Metropolis-Hastings method (AR-

WMH), the Adaptive Independent Metropolis-Hastings method (AIMH) , the EMitISEM with 10,000 parameter

draws in the training sample (EMitISEM 10k), the modified EMitISEM with 10,000 parameter draws in the training

sample (EMitISEM mod. 10k) and the modified EMitISEM with 5,000 parameter draws in the training sample

(EMitISEM mod. 5k) in terms of time (in seconds), acceptance rates (AR) and inefficiency factors (23). The table

presents the medians and interquartile ranges (within parentheses) over 56 simulated data sets. The estimates are

based on 20,000 draws after a burn-in sample of 5,000 observations. We use 50 simulated draws to evaluate the

likelihood in the ARWMH and AIMH algorithms.

Algorithm Time Acc. Inefficiency

(in sec) Rate ω β1 β2 β3 β4 γ ρ

ARWMH 10053 0.247 41.833 31.735 29.212 29.428 32.037 39.873 33.523
(7380) (0.015) (13.621) (6.883) (4.619) (5.650) (7.931) (21.481) (1.469)

AIMH 8953 0.411 25.256 8.308 10.812 9.439 8.592 26.513 10.777
(6406) (0.150) (181.847) (22.293) (12.817) (13.771) (15.356) (135.075) (39.141)

EMitISEM 5858 0.658 3.431 2.586 2.575 2.624 2.642 3.406 2.893
10k (3684) (0.031) (0.769) (0.374) (0.380) (0.327) (0.559) (0.879) (0.666)

EMitISEM 3124 0.633 4.863 2.900 2.884 2.899 3.024 4.934 3.355
mod. 10k (2386) (0.041) (3.950) (0.735) (0.804) (0.946) (0.728) (5.605) (1.210)

EMitISEM 2089 0.618 5.877 3.265 3.169 3.279 3.303 5.926 4.117
mod. 5k (1616) (0.037) (4.823) (0.851) (1.012) (0.985) (1.062) (7.377) (2.038)
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Table 3: Gamma OU stochastic volatility model: We simulate 1000 observations from the Gamma OU model with

parameters µ = 0, β = 0, ξ = 0.5, ω2 = 0.065 and λ = 0.01, and we estimate the parameters 10 times with SMC2,

density tempered marginalized sequential Monte Carlo sampler (DTMSMC) and our EMitISEM procedure. We

present the mean of the posterrior median estimates over the 10 runs. The standard deviation of the 10 estimates of

the posterior median is within parentheses. The proposal construction time row shows the mean of the time needed

to construct the EMitISEM proposal in hours while the total time row presents the mean total estimation time in

hours.

True value SMC2 DTMSMC EMitISEM

µ 0 0.009 0.023 0.013

(0.006) (0.036) (0.004)

β 0 -0.065 -0.089 -0.07

(0.012) (0.07) (0.006)

ξ 0.5 0.558 0.57 0.541

(0.016) (0.06) (0.008)

ω2 0.065 0.071 0.088 0.068

(0.006) (0.021) (0.005)

λ 0.01 0.008 0.008 0.007

(0.001) (0.002) (0.0003)

proposal construction time 1.876

(0.592)

total time 0.914 2.737 2.086

(0.216) (0.113) (0.596)

Table 4: Stochastic intensity model: parameter estimates for U.S. corporate defaults from January 1, 1970 to

March 4, 2010. The 90% credible intervals are within parentheses. The inefficiency factor is calculated as (23).

Parameter Estimate Inefficiency

ω Constant -4.750 2.755
(-6.357 , -3.287)

β1 S&P500 1 year return -0.862 2.097
(-1.346 , -0.375)

β2 Term spread 0.013 3.495
(-0.164, 0.191)

β3 3M TBill -0.054 2.489
(-0.167 , 0.058)

β4 Change in indust. prod. -5.115 2.450
(-7.798 , -2.292)

γ Loading on frailty 1.148 2.809
(0.548 , 2.294)

ρ Mean reversion 0.120 2.688
(0.014 , 0.351)
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Figure 1: Default data from 1st January 1970 to 4th March 2010 (top panel) and the smoothed estimate of the

frailty process with its 90% credible interval (bottom panel).

Table 5: Descriptive statistics of the time series of daily (percentage) returns on S&P 500, DJIA, FTSE 100, DAX

and AEX indices from 2nd January 2012 till 5th March 2015.

SPX DJIA FTSE DAX AEX

mean 0.055 0.052 -0.011 0.024 0.017

st. dev 0.710 0.689 0.594 0.898 0.763

skewness -0.224 -0.133 -0.123 -0.269 -0.194

kurtosis 4.142 3.980 4.534 4.153 4.649

min -2.480 -2.324 -2.562 -3.173 -3.538

max 2.502 2.338 2.409 3.564 3.104

# 796 796 802 803 809
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Table 6: Gamma OU stochastic volatility model: estimation results for the S&P 500, DJIA, FTSE 100, DAX and

AEX indices from 2nd January 2012 till 5th March 2015. We used the EMitISEM procedure with 2000 parameter

particles and 2000 state particles in the bootstrap filter. The estimation of the model was carried out using 12 cores

in parallel. The 95% credible intervals are within parentheses. The time row shows the total computing time in

hours.

SPX DJIA FTSE DAX AEX

µ 0.159 0.148 0.063 0.142 0.1

(0.087 , 0.239) (0.073 , 0.232) (-0.006 , 0.128) (0.045 , 0.253) (0.022 , 0.181)

β -0.213 -0.204 -0.216 -0.152 -0.147

(-0.402 , -0.046) (-0.412 , -0.011) (-0.455 , 0.013) (-0.315 , 0.01) (-0.319 , 0.011)

ξ 0.492 0.468 0.344 0.8 0.571

(0.407 , 0.603) (0.382 , 0.573) (0.268 , 0.439) (0.601 , 1.072) (0.449 , 0.738)

ω2 0.126 0.099 0.057 0.269 0.147

(0.073 , 0.219) (0.056 , 0.18) (0.031 , 0.11) (0.142 , 0.589) (0.078 , 0.291)

λ 0.219 0.171 0.102 0.067 0.091

(0.132 , 0.387) (0.108 , 0.294) (0.046 , 0.182) (0.03 , 0.171) (0.041 , 0.166)

time 1.5 1.07 0.96 1.82 1.16
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APPENDIX

Joint Bayesian analysis of parameters and states
in nonlinear non-Gaussian state space models

István Barra, Lennart Hoogerheide, Siem Jan Koopman and André Lucas

A Expectation and Maximization steps in MitISEM

We want to maximize the weighted log-density

1

N

N∑
j=1

w(j) log qζ′(θ
(j)|y), (A.1)

where the weight w(j) is the ratio of the target density kernel and the candidate density

from which the d-dimensional vector draws θ(j) have been simulated, with weight w(j)

and where qζ′(θ
(j)|y) is a mixture of H Student’s t-densities. The target density kernel

is either the marginal posterior density kernel of θ or the joint posterior density kernel of

θ and the signal x; in the latter case the candidate density is the joint candidate density

for θ(j) and x(j) where x(j) has been simulated conditionally on θ(j). We can write the

mixture of Student’s t-densities using a latent variable representation where z(j) is a latent

H dimensional vector consisting of H − 1 zeros and one element zjh = 1 that indicates

that the draw θ(j) belongs to the h-th Student’s t-distribution. The mixing weight is

Pr[zjh = 1] = ηh, and

θ(j) ∼ N(µ,Σ), µ =

H∑
i=1

zjhµh, Σ =

H∑
i=1

zjhκ
j
hΣh, (A.2)

where µh and Σh are the mode vector and scale matrix of the h-th Student’s t-distribution,

and where the random variable κjh has an Inverse-Gamma distribution

κjh ∼ IG(νh/2, νh/2),

where νh is the degrees of freedom parameter of the h-th Student’s t-distribution.

The Expectation-Maximization (EM) algorithm proceeds with iterations L = 1, 2, . . .,

which consist of an expectation and maximization step, until it has converged to a (lo-

cal) optimum. In the expectation step of iteration L the conditional expectations of the

expressions involving the latent variables zj and κj that occur in the log-density, given
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the draws θ(j) and ζ = ζ(L−1) = {µh,Σh, νh, ηh; h = 1, . . . ,H}, the parameters from the

previous EM iteration (L− 1), are the following:

z̃jh ≡ E
[
zjh

∣∣∣θ(j), ζ = ζ(L−1)
]

=
t(θ(j)|µh,Σh, νh)ηh∑H
i=1 t(θ

(j)|µi,Σi, νi)ηi
, (A.3)

where t(·|µ,Σ, ν) is a Student’s t-density with mode µ, scale matrix Σ and degree of

freedom ν,

z̃/κ
j

h ≡ E

[
zjh
κjh

∣∣∣∣∣ θ(j), ζ = ζ(L−1)

]
= z̃jh

d+ νh

ρjh + νh
, (A.4)

ξih ≡ E
[
log κjh|θ

(j), ζ = ζ(L−1)
]

=

=

[
log

(
ρjh + νh

2

)
− ψ

(
d+ νh

2

)]
z̃jh +

[
log
(νh

2

)
− ψ

(νh
2

)]
(1− z̃jh),(A.5)

δih ≡ E

[
1

κjh

∣∣∣∣∣ θ(j), ζ

]
= z̃/κ

j

h + (1− z̃jh), (A.6)

with ρjh ≡ (θ(j) − µh)′Σ−1
h (θ(j) − µh), and ψ(.) is the digamma function.

The maximization step of iteration L consists of the following updates

µ
(L)
h =

 N∑
j=1

w(j)z̃/κ
j

h

−1  N∑
j=1

w(j)θ(j)z̃/κ
j

h

 , (A.7)

Σ
(L)
h =

∑N
j=1w

(j)(θ(j) − µ(L)
h )(θ(j) − µ(L)

h )′z̃/κ
j

h∑N
j=1w

(j)z̃jh
, (A.8)

η
(L)
h =

∑N
j=1w

(j)z̃jh∑N
j=1w

(j)
. (A.9)

Finally, ν
(L)
h is obtained by solving the first-order condition

−ψ(νh/2) + log(νh/2) + 1−
∑N

j=1w
(j)ξjh∑N

j=1w
(j)
−
∑N

j=1w
(j)δjh∑N

j=1w
(j)

= 0 (A.10)

for νh. For more details we refer to Hoogerheide et al. (2012).

B The NAIS method

We can express the likelihood of the state space model given by (1) and (2) as

L(y|θ) =

∫
p(x, y|θ)
q(y|x, θ)

q(y|x, θ)dx = q(y|θ)
∫
ω(x, y|θ)q(y|x, θ)dx, (B.1)

where x = (x1, . . . , xT )′, with xt = ct + Ztαt being the signal at time t for t = 1, . . . , T ,

and where

ω(x, y|θ) ≡ p(y|x, θ)/q(y|x, θ). (B.2)
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The Gaussian importance or proposal density can be written as

q(yt|xt, θ) = exp

{
at + b′txt −

1

2
x′tCtxt

}
(B.3)

where at, bt and Ct depend on the observations y and the parameters in θ for t = 1, . . . , T .

The importance density at time t is effectively determined by bt and Ct as the constant

at is chosen such that the density integrates to one. We can represent the Gaussian

importance density as the smoothed density in the linear Gaussian state space model with

its observation equation given by

y∗t = xt + εt, ε ∼ N(0, C−1
t ), t = 1, . . . , T, (B.4)

where y∗t = C−1
t bt for t = 1, . . . , T and the transition density given in equation (2).

To formulate an effective importance density we choose its parameters, as collected in

χ = {b1, . . . , bT , C1, . . . , CT }, by minimizing a conveniently chosen metric associated with

the importance sample variation, that is

min
χt

∫
λ2(xt, yt|θ)ω(xt, yt|θ)q(xt|y∗, θ)dxt, (B.5)

for every t, where

λ(xt, yt|θ) = log p(yt|xt, θ)− log q(y∗t |xt, θ)− λ0t. (B.6)

We can rewrite the minimization as

min
χt

M∑
j=1

λ2(x̃tj , yt|θ)ωtj , ωtj = q(x̃tj |y∗, θ)ω(x̃tj , yt|θ)h(zj)e
z2j , (B.7)

with x̃tj = x̂t + V
1/2
t zj , for j = 1, . . . ,M , and

q(x̃tj |y∗, θ) = exp

{
−1

2
z2
j

}
/
√

2π, t = 1, . . . , T, (B.8)

where x̂t is the smoothed signal, Vt is smoothed signal variance and zj are the abscissa

designated by the Gauss-Hermite quadrature. The minimization is carried out iteratively.

First, for a given χ we obtain x̂t and Vt for t = 1, . . . , T from the linear Gaussian state

space model in (B.4). Second, we obtain the optimal χt = {Ct, bt} for t = 1, . . . , T by

a weighted least squares computation with “dependent” variable log p(yt|x̃tj , θ) and “ex-

planatory variables” x̃tj and x̃2
tj . We iterate these steps until convergence of χ. For a more

detailed discussion, we refer to Koopman et al. (2015).
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C The algorithms

EMitISEM algorithm

1. Initialization: Simulate a series of N parameter vector draws θ(0,1), . . . , θ(0,N) from

the initial Student’s t candidate density qζ(0)(θ|y) with parameters denoted by ζ(0).

The parameters of the initial candidate density qζ(0)(θ|y) consist of the mode equal

to the simulated maximum likelihood estimate of θ, the scale parameter equal to

minus the inverse Hessian of the log likelihood evaluated at the current parameter

estimates and the degree of freedom parameter equal to 5. The evaluation of the

likelihood is given in (B.1). Conditionally on the draws θ(0,1), . . . , θ(0,N) we simulate

a corresponding series of N signal paths for x from q(x|θ(j), y) and denote these by

x(0,1), . . . , x(0,N). Finally, we evaluate the joint importance sampling (IS) weights

w(0,1), . . . , w(0,N) given by (10).

2. Adaptation: Estimate the mean and variance of the target distribution via IS

using the draws θ(0,1), . . . , θ(0,N) from qζ(0)(θ|y) . We adopt the estimated mean and

variance as the mode and scale of the new proposal distribution, which is denoted

by qζ(1). We simulate draws θ(1,1), . . . , θ(1,N) from qζ(1). Finally, we simulate signal

paths x(1,1), . . . , x(1,N) conditionally on the parameter draws, and evaluate the joint

IS weights w(1,1), . . . , w(1,N) given by (10) and using qζ = qζ(1).

3. IS weighted EM algorithm: We obtain the updated proposal qζ(2) from the IS

weighted EM algorithm of MitISEM, using the latest draws θ(1,1), . . . , θ(1,N) and

corresponding IS weights w(1,1), . . . , w(1,N). Appendix A provides further details

about the MitISEM algorithm. We simulate draws θ(2,1), . . . , θ(2,N) from the updated

proposal qζ(2) , and signal paths x(2,1), . . . , x(2,N) conditionally on these parameter

draws. We compute the corresponding IS weights w(2,1), . . . , w(2,N) in (10) using

qζ = qζ(2). Calculate the coefficient of variation of the weights w(2,1), . . . , w(2,N) (i.e.,

the standard deviation divided by the mean) CoV (2), where we use the notation

CoV (k) =

√√√√ 1
N

N∑
j=1

(
w(k,j)

)2 −( 1
N

N∑
j=1

w(k,j)

)2

1
N

N∑
j=1

w(k,j)

(C.1)

for the coefficient of variation of the weights at iteration k. Set i = 3.

4. Iterate on the number of mixture components:

We consider 10% of the simulated draws from the last iteration θ(i−1,1), . . . , θ(i−1,N)

that correspond to the highest IS weights, based on the current candidate mixture

density qζ(i−1). We use this smaller set of draws and weights to compute a new
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mode and scale matrix. The new mode and scale are used as starting parameters

for the additional Student’s t component in the mixture. We adopt this choice

because the new Student’s t component should cover a part of the parameter space

that is insufficiently covered by the previous candidate, when compared to the target

density as discussed in Hoogerheide et al. (2012). The starting values for the mixture

probability and degrees of freedom parameter for the new Student’s t component are

set to 0.1 and 5, respectively. The starting values of the mixture probabilities for the

older Student’s t components are obtained by multiplying the latest values by 0.9.

Given the last set of N simulated draws θ(i−1,1), . . . , θ(i−1,N) and the corresponding

importance weights w(i−1,1), . . . , w(i−1,N) , we apply the IS weighted EM algorithm

to update the new mixture distribution. We simulate draws θ(i,1), . . . , θ(i,N) from

the updated proposal qζ(i), and signal paths x(i,1), . . . , x(i,N) conditionally on these

parameter draws. We compute the corresponding IS weights w(i,1), . . . , w(i,N) in (10)

using qζ = qζ(i).

5. Evaluate the IS weights: We calculate the coefficient of variation CoV (i) of the

IS weights from the current iteration w(i,1), . . . , w(i,N). We terminate the iterations

when the coefficient of variation changes by less than 5% compared to the coefficient

of variation in the last iteration CoV (i−1); otherwise we go to Step 4.

EMitISEM modified algorithm

1. Initialization: Same as Step 1 of the EMitISEM algorithm.

2. Adaptation: Same as Step 2 of the EMitISEM algorithm.

3. IS weighted EM algorithm: Same as Step 3 of the EMitISEM algorithm.

4. Iterate on the number of mixture components: We now consider 10% of the

simulated draws θ(2,1), . . . , θ(2,N) that correspond to the highest IS weights, based

on the current candidate mixture density qζ(i−1). We use this smaller set of draws

and weights to compute a new mode and scale matrix. The new mode and scale

are used as starting parameters for the additional Student’s t component in the

mixture. The starting values for the mixture probability and degrees of freedom

parameter for the new Student’s t component are set to 0.1 and 5, respectively. The

starting values of the mixture probabilities for the older Student’s t components are

obtained by multiplying the latest values by 0.9. Given the last set of N simulated

draws θ(2,1), . . . , θ(2,N) and the corresponding importance weights w(2,1), . . . , w(2,N)

, we apply the IS weighted EM algorithm to update the new mixture distribution to

obtain qζ(i).
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5. Evaluate the IS weights: We estimate the coefficient of variation CoV (i) using

formulas (14) and (15) . We terminate the iterations when the coefficient of variation

changes by less than 5% compared to the coefficient of variation in the last iteration

CoV (i−1); otherwise we go to Step 4.

EMitISEM algorithm for models with a non-Gaussian state

1. Initialization: Simulate a series of N parameter vector draws θ(0,1), . . . , θ(0,N)

from the initial Student’s t candidate density qζ(0)(θ|y) with its mode equal to

the likelihood estimates of θ using the smooth particle filter to evaluate the like-

lihood by Pitt (2002) and with its scale equal to minus the inverse Hessian of the

log likelihood evaluated at the current parameter estimates. Conditionally on the

draws θ(0,1), . . . , θ(0,N) we evaluate the likelihood by running N particle filters in

parallel. Finally, we evaluate the estimates of the importance sampling weights

ŵ(0,1), . . . , ŵ(0,N) given by (18).

2. Adaptation: Same as Step 2 of the EMitISEM algorithm, but with the estimated

weights ŵ(1,1), . . . , ŵ(1,N) form (18) replacing the weights from (10).

3. IS weighted EM algorithm: Same as Step 3 of the EMitISEM algorithm, but

with the estimated weights ŵ(1,1), . . . , ŵ(1,N) form (18) replacing the weights from

(10).

4. Iterate on the number of mixture components: Same as Step 4 of the EMi-

tISEM algorithm, but with the estimated weights ŵ(1,1), . . . , ŵ(1,N) form (18) replac-

ing the weights from (10).

5. Evaluate the IS weights: Same as Step 5 of the EMitISEM algorithm, but with

the estimated weights ŵ(1,1), . . . , ŵ(1,N) form (18) replacing the weights from (10).

D Adaptive random-walk Metropolis-Hastings

Roberts and Rosenthal (2009) propose an adaptive random walk Metropolis-Hastings al-

gorithm, with a proposal of the following form

qn(θ; θn−1) = ω1nφd(θ; θn−1, κ1Σ1) + ω2nφd(θ; θn−1, κ2Σ2n), (D.1)

where φd(θ; θ̂,Σ) is a d dimensional multivariate normal density with mean θ̂ and covari-

ance matrix Σ. We set ω1n = 1 until n > n0 , and ω1n = 0.05 afterwards. The scalars

κ1 = 0.12/d and κ2 = 2.382/d and Σ1 = Id are constant throughout the procedure, while

Σ2n covariance matrix is estimated using the first n− 1 iterates.
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E Adaptive mixture of normals

Giordani and Kohn (2010) and Pitt et al. (2012) suggest an adaptive mixture of normals

proposal, which has the form

qn(θ) =
4∑

k=1

ωknqkn(θ) ωkn ≤ 0, for k = 1, . . . , 4 and
4∑

k=1

ωkn = 1, (E.1)

at iteration n. The adaptation has two stages. We start the first stage with setting

ω1n = 0.8, ω2n = 0.2 and we use a Gaussian density for q1n with mean equal to the

simulated maximum likelihood estimates and variance equal to minus the inverse Hessian

at the mean. Moreover we set q2n as a heavy tailed version of q1n by setting the covariance

matrix 15 times the covariance matrix of q1n. After 5d accepted draws (where d is equal

to the dimension of θ) we set q3n and q4n and we change the component weights in (E.1).

q3n is obtained as a mixture of normals using k-means clustering on the previous draws.

q4n is the fat tailed version of q3n, it has the same means and mixture probabilities as

q3n but the covariance matrices are multiplied by 20. The new weights are the following

ω1n = 0.15, ω2n = 0.05, ω3n = 0.7, ω4n = 0.1. In the rest of the first stage we update

q3n at predetermined updating times or after rejecting 10 candidate draws in a row. We

always set q4n to be the fat tailed version of q3n. The first stage ends if the minimal

acceptance rate (i.e., the conditional acceptance probability in the MH algorithm) in the

last 1,000 draws is above 0.02. After the first stage we set q1n = q3n, i.e., the last version

of the mixture of normals, and q2n is again the fat tailed version of the new q1n. In the

second stage we only update at predetermined updating times.

F Likelihood estimation: NAIS versus particle filters

We have argued that ARWMH and AIMH methods can be implemented using both

PMCMC and NAIS algorithms for drawing the signal vectors. To assess the difference

between the two implementations, we use the particle filter and NAIS methods to evaluate

the likelihood function for a stochastic volatility model with normally distributed errors.

Note that this is an illustrative model that differs from the stochastic volatility model in

the main exposition. A review of different particle filtering methods is provided in for

instance Doucet et al. (2001). For this illustrative stochastic volatility model, we obtain

more efficient likelihood estimates when using NAIS in comparison to using particle filters.

The NAIS importance sampling estimates of the likelihood function have lower variance

and need less computing time than the particle filter likelihood estimates.

We simulate 56 data sets using the same data generating process for the stochastic
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volatility model

yt = exp(xt/2)εt, εt ∼ NID (0, 1) , (F.1)

xt − δ = φ(xt−1 − δ) + ηt, ηt ∼ NID
(
0, σ2

η

)
, (F.2)

where xt is the unobserved log-volatility process, which follows an autoregressive process

of order 1, εt is a standardized error term, δ is the overall mean of xt, 0 < φ < 1 is the

persistence parameter, and σ2
η > 0 is the innovation variance of the log-volatility process.

The 56 data sets are generated from the basic SV model (F.1) and (F.2) with parameters

set equal to δ = 0.48, φ = 0.97, and σ2
η = 0.049. We simulate time series of length 1,250

and use the following prior specifications (see Omori et al. (2007)) for the parameters

δ ∼ N(0, 1),
φ+ 1

2
∼ Beta(20, 1.5),

1

σ2
η

∼ Gamma

(
5

2
,
0.05

2

)
.

We estimate the likelihood value at the “true” parameter values 100 times for each sim-

ulated data set using the bootstrap filter of Gordon et al. (1993), the auxiliary particle

filter of Pitt and Shephard (1999) and the NAIS method of Koopman et al. (2015). We

compute 100 likelihood estimates for each data set and we calculate the variance of the

estimates together with the mean computing time for each data set. We report the median

variance and computing times over the 56 data sets. Table F.1 presents the results. For

all considered time series lengths, the median variance of the NAIS estimate is lower than

the median variance of the particle filter estimates for all numbers of particles considered.

Moreover, the estimation using NAIS takes much less time than the estimation using

particle filters. We therefore use NAIS in all algorithms to facilitate fair comparisons.
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Table F.1: Illustrative stochastic volatility model with normally distributed errors: Comparison of the variance of

the particle filter and importance sampling estimate of the likelihood based on 56 simulated data sets. We compare

the likelihood estimates from the bootstrap filter (BF), the auxiliary particle filter (APF) and the numerically

accelerated importance sampling (NAIS). M denotes the number of particles/number of draws. T is the length of

the simulated data set. For different M and T we report the median of the variances over the 56 data sets, where

these variances are calculated from 100 runs per data set.

Method M
Variance Time

T=1000 T=2000 T=1000 T=2000

BF

250 1.079 1.505 5.970 37.901

500 0.743 1.071 18.435 88.828

1000 0.541 0.735 44.018 173.432

APF

250 0.988 1.420 6.362 37.434

500 0.674 0.963 21.025 88.764

1000 0.490 0.687 42.663 195.456

NAIS 50 0.140 0.233 0.283 0.527
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