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Abstract

Recent empirical evidence suggests that financial networks exhibit a core-periphery network struc-
ture. This paper aims at giving an explanation for the emergence of such a structure using network
formation theory. We propose a simple model of the overnight interbank lending market, in which
banks compete for intermediation benefits. Focusing on the role of bank heterogeneity, we find
that a core-periphery network cannot be unilaterally stable when banks are homogeneous. A core-
periphery network structure can form endogenously, however, if we allow for heterogeneity among
banks in size. Moreover, size heterogeneity may arise endogenously if payoffs feed back into bank
size.

Keywords: financial networks, core-periphery structure, network formation models,
over-the-counter markets, interbank market
JEL classifications: D85, G21, L14

1. Introduction

The extraordinary events of 2007 and 2008 in which the financial system almost experienced a

global meltdown, led to an increased interest in the role of financial networks, the network of

trading relationships and exposures between financial institutions,1 on systemic risk, the risk that

liquidity or solvency problems in one financial institution spread to the whole financial sector.

Building on pre-crisis work by Allen and Gale (2000) and Eisenberg and Noe (2001), an extensive

body of theoretical, simulation and empirical research has shown that the structure of the network

IThe authors would like to thank Darrell Duffie, Ester Faia, Filomena Garcia, Michael Gofman, Matthew Jackson,
Christian Julliard and Mariëlle Non for comments. We also thank participants at several workshops and conferences
for their attendance and comments. The research has been supported by the Netherlands Organisation for Scientific
Research (NWO) under the Complexity program Understanding financial instability through complex systems (grant
number: 645.000.015). Views expressed are those of the authors and do not necessarily reflect official positions of De
Nederlandsche Bank.
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of interbank liabilities matters for the likelihood and the extent of financial contagion.2

Importantly, however, until recently almost all of this work assumed that the network of financial

interconnections is exogenously fixed. This assumption ignores the fact that financial networks do

not come out of the blue. Financial relations are formed consciously by financial institutions who

borrow, lend and trade financial assets with each other in order to maximize profits. This is

important, as a change in the risk or regulatory environment may incentivize financial institutions

to rearrange their financial links. This change may in itself constitute a financial crisis, for example

in the case of an interbank market freeze, which may be interpreted as a sudden shift from a

connected to an empty financial interbank network.

It is therefore important to better understand the formation process of financial networks. A

natural starting point is to try to explain stylized facts about financial network structure. Regarding

financial networks, one consistent empirical finding is that financial networks of interbank markets

have a structure close to a core-periphery structure, which is defined as a connected network that

has two tiers, a core and a periphery, the core forming a fully connected clique, whereas peripheral

banks are only connected to the core (Borgatti and Everett, 1999). For example, Peltonen et al.

(2014) find such a structure for financial networks in derivative markets, Di Maggio et al. (2017)

in the corporate bond markets, and Craig and Von Peter (2014) and in ’t Veld and van Lelyveld

(2014) in interbank markets in respectively Germany and The Netherlands. Moreover, in ’t Veld and

van Lelyveld (2014) show that a core-periphery network structure fits the actual Dutch interbank

network better than alternative network structures, such as a scale free network or a nested split

graph.3

This paper aims to contribute to our understanding of why such core-periphery networks are

formed. This aim is similar to recent work by Castiglionesi and Navarro (2016), Bedayo et al.

(2016), Farboodi (2017), and Chang and Zhang (2019). Differently from those papers, we aim to

understand if such a core-periphery structure may arise endogenously from ex-ante identical banks.

We present a network formation model of a financial market with an explicit role for intermedia-

tion. The model builds on work of Goyal and Vega-Redondo (2007). They show that, starting from

ex-ante identical agents, the star network with a single intermediating counterparty, quickly arises

in an environment in which relations are costly.4 Intuitively, this result arises from network effects

for intermediation; it becomes more attractive to link to an intermediator if the intermediator has

already many links. However, in practice, rather than simple stars, we observe core-periphery net-

2See Glasserman and Young (2016) for a comprehensive review, and Gai et al. (2011), Elliott et al. (2014) and
Acemoglu et al. (2015) for seminal papers.

3See Cohen-Cole et al. (2015) and König et al. (2014) for theoretical financial network models that have nested
split graphs as an outcome.

4A star network is a network in which one and only one node, the center, is connected to all periphery nodes, and
no other links exist. Formally, the star may be considered a trivial case of a core-periphery network. Our interest is
in core-periphery networks that are not star networks.
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works that have multiple banks in the core. Moreover, core banks tend to form a fully connected

clique. Such core-periphery networks are not stable in the framework of Goyal and Vega-Redondo

(2007). An important reason for that is their assumption of perfect competition for intermediation

benefits. This assumption drives payoffs to zero for any network in which there are two or more

members in the core.5 On the other hand, imperfect competition for intermediation benefits allow

for positive payoffs for competing core players, which may allow for the possibility of non-trivial

stable core-periphery networks.

In order to see if core-periphery networks are stable in an environment of imperfect competition

for intermediation benefits, we therefore extend the framework of Goyal and Vega-Redondo (2007).

First, we propose a simple model of interbank overnight lending, in which banks receive positive or

negative liquidity shocks on a daily basis, creating trading opportunities for banks on the interbank

overnight lending market. We assume that trade can only take place between costly long-term

trading relationships, allowing for the possibility of intermediation benefits. Intermediators compete

for these benefits, but unlike Goyal and Vega-Redondo (2007) competition is imperfect, opening

up the possibility that multiple core players benefit from intermediation. With the benefits from

this trading network as a second stage, we then consider first-stage network formation of long-term

trading relationships. Apart from the usual equilibrium concept of pairwise stability (Jackson and

Wolinsky, 1996), we also consider the stronger concept of unilateral stability. This concept allows

for deviations of deleting or adding multiple links.

We ask ourselves if the core-periphery network is stable in this model. To our surprise, in general,

the answer is no. We provide three results on that. First, Proposition 2 shows that a core-periphery

network, in which the set of connections of one core player contains the set of another core player,

is not pairwise (let alone unilaterally) stable. The intuition behind this result is as follows: a stable

core-periphery network implies that periphery banks prefer to trade indirectly via intermediating

core banks, rather than trade directly. However, given that periphery and core banks have identical

technologies, the core bank with the larger set of connections should have an incentive to trade

indirectly via peripheral banks as intermediators as well. Hence, the core player does not have an

incentive to maintain all direct trading relationships in the core, in contradiction to the definition

of a core-periphery network.

Second, Proposition 3 states that, when the periphery becomes very large compared to the core,

a core-periphery network cannot be unilaterally stable. For large enough networks, the payoff in-

equality between core and periphery banks becomes unsustainable large, as intermediation benefits

for core banks grow quadratically with the number of periphery banks. Periphery banks there-

fore have an incentive to enter the core, even if competition between intermediators reduces their

5Babus and Hu (2017) consider a financial network formation model that also builds on Goyal and Vega-Redondo
(2007). In their model an interlinked star network with 2 members in the core may be stable. However, similarly as
in Goyal and Vega-Redondo (2007) core-periphery networks with 3 or more nodes in the core are not stable in the
model of Babus and Hu (2017).
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benefits.

The first two results, still leave open the possibility for unilaterally stable core-periphery net-

works under specific conditions. Theorem 1, however, shows that, in a dynamic setting, stable

core-periphery networks are unlikely to arise. In particular, we show that, in a simple dynamic

model a la Kleinberg et al. (2008), best-response dynamics never converge to a core-periphery net-

work. Interestingly, instead of core-periphery networks, we find that multipartite networks may

be a stable outcome. These type of networks are two- or multi-tiered as well; however, unlike

core-periphery networks, they do not have links within a (core) tier.6

Key to these findings is that banks are ex ante identical; periphery banks obtain the same trading

opportunities and have the same intermediation technology as core banks . This puts a limit on

inequality, and therefore excludes the stability of a core-periphery network. We therefore investigate

the role of heterogeneity in our model. We analyze a version with two types of banks, big banks

and small banks, and allow big banks to have more frequent trading opportunities. Proposition 4

shows that for sufficiently large differences between big and small banks, it becomes beneficial for

large banks to have direct lending relationships with all other large banks in the core, such that

the core-periphery network becomes a stable structure.

Finally, we show that this heterogeneity between banks, and in fact a stable core-periphery

network, may arise endogenously with ex ante identical banks, if one allows for a feedback loop

from inequality in payoffs to inequality in size. This process works as follows. Starting from

identical banks, best-response dynamics may converge to an unequal multipartite network, such

that one side earns more than the other side of the network. Due to the feedback from payoff to

size, the banks on the side that earn more increase their scale, until it finally becomes attractive

for the largest banks to trade directly, forming a core-periphery network structure.

We now review the literature on financial network formation. One may make a distinction

between papers that are more concerned with the trade offs between contagion, risk sharing, effi-

ciency and stability (Acemoglu et al., 2015; Babus, 2016; Cabrales et al., 2017), and papers that

(among other things) rationalize the formation of a core-periphery structure in financial networks

(Bedayo et al., 2016; Castiglionesi and Navarro, 2016; ?; Farboodi, 2017; Wang, 2018). Our paper

belongs to the second category. It is interesting to note the role of heterogeneity in these papers.

In papers of the first category (Cabrales et al., 2017; Acemoglu et al., 2015) ex-ante homogeneity is

assumed, and indeed, the resulting efficient or stable networks do not correspond to core-periphery

networks at all.7 On the other hand, in papers of the second category heterogeneity usually plays a

6Next to stability we also investigate efficiency. Theorem 2 characterizes the efficient networks as the empty
network or the star network. The core-periphery network and (stable) multipartite network are never efficient
networks.

7In Babus (2016) it is assumed that there are 2 regions with negatively correlated shocks, such that a bipartite
network arises.
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key role. In Farboodi (2017) banks are heterogeneous in their investment opportunities, and they

compete for intermediation benefits. A core-periphery network is formed with investment banks

forming the core, as they are able to offer better intermediation rates. In Bedayo et al. (2016)

intermediation also plays a key role, with intermediaries bargaining sequentially and bilaterally

on a path between two traders. Here agents are heterogeneous in their time discounting. They

find that a core-periphery network is formed with impatient agents in the core. In Castiglionesi

and Navarro (2016) heterogeneity in investments arises endogenously. Some banks invest in safe

projects, and others in risky projects. Links are created as a coinsurance to liquidity shocks. Safe

banks link freely with each other, but the incentives to link to risky banks is limited, leading to a

core-periphery like structure.8,9

Overall, the main message of our paper is that bank heterogeneity matters for the formation

of financial core-periphery networks, and that, in order to understand the financial system and its

(systemic) risks, it is crucial to understand which types of heterogeneity and which mechanisms

are driving the core-periphery network structure. This is particular relevant, because inefficiency

results tend to depend on the particular type of heterogeneity.

This paper is organized as follows. In Section 2 we introduce our model with the basic network

structures, the pay-off function and the stability concepts. Our main results are presented separately

for homogeneous traders (Section 3) and heterogeneous traders (Section 4). In Section 5 we provide

an application of our model to the interbank market of the Netherlands. Section 6 concludes.

2. Model

Our goal is to model the formation of a network of long-term trading relationships between banks.

We denote the set of banks by N, and the number of banks by n. There are two stages. In the first

stage, at time t = 0, banks form an undirected network, g, of these trading relationships. Denote

by gi j = g ji = 1 the existence of a trading relationship, and by gi j = g ji = 0 the absence of it. After

forming their long-term trading relationships, liquidity trade takes place through these relationships

in an infinite number of periods, t = 1,2, . . .. Payoffs from forming trading relationships at time

8In the model of Castiglionesi and Navarro (2016) periphery bank may form links with each other. This contradicts
the definition of a core-periphery network of Borgatti and Everett (1999), Craig and Von Peter (2014) and in ’t Veld
and van Lelyveld (2014), which we follow. In ? a hierarchical multi-tier financial system is formed in which the
most stable banks intermediate for other banks and have many trading relations. In their model, banks do not have
incentives to link with other banks in the same tier, such that the equilibrium structure in ? is a multipartite network.
Again, this structure violates the definition of a core-periphery network that we apply.

9Wang (2018) has a model with ex-ante identical traders in which some of them act as dealers who manage
an asset inventory and provide price quotes. He shows that core-periphery networks as well as bipartite networks
can be equilibrium outcomes. There are other papers in the social science literature that explain core-periphery
networks. These network formation models are typically concerned with optimal effort levels to account for peer
effects. Galeotti and Goyal (2010) and Hiller (2017) provide conditions under which core-periphery networks are the
only stable network structure. See also Persitz (2016) who adopts heterogeneity in the connections model of Jackson
and Wolinsky (1996). This literature cannot easily be translated to financial networks, because of the different
interpretation of links as (channels for) financial transactions.
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0 depend on expected present value trade benefits from these liquidity trades and the costs of

maintaining relationships.

2.1. Basic structures

Before discussing the payoff structure of the model, we first define the relevant network structures

around which our analysis revolves. Denote the empty network, ge, as the network without any

links, i.e. ∀i, j ∈ N : gi j = 0, and the complete network, gc, as the network with all possible links, i.e.

∀i, j ∈ N : gi j = 1. A star network, gs, has a single player, the center of the star, that is connected

to all other nodes, while no other links exist, i.e. ∃i such that ∀ j 6= i : gi j = 1 and ∀ j,k 6= i : g jk = 0.

A core-periphery network is a network, in which the set of agents can be partitioned in a core

and a periphery, such that all agents in the core are completely connected within and are linked to

some periphery agents, and all agents in the periphery have at least one link to the core, but no

links to other periphery agents.

Definition 1. A network g is a core-periphery network, if there exists a set of core agents K ⊂ N

and periphery agents P = N \K, such that:

(a) ∀i, j ∈ K : gi j = 1, and ∀i, j ∈ P : gi j = 0;

(b) ∀i ∈ K : ∃ j ∈ P with gi j = 1, and ∀ j ∈ P : ∃i ∈ K with gi j = 1.

This definition follows Borgatti and Everett (1999), Craig and Von Peter (2014) and in ’t Veld and

van Lelyveld (2014). See Figure 1 for an example of an core-periphery network.

1

3 2

4 5

68

7

Figure 1: A core-periphery network with n = 8 players, of which k = 3 are in the core

A special case of a core-periphery network is the complete core-periphery network, where each

agent in the core K is linked to all agents in the periphery P: ∀i∈K and ∀ j ∈ P it holds that gi j = 1.

See Figure 2 for an example. We denote a complete core-periphery network with k = |K| agents in
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the core as gCP(k)
com .10 In Section 4, we use this special case to show the stability of core-periphery

networks under heterogeneous traders.

1

3 2

4 5

68

7

Figure 2: A complete core-periphery network with n = 8 players, of which k = 3 are in the core

Finally, a (complete) multipartite network is a network in which the agents can be partitioned

into q groups, i.e. N = {K1,K2, . . . ,Kq}, such that nodes do not have links within their group, but

are connected to (all) nodes outside their own group. Formally, in a complete multipartite network

it holds that ∀m ∈ {1,2, . . . ,q} : ∀i ∈ Km we have ∀ j ∈ Km : gi j = 0 and ∀ j 6∈ Km : gi j = 1. All relevant

multipartite networks in this paper are complete multipartite networks and therefore, for brevity, we

will drop the word ‘complete’. Multipartite networks will be denoted as gmp(q)
k1,k2,...,kq

, where km ≡ |Km|
is the size of the m-th group. Multipartite networks are called balanced if the group sizes are as

close as possible to each other, i.e. |km− km′ | ≤ 1 for all m,m′. Figure 7 in Section 3.2 presents

examples of multipartite networks that arise in our model.

2.2. Trading Benefits

We now turn to the actual model. At t = 0, banks form a network of long-term trading relationships.

Given the network, liquidity trade takes place through these relationships in an infinite number of

periods, t = 1,2, . . ..

We first discuss the payoffs in a single trading period. We assume that trades cannot take place

outside the long-term trading relationships. Hence, in each period a (directed) trading network

arises which is a subnetwork of the (undirected) relationship network g. Trade in each period

occurs as follows. At the beginning of period t ∈ {1,2, . . .} each bank i receives a random unexpected

liquidity shock Sit ∈ {−s,0,s}, independently distributed with probabilities P[Sit =−s] = P[Sit = s] =

10Borgatti and Everett (1999) call this architecture a perfect core-periphery network. By Definition 1, empty,
star and complete networks are special cases of core-periphery networks with cores of size k = 0, k = 1 and k = n
respectively. A complete core-periphery networks with k = n−1 is also identical to a complete network. In discussing
our results we will make clear when we are speaking of non-trivial core-periphery networks with k ∈ {2,3, ...,n−2}.
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γi and P[Sit = 0] = 1−2γi.
11 Without loss of generality, we set s = 1/2.

A liquidity shock has a temporary effect on the liquidity position of the bank. That is, in that

period t, the bank may have a liquidity surplus or deficit relative to a liquidity target, set by the

Central Bank or by internal risk management procedures, but at the beginning of the next period,

each bank is again in a neutral position. The effect of liquidity shocks are thus temporary, as in

the intermediate run banks are able to manage their liquidity position by increasing or decreasing

their asset size, for example by extending more or less loans. Liquidity positions do not carry over

to the next period, and this excludes the possibility of speculation or storage of liquidity. Hence,

our model differs from the search and matching models of over-the-counter markets, as introduced

by Duffie et al. (2005), in which trading positions remain until a suitable trading partner is found.

If bank i has a positive liquidity shock, it may set aside the resulting liquidity surplus at the

Central Bank, receiving interest rate r. On the other hand, if the bank receives a negative shock,

it may borrow liquidity from the Central Bank at cost r. In practice, Central Banks set a positive

interest rate wedge r− r > 0, such that trading opportunities arise between banks that receive a

positive liquidity shock and banks that receive a negative liquidity shock. The main motivation for

Central Banks to do so, and hence to have an active liquidity interbank market in the first place,

is the belief that a private interbank market is better to able to monitor banking risks and allocate

liquidity than a Central bank is able to (Rochet and Tirole, 1996). Without loss of generality, we

set r− r = 1.

In general, in each period there may be multiple banks with a positive and multiple banks with

a negative liquidity shock, leading to a myriad of potential trades. In order to keep the analysis

tractable, we analyze the model in case the only relevant trading opportunities arise from one (and

only one) bank, say i, receiving a positive shock and one (and only one) other bank, say j, receiving

a negative shock. This situation occurs when the probability of a liquidity shock becomes small,

and is formerly worked out in Proposition 1 of Section 2.3.

Now, suppose that bank i receives a positive shock, Sit = 1/2, bank j receives a negative shock,

S jt =−1/2, and all other banks receive no shock, Skt = 0 for all k 6= i, j. We assume that a liquidity

trade between i and j can only be realized if i and j have a direct (long-term) trading relationship,

gi j = 1, or an indirect trading relationship through one or more middlemen, who are directly con-

nected to both i and j. Denote the set of these middlemen in g as Mi j(g) = {k : gik = g jk = 1}, and

the number of middlemen as mi j ≡mi j(g) = |Mi j(g)|. For trade to be realized, we require that these

middlemen are directly connected to i and j. In network parlor, it implies that trade between i

and j can only be realized if the network distance, that is the shortest path length, between i and

11Above assumptions impose a strong symmetry in the model as regards to the treatment of positive and nega-
tive liquidity shocks. We do this to keep the model analytically tractable. However, in actual interbank markets,
asymmetry in the effect of positive and negative liquidity shocks does play an important role. We leave it to future
research to determine the effect of this asymmetry on interbank network formation.
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j in g is at most 2. We make this assumption to simplify notation. However, we emphasize that

our main results – core-periphery networks are generally unstable under homogeneity, but can be

stable if agents are heterogeneous – do not depend on this assumption; the proposition also holds

if i and j are connected at distance more than 2. This is shown in the proofs of Propositions 2 and

3, in Appendix C.

If the network distance between i and j is at most 2, trade is realized, and agents divide the

surplus of 1 in the following way. Let vi j
k (g,δ) be the share that k receives if i receives a positive

shock and j a negative shock. Apart from the network structure g, we let the share that each agent

obtains depend on a parameter δ ∈ [0,1]. This parameter captures the level of competition between

the number of middlemen mi j of a certain trade between i and j. If δ = 0, then middlemen collude

and act as if there were only a single middleman between i and j. If δ = 1, then middlemen engage

in Bertrand competition whenever mi j > 1; then banks i and j share the surplus.

More concretely, if i and j are directly connected, then vi j
i (g,δ) = fl(0,δ) > 0 and vi j

j (g,δ) =

fb(0,δ)> 0, such that fl(0,δ)+ fb(0,δ) = 1. Note that the level of competition (between middlemen)

is irrelevant for this trade, so fl(0,δ) and fl(0,δ) are independent of δ.

If i and j are indirectly connected in g by mi j middlemen, then the bank with a positive liquidity

shock i (the lender) receives a share of vi j
i (g,δ) = fl(mi j,δ) and the bank with a negative liquidity

shock j (the borrower) receives a share of vi j
j (g,δ) = fb(mi j,δ). Each of the mi j middlemen receives

a share of vi j
k (g,δ) = fm(mi j,δ) if k ∈Mi j(g) and 0 otherwise. Note that by definition:

fl(mi j,δ)+ mi j fm(mi j,δ)+ fb(mi j,δ) = 1.

If there is one middleman, mi j = 1, then we have fl(1,δ)< fl(0,δ), fb(1,δ)< fb(0,δ), and fm(1,δ) =

1− fl(1,δ)− fb(1,δ) > 0, and then the shares are independent of δ. If there is more than one

middleman, then the distribution over agents depends on the level of competition. If δ = 0, the

middlemen collude, and i and j obtain the same share as if there were one intermediator, fl(mi j,0) =

fl(1,δ) and fb(mi j,0) = fb(1,δ). The middlemen share the intermediation benefits evenly, i.e. ∀mi j ∈
{2, . . . ,n−2} : fm(mi j,0) = fm(1,δ)/mi j.

If δ = 1 and there are mi j > 1 intermediaries, perfect competition drives the intermediary shares

to 0, and fl(mi j,1) = fl(0,δ), fb(mi j,1) = fb(0,δ) and fm(mi j,1) = 0. A further straightforward

assumption is monotonicity with respect to the competitiveness and number of middlemen. Table 1

summarizes the assumed dependencies of the surplus distributions fl(·), fb(·) and fm(·) to the

parameters.

The effect of competition parameter δ on the division of the trade surplus and intermediation

benefits can be thought of as arising from a bargaining process, in which δ is the discount factor

of players, such that bargaining power of the end nodes (that is, the banks with the positive and

negative liquidity shock) increases with δ and intermediation benefits decrease. We do not model

9



Share of payoffs for: lender borrower middlemen

Number of middlemen m

fl(1, .) = f 1
l fb(1, .) = f 1

b fm(1, .) = f 1
m

∂ fl

∂m
> 0

∂ fb

∂m
> 0

∂ fm

∂m
< 0

Level of competition δ

fl(.,0) = f 1
l fb(.,0) = f 1

b fm(.,0) = f 1
m

mi j

∂ fl

∂δ
> 0

∂ fb

∂δ
> 0

∂ fm

∂δ
< 0

fl(.,1) = f 0
l fb(.,1) = f 0

b fm(.,1) = 0

Table 1: Assumptions about the payoff shares fl(mi j,δ), fb(mi j,δ) and fm(mi j,δ).

this bargaining process explicitly. However, our assumptions on fl(·), fb(·) and fm(·) generalize an

explicit Rubinstein-type of bargaining process developed by Siedlarek (2015).12 From his bargaining

protocol the distribution of the surplus is given by

fl(m,δ) = fb(m,δ) =
m−δ

m(3−δ)−2δ
and fm(m,δ) =

1−δ

m(3−δ)−2δ
. (1)

It is easily checked that (1) satisfies the assumptions we made on fl(·), fb(·) and fm(·). Below we

will use this explicit function to illustrate our (more general) results in Figures 6, 9 and 11.

Figure 3 gives examples of payoff shares received by different agents involved in a trade between i

and j for different levels of competition δ and different numbers of middlemen mi j, given equations

(1). In Appendix A, we give a detailed explanation of the specification of payoffs by Siedlarek

(2015).

2.3. Network payoffs

We now turn to the payoff from network formation in period t = 0. In period zero, payoffs from

network formation are determined by the expected net present value of payoffs from trades in

subsequent periods minus the net present value of the costs of maintaining trading relationships.

Let St = {Sit}i∈N and shock st ∈ {−1/2,0,1/2}n a realisation of St . Let β ∈ [0,1) be the discount

factor. Let b(st ,g,δ) ∈ [0,1]n the vector of trade benefits of the n agents given network g ∈ G, and

shock realisation st . Let c̃ be the cost of maintaining a link for one period. Then the payoff function

of bank i is given by

π̃i(g,δ, c̃) =
∞

∑
t=1

β
t (E[bi(St ,g,δ)]−ηi(g)c̃) ,

where ηi(g) = |N1
i (g)| the number of links of i in g.

12In this bargaining process, δ has the usual interpretation of a discount factor, such that, if δ is higher, intermediary
agents are forced to make more competitive offers to end players.
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Figure 3: Examples of payoff shares received by endnodes i and j and intermediaries k, depending on the
parameters δ and m under the specification of fb, fl and fm in equation (1), as in Siedlarek (2015).

We write the probability of a liquidity shock as γi = ραi. ρ is a scaling factor, and αi captures

potential heterogeneity among banks. We assume that bigger banks (in terms of asset size) have

higher αi, that is, they receive more trade opportunities. In the homogeneous case, αi = 1 for all i.

If we let ρ become small, then the payoffs can be approximated as follows:

Proposition 1. Let Nd
i (g) denote the set of nodes at distance d from i in network g. Define

fe(·) ≡ ( fl(·) + fb(·))/2. The quadratic approximation of firm i’s payoff function around ρ = 0 is

given by

π̃i(g,δ, c̃) =
βρ2

1−β
πi

(
g,δ,

c̃
ρ2

)
+ O

(
ρ

3) ,
where the function πi (g,δ,c) is given by

πi(g,δ,c) = ∑
j∈N1

i (g)

(
1
2

αiα j− c
)

+ ∑
j∈N2

i (g)

αiα j fe(mi j(g),δ)+ ∑
k,l∈N1

i (g)|gkl=0

αkαl fm(mkl(g),δ) (2)

direct trade indirect trade intermediation benefits

Proof. See Appendix B.

Proposition 1 says that, for ρ small, the payoff function can be approximated by

π̃i(g,δ, c̃)≈ βρ2

1−β
πi(g,δ,

c̃
ρ2 ),

in which the only trade opportunities that matter are those in which one and only one bank has a

positive liquidity shock and one and only one bank a negative liquidity shock. The benefits from
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these trade opportunities can be partitioned in benefits from trading directly minus the cost of

maintaining a link, benefits from trading indirectly, and benefits from intermediating between two

banks. Trade opportunities arising from multiple banks receiving a shock, occur with infinitesimal

probability. In the rest of the paper we therefore consider the function πi(g,δ,c) as in (2) with c≡ c̃
ρ2 ,

as the payoff function from network formation. The payoff function of Goyal and Vega-Redondo

(2007) is a special case with homogeneity (αi = 1 ∀i) and perfect competition (δ = 1).

Also, in the rest of the paper we fix f 1
e = f 1

m = 1
3 . In other words, we assume that middlemen

with a monopoly position between pairs of lenders and borrowers get a share of one third of their

trades. As fe(·)≡ ( fl(·)+ fb(·))/2, this assumption does not impose restrictions on bargaining power

between borrowers and lenders. The assumption simplifies the exposition without significantly

changing the results.13

We now comment on the interpretation of these payoffs. First, the undirected links in this

model should be interpreted as established preferential trading relationships. We assume that

trade opportunities can only be realized if the agents are linked directly or indirectly through

intermediation by mutual trading relationships. This is a strong, but not implausible assumption.

The existence of preferential trading relationships has been shown by Cocco et al. (2009) in the

Portuguese interbank market and by Bräuning and Fecht (2017) in the German interbank market.

Afonso and Lagos (2015) document how some commercial banks act as intermediaries in the U.S.

federal funds market. A bank that attempts to borrow outside its established trading relationships

may signal that it is having difficulties to obtain liquidity funding and, as a consequence, may face

higher borrowing costs. Hence, banks have incentives to use their established trading relationships.

Second, it is assumed that the preferential trading relationship comes at a fixed cost of c. This

cost follows from maintaining mutual trust and from monitoring, i.e. assessing the other bank’s

risks. In principle, it is possible that these costs are not constant over banks, e.g. economies of scale

may decrease linking costs in the number of relationships that are already present. The possible

heterogeneity in linking costs is most likely smaller than the heterogeneity in trading surpluses,

and we therefore assume that all banks pay an equal cost for a trading relationship.

2.4. Network stability concepts

Given the setup of the payoffs discussed above, we analyze which networks arise if agents form links

strategically at time t = 0. Here we assume that, in order to establish a link between two agents,

both agents have to agree and both agents face the cost of a link, a version of network formation

that is called two-sided network formation.14 Network formation theory has developed stability or

equilibrium concepts to analyze the stability of a network. Here, stability does not refer to systemic

13In the formulas in Theorem 1 and Proposition 5, the assumption is visible in the recurring factor 1
3 .

14See Goyal (2009) for a text book discussion.
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risk, but to the question whether an agent or a pair of agents has an incentive and the possibility

to modify the network in order to receive a higher payoff.

There are many stability concepts, which differ in the network modifications allowed. For an

overview of these stability concepts, we refer to Jackson (2005) or Goyal (2009). For our purposes

we consider two stability concepts.

The first concept is pairwise stability, a standard concept in the literature (Jackson and Wolinsky,

1996). A network is pairwise stable if, for all the links present, no player benefits from deleting the

link, and for all the links absent, one of the two players does not want to create a link. Denote the

network g+gi j as the network identical to g except that a link between i and j is added. Similarly,

denote g−gi j as the network identical to g except that the link between i and j is removed. While

focusing on comparing networks, we drop the arguments of δ and c in the function π(·). Then the

definition of pairwise stability is as follows:

Definition 2. A network g is pairwise stable if for all i, j ∈ N, i 6= j:

(a) if gi j = 1, then πi(g)≥ πi(g−gi j)∧π j(g)≥ π j(g−gi j);

(b) if gi j = 0, then πi(g + gi j) > πi(g)⇒ π j(g + gi j) < π j(g).

The concept of pairwise stable networks only allows for deviations of one link at a time. This

concept is often too weak to draw distinguishable conclusions, i.e. in many applications including

ours, there are many networks that are pairwise stable.

In our application, we consider it relevant that agents may consider to propose many links

simultaneously in order to become an intermediary and establish a client base. The benefits from

such a decision may only become worthwhile if the agent is able to create or remove more than one

link. This leads us naturally to the concept of unilateral stability, originally proposed by Buskens

and van de Rijt (2008).

A network is unilaterally stable if no agent i in the network has a profitable unilateral deviation:

a change in its links by either deleting existing links such that i benefits, or proposing new links

such that i and all the agents to which it proposes a new link benefit. Denote giS as the network

identical to g except that all the links between i and every j ∈ S are altered by giS
i j = 1−gi j, i.e. are

added if absent in g or are deleted if present in g.

Definition 3. A network g is unilaterally stable if for all i and for all subsets of players S⊆N\{i}:

(a) if ∀ j ∈ S : gi j = 1, then πi(g)≥ πi(giS);

(b) if ∀ j ∈ S : gi j = 0, then πi(giS) > πi(g)⇒∃ j : π j(giS) < π j(g).
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Note that unilateral stability implies pairwise stability, that is, a network that is unilaterally stable

is also pairwise stable, but not vice versa. This can be easily verified by considering subsets S that

consist of only one node j 6= i.15

Apart from analyzing the stability of networks, for policy considerations it is also relevant to

consider efficient networks. As usual in the literature, we define a network efficient, if it maximizes

the total sum of payoffs of the agents.

Definition 4. A network g is efficient if there is no other network g′, such that

∑
i∈N

πi(g′) > ∑
i∈N

πi(g).

3. Results for homogeneous banks

We first analyze the model for the baseline homogeneous case where all pairs generate the same

trade surplus, αi = 1 for all i ∈ N.16 Section 3.1 contains our main result that core-periphery

networks are not unilaterally stable under the assumption of homogeneity. To find what structures

arise in this homogeneous case, if not core-periphery networks, we investigate in Section 3.2 a

best-response dynamic process. In Section 3.3 we relate these outcomes to the efficient networks.

3.1. Stability of the core-periphery structure

We consider the two stability concepts described in Section 2.4, pairwise and unilateral stability.

We first derive the conditions under which, in the homogenous case, core-periphery networks are

not pairwise stable.17

Proposition 2. Let αi = 1 for all i ∈ N, and let c > 0 and 0 < δ < 1 be given. Suppose that g is a

core-periphery network with K ⊂ N the set of core agents, and that for the number of core agents

k = |K| it holds that 2 ≤ k ≤ n−3. Denote the set of agents connected to some player i as Ni with

size ni = |Ni|. If there are two core agents i, j ∈ K with Ni ⊇ N j and n j ≥ k +1, then g is not pairwise

stable.

Proof. See Appendix C.

15Our definition of unilateral stability is slightly less restrictive than the definition in Buskens and van de Rijt
(2008). While we are following Buskens and van de Rijt (2008) in considering deviations of simultaneously deleting or
proposing multiple links, we do not allow simultaneously deleting and proposing of multiple links. This adaptation
eases the exposition, but does not affect our results qualitatively.

16The normalisation α = 1 in the homogeneous case goes without loss of generality. If αi = α for all i with α > 0,
then the payoffs in Proposition 1 are proportional to α when costs c are considered as a fraction of α.

17We emphasize that the results in this section do not depend on the assumption that trade surpluses between i
and j are only realized if the path length between i and j is less than 3, as shown in Appendix C.
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The intuition behind Proposition 2 is illustrated by the following example. Suppose that the

network in Figure 1 (repeated in Figure 4a) is pairwise stable. A stable core-periphery network

would imply that all periphery banks, for example 4 and 8 do not have an incentive to trade directly

with each other, and at the same time, all core banks do have an incentive to trade directly, for

example 1 and 3. Figure 4b shows these two deviations from the core-periphery structure. The

reason that this structure is not pairwise stable, is because periphery agent 4 has only one core

agent as intermediators (namely 1), while agent 1 has three potential intermediators to connect to

core bank 3 (namely 2, 7 and 8). After all, periphery banks may act as intermediators between core

banks. Given that two periphery banks trade indirectly, then two core banks have an incentive to

do the same. Hence, core bank 1 should delete its link with 3, contradicting the pairwise stability

of the network.

1

3 2

4 5

68

7

(a) A core-periphery network.

1

3 2

4 5

68

7

+ −

(b) Two potential deviations to the structure.

Figure 4: A core-periphery network with n = 8 and k = 3, and two potential deviations to the structure,
one adding a link (+) and one deleting a link (−).

The condition in Proposition 2 that there exist two core agents i and j with Ni⊇N j and n j ≥ k+1,

guarantees that core bank i, after deleting a link with core bank j, retains the same access to the
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periphery. In the example, N1 ⊇ N3, so that player 1 can delete its link with 3, as all periphery

players connected to 3 are also connected to 1. Player 1 may not wish to delete its link to 2,

however, as 2 provides access to periphery player 6. Note that the condition in Proposition 2 is

fairly mild. For a core-periphery networks to be pairwise stable, all core agents are necessarily

connected to a periphery agent with a single link. In this situation, every core player has local

monopoly power. Empirically, relevant interbank structures typically show levels of connectivity

between core and periphery that exclude this local monopoly power.18

Even core-periphery networks not excluded by Proposition 2 are often unstable. So the condition

is sufficient but not necessary. We now consider unilateral deviations, in which agents are allowed

to add or delete multiple links. We show that all core-periphery networks are unstable, as long as

there are enough periphery banks.19

Proposition 3. Let the payoff function be homogeneous (αi = 1 for all i ∈ N) and let c > 0 and

0 < δ < 1 be given. Then, there is a function F(c,δ), such that, if n− k > F(c,δ), a core-periphery

network with k core and n− k periphery players is not unilaterally stable.

Proof. See Appendix C.

The intuition is that, for n− k large enough, periphery banks have an incentive to enter the

core; e.g. player 4 in Figure 5. Because we allow for multiple links to be added simultaneously,

peripheral players can take a share of the intermediation benefits by replicating the position of core

players. Unequal payoffs between core and periphery players makes the core-periphery networks

unstable.

3.2. A dynamic process

So far, core-periphery networks were shown to be unstable under homogeneous agents, as long as

the number of periphery agents is sufficiently large. The question remains what happens in small-

sized networks, and, if not core-periphery networks, what other kind of network architectures do

arise? This motivates us to consider a simple dynamic process of network formation and analyze

its stable states.

In particular, we consider a round-robin best-response-like dynamic process as in Kleinberg

et al. (2008). We order nodes 1,2, . . . ,n and starting from the empty graph, in this order nodes

18The Proposition considers core-periphery networks with n−k≥ 3, i.e. the number of periphery agents is at least
three, which is generally satisfied for actual financial networks. If n− k = 2, and the set of connections of core player
j is a subset of the connections of core player i are both connected to two distinct core agents, then given δ there is
a unique value of c > 0 for which stability cannot be excluded.

19Propositions 2 and 3 still leave open the possibility for unilaterally stable core-periphery networks with local
monopoly power and small network size. Indeed, in Appendix E we do give examples of such stable core-periphery
networks. Theorem 1 shows that these cannot be the outcome of best-response dynamics.
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Figure 5: A core-periphery network with n = 8 and k = 3, and a potential deviations to the structure with
multiple links added (+).

consecutively try to improve their position by taking a best feasible action. An action of player i is

defined as feasible if i either proposes links to a subset of players S such that every j ∈ S accepts

a link with i, or if i deletes a subset of its links. The best feasible action of player i is then the

feasible action that leads to the highest payoff for i. The formal definition of a (best) feasible action

is given in Appendix C. Note that a unilaterally stable network is a network in which all players

choose a best feasible action.20

After node n chooses its best feasible action the second round starts again with node 1, again

each player consecutively choosing its best feasible action. Next, the third round start, and so on,

until convergence. The process converges if n−1 consecutive players cannot improve their position.

The assumptions about the dynamic process allow for a sharp characterisation of stable network

structures. The advantage of starting in an empty network is that, initially, nodes can only add

links to the network. A fixed round-robin order limits the number of possibilities that has to be

considered for every step in the process. Simulations for our model indicate that the results below

also hold for a random order of agents.21 Excluding border line cases, we find that the dynamics

always converge to a unilaterally stable network whose architecture is well described for every choice

of the model parameters.22

Theorem 1 below shows which network structures result from the dynamics. The empty, star and

complete networks are prominent for large parameter regions. In the remaining parameter regions

20If a player’s best feasible action is not unique, then we assume that a player chooses randomly from the set of
best feasible actions. In our theorems we will only focus on parameter regions in which the best feasible action is
always unique.

21Houy (2009) considers a dynamic framework for the model of Goyal and Vega-Redondo (2007), in which randomly
drawn agents make best responses to the network.

22In principle, a dynamic process may lead to cycles of improving networks (cf. Jackson and Watts, 2002; Kleinberg
et al., 2008), but Theorem 1 shows that this is not the case in our model.
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the attracting steady state cannot be a core-periphery network (in line with Propositions 2 and 3)

and turns out to be a multipartite network. The theorem singles out one special type of multipartite

networks, called maximally unbalanced bipartite networks, for parameters satisfying condition IV,

while parameters under condition V can lead to various types of multipartite networks.

Theorem 1. Consider the homogeneous baseline model with αi = 1 for all i ∈ N. From an empty

graph, the round-robin best-feasible-action dynamics converge to a unilaterally stable network with

the following network architecture for the following parameter regions:

I: for c > 1
2 + 1

6(n−2)

the empty network,

II: for c ∈
(

1
6 +(n−3)min{1

2 fm(2,δ), fe(2,δ)− 1
3},

1
2 + 1

6(n−2)

)
the star network,

III: for c < 1
2 − fe(n−2,δ)

the complete network.

IV: for c ∈
(

1
2 − fe(2,δ)+(n−4)min{1

2 fm(3,δ), fe(3,δ)− fe(2,δ)}, 1
6 +(n−3)min{1

2 fm(2,δ), fe(2,δ)− 1
3}
)

the maximally unbalanced bipartite network gmp(2)
2,n−2,

V: for c ∈
(

1
2 − fe(n−2,δ), 1

2 − fe(2,δ)+(n−4)min{1
2 fm(3,δ), fe(3,δ)− fe(2,δ)}

)
a multipartite network gmp(q)

k1,k2,...,kq
with q≥ 2 and |km− km′ |< n−4 for all m,m′ ∈ {1,2, ..,q}.

Proof. See Appendix C.

Figure 6 illustrates the parameter regions specified by Theorem 1 for n = 4 and n = 8 under the

specification of fe and fm in equation (1), as in Siedlarek (2015). The possible network outcomes

range intuitively from empty to complete networks as the cost of linking decreases. The star is an

important outcome in between empty and complete networks, but cannot be a unilaterally stable

outcome for intermediate competition δ and relatively low c. For intermediate δ the incentives

to enter the core and the incentives for periphery players to accept the proposal of the new core

player are both high. The parameter area between complete networks and stars gives multipartite

networks as the stable outcomes, and this area increases with n.

It is noteworthy that for large n the set of attained multipartite networks is quite diverse. Possible

outcomes for n = 8 are the maximally unbalanced bipartite network gmp(2)
2,6 , but also, for example,

an unbalanced bipartite network gmp(2)
3,5 or a balanced multipartite network gmp(3)

2,3,3 consisting of 3

groups. Figure 7 presents these three examples of multipartite networks and the values of δ and c

for which they are formed.
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(a) n = 4

(b) n = 8

Figure 6: Attained equilibria after best-feasible-action dynamics from an empty network in (δ,c)-space for
αi = 1 for all i ∈ N and n ∈ {4,8} under the specification of fe and fm in equation (1). The
roman numbers correspond with those in Theorem 1. The symbols (�, N and F) correspond to
examples of multipartite networks in Figure 7.
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(a) Black square �: (δ,c) = (0.8,0.3). The maximally unbalanced bipartite network: gmp(2)
2,6 .

1
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4 5

68
7

(b) Black triangle N: (δ,c) = (0.4,0.15). An unbalanced bipartite network: gmp(2)
3,5 .

4

5

1

2

3

6

7
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(c) Black star F: (δ,c) = (0.8,0.06). A balanced multipartite network: gmp(3)
2,3,3

Figure 7: Examples of attained multipartite networks after best-feasible-action dynamics from an empty
graph for n = 8 players. The symbols (�, N and F) correspond to locations in the (δ,c)-space in
Figure 6.
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A comparison with the results of Goyal and Vega-Redondo (2007) can easily be made by setting

δ = 1. We observe that their assumption of perfect competition δ = 1 is a special case for which a

complete network is not stable. In their model agents in a complete network always have incentives

to remove links even for arbitrary low linking costs, because intermediated trades along multiple

middlemen gives them exactly the same share of the surplus.

More importantly, we show that the star is less stable when competition is imperfect compared

to the case of Goyal and Vega-Redondo (2007). For δ < 1 and a relatively low c multipartite

networks arise instead of stars. Multipartite networks arise for larger regions of parameter choices

if n increases; see Figure 11a for the results for n = 100. Interestingly, multipartite networks were

found by Buskens and van de Rijt (2008) and Kleinberg et al. (2008) as the main equilibrium

architecture. The current analysis shows that empty, star, complete and multipartite networks can

all arise within a network formation model with intermediation and imperfect competition. Our

model thus reproduces earlier results of homogeneous network formation models and places them

in a more general perspective.

Figure 8 shows the possible routes of the dynamics for n = 4, depending on the remaining

parameters c and δ. For n = 4, the only possible multipartite network is one that consists of q = 2

groups of 2 nodes, which coincides with a ring of all 4 players. The steps towards this multipartite

network are as follows. Starting from an empty network, in the first round a star is formed. One

of the periphery players then has an incentive to join the core, such that in the second round a

complete core-periphery network is formed. By Proposition 2, this core-periphery network is not

stable, as core players have an incentive to trade indirectly with each other. Hence, the link within

the core is dropped and the multipartite network is formed.

3.3. Efficient networks

In this section we compare the stable networks with efficient networks. Following the results of

Goyal and Vega-Redondo (2007), minimally connected networks, i.e. with n−1 links, are efficient

for c < n
4 . Networks are efficient if all trade surpluses are realized irrespective of the distribution

of these trading surpluses. For higher c it is efficient to have no network at all, i.e. an empty

network. Because of the assumption that two agents only trade if they are at distance 1 or 2, the

network should not have a maximal distance higher than 2, leaving the star as the unique efficient

minimally connected network. This is summarized in the following theorem.

Theorem 2. If the payoff function π(g,δ,c) is given as in Proposition 1 with αi = 1 for all i ∈ N,

then:

(a) for c≥ n/4, the empty network is efficient;

(b) for c≤ n/4, the star network is efficient;

(c) no other network structure than the empty or star network is efficient.

21



3

1
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not I

I
Stable empty network

3
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2

4

not (I ∪ II)

II
Stable star network

3

1
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not (I ∪ II ∪ III)

III
3

1

2

4
III

Stable complete network

3

1

2

4
IV

Stable multipartite/ring network

Figure 8: Map of the dynamics from an empty graph for n = 4 leading to one out of 4 stable possible
structures. The roman numbers correspond with the conditions as in Theorem 1 under which
the best-feasible-action route follows the direction of the arrows.
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Theorem 2 implies that core-periphery networks with k ≥ 2 are not efficient.

Comparing the results in Theorem 2 to Theorem 1, we observe that the star network is always

efficient, whenever the star network is attained in the dynamic round-robin best-feasible-action

process. However, for both low costs and an area of high costs c, the dynamic process leads to

an inefficient outcome. When c is reasonably high (1
2 + 1

6(n− 2) < c < n
4), the dynamic process

converges to the empty network, even though the star network is efficient. This is because of the

marginal benefits from maintaining a link in the star network are unevenly distributed; the center

benefits more than the periphery, such that the center may have an incentive to create link with

the periphery, but not vice versa.

For low costs, under conditions III, IV or V in Theorem 1, the dynamic process converges to

either multipartite or to complete networks, whereas the star network is the efficient network. In

this case, networks are overconnected. The star network, although efficient, is not stable, as the

center extracts high intermediation rents, which the other players try to circumvent.

The upperbound on c of area IV, below which stable networks are not efficient, is increasing

in n as shown in Figures 6 and 11a. So for relatively large network sizes, stable networks can be

expected to be overconnected.

4. Results for heterogeneous banks

We found that core-periphery networks were not stable, when agents are ex-ante identical. Instead,

typically multipartite networks are formed, in which banks are connected to members of other

groups, but not within their own group. In real interbank markets we do observe links within the

core. We now try to explain this discrepancy.

Key in this result in Section 3 is the assumed homogeneity; periphery banks have the same

capabilities as core banks in terms of profit generation, intermediation or linking, such that they

can easily replace or imitate a core bank. In practice, we see large differences between banks, in

particular banks in the core are much bigger than banks in the periphery (Craig and Von Peter,

2014). It is natural to think that these big banks have a strong incentive to have tight connections

within the core as well as to the periphery for intermediation reasons.

For this reason we analyze the consequences of heterogeneity within our model. In Section

4.1 heterogeneity is introduced in terms of exogenous differences in bank size. In Section 4.2,

heterogeneity is endogenized by extending the dynamic process to include feedback of profits on

trading opportunities.
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4.1. Exogenous heterogeneity

We start by considering exogenous heterogeneity in the trading opportunities of banks within our

model. We interpret this heterogeneity in trading opportunities as arising from differences in bank

size. We introduce two types of banks, k big banks and n− k small banks, and we assume that

the probability of receiving a random unexpected liquidity shock is proportional to bank size. If a

bank i is big we assume αi = α ≥ 1, and if i is small we assume αi = 1.23 So the difference in size

is captured by a parameter α≥ 1 quantifying the relative size of a big bank. In this subsection we

take their size as exogenously given. Given heterogeneity in the size of banks, we will show that a

stable core-periphery network can form.

The number of big banks, k, has become a new exogenous parameter, and we consider a complete

core-periphery network where the core consists of the k big banks. Proposition 4 states that the

complete core-periphery network can be unilaterally stable under heterogeneity.

Proposition 4. Consider the model with the following form of heterogeneity: αi = α for i ∈
{1,2, ...,k} (’big banks’), and αi = 1 for i ∈ {k + 1,k + 2, ...,n} (’small banks’). Then given a level of

heterogeneity α > 1, the complete core-periphery network with k big banks is unilaterally stable if:

VII: c ∈
(

1
2 − fe(k,δ)+(n− k−2)min{1

2 fm(k + 1,δ), fe(k + 1,δ)− fe(k,δ)},

min
{

α2(1
2 − fe(n−2,δ)),α(1

2 − fe(k−1,δ))+ 1
2(n− k)(n− k−1) fm(k,δ),

minl≤k
{

α(1
2 − fe(k− l,δ))+ n−k−1

l ( fe(k,δ)− fe(k− l,δ))
}})

.

Proof. See Appendix D.

Region VII in Proposition 4 gives the parameter combinations for which complete core-periphery

networks are unilaterally stable. The lower bound for c in region VII does not depend on α. The

upperbound for c does depend on α. If the condition for the lower bound is satisfied, the upperbound

implicitly defines a minimum level of heterogeneity required for a stable complete core-periphery

network. This is made explicit in the following corollary.

Corollary 1. Let the payoff function be heterogeneous as in Proposition 4 and let c> 0 and 0< δ< 1

be given. Then, if

c≥ 1
2
− fe(k,δ)+(n− k−2)min{1

2
fm(k + 1,δ), fe(k + 1,δ)− fe(k,δ)},

there exists an α > 1, such that for all α > α the complete core-periphery network with k big banks

is unilaterally stable.

23The normalisation αi = 1 for small banks goes without loss of generality. Compare footnote 16.
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Proof. The upperbound for c in region VII in Proposition 4 is at least linearly increasing in α.

Given c > 0 and 0 < δ < 1, region VII is nonempty if α is large enough.

For δ ↓ 0, δ ↑ 1 and k→ ∞, the required level of heterogeneity α is arbitrarily close to 1, as shown

in Appendix D.

Proposition 4 combined with Propositions 2 and 3 implies that heterogeneity is crucial in un-

derstanding core-periphery networks. Complete core-periphery networks are never stable under

homogeneous players, but can be stable for arbitrary small levels of heterogeneity.

Heterogeneity also affects the results of the dynamics. Starting from an empty graph, complete

core-periphery networks can arise because players replicate the position of the central players and

become intermediators for periphery players. If the relative size α is sufficiently large and condition

VII of Proposition 4 is fulfilled, the result will be unilaterally stable. Proposition 5 below specifies

the seven possible attracting stable networks for the special case of n = 4 and k = 2 big banks. In

this dynamic process, it is assumed that the k large banks are the first in the round-robin order.

Given n = 4, k = 2 and any choice of the other parameters c, δ and α (except for borderline cases),

the proposition shows that the dynamics converge to a unique unilaterally stable network.24

Proposition 5. Consider the model with n = 4, of which k = 2 big banks having size α > 1 and

n− k = 2 small banks having size 1. From an empty graph, the round-robin best-feasible-action

dynamics starting with the two big banks converge to the following unilaterally stable equilibria:

I: for c > max
{

1
2 α2, 1

6 α2 + 5
9 α + 1

9

}
the empty network,

II: for c ∈
(

1
6 α + min{1

2 fm(2,δ), fe(2,δ)− 1
3},min

{5
6 α + 1

6 ,
1
6 α2 + 5

9 α + 1
9

})
the star network,

III: for c < 1
2 − fe(2,δ)

the complete network,

IV: for c ∈
(

min
{

α2(1
2 − fe(2,δ)), 1

6 α + fm(2,δ), 1
6 α + fe(2,δ)− 1

3

}
, 1

6 α + min{1
2 fm(2,δ), fe(2,δ)− 1

3}
)

the multipartite (ring) network gmp(2)
2,2

V: (other multipartite networks do not exist for n = 4),

24Under heterogeneous players the results of the dynamic process depend on the order in which agents choose
their best feasible actions. If agents are randomly drawn to make best feasible actions, multiple attracting steady
states may exist. Using simulations, we found that for certain parameter values in VII a multipartite ring network
can arise. However, for a large subset of the parameter region VII, the complete core-periphery remains the unique
attracting steady state even under a random order of agents.
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VI: for c ∈
(

min
{5

6 α + 1
6 ,

1
6 α2 + 5

9 α + 1
9

}
,max

{1
2 α2, 1

6 α2 + 5
9 α + 1

9

})
the ‘single pair’ network g with g12 = 1 and gi j = 0 for all (i, j) 6= (1,2),

VII: for c ∈
(

1
2 − fe(2,δ),min

{
α2(1

2 − fe(2,δ)), 1
6 α + fm(2,δ), 1

6 α + fe(2,δ)− 1
3

})
the complete core-periphery network gCP(2)

com

(other core-periphery networks do not exist for n = 4).

Proof. See Appendix D.

Figure 9 illustrates the different network outcomes for n = 4, k = 2 and two levels of heterogeneity,

α = 1.5 and α = 2. Proposition 5 introduces a new (simple) type of network, called a ‘single pair’

network, in which only the two big banks are linked and the small banks have no connections. The

parameter region VI is nonempty if the level of heterogeneity is sufficiently high: α > 1
6(5+

√
37)≈

1.85. As observed in Figure 9a, for α = 1.5 the regions of empty and star networks share a border

in the (δ,c)-diagram: c = 1
6 α2 + 5

9 α + 1
9 . For a larger value like α = 2 in Figure 9b, the single pair

network arises under condition VI. This type of network structure in which only part of the nodes

is connected intuitively arises because some connections are more worthwhile.

Let us now discuss the main network outcome of interest, namely core-periphery networks.

The condition under which the complete core-periphery network is the attracting steady state is

in Figure 9 indicated by the shaded regions. As expected, this region increases with the level of

heterogeneity α. Also observe that for complete core-periphery networks to arise it is necessary that

competition is less than fully perfect, i.e. δ< 1. For the special case of δ = 1 (as considered by Goyal

and Vega-Redondo, 2007) core-periphery networks are never unilaterally stable, not even under

large heterogeneity. Finally, complete core-periphery networks arise for a larger set of parameters

if the number of players is larger than the minimal network size of n = 4. See Figure 11b for the

shaded region VII given n = 100, k = 15 and α = 10.

4.2. Endogenous heterogeneity

From the analysis in the above subsection it follows that heterogeneity is a necessary condition for a

stable core-periphery network. We have shown that under the assumption of ex ante heterogeneity

in trading opportunities, stable core-periphery networks arise for large regions in the parameter

space. The assumption of heterogeneity is quite realistic, given the amount of heterogeneity between

banks in practice.

Nevertheless, it is of interest whether the formation process in itself may generate sufficient payoff

differences between banks as to form an endogenous core-periphery network structure. To this end

we extend the dynamic process to allow for feedback of profits on bank size. Using simulations, we
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(a) α = 1.5

(b) α = 2

Figure 9: Attained equilibria after best-response dynamics from an empty network in (δ,c)-space for n = 4,
k = 2 and α ∈ 1.5,2 under the specification of fe and fm in equation (1). The roman numbers
correspond with those in Proposition 5. In the shaded area, the complete core-periphery network
with k = 2 big banks is the unique unilaterally stable outcome of the dynamics.
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will show that core-periphery networks can be the outcome of a dynamic process, when bank size

is updated according to profits.

The extended dynamic process starts off at round τ = 1 as the homogeneous baseline model with

α
(1)
i = 1 for all i ∈ N. From an empty graph, round-robin best-feasible-action dynamics converge

to the empty network, the star network, the complete network or multipartite networks, as in

Theorem 1. In this attained network the profits are π
(1)
i . From then on, at the beginning of rounds

τ = 2,3,4, . . . trading opportunities are updated as

α
(τ)
i =

π
(τ−1)
i

mink[π
(τ−1)
k ]

(3)

Trade is assumed to be proportional to size. In this updating, the additional assumption is made

that size is proportional to interbank profits. The trading opportunities are rescaled with mink[πk]

to assure that trade surpluses of the smallest banks remain normalized to αi = 1.

Having updated the trading opportunities {αi}i∈N at the beginning of round τ, we perform a

new round of the round-robin best-feasible-action dynamics, leading to potentially a new network

structure and new payoffs. In the next round, the trading opportunities are again updated using

(3, and so on.

We simulate this dynamic process. As a stopping rule for the simulations, we impose that the

process stops after T = 25 rounds, or before at round τ if the trading opportunities do not alter

any more given a tolerance level ∆α, i.e. if |α(τ)
i −α

(τ−1)
i |< ∆α for all i, j ∈ N. We choose ∆α = 0.1.

Theoretically, it is possible that the system exhibits recurring cycles. In our simulations presented

below, we have checked that the dynamics converge within the tolerance level for all δ ≤ 0.8. For

δ close to 1, dynamics do not converge within 25 rounds and we cannot exclude cyclic behavior in

that case.

Figure 10 plots the results for n = 8 and ∆α = 0.1 after 1 round (left panel) and after 25 rounds T = 25

(right panel), using a 25x25 grid in the (δ,c)-space (δ ∈ [0,1] and c ∈ [0,0.4]). The black regions

correspond to complete networks, green regions to star networks, blue and purple to multipartite

networks and different shades of red to core-periphery networks. In the case of τ = 1, banks are still

homogeneous, that is, α
(1)
i = 1 for all i ∈ N. The left panel of Figure 10 therefore repeats Figure 6b.

As we have seen in Subsection 3.2, in that case, core-periphery networks do not occur.

The right panel of Figure 10 shows the results after a maximum of T = 25 updates in the

parameters αi. The black regions remain unchanged, as the banks are in symmetric positions. All

banks obtain the same payoffs, and trading opportunities remain equal to 1. Also the star network

cannot change: profit feedback increases the trading opportunities αi of the center of the star i = 1.

Links with the center thus generate higher payoffs, and will not be severed. Reversely, links between

periphery players do not generate more, so no links are added. Hence, if a star network is formed
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Figure 10: Attained equilibria after best-feasible action dynamics from an empty graph in (δ,c)-space for
n = 8, extended with profit feedback using ∆α = 0.1 and T = 1 (left panel) or T = 25 (right
panel). The black regions correspond to complete networks, green regions to star networks, blue
and purple to multipartite networks and different shades of red to core-periphery networks.
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under homogeneity after the first round, then the network architecture remains a star network after

any future rounds.

This is not the case, however, if in the first round a multipartite network is formed. In that case,

we observe significant changes after 25 rounds. In fact, in many simulations, we observe a transition

from multipartite networks to core-periphery networks. This happens intuitively. For example, if

after round 1 a bipartite network with two banks in tier 1 and six banks in tier 2 are formed (gmp(2)
2,6 ,

lighter blue region), the payoffs of the tier-1 banks is much higher than the payoffs of the banks in

tier 2. This is, because the two tier-1 banks intermediate between the six tier-2 banks, receiving

much more intermediation benefits than the tier-2 banks. With the feedback mechanism specified

in the dynamics, these higher payoffs for the tier-1 banks result in higher trading opportunities αi,

such that in the end the two banks in tier-1 have an incentive to form a direct link. The network

architecture then converts into a core-periphery network. Similarly, many multipartite networks in

the darker blue regions evolve into red regions with a core-periphery networks architecture.25

We conclude that for many parameter values, core-periphery networks can arise endogenously in

the extended model with ex ante homogeneous banks and feedback of the payoffs on trade surpluses.

5. Applying the model to the Dutch interbank market

To gain some insight into the general applicability of the model, we calibrate the model to the Dutch

interbank market. The network structure of the interbank market in the Netherlands, a relatively

small market with approximately 100 financial institutions, has been investigated before by in ’t

Veld and van Lelyveld (2014). The attracting networks in the dynamic homogeneous model with

n = 100 are indicated in Figure 11a. Under homogeneous banks our model predicts multipartite

networks for most parameter values. In contrast, in ’t Veld and van Lelyveld (2014) found that the

observed network contains a very densely connected core with around k = 15 core banks.

We choose a level of heterogeneity α = 10 to capture in a stylized way the heterogeneity of banks

in the Netherlands. In reality banks in the core as well as in the periphery of the Dutch banking

system are quite diverse. A few very large banks reach a total asset size of up to e 1 trillion,

while the asset value of some investment firms active in the interbank market may not be more

than a few million euro. The median size of a core bank of in ’t Veld and van Lelyveld (2014) lies

around e 8 billion. For periphery banks the median size is approximately e 300 million (see Fig.

9, in ’t Veld and van Lelyveld, 2014, for the plotted distribution of total asset size over core and

periphery banks). Ignoring the exceptionally large size of some core banks, a relative difference

of α = 10 seems a reasonable order of magnitude. The larger α, the wider the area in which the

core-periphery network is stable.

25For δ close to 1, the results have to be interpreted with care. The reason is that given the high level of competition,
central players may earn less than peripheral players. After the updating of trading opportunities central players
may be induced to remove several links, and cycles with different players taking central positions may occur.
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Figure 11b shows the parameter region given by Proposition 4 for which a complete core-

periphery network of the fifteen big banks is a unilaterally stable network. The stability of the

complete network does not depend on α as also indicated in Figure 11b. These complete networks

and complete core-periphery networks would also be the outcome of best-feasible-action dynamics

starting with the big banks.26 The observed core-periphery structure in the Netherlands can be

reproduced for many reasonable choices of linking costs c and competitiveness δ.

This application suggests that our model is suitable to explain stylized facts of national or

perhaps even international interbank networks. It should be noted that observed core-periphery

networks are not necessarily complete core-periphery networks, which can be explained as follows.

Empirical studies of interbank markets often rely on either balance sheet data measuring the total

exposure of one bank on another, or overnight loan data specifying the actual trades. We inter-

pret the undirected links in our model as established preferential lending relationships, which are

typically unobserved in practice. Given a theoretically complete core-periphery network of lending

relationships, trades and exposures are executed on the same structure of connections; see Sec-

tion 2.2 on how we model trade benefits. The empirically observed core-periphery structure from

these trade networks is a subset of the unobserved relationship network, and hence, it can have

less than complete connections between core and periphery depending on the realisations of trade

opportunities. In any case, the densely connected core of a subset of the banks is a well-documented

empirical fact that is reproduced by our model.

26A full description of the outcomes of these dynamics, specifying all other areas in Figure 11b, is missing. This
would require a generalisation of Proposition 5 for all n≥ 4. Simulations show that for linking costs so high that CP
networks are not stable, many different structures arise. As none of them are core-periphery networks, we restrict
ourselves to Proposition 4 and Proposition 5.
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(a) Homogeneous banks (αi j = 1 for all i, j ∈ N)

(b) Heterogeneous banks: k = 15 big banks (with relative size α = 10) and n− k small banks

Figure 11: Application of the model to the Dutch interbank market. Attained equilibria after best-response
dynamics from an empty network in (δ,c)-space for n = 100, k = 15 and α∈ 1,10 under the spec-
ification of fe and fm in equation (1). The roman numbers correspond with those in Theorem 1
and Proposition 4. In the shaded area, the complete core-periphery network with k = 15 big
banks is the unique unilaterally stable outcome of the dynamics.
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6. Conclusion

In this paper we propose a way to explain the formation of financial networks by intermediation. We

focus on the core-periphery network because it is found to give a fair representation of the complex

empirical structures, while at the same time being relatively simple and intuitively appealing.

In our model brokers strive to intermediate between their counterparties and compete with each

other. Our results suggest that heterogeneity is crucial, that is, the core-periphery structure of the

interbank market cannot be understood separately from the heterogeneity and inequality in the

intrinsic characteristics of banks.

We explore these results further in a dynamic extension of the model. We endogenize hetero-

geneity by updating the size of each bank with the payoffs received from trades in the network.

Better connected banks receive higher payoffs by intermediation, which could feed back on the

balance sheet and thus on future trade opportunities of these banks. We find that core-periphery

networks arise endogenously in the extended model with ex ante homogeneous agents and feedback

of the network structure on trade surpluses.

We would like to make three suggestions for future research. First, in our model we treat the

effect of negative and positive liquidity shocks in a symmetric way. However, in actual interbank

markets, the effect of negative liquidity shocks are likely to be more severe, in particular for small

banks. This may explain a well known fact in the interbank market that, on average, large bank

tend to be net borrowers, whereas small banks tend to be net lenders (Allen et al., 1989; Furfine,

1999; Cocco et al., 2009). An extension of the model to include asymmetric effects of positive and

negative liquidity shocks may shed light on this phenomenon.

Second, research that analyzes financial contagion typically take the balance sheet and network

structure as exogenously fixed. However, this forces them to make arbitrary assumptions on the

size of the balance sheets, that is, total (interbank) assets and liabilities, when analyzing the effect

of heterogeneity or core-periphery structure on financial contagion. For example, Nier et al. (2007)

keep the size of banks’ balance sheet constant, when analyzing the effect of a two-tier system on

financial contagion. Our research suggests that one cannot impose such arbitrary regularities, and

instead one has to think carefully on how heterogeneity in balance sheets and heterogeneity in

network structure co-evolve. This point was made by Glasserman and Young (2016) as well. In

this paper, we do not model the balance sheets. Introducing balance sheets in our model, would

be one potential direction for future research.

Third, our model does not involve any risk of banks defaulting. Hence, our model is a model of

a riskless interbank market, such as the interbank overnight loan market approximately was before

the financial crisis of 2007. However, we could analyze the effects of an increase of default risk on

overnight interbank lending as well by introducing a probability that a bank and its links default.

Doing so allows us to understand network formation in stress situations. This seems relevant in
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light of findings that the fit of the core-periphery network in the interbank market deteriorated

during the recent financial crisis (in ’t Veld and van Lelyveld, 2014; Mart́ınez-Jaramillo et al., 2014;

Fricke and Lux, 2015).
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2014. An empirical study of the mexican banking system’s network and its implications for

systemic risk. Journal of Economic Dynamics and Control 40, 242–265.

Merlo, A., Wilson, C. A., 1995. A stochastic model of sequential bargaining with complete infor-

mation. Econometrica 63 (2), 371–99.

Nier, E., Yang, J., Yorulmazer, T., Alentorn, A., 2007. Network Models and Financial Stability.

Journal of Economic Dynamics and Control 31 (6), 2033–2060.

Peltonen, T. A., Scheicher, M., Vuillemey, G., 2014. The network structure of the cds market and

its determinants. Journal of Financial Stability 13, 118–133.

Persitz, D., 2016. Core-periphery r&d collaboration networks. Tech. rep., Tel Aviv University.

Rochet, J. C., Tirole, J., 1996. Interbank Lending and Systemic Risk. Journal of Money, Credit,

and Banking 28 (4), 733–762.

Siedlarek, J.-P., 2015. Intermediation in networks. Working Paper 15-18, Federal Reserve Bank of

Cleveland.

Wang, C., 2018. Core-periphery trading networks. mimeo, Wharton School, University of Pennsyl-

vania.

36



Appendix A. Siedlarek’s payoff function

Siedlarek (2015) applies the bargaining protocol introduced by Merlo and Wilson (1995) to derive

the distribution of a surplus for a trade that is intermediated by competing middlemen. The

underlying idea is that one involved agent is selected to propose a distribution of the surplus. If

the proposer succeeds in convincing the other agents to accept his offer, the trade will be executed.

Otherwise, the trade will be delayed and another (randomly selected) agent may try to make a better

offer. A common parameter 0≤ δ≤ 1 is introduced with which agents discount future periods, that

results in the level of competition as used in our paper. The relation between the discount factor δ

and the level of competition, is that if agents are more patient, then intermediaries are forced to offer

more competitive intermediation rates when having the chance to propose a distribution, as trading

partners are more willing to wait for the opportunity to trade with alternative intermediaries. As

a special case, for δ = 1 the surplus is distributed equally among the essential players as in Goyal

and Vega-Redondo (2007).

More formally, assume that the set of possible trading routes is known to all agents (i.e. com-

plete information). Each period a route is selected on which the trade can be intermediated, and

additionally one player (the ‘proposer’) on this route that proposes an allocation along the en-

tire trading route.27 Any state, which is a selection of a possible path and a proposer along that

path, is selected with equal probability and history independent. The question now is: what is

the equilibrium outcome, i.e. the expected distribution of the surplus, taking into account that

every agent proposes optimally under common knowledge of rationality of other possible future

proposers? Siedlarek (2015) shows that the unique Markov perfect equilibrium is characterized by

the following payoff function for any player i in a certain state:

fi =


1−∑ j 6=i δE j[ f j] if i is the proposer in this state

δEi[ fi] else if i is involved in this state

(A.1)

This equation shows that the proposer can extract all surplus over and above the outside option

value given by the sum of E j[ f j] over all other players j 6= i. All (and only) the players along the

same route have to be convinced by offering exactly their outside option.

i k j

Figure A.12: A trading route with one intermediary

In the simple example of intermediary k connecting i and j (see Figure A.12), each of the three

27Siedlarek (2015) assumes that only shortest paths are considered, an assumption not explicitly made by Goyal
and Vega-Redondo (2007). However, in the model Goyal and Vega-Redondo (2007) only essential players, who by
definition are part of shortest paths, receive a nonzero share of the surplus.
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players has equal probability of becoming the proposer and proposes an equal share to the other

two, so the equilibrium distribution of the surplus will simply be the equal split ( fi, fk, f j) = (1
3 ,

1
3 ,

1
3)

for all δ.

i

k1

k1

...

km

j

Figure A.13: A trading network with m competing intermediaries

In case m intermediaries compete for the trade between i and j (as in Figure A.13), the extracted

intermediation rents are reduced. Siedlarek (2015) shows that:

fi = f j = fe(m,δ) ≡ m−δ

m(3−δ)−2δ
(A.2)

fk = fm(m,δ) ≡ 1−δ

m(3−δ)−2δ
(A.3)

As mentioned before, this distribution of payoffs satisfies our assumptions on fl(m,δ), fb(m,δ) and

fm(m,δ). The distribution of Siedlarek (2015) is used as the leading example in the results.

In a general network with longer intermediation chains d > 2, the payoffs cannot be calculated

directly, but depend on specifics of (part of) the network. The vector of payoffs
−→
F can be calculated

indirectly from the network g using the following notation:

• s: The number of shortest paths that support the trade,

• d: The length of the shortest paths (i.e. the number of required intermediaries plus one),

•
−→
P : (n×1)-vector of shortest paths that run through any player,

• K: (n×n)-diagonal matrix of times that any player receives an offer,

• S: (n×n)-off-diagonal matrix of times that two players share a path.

As in any given state the distribution of profits is as given in equation (A.1), the vector of payoffs

that averages over all possible states of the world is:

−→
F =

1
s ·d

(
−→
P −δ(S−K)

−→
F ) (A.4)
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If δ < 1 this can be solved to:

−→
F = (s ·d · In + δ(S−K))−1−→P (A.5)

In Appendix E we use this general formula to investigate whether core-periphery networks can be

stable when intermediation paths of lengths d = 3 are allowed.

Appendix B. Proofs of Section 2

Proof of Proposition 1. Writing out the payoff function, we obtain

π̃i(g,δ, c̃) =
∞

∑
t=1

β
t

((
∑

st∈{−1,0,1}n

P[St = st ]bi(st ,g,δ)

)
−ηi(g)c̃

)

=
β

1−β

((
∑

st∈{−1,0,1}n

P[St = st ]bi(st ,g,δ)

)
−ηi(g)c̃

)

=
β

1−β

 ∑
st :n+

t =n−t =1

P[St = st ]bi(st ,g,δ)+ ∑
st :n+

t +n−t ≥3

P[St = st ]bi(st ,g,δ)

−ηi(g)c̃

 ,

where n−t = |sit < 0|, n+
t = |sit > 0|, and n0

t = n−n+
t −n−t . Note that bi(st ,g,δ) = 0 if n+

t = 0 or n−t = 0,

as in that case, there is no trade. Let A = maxi αi. St has a multinomial distribution, and hence

P[St = st ] is bounded by P[St = st ] < Anρn+
t +n−t . As bi(st ,g,δ) < 1, and |st : n+

t + n−t ≥ 3|< 2n we have

lim
ρ↓0

1
ρ3 ∑

st :n+
t +n−t ≥3

P[St = st ]bi(st ,g,δ) < (2A)n,

that is, benefits from periods in which three banks or more receive a liquidity shock are of order

O(ρ3). Hence,

π̃i(g,δ, c̃) =
β

1−β

 ∑
st :n+

t =n−t =1

P[St = st ]bi(st ,g,δ)

−ηi(g)c̃

+ O(ρ
3).
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Suppose that j receives a positive shock and k a negative shock. Then the benefit of i is bi(st ,g,δ) =

sv jk
i (g,δ) = v jk

i (g,δ)/2, as explained in the main text. Hence the payoff function becomes

π̃i(g,δ, c̃) =
β

1−β

[(
∑

j
∑
k 6= j

P[S jt = 1,Skt =−1,∀l 6= j,k : Slt = 0]v jk
i (g,δ)/2

)
−ηi(g)c̃

]
+ O(ρ

3)

=
β

1−β

[(
∑

j
∑
k 6= j

ρ
2
α jαk

(
∏

l 6= j,k
(1−2ραl)

)
v jk

i (g,δ)/2

)
−ηi(g)c̃

]
+ O(ρ

3)

=
β

1−β

[(
∑

j
∑
k 6= j

ρ
2
α jαkv jk

i (g,δ)/2

)
−ηi(g)c̃

]

− β

1−β

[
∑

j
∑
k 6= j

ρ
2
α jαk

(
1− ∏

l 6= j,k
(1−2ραl)

)
v jk

i (g,δ)/2

]
+ O(ρ

3)

=
βρ2

1−β

[(
∑

j
∑
k 6= j

α jαkv jk
i (g,δ)/2

)
−ηi(g)

c̃
ρ2

]
+ O(ρ

3),

as

ρ
2

(
1− ∏

l 6= j,k
(1−2ραl)

)
= O(ρ

3).

The benefits for bank i from direct trade are:

∑
j∈N1

i (g)

αiα j

(
vi j

i (g,δ)/2 + v ji
i (g,δ)/2

)
= ∑

j∈N1
i (g)

αiα j
f 0
l + f 0

b
2

= ∑
j∈N1

i (g)

1
2

αiα j,

as f 0
l + f 0

b = 1. Note that we count two trades for i and j, one time i having a liquidity surplus,

and one time i having a liquidity deficit. Similarly, the benefits from indirect trade are given by

∑
j∈N2

i (g)

αiα j

(
vi j

i (g,δ)/2 + v ji
i (g,δ)/2

)
= ∑

j∈N2
i (g)

αiα j fe(mi j(g),δ),

where fe(·) = ( fl(·)+ fb(·))/2, and for d > 2:

∑
j∈Nd

i (g)

αiα j

(
vi j

i (g,δ)/2 + v ji
i (g,δ)/2

)
= 0.

Finally, intermediation benefits are given by

∑
k,l∈N1

i (g)|gkl=0

αkαl

(
vkl

i (g,δ)/2 + vkl
i (g,δ)/2

)
= ∑

k,l∈N1
i (g)|gkl=0

αkαl fm(mkl(g),δ),

for all pairs k, l at distance 2 and i in between. For all other pairs, there are no benefits to i. The

payoff function then follows.
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Appendix C. Proofs of Section 3

Definition of best feasible action. We first introduce the concept of best feasible (unilateral) action

of a certain player i. An action of player i is feasible if its proposed links to every j ∈ S are accepted

by every j ∈ S, or if i deletes all links with every j ∈ S. This action changes the network g into giS.

The best feasible action is formally defined as follows.

Definition 5. A feasible action for player i in network g is represented by a subset S⊆ N\{i} with:

(a) ∀ j ∈ S : gi j = 1, or:

(b) ∀ j ∈ S : gi j = 0 and π j(giS)≥ π j(g).

A best feasible action S∗ for player i in network g is a feasible action in g that gives i the highest

payoffs:

∀S⊆ N\{i}: πi(giS∗)≥ πi(giS).

A network g is unilaterally stable if and only if, for all players, S∗ = /0 is a best feasible action in g.

In other words, no player has an incentive to take a feasible action that changes the network.

We continue with the proofs of Section 3.

Proof of Proposition 2. Suppose g is a core-periphery network, such that there are two core agents

i, j ∈ K with Ni ⊇ N j and n j = |N j| ≥ k + 1. Note that by definition of a core-periphery network:

gi j = 1, as both i and j are in the core.

For the marginal benefit of any two peripheral players i1 and i2 to connect directly is, it holds

that:

πil (g + gi1i2)−πil (g)≥
(

1
2
− fe(k,δ)

)
− c (C.1)

for l = 1,2, as two peripheral players have by definition at most k intermediaries.

For the marginal benefit of core player i to delete its link to j, it holds that:

πi(g−gi j)−πi(g)≥ c−
(

1
2
− fe(k,δ)

)
. (C.2)

The value
(1

2 − fe(k,δ)
)

equals the difference in payoff i receives from its link to j. After the removal

of their direct link , player i is indirectly linked to j via at least k intermediaries, that is, k−2 core

and at least 2 periphery agents to which both i and j are connected. Note that i and j must have

at least 2 periphery agents in common as ni ≥ n j = |N j| ≥ k + 1.
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Suppose now, contrary to the propositioin, that g is pairwise stable. In order for the network

to be pairwise stable, it is required that πil (g + gi1i2)− πil (g) ≤ 0 and πi(g− gi j)− πi(g) ≤ 0 hold

simultaneously, which implies that

πil (g + gi1i2)−πil (g) = πi(g−gi j)−πi(g) =

(
1
2
− fe(k,δ)

)
− c = 0. (C.3)

Hence, c =
(1

2 − fe(k,δ)
)
.

Consider now a third periphery node i3 ∈ P. This node exists, since k ≤ n−3. Node i3 cannot

be linked to both i or j, as in that case, i and j have at least 3 periphery neighbors in common,

such that the marginal benefit for i to delete its link with j would be

πi(g−gi j)−πi(g)≥ c−
(

1
2
− fe(k + 1,δ)

)
> c−

(
1
2
− fe(k,δ)

)
,

which would violate (C.3). Consider now the marginal benefit for i1 and i3 of creating a direct link.

As i3 is linked to at most k−1 core nodes, the marginal benefit is

πil (g + gi1i3)−πil (g)≥
(

1
2
− fe(k−1,δ)

)
− c >

(
1
2
− fe(k,δ)

)
− c,

for l = 1,3. This violates (C.3). Hence, g is not pairwise stable if 0 < δ < 1.

Proof of Proposition 3. Proposition 2 was concerned with complete core-periphery networks. For

general core-periphery networks, we now derive a lower bound, for which it is a best feasible action

of a periphery player to enter the core.

Consider a periphery player i proposing li = n− k−1 links in order to reach all other periphery

players. The marginal benefits28 for i of this action are bounded by:

Mi(gCP(k),+li)≥−(n− k−1)(c− 1
2

+ f 1
e )+

(
n− k−1

2

)
fm(2,δ). (C.5)

Then positive marginal benefits for i are implied by:

Mi(gCP(k),+li) > 0

⇐ n− k > F1(c,δ)≡ 2 +
c− 1

2 + f 1
e

1
2 fm(2,δ)

(C.6)

28Throughout the appendix, marginal benefits of an action S by player i for player j are defined as:

M j(g,S)≡ π j(giS)−π j(g). (C.4)

Suppose g is a core-periphery network, such that there exist two distinct periphery agents i1, i2 ∈ P that are connected
by two distinct core agents j1, j2 ∈ K : gi1 j1 = gi1 j2 = gi2 j1 = gi2 j2 = 1. Let k = |K| be the number of core nodes. Note
that by definition of a core-periphery network: gi1i2 = 0 and g j1 j2 = 1.
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For the deviation of li links to be executed, the peripheral players j ∈ (P\ i) also have to agree

with the addition, that is, they should not receive a lower payoff. The marginal benefits for j are

bounded by:

M j(gCP(k),+li)≥−c +(n− k−2)( fe(2,δ)− f 1
e ) (C.7)

Positive marginal benefits for j are implied by:

M j(gCP(k),+li) ≥ 0

⇐ n− k > F2(c,δ)≡ 2 +
c

fe(2,δ)− f 1
e

(C.8)

Combining the conditions for i (C.6) and j (C.8), a sufficient lower bound for the number of

periphery nodes n− k for any core-periphery network to be unilaterally unstable is:

n− k > F(c,δ)≡max{F1(c,δ),F2(c,δ)} (C.9)

Remarks on Proposition 3. In the derivation of this sufficient lower bound on n, we have not made

any assumptions about the path lengths on which trade is allowed. It is sufficient to consider

the parts of the marginal benefits for i and j that depend on the constant costs c and the new

intermediation route is formed between j, l ∈ (P\ i).

A core-periphery network is generally unstable because the inequality between core and periph-

ery becomes large for increasing n, and a periphery player can always benefit by adding links to all

other players. An important assumption for this result is therefore that multiple links can be added

at the same time. It is crucial that δ > 0 because for δ = 0 intermediated trade always generates

fe(m,0) = f 0
e ∀m, i.e. additional intermediation paths do not increase profits for endnodes. Moreover

it is crucial to impose δ < 1 because for δ = 1 intermediation benefits disappear, i.e. fm(m,1) = 0

∀m > 1.

Proof of Theorem 1. To proof this Theorem we start with two Lemma’s, followed by the main part

of the proof that uses these Lemma’s.

In an empty network, the best feasible action for a player is to connect either to all other players

or to none, as shown in the following lemma.

Lemma 1. Consider the homogeneous baseline model with αi = 1 for all i∈N. If the empty network

ge is not unilaterally stable, then the best feasible action for a player in ge is to add links to all

other nodes.
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Proof of Lemma 1. The marginal benefits of adding l links to an empty network are:

Mi(ge,+l) = l(
1
2
− c)+

(
l
2

)
1
3

(C.10)

As this function is convex in l, maximizing the marginal benefits over l results in either l∗ = 0 or

l∗ = n−1.

In a complete core-periphery network, if a peripheral agent has an incentive to add a link it is

optimal to connect to all other players, thereby entering in the core himself.

Lemma 2. Consider the homogeneous baseline model with αi = 1 for all i ∈ N, and suppose that

the complete core-periphery network gCP(k)
com (including the star network) with k ∈ {1,2, ...,n− 2} is

not unilaterally stable because a peripheral player i can deviate by adding one or more links. Then

the best feasible action for i in gCP(k)
com is to add links to all l = n− k−1 other periphery players.

Proof of Lemma 2. The marginal benefits of a periphery member for replicating the position of a

core member of a complete core-periphery networks with k core members are:

Mi(gCP(k)
com ,+l) = l(

1
2
− fe(k,δ)− c)+

(
l
2

)
fm(k + 1,δ) (C.11)

As this function is convex in l, the maximum of this function is reached at l∗= 0 or l∗= n−k−1.

Now we have proven Lemma’s 1 and 2, we continue the proof of Theorem 1.

I: By Lemma 1, after the move of player i = 1 the network is either empty or a star. In case it

is empty the process converges to an empty network, as all other nodes face the same decision as

i = 1. Player 1 has no incentive or possibility to form a star gs with 1 the center if π1(gs) < 0, that

is, if

c >
1
2

+
1
6

(n−2),

and part I directly follows.

II: If

c <
1
2

+
1
6

(n−2), (C.12)

then player 1 forms a star. Note that this is a feasible action, because π1(gs) > 0 implies π j(gs) > 0

for j 6= 1.

If player 2 does not want to add a subset of links, then the other players also do not want to,

in which case the star is the outcome of the dynamic process (by part I, deleting her link is not

profitable for player 2). If player 2 has an incentive to add links, then by Lemma 2 she will add

all n−2 links in order to form a complete core-periphery network gCP(2)
com with 1 and 2 in the core.
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This happens if π2(gCP(2)
com ) > π2(gs) and π j(gCP(2)

com ) > π j(gs) for all j = 3, . . . ,n, that is,

c <
1
6

+
1
2

(n−3) fm(2,δ) and c <
1
6

+(n−3)( fe(2,δ)− 1
3

). (C.13)

On the other hand, if either c > 1
6 + 1

2(n− 3) fm(2,δ) or c > 1
6 + (n− 3)( fe(2,δ)− 1

3), then neither

player 2 nor any of the subsequent players change the network, and part II directly follows.

III: Under equation (C.13), after player 1 and 2 have chosen their links, a core-periphery network

with 2 core players is formed. Player 3 does not delete any of her links under the second part of

equations (C.12) and (C.13). By the same argument using Lemma 2, each next player i∈ {3,4, ...,k}
adds links to all nodes not yet connected to i, as long as costs c are low enough. This might lead

to a stable complete network, if the last two nodes have an incentive to form a link (which will be

proposed by player i = n−1), i.e.

c <
1
2
− fe(n−2,δ), (C.14)

and part III directly follows.

For parameters not satisfying I, II or III, the first round of best feasible actions results in a

complete core-periphery network with 1 < k < n− 1 core members. This complete core-periphery

network is not stable by Lemma 2. Because the k + 1-th node did not connect to other periphery

nodes, adding links in the periphery cannot be beneficial. Therefore the first core bank i = 1 must

have an incentive to delete at least one within-core link. The marginal benefit of deleting l core

links in the network is:

Mi(gCP(k)
com ,−l) = l(c− 1

2
+ fm(n− l−1,δ)). (C.15)

As Mi(gCP(k)
com ,−0) = 0 and Mi(gCP(k)

com ,−1) > 0, there is a unique choice l∗1 > 0 of the optimal number

of core links to delete. It will become clear that, for parameters outside I ∪ II ∪ III, attracting

networks are multipartite networks of various sorts, depending on the choice l∗1 .

An important case is that a complete core-periphery network with k = 2 has arisen after the first

round. For k = 2 the only possible solution is l∗1 = 1. A (complete) bipartite network arises with

a small group of 2 players and a large group of n−2 players, the maximal difference in group size

possible for bipartite networks. We denote such a network as gmp(2)
2,n−2.

The case of k = 2 happens if the third player i = 3 does not enter the core, either because entering

is not beneficial for himself or because some other periphery players j does not accept the offer of

i. For k = 2 a positive marginal benefit of entering the core implies:

Mi(gCP(2)
com ,+(n−2)) > 0;

⇒ c <
1
2
− fe(2,δ)+

1
2

(n−4) fm(3,δ), (C.16)
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and the periphery player j has an incentive to accept the offer if

M j(gCP(2)
com ,+(n−2)) ≥ 0;

⇒ c ≤ 1
2
− fe(2,δ)+(n−4)( fe(3,δ)− fe(2,δ)); (C.17)

So if after the first round the result is k = 2 and the third player has not entered the core, it must

be the case that:

c≥ 1
2
− fe(2,δ)+(n−4)min{1

2
fm(3,δ), fe(3,δ)− fe(2,δ)}. (C.18)

The parameter values for which the maximally unbalanced network gmp(2)
2,n−2 is the attracting steady

state are given by condition IV.

Alternatively, under the remaining condition V, the first round has resulted in a complete core-

periphery network with k > 2. This network cannot be stable, and the first core bank i = 1 has an

optimal choice of 0 < l∗1 ≤ k− 1 links to delete depending on the parameters. First consider that

the core bank deletes all its within-core links, i.e. l∗1 = k− 1. This action necessarily implies that

the linking costs exceed the loss in surplus associated with having an indirect connection to other

core banks via the periphery rather than a direct connection:

c >
1
2
− fe(n− k,δ). (C.19)

Given this high level of linking costs, the next core banks i = {2, ...,k} have the same incentive to

delete all their within-core links. The attracting network is therefore a multipartite network gmp(2)
k1,k2

with two groups of size k1 = k and k2 = n− k.

Finally, consider the case 0 < l∗1 < k−1.29 Denote K1 ⊂ K as the set of core banks with at least

one missing within-core link after the best feasible action of i = 1, including players i = 1 itself. The

size of this set of banks is k1 = l∗1 + 1. The best feasible action of i = 1 necessarily implies:

c >
1
2
− fe(n− k1,δ). (C.20)

Given this high level of linking costs, all next banks i ∈ K1 with connections to some other j ∈ K1

with j > i have the same incentive to delete every link gi j. These banks do not have an incentive

to remove any further link, because the number of intermediators for indirect connections to banks

j ∈ K1 would become less than n− k1. If the latter were worthwhile, i = 1 would have chosen a

higher number l∗1 . Therefore K1 becomes a group of players not connected within their group, but

29This is the only case in which the best feasible action is not unique in a parameter region with nonzero measure:

the first core banks i = 1 has

(
k
l∗1

)
best feasible actions deleting l∗1 links from the core. The resulting multipartite

networks can consist of different sets K1,K2, ...,Kq−1, but all are isomorphic.
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completely connected to all players outside their group.

Players i ∈ (K \K1) are connected to all other players j ∈ N. Because of the lower bound on c in

equation (C.20), these players have an incentive to remove links to some j as long as the number of

intermediators for the indirect connections to j stays above n− k1. This will lead to other groups

K2, ...,Kq−1 of players not connected within their group, but completely connected to all players

outside their group. The remaining group Kq was the original periphery at the end of the first

round. The result of the best-feasible-action dynamics if 0 < l∗1 < k− 1 is a multipartite network

gmp(q)
k1,k2,...,kq

with q≥ 3.

For all parameters under condition V, the resulting network is multipartite with q = b k
k1
c+ 1

groups. These multipartite networks are more balanced than gmp(2)
2,n−2, i.e. have group sizes |km−km′ |<

n−4 for all m,m′ ∈ {1,2, ..,q}.

Appendix D. Proofs of Section 4

Proof of Proposition 4. We start with possible deviations of a peripheral player by adding links to

other periphery players. Note that the change in payoffs by these deviations do not depend on α,

because they only concern trade surpluses between small banks. Hence Lemma 2 holds also in this

heterogeneous setting: if adding one link improves the payoff of a small periphery player, the best

feasible action is to connect to all other small banks.

Starting from a complete core-periphery network with the k big banks in the core, if one periph-

eral player adds links to all other periphery players, the core is extended to k+1 players, k big banks

and 1 small bank. For the new core member i to have positive marginal benefits of supporting all

new links, it is required that

Mi(gCP(k)
com ,+(n− k−1)) > 0

⇒ c <
1
2
− fe(k,δ)+

1
2

(n− k−2) fm(k + 1,δ) (D.1)

and every remaining peripheral player j 6= i requires

M j(gCP(k)
com ,+(n− k−1)≥ 0

⇒ c≤ 1
2 − fe(k,δ)+ 1

2(n− k−2)+(n− k−2)( fe(k + 1,δ)− fe(k,δ)). (D.2)

Conversely, the deviation of player i is not a best feasible action if c exceeds the minimum of the

two values in equations (D.1) and (D.2):

c≥ 1
2
− fe(k,δ)+(n− k−2)min{1

2
fm(k + 1,δ), fe(k + 1,δ)− fe(k,δ)}. (D.3)

Given a complete core-periphery networks and a sufficiently high c satisfying (D.3), it is not bene-
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ficial for periphery players to add links.

We will now derive an α, such that for all α > α the complete core-periphery network with k

big banks is unilaterally stable. In order to derive α we consider the possible deletion of one or

multiple links by either core or periphery players. After deriving α, we will rewrite the condition

of stable complete core-periphery networks in terms of c.

First, consider a core player i. Player i can delete links with other core players and/or links with

periphery players. The marginal benefit of deleting lc core links and lp periphery links is:

Mi(gCP(k)
com ,−(lc + lp)) = lc

(
c−α

2(1
2
− fe(n− lc− lp−1,δ)

))
+lp
(

c−α
(1

2
− fe(k− lc−1,δ)

)
−(2n−2k− lp−1) fm(k,δ)

)
≡ Mc

i + Mp
i (D.4)

The marginal benefit of deleting lc + lp links can be separated in benefits from deleting links with

the core Mc
i and benefits from deleting links with the periphery Mp

i . The cross-over effects of

deleting links with both groups of banks are negative: Mc
i is decreasing in lp and Mp

i is decreasing

in lc. To find the conditions under which the core player does not want to delete any link, it is

therefore sufficient to consider deletion of links in each group separately.

The marginal benefit of deleting lc core links is:

Mi(gCP(k)
com ,−lc) = lc

(
c−α

2(1
2
− fe(n− lc−1,δ)

))
(D.5)

If Mi(gCP(k)
com ,−lc) > 0, it must hold that Mi(gCP(k)

com ,−1) > 0, because fe(n− lc− 1,δ) decreases in lc.

Player i thus has a beneficial unilateral deviation if

Mi(gCP(k)
com ,−lc) > 0

⇒ Mi(gCP(k)
com ,−1) > 0

⇔ α <

√
c/(

1
2
− fe(n−2,δ)) (D.6)

The marginal benefit for a core player i of deleting lp links with the periphery is :

Mi(gCP(k)
com ,−lp) = lp

(
c−α

(1
2
− fe(k−1,δ)

)
−(2n−2k− lp−1) fm(k,δ)

)
(D.7)

If Mi(gCP(k)
com ,−lp) > 0, it must be a best feasible action to choose lp = n−k and delete all links with
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the periphery, as the function is convex in lp. Player i thus has a beneficial unilateral deviation if

Mi(gCP(k)
com ,−lp) > 0

⇒ Mi(gCP(k)
com ,−(n− k)) > 0

⇔ α <
c− 1

2(n− k)(n− k−1) fm(k,δ)
1
2 − fe(k−1,δ)

(D.8)

Second, consider a player i ∈ P in the periphery. This marginal benefit for a periphery bank

i ∈ P to delete l links is positive if:

Mi(gCP(k)
com ,−l) = l

(
c−α

(1
2
− fe(k− l,δ)

))
−(n− k−1)( fe(k,δ)− fe(k− l,δ)) > 0

⇔ α <
c− n−k−1

l ( fe(k,δ)− fe(k− l,δ))
1
2 − fe(k− l,δ)

(D.9)

The network is unilaterally stable if neither of these three deviations is beneficial, i.e. if α

exceeds all values given in equations (D.6), (D.8) and (D.9):

α = max
{ √

c/(
1
2
− fe(n−2,δ)),

c− 1
2(n− k)(n− k−1) fm(k,δ)

1
2 − fe(k−1,δ)

,

max
l≤k

(c− n−k−1
l ( fe(k,δ)− fe(k− l,δ))

1
2 − fe(k− l,δ)

)}
(D.10)

By rewriting we get given a sufficiently large level of heterogeneity α > 1 the following condition

for unilaterally stable core-periphery networks in terms of linking costs:

c ∈
(

1
2 − fe(k,δ)+(n− k−2)min{1

2 fm(k + 1,δ), fe(k + 1,δ)− fe(k,δ)},

min
{

α2(1
2 − fe(n−2,δ)),α(1

2 − fe(k−1,δ))+ 1
2(n− k)(n− k−1) fm(k,δ),

minl≤k
{

α(1
2 − fe(k− l,δ))+ n−k−1

l ( fe(k,δ)− fe(k− l,δ))
}})

.

Remarks on Proposition 4. Notice that, for given c and δ and for n sufficiently large, the level of

heterogeneity α as given in (D.10) equals√
c/(

1
2
− fe(k−1,δ)). (D.11)

For such a value of α, the complete core-periphery network with k big banks in the core is unilaterally

stable if condition (D.3) is satisfied. To minimize α we take the smallest vale of c satisfying (D.3).
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A lower bound for α, given values of δ, k and sufficiently large n, is thus given by:

α≥ αmin ≡

√
1
2 − fe(k,δ)+(n− k−2)min{1

2 fm(k + 1,δ), fe(k + 1,δ)− fe(k,δ)}
1
2 − fe(k−1,δ)

. (D.12)

Using the assumptions we made about the distribution of intermediated trades in Section 2.2, one

can verify that

lim
k→∞

αmin = lim
δ↓0

αmin = lim
δ↑1

αmin = 1, (D.13)

showing that an arbitrary small level of heterogeneity can be sufficient to have an unilaterally stable

core-periphery network.

Proof of Proposition 5. Starting in an empty network, the first big bank i = 1 has two relevant

options: either connect to all players or connect only to big bank 2. Linking to only part of the

small banks cannot be a best feasible action, because linking to an additional small bank pays off

positive additional intermediation benefits (similar to the proof of Lemma 1). Player 1’s payoffs

depending on its action S are:

π1(S) =


0 if S = /0

1
2 α2− c if S = {2}

1
2 α2− c + 2(1

2 α− c)+ 2 1
3 α + 1

3

= 1
2 α2 + 5

3 α + 1
3 −3c if S = {2,3,4}

(D.14)

Under condition I, player 1’s best feasible action is not to add any links. The resulting network

is empty. In this case the network must be unilaterally stable. The reason is that second big bank

faces the same decision as i = 1, and small banks have strictly lower payoffs from adding links, so

no player will decide to change the network structure.

Under condition VI, the best feasible action is to add only one link to big bank 2. The second

big can choose from the same resulting networks as i = 1 could, so does not add or remove links.

Small banks have strictly lower payoffs from adding links and also do not change the structure. So

under condition VI the resulting network with only one link, namely g12 = 1, is stable.

If the first player adds links to all three other players, a star network is formed. Then the best

feasible action for the second big bank i = 2 is either to do nothing or to add links to both periphery

players. If 2 does nothing, the periphery nodes 3 and 4 will likewise decide not to add links, and

the star network is the final, stable outcome. For 2 to have positive marginal benefits of supporting
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two links, it is required that

M2(gs,+2) > 0

⇒ c <
1
6

α +
1
2

fm(2,δ), (D.15)

and each peripheral player j ∈ {3,4} requires

M j(gs,+2) ≥ 0

⇒ c ≤ 1
6

α + fe(2,δ)− 1
3
. (D.16)

Conversely, the star network is stable if the deviation of player 2 is not beneficial to 2 and/or a

peripheral player j, i.e. if c exceeds the minimum of the two values in equations (D.15) and (D.16):

c≥ 1
6

α + min{1
2

fm(2,δ), fe(2,δ)− 1
3
}, (D.17)

leading to condition II.

Consider the case that both big banks have added all possible links. Then there is a possibility

that the dynamic process leads to a complete network if node 3 links to node 4. This happens if c

is so small that the share fe(2,δ) from intermediated trade between 3 and 4 can be raised to 1
2 by

creating a direct link. The complete network is therefore stable under condition III.

For parameters not satisfying I, II, III or VI, the first round of best feasible actions results in a

complete core-periphery network with 2 core members. This complete core-periphery network can

be stable because of the heterogeneity between core and periphery banks with α > 1. As stated in

Proposition 4, this occurs under condition VII. For n = 4 and k = 2 condition VII reduces to:

c ∈
(

1
2 − fe(k,δ)+(n− k−2)min{1

2 fm(k + 1,δ), fe(k + 1,δ)− fe(k,δ)},

min
{

α2(1
2 − fe(n−2,δ)),α(1

2 − fe(k−1,δ))+ 1
2(n− k)(n− k−1) fm(k,δ),

minl≤k
{

α(1
2 − fe(k− l,δ))+ n−k−1

l ( fe(k,δ)− fe(k− l,δ))
}})

∈
(

1
2 − fe(2,δ),min{α2(1

2 − fe(2,δ)), 1
6 α + fm(2,δ), 1

6 α + fe(2,δ)− 1
3}
)
.

Notice that when this condition is fulfilled, the second player always adds the two links to the

periphery (cf. condition (D.17)).

Finally, in the remaining region IV, the complete core-periphery network cannot be stable.

Because the node i = 3 node did not connect to the last periphery node, adding links cannot be

a best feasible action. Therefore the first core bank i = 1 must have an incentive to delete the

link with 2. The attracting steady state is the multipartite (ring) network consisting of the groups

{1,2} and {3,4}.
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Appendix E. Longer intermediation chains

In this appendix we generalize the model to allow for intermediation paths of lengths longer than

two. We will analyze the general model for lengths up to distance three and under homogeneity

(i.e. αi = 1 for all i, j), and check whether a (incomplete) core-periphery network may be stable.

Before rewriting a more general form than the payoff function in Proposition 1 formally, we

repeat that the proofs of Proposition 2 and 3 do not require any assumptions on the path lengths

on which trade is allowed; see the remarks in Appendix C on these propositions. Proposition 2 states

that complete core-periphery networks are not pairwise (or unilaterally) stable. Proposition 3 states

that incomplete core-periphery networks are not unilaterally stable if n is sufficiently large. Also

Proposition 4, specifying a level of heterogeneity sufficient for a complete core-periphery network

to be unilaterally stable, holds for longer intermediation paths.

We introduce new, more general notation for intermediation over longer path lengths: Fe(g,{i, j},δ)

denote the shares for the endnodes in the pair i and j; and Fm(g,{i, j,k},δ) denotes how much mid-

dleman k receives. In Appendix A it is explained how such an distribution can be derived for long

intermediation chains in the example of Siedlarek (2015). Note that if i and j at length three are

assumed to generate a surplus, middlemen involved in a trade between i and j do not necessarily

earn the same: if k lies on more of the shortest paths than k′, k will earn more than k′. For this

reason (part of) the graph g must be given as an argument in the function Fe and Fm. The payoff

function becomes:

πi(g) = ηi(g)

(
1
2
− c
)

+ ∑
j∈N3

i (g)

Fe(g,{i, j},δ)+ ∑
k, l ∈ N2

i (g)

gkl = 0,dkl ≤ 3

Fm(g,{k, l, i},δ), (E.1)

where Nr
i (g) denotes the set of nodes at distance r from i in network g, ηi(g) = |N1

i (g)| the number

of direct connections of i, and dkl the distance between nodes k and l.

In incomplete core-periphery networks, shortest paths of three may exist between some periphery

players, which were previously assumed not to generate any trading surplus. By allowing interme-

diation chains of three we found that some core-periphery networks can become unilaterally stable.

For n = 8, we found that k = 2 and k = 3 are the only possibly stable core sizes. See Figure E.14

for two examples of networks that are stable for the given parameter values when paths of three

are allowed. These two network structures are not stable in the baseline model.

We can safely interpret these examples as low-dimensional exceptions to the rule that the core-

periphery structure in homogeneous networks is generally unstable. The examples in Figure E.14

show that for n = 8 incomplete core-periphery networks with core sizes of k = 2 and k = 3 can be

stable. For n sufficiently large, however, core-periphery networks are always unstable as stated by

Proposition 3.
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2

3 4

58

67

(a) (δ,c) = (0.8,1.1). A minimally connected core-periphery network with k = 2.

1

23

4 5

68

7

(b) (δ,c) = (0.5,0.9). A minimally connected core-periphery network with k = 3.

Figure E.14: Examples of unilaterally stable core-periphery networks after allowing for intermediation
chains of length 3, for n = 8 players and given certain (δ,c).
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Moreover, even though exceptionally for small n core-periphery networks can be unilaterally

stable, they are never the outcome of a dynamic process as described in Section 3.2. For n = 8, the

core-periphery networks with k = 2 and k = 3 were found to be stable in parameter regions where

the star networks is stable as well, cf. region II in Figure 6b. Exploring the parameter space by

simulations, we found that this was always the case for such stable core-periphery networks. By

Lemma 1, the star is created as a first step in the dynamic process whenever the initial empty

network is not stable. Therefore the star network is the outcome of a dynamic process even when

exceptional (low-dimensional) networks are unilaterally stable as well given the parameter values.

This implies that the dynamic results of Theorem 1 do not depend on the assumption of maximal

intermediation paths of length two, as was already shown for the static results of Propositions 2, 3

and 4.
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