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Abstract

Speeding up the exchange does not necessarily improve liquidity. The price quotes of high-frequency

market makers are more likely to meet speculative high-frequency “bandits,” thus less likely to meet

liquidity traders. The bid-ask spread is raised in response. The recursive dynamic model reveals that there
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1 Introduction

It reminds me of the old story of the two high-frequency traders on safari. Coming out of the

jungle into a clearing, they are faced with a hungry lion, staring at them and licking his lips. One

of the traders immediately starts taking off his boots and donning a pair of sneakers. “What are

you doing?” says the other trader. “You’ll never be able to outrun a hungry lion.” “I don’t need

to outrun the lion,” says the first trader. “I only need to outrun you.”

— HFT Review, April 2010

Speed matters for individual agents, but does it matter for an exchange? Do markets get better when trading

platforms reduce their latency? Pagnotta and Philippon (2013) document the many speed investments that

exchanges around the world have implemented between 2008 and 2012. For instance, the trading latency on

the New York Stock Exchange (NYSE) dropped from 350 milliseconds in 2007 to 5 milliseconds in 2009.

The industry started referring to the speed of light as a binding constraint.1

A speed improvement at modern exchanges only directly affects those who employ computerized trading

strategies. Budish, Cramton, and Shim (2013) consider human reaction time to be hundreds of milliseconds.

High-frequency traders (HFTs) are at the other extreme. They are characterized as proprietary traders who

“use of extraordinarily high-speed and sophisticated computer programs for generating, routing, and executing

orders (SEC, 2010, p. 45).”

The impact of exchange latency depends on the strategies employed by the ultra-fast traders, i.e., HFTs. They

act both as market makers and as short term speculators (SEC, 2010). A key difference between the two types

is that the former predominantly submits price quotes (limit orders) whereas the latter mostly consumes price

quotes (market orders). Hagstromer and Norden (2013) document that such order type specialization exists

for high-frequency traders (HFTs) at NASDAQ-OMX. Baron, Brogaard, and Kirilenko (2012) find a similar

specialization for HFTs at the Chicago Mercantile Exchange.

This paper analyzes the impact of exchange latency on liquidity in the presence of two canonical HFT

strategies. On the one hand, a faster market allows high-frequency market makers (HFMs) to update their

1See How Low Can You Go?, HFT Review, April 2010.
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price quotes faster on new (public) information. On the other hand, it enables high-frequency speculators,

referred to as bandits (HFBs), to act faster on this new information and profit by trading against potentially

stale quotes. Others, referred to as liquidity traders, are assumed to be uninformed and not directly affected

by an exchange speed creeping closer to the speed of light.

There is no exogenous information asymmetry between market makers and speculators. Adverse selection

for HFMs is generated by equally fast HFBs. It is a game of chance who is first to the market after news.

This type of adverse selection risk complements the existing literature that focuses on exogenous information

asymmetry as a source of adverse selection risk (e.g., Glosten and Milgrom, 1985; Kyle, 1985; Foucault,

Hombert, and Roşu, 2013). Adverse selection on news is also part of Budish, Cramton, and Shim (2013) who

focus on technology investments by high-frequency traders. Foucault, Kozhan, and Tham (2014) use it to

study “toxic arbitrage.”

The paper’s main result is that lowering exchange latency (i.e., increasing speed) reduces liquidity. We

identify two main channels that drive this result: a static and a dynamic one. A faster market essentially

makes the trading game in each (shorter) interval more of a game between markets makers and bandits, HFMs

and HFBs. The arrival rate of liquidity traders remains unchanged and their participation in each trading

game therefore declines. Competitive HFMs have to raise the bid-ask spread to recoup their increased loss

due to more trades with HFBs. Liquidity traders suffer as they pay the higher spread. We label this the static

channel.

A faster market further reduces liquidity through a dynamic channel. A market maker has an incentive to

update his outstanding quotes on incoming news so as to avoid being adversely selected. Parsing all relevant

news instantaneously requires costly computing power as it involves vast amounts of information, e.g., any

information sent through newswire services, order book activity, same-industry stock activity, index activity,

etc. This costly monitoring however can be amortized across all quotes the market maker has outstanding for

the security. This amortization creates an opportunity for rents when the competitive threat for an “incumbent”

HFM comes from an entrant HFM with no presence in the order book yet. In the stage game that starts

with a book that has an opportunity to refill as a liquidity trader just consumed a quote, the incumbent HFM

optimally quotes at the reservation price of the entrant HFM. This reservation price exceeds his own due to his
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amortization benefit. In this stage game the incumbent HFM therefore makes a positive profit in expectation.

When the exchange speeds up, the stage game that enables an incumbent HFM to earn rents becomes more

likely. This is the dynamic channel through which liquidity is reduced. The intuition for this result is that

this stage game only materializes if in the previous time interval a liquidity trader arrived, and there was no

news. It is the latter event that is the engine of the result. Had there been news as well, then all book quotes

effectively become stale and useless. The HFMs compete again on both sides of the book as it needs to fill up

around the new fundamental value. The incumbent HFM advantage no longer exists. As the market speeds

up, the probability of two events (liquidity trader arrival and news) in an inter-HFT-arrival interval declines as

this interval becomes shorter. The steady state probability of only a liquidity trader arrival increases, and the

recursive equilibrium therefore implies more rents for HFMs on average, effectively paid for by liquidity

traders through a larger spread. Liquidity deteriorates.

The paper generates two more results. First, faster markets imply more quote flickering. This is caused

directly by transiting between the zero-rent and positive-rent stage games. The spread in the latter game is

higher. The flickering result is there absent strategic order submissions and cancelations, a channel explored

in Pagnotta and Philippon (2013), Baron, Brogaard, and Kirilenko (2012), and Yueshen (2014). Second,

beyond a threshold speed HFMs start paying a monitoring cost to protect themselves against HFBs. This

investment in and of itself is a social cost as improved monitoring pays off privately but not publicly (as

liquidity traders are uninformed). The baseline model assumes that speed is beyond the threshold level. The

aforementioned dynamic liquidity channel and quote flickering critically depend on active monitoring.

A NASDAQ-OMX system speed upgrade is used to empirically test the implications of the model. On

February 8, 2010, INET Core Technology was introduced for equity trading in Denmark, Finland, and

Sweden. Exchange latency dropped from 2.5 to 0.25 milliseconds and colocation was introduced; both

significantly boosted HFT speed. Following this upgrade, adverse selection cost for high-frequency market

makers increased significantly by 2.11 basis points. This change is large economically as it implies that the

post-event level is more than five times higher than the pre-event level of 0.39 basis points (standard control

variables for bid-ask spread analysis were included). The effective spread charged by them increased by

32% as the adverse selection cost increase is partially offset by a lower HFM realized spread (i.e., their gross
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profit). This spread decomposition result is there also for quote submitters other than the identified HFMs,

albeit less pronounced.

A calibration of the model reveals that the huge increase in adverse selection cost for HFMs can be achieved

for reasonable parameter values. It relies strongly on the stylized fact that trades cluster in time. A sub-second

speed change has substantial bite when securities markets feature short bursts of activity.

In sum, the paper’s message is that further speeding up an extremely fast exchange could hurt liquidity, ceteris

paribus. This is somewhat surprising given that a large literature has emerged that by and large finds that

liquidity benefits from migrating from human-intermediated trading to algorithmic trading (see Section 2).

A first-order effect is that automation tends to reduce cost in any industry. The larger point of this paper is

that once automation is in place, speeding up further is not necessarily good in the securities trading industry

(unlike other industries, e.g., smart phones, online backup systems, gaming, etc.).2

The rest of the paper is structured as follows. Section 2 briefly reviews the literature on the advantages and

disadvantage of low-latency trading and positions the paper in this literature. Section 3 develops a recursive

trading model with competitive high-frequency market makers and high-frequency speculators. Section 4

exploits a natural experiment to test the empirical predictions of the model. The model is calibrated to the

data in Section 5. Section 6 concludes.

2 Related literature

High-frequency trades and liquidity. This paper is part of a rapidly growing literature on high-frequency

traders (HFTs) and liquidity. Foucault, Hombert, and Roşu (2013) argue that HFTs have better information as

they can process news faster. Information asymmetry is increased as a result. Similarly, Martinez and Roşu

(2013) argue that the informational advantage of HFTs increases volatility and reduces liquidity, in a model

where HFTs pick off competitive market makers’ quotes. Hoffmann (2013b) shows that while higher speed

generates positive gains from trade, the bargaining power shifts from slow to fast traders. The latter capture

2Budish, Cramton, and Shim (2013) note that in the last decade the gradual speed increase coincided with lower duration for
arbitrage opportunities (their own work), a lower bid-ask spread (Virtu IPO filing), and a lower cost of trading large blcoks (Angel,
Harris, and Spatt, 2013). More importantly, they note that all these trends seem to flatten out. Our contribution is to show that
liquidity could actually deteriorate at an extreme speed.

4



the full surplus. Biais, Foucault, and Moinas (2013) propose a model of low-latency trading where when a

subset of agents become fast, all other traders incur higher adverse selection cost. Jovanovic and Menkveld

(2011) argue that HFT entry has an ambiguous effect on welfare. If HFTs are the only agents with access to

information, they can reduce gains from trade. Aït-Sahalia and Saglam (2014) propose a dynamic trading

model of an HFT market maker who receives a signal about future order flow. They consider the effect of

various regulatory policies. Jovanovic and Menkveld (2014) find that if there is a (small) participation cost,

then the availability of more HFTs widens the bid-ask spread.

Several empirical papers suggest a positive relationship between the adverse selection cost incurred on limit

orders and high-frequency trading. Brogaard, Hendershott, and Riordan (2014) and Hendershott and Moulton

(2011) document a larger permanent price impact for market orders when they are sent by HFTs. In the same

line, Baron, Brogaard, and Kirilenko (2012) show that HFTs earn short-term profits on the market orders

they submit, consistent with them adversely selecting others. Hoffmann (2013a) focuses on adverse selection

differentials across market venues. He finds that the adverse selection component is larger on entrant venues.

Menkveld (2014) argues that these entrant venues are likely to exhibit high HFT participation. Menkveld

(2013) provides supportive evidence as he documents high HFT participation for Chi-X, an entrant venue in

Europe. Moallemi and Saglam (2013) estimate the “cost of latency” through the losses from trading on stale

information. They find that it amounts to half of total trading costs. Breckenfelder (2013) documents that if

more HFTs compete for trades their liquidity consumption increases.

Finally, Jones (2013) and Biais and Foucault (2014) offer a comprehensive review of the theoretical and

empirical literature on high-frequency trading and liquidity. They stress that the evidence suggests HFT

heterogeneity.

Exchange latency and liquidity. Pagnotta and Philippon (2013) relate exchange competition to market

speed. They argue that exchanges can use speed as an instrument to cater to different clienteles. Fast markets

are able to charge a premium to traders with volatile private values, i.e., those who value speed most.

The evidence on how exchange latency impacts liquidity is mixed. Riordan and Storkenmaier (2012) find

that a latency reduction implemented at the German stock exchange had no detectable effect on the effective
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spread for most sample stocks, it only reduced it for the quartile of smallest stocks. Ye, Yao, and Gai (2013)

study NASDAQ data and find that a drop in exchange latency from the microsecond to the nanosecond level

increased volatility and reduced market depth. It did not have an effect on the effective spread.

Algorithmic trading and liquidity. The set of algorithmic traders includes HFTs but more generally

includes all who use computers to automate the trading process. Hendershott, Jones, and Menkveld (2011)

document that algorithmic trading causally reduces the bid-ask spread. Similarly, Malinova, Park, and

Riordan (2013) find that after the introduction of a message fee, algorithmic trading is crowded out and the

bid-ask spread rises.

This paper’s contribution. The model proposed in this paper contributes to this literature in the following

ways. First, it focuses on the interaction of two types of high-frequency traders, market makers and bandits.

It explores how this interaction affects liquidity by studying its effect on the trading costs of a third type of

agent, the liquidity trader. The recursive model uncovers effects that remain hidden in static models. The

modeling framework is particularly useful to get traction on how exchange speed affects trading. Analytic

results are derived in a relatively straightforward way.

The empirical contribution is that the adverse selection cost increases when an exchange moves from

millisecond to sub-millisecond speed. Trader-level detail allows us to document that this cost increased most

for limit orders from HFTs.

3 Model

3.1 Primitives

This section presents the model’s primitives. Extensive motivation for these primitives is left to Subsection

3.2. The complete list of model parameters is presented in Appendix A.
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Trading environment. A single risky asset is traded on a limit order market with price and time priority.

The order book has limited capacity. It can hold only a single order to buy one unit (bid quote) and one order

to sell one unit (ask quote). If an HFM submits a strictly better quote in terms of price, then the better quote

will replace the existing quote.

Agents. The risky asset is traded by three types of risk-neutral agents: competitive high-frequency market-

makers (HFMs), high-frequency speculators or “bandits” (HFBs), and liquidity traders (LTs). The market

makers post only limit orders, whereas the other two trader types post only market orders. The setup is similar

to Foucault, Roell, and Sandas (2003).

The high-frequency traders (HFMs and HFBs) only submit and cancel orders at fixed times kδ, k ∈ {1, 2, 3, . . .},

where δ is a measure of the exchange latency. For a lower value of δ, high-frequency traders visit the market

more often.

Interarrival events. In each time interval δ between high-frequency trader arrivals, two types of events

might occur. The common value of the asset changes with probability αδ with α > 0. A common-value shock

represents a news event. The size of the news event can be either σ (‘good’ news) or −σ (‘bad’ news).

The common value of the asset, vt, changes from kδ to (k + 1) δ as follows:

v(k+1)δ =



vkδ, with probability 1 − αδ (no news event),

vkδ + σ, with probability αδ
2 (good news),

vkδ − σ, with probability αδ
2 (bad news).

(1)

The other type of event is that an LT might arrive motivated by a private value shock, referred to as a liquidity

shock. The probability of this event is µδ with µ > 0. The size of the shock is assumed to be larger than σ.3

Liquidity shocks are independent from news events. In other words, the common- and private-value shocks

are independent.

3This assumption is relatively innocent. It rules out market breakdown and keeps the paper’s focus on how exchange speed affects
liquidity in normal market conditions.
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The timing of the trading game is presented below:

Timet1 = δt0 = 0 t2 = 2δ tk = kδ tk+1 = (k + 1) δ

HFMs and HFBs are on the market

News arrival
Probability: αδ
v′ = v ± σ

LT arrival
Probability: µδ

Information structure The HFMs can learn the common value by paying a monitoring cost c per time

unit. For an interval of length δ this cost is cδ. Monitoring allows them to act on common value innovations

and reduce the risk of being picked off by HFBs. High-frequency bandits are fully informed. LTs cannot

monitor but infer the common value from HFT activity. Note that LTs are “slow” in the sense that they are

they are always the last ones to become informed. They arrive at the market motivated by a private value

shock only. They update their belief about the common value from the price quotes they find in the market

upon arrival.

Decision ordering HFTs visit the market at kδ, k ∈ {1, 2, 3, . . .} (and leave the market immediately after

the visit). The decisions on market order submission (for HFBs) or limit order cancelation and submission

(for HFMs) follow the sequence below:

1. Order resolution stage. HFBs decide whether to submit a market order. HFMs decide whether to

cancel outstanding limit orders. The market order and the cancellation have the same probability of

being executed first.

2. Monitoring stage. HFMs decide whether or not to pay the monitoring cost for the next interval.

3. Order submission stage. HFMs submit new limit orders at the bid price vt − sb,t and the ask price

vt + sa,t, where sb,t and sa,t are decision variables. HFMs whose quotes were just consumed go first in

this stage. These HFMs will be referred to as incumbent HFMs.
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3.2 Discussion of the primitives

The trading environment is largely based on Foucault, Roell, and Sandas (2003) and Foucault, Kadan, and

Kandel (2013).

High-frequency traders specialize in either market-making (HFMs) or speculation (HFBs). Hagstromer and

Norden (2013) and Baron, Brogaard, and Kirilenko (2012) contain evidence in support of such specialization.4

Both HFMs and HFBs can monitor the asset value. As in Budish, Cramton, and Shim (2013), latency is

the only source of adverse selection. It is the risk that an informed market order executes before the market

maker arrives to update his quote. There is no exogenous information asymmetry between market makers

and speculators (as in, for example, Glosten and Milgrom, 1985).

Any drop in exchange latency can be exploited only by high-frequency traders as they trade faster than other

agents. This is likely to be the case in modern securities markets as they clock in microseconds.

HFMs monitor at higher cost than HFBs. The model can be thought of as a reduced form for the following

environment: a “representative” market maker stands in front of many speculators who might observe an

inexpensive signal with low frequency. If there are many of these “bandits,” then this is equivalent to a single

“representative” one who receives such a signal at high-frequency. The market maker needs to acquire all

signals that speculators observe to avoid being adversely selected on any particular one.

The monitoring cost increases linearly with the length of the time interval. For algorithms that process

information continuously, running for longer time intervals implies a larger cost per time interval. Also, the

amount of information to be processed increases with the length of the interval. Even for algorithms not

operating continuously, the costs are larger if batches of information to process span a longer period. More

information requires more computer resources processing time.5

HFMs whose quotes were just consumed are the first to refill the book. Messages on own orders’ status arrive

4The model’s results do not depend on this assumption. A more general model might add an additional round ahead of each stage
game and assign HFM and HFB roles randomly across HFTs.

5This “real-time” decision making on how to allocate finite computing capacity across securities is different from the ex ante
decision on how much monitoring technology to install (the latter decision is out of scope here). Several members of industry
confirmed that such real-time decisions have become first-order as computing power has become constrained in a world that
requires instantaneously processing ever larger amounts of information (e.g., order book changes, news tickers, activity in correlated
securities, etc.).
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earlier than public market information (Patterson, Strasburg, and Pleven, 2013). Note that any HFM who

refills the book operates under a competitive constraint as other HFMs can undercut his quote immediately

after it was submitted. This assumption can easily be relaxed without changing the qualitative predictions of

the model.

The current model structure deviates from standard Poisson arrivals in order to get closed-form results. The

essential difference is that our model ignores the possibility of two or more arrivals of liquidity traders in a

time interval. The same goes for news events. It therefore in a sense really becomes a model for extreme speed

only as one can ignore second or higher order terms only if δ2, δ3, . . . are small relative to δ. Furthermore,

we believe that the model characterizes its main result in a conservative way relative to a Poisson model.

We expect the equilibrium effective spread to increase even more in speed when higher order events are

considered. The reason is that adverse selection cost scale linearly with the depth of HFM quotes (it takes

only one bandit to consume all stale price quotes) whereas it takes multiple liquidity traders to realize a profit

on multi-unit depth.

3.3 Solution strategy

The dynamic trading game can be solved as a sequence of static stage games that each depend on the state of

the order book. The result is formally stated in Lemma 1.

Lemma 1. (Stage game representation) The dynamic trading game can be represented by a sequence of

static stage trading games. Each stage game (indexed by k) begins with the order submission stage at time

kδ and ends with the order resolution stage at decision time (k + 1) δ. The solution of each stage game

depends only on the state of the order book at kδ: either empty (no quotes), full (quotes on both sides), or

half full (a quote on one side of the book only).

The state space of the model consists of two variables: the value of the asset and the state of the order book at

the start of the stage game.

Subsection 3.4 solves for each stage game the HFM monitoring strategy and the equilibrium bid-ask spread,

given the state of the order book upon entry of the stage game. Subsection 3.5 considers the effect of latency

10



on order book state distribution and computes the steady state equilibrium average spread.

3.4 Stage game equilibria

Two stage games are relevant. If the order book is empty, HFMs can post quotes on both sides of the book. If

the order book contains one quote, HFMs can submit a limit order on the opposite side. A third case is trivial:

if the book is full, HFMs cannot submit new quotes. The first arriving HFM operates under competitive

pressure. In what follows, he will be referred to as the HFM. He is aware of rival HFMs who come after him

and therefore puts his price quote at a level so that others cannot undercut him profitably. This zero-profit

condition for “late” HFMs nails the optimal quote submission strategy of the early HFM. The bid-ask spread

that results from this condition is referred to as the competitive spread.

3.4.1 Two-sided price quotes

The competitive half-spread is derived for an HFM who arrives on an empty book and simultaneously posts

a quote on both sides of it. The result depends on the HFM’s monitoring choice. If the HFM monitors the

quotes, his expected profit (π) for the oncoming period is (the subscript I2 refers to informed and two-sided

quotes)

π(sI2) =

No news︷   ︸︸   ︷
(1 − αδ)

LT︷︸︸︷
µδ sI2 +

News︷︸︸︷
αδ


LT on news side︷          ︸︸          ︷
1
2
µδ(sI2 − σ) +

LT on no-news side︷           ︸︸           ︷
1
2
µδ (sI2 + σ) +

No LT and HFB executes︷                    ︸︸                    ︷(
1 −

µδ

2

) 1
2

(sI2 − σ)

 − cδ. (2)

With probability (1 − αδ) there is no news event. In this case, an LT arrives at the market with probability µδ

and HFM earns the half-spread sI2.

With probability αδ there is a news event and the common value changes. The quote on the innovation side

can either be consumed by an LT or an HFB, or cancelled by the HFM. An LT arrives on this side of the

market with probability µδ
2 . If no LT arrives, the HFB arrives before HFM with probability 1

2

(
1 − µδ

2

)
. In both

cases, HFM loses sI2 − σ < 0. The quote on the opposite side is only consumed by an LT, with probability

µδ
2 . In this case, HFM earns sI2 + σ. Additionally, HFM pays the monitoring cost cδ.
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The two-sided competitive half-spread posted by an informed HFM is given by the solution to the zero-profit

condition:

π (sI2) = 0⇔ sI2 =
ασ (2 − µδ) + 4c
4µ + α (2 − µδ)

. (3)

If the HFM does not monitor the quotes, he never arrives before HFBs. The probability of a trade between

HFM and HFB increases from 1
2

(
1 − µδ

2

)
to 1 − µδ

2 . On the other hand, HFM no longer pays the monitoring

cost cδ. The profit function for the uninformed HFM is:

π(sU2) =

No news︷   ︸︸   ︷
(1 − αδ)

LT︷︸︸︷
µδ sU2 +

News︷︸︸︷
αδ


LT on news side︷           ︸︸           ︷

1
2
µδ(sU2 − σ) +

LT on no-news side︷            ︸︸            ︷
1
2
µδ (sU2 + σ) +

No LT and HFB executes︷                  ︸︸                  ︷(
1 −

µδ

2

)
(sU2 − σ)

 . (4)

The two-sided competitive half-spread posted by an uninformed HFM is given by the solution to the zero-profit

condition:

π (sU2) = 0⇔ sU2 =
ασ (2 − µδ)

2µ + α (2 − µδ)
. (5)

3.4.2 One-sided price quote

The competitive half-spread is derived for an HFM who arrives on a book that is half full. He posts a price

quote on the empty side of the book only. Without loss of generality, we focus on the case where HFM posts

an ask quote. The competitive half-spread depends on the strategy of the late HFM (as mentioned earlier in

this Subsection). If this HFM monitors his quotes, his expected profit for the oncoming period is:

π (sI1) =

No news︷   ︸︸   ︷
(1 − αδ)

µδ

2
sI1 +

News︷︸︸︷
αδ


LT on quote side︷                                  ︸︸                                  ︷

µδ

2

(
1
2

(sI1 − σ) +
1
2

(sI1 + σ)
)
+

No LT and HFB executes︷                       ︸︸                       ︷
1
2

(
1 −

µδ

2

) 1
2

(sI1 − σ)

 − cδ. (6)

With probability (1 − αδ) there is no innovation in the common value. With probability µδ
2 , an LT with a

positive private value arrives, i.e., the HFM earns the half-spread s.
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With probability αδ there is a news event. An LT with a positive private value arrives with probability µδ
2 . If

the news is good, the HFM loses s −σ. If the news is bad, HFM earns s +σ. With probability 1
2

(
1 − µδ

2

)
, the

news is good and no LT arrives in the δ interval, i.e., HFM makes a loss s − σ if an HFB order executes first.

Additionally, HFM pays the monitoring cost cδ.

The one-sided competitive half-spread posted by an informed HFM is given by the solution to the zero-profit

condition:

π (sI1) = 0⇔ sI1 =
ασ (2 − µδ) + 8c
4µ + α (2 − µδ)

. (7)

If the HFM does not monitor the quote, he never arrives before HFB. On the other hand, HFM no longer

incurs the monitoring cost cδ. The profit function for the uninformed HFM is:

π (sU1) =

No news︷   ︸︸   ︷
(1 − αδ)

µδ

2
sU1 +

News︷︸︸︷
αδ


LT on quote side︷                                    ︸︸                                    ︷

µδ

2

(
1
2

(sU1 − σ) +
1
2

(sU1 + σ)
)
+

No LT and HFB executes︷                     ︸︸                     ︷
1
2

(
1 −

µδ

2

)
(sU1 − σ)

 . (8)

The solution sU1 is the same as that for the as for the two-sided order book (see equation (5)). The reason is

that only monitoring cost drives a wedge between what an HFM with an outstanding quote might do on the

other side of the market relative to one without such outstanding quote. To conserve notation, let

sU ≡ sU2 = sU1. (9)

Lemma 2 presents the main properties of the competitive half-spreads:

Lemma 2. (Comparative statics) All competitive half-spreads: sI1, sI2, and sU , monotonically increase

with the size of value innovations (σ) and decrease with the liquidity traders’ arrival intensity (µ).

Moreover, min {sI2, sU} and min {sI1, sU} increase with exchange speed and the news probability (α). And,

min {sI1, sI2, sU} < σ.

13



3.4.3 Equilibrium strategy for HFM and HFB

The optimal strategy for HFB is to always submit a market order to trade on news. As Lemma 2 finds that the

quoted half-spread is smaller than the size of the news, the HFB earns a positive expected profit (in case there

are a finite number of them, otherwise their expected profit goes to zero in the limit).

To determine the equilibrium half-spread posted by the HFM, we compare the values of sI1, sI2, and sU for

different values of exchange latency and monitoring cost.

Lemma 3. (Monitoring strategy) First off, sI1 > sI2. There exist four monitoring cost thresholds,

c1 < c1 < c2 < c2, and two exchange latency thresholds, δ1 < δ2, such that:

(i) Full monitoring. HFM monitors both two-sided and one-sided quotes for c < c1 and any exchange

latency, or for c ∈
(
c1, c1

)
and low exchange latency (δ < δ1).

(ii) Partial monitoring. HFM only monitors two-sided quotes for c ∈
(
c1, c1

)
and high exchange latency

(δ ≥ δ1), for c ∈
(
c1, c2

)
and any exchange latency, or for c ∈

(
c2, c2

)
and low exchange latency

(δ < δ2).

(iii) No monitoring. HFM never monitors quotes for c ∈
(
c2, c2

)
and high exchange latency (δ ≥ δ2), or

for c > c2 and any exchange latency.

The monitoring strategy defined in Lemma 3 is graphed in Figure 1.

[ insert Figure 1 here ]

The two-sided informed competitive half-spread is always lower than the one-sided informed competitive

half-spread. This reflects the existing economies of scope from monitoring. Information is relatively less

expensive if the HFM can share its monitoring cost across multiple quotes. Thus, informed HFMs are able to

post narrower spreads by submitting a two-sided order.

For small costs (c < c1), the net monitoring benefits are the highest. It follows that sI2 < sI1 < sU . The
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implication is that all quotes are monitored. In equilibrium, an uninformed HFM is undercut by an informed

competitor who incurs lower adverse selection cost.

The economies of scope play a role in the optimal monitoring strategy. As costs increase, the HFM stops

monitoring one-sided orders first, as the one-sided informed half-spread becomes larger than the uninformed

half-spread. If monitoring costs increase even further, the two-sided informed half-spread also exceeds the

uninformed half-spread. In this situation, the HFM stops monitoring two-sided quotes as well.

Optimal information acquisition strategies also depend on the exchange speed. As the exchange speed

increases, the probability of a trade between the HFM and HFB rises. The expected adverse selection costs

for HFM increase as a result. Keeping the monitoring costs constant, a higher speed provides incentives for

HFMs to monitor quotes and reduce the risk of having their quotes picked off.

Figure 2 illustrates how the competitive half-spreads sU , sI2, and sI1 change with exchange latency. An

intersection point between two curves corresponds to a switch in the monitoring strategy of HFM. For low

values of c, only sU and sI1 intersect, i.e., two-sided quotes are always monitored. One-sided quotes are only

monitored in fast enough markets. For higher c, only sU and sI2 intersect, i.e., one-sided quotes are never

monitored whereas two-sided quotes are only monitored in fast enough markets.6

[ insert Figure 2 here ]

Definition 1. The conditional half-spread is defined as the competitive half-spread. It is conditional in the

sense that it depends on the order book. Depending on the order book state, we define a two-sided and a

one-sided conditional half-spread.

1. If the HFM can quote on both sides of the market it is s∗2 = min {sI2, sU}.

2. If the HFM can only post on one side of the market it is s∗1 = min {sI1, sU}.

Proposition 1 describes the full equilibrium strategies the stage game.

6The parameter values were chosen so as to illustrate the economic forces in the model. They are fixed throughout so that one
can compare across figures. We set the intensity of news and liquidity-trader arrival at about the same level. This is consistent with
price-deformation models that demonstrate that price changes and transaction rates tend to cluster (Engle and Russell, 1998). Periods
of high volatility are likely to increase liquidity trading (e.g., replicating stragies for derivatives) .
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Proposition 1. (Stage game equilibrium strategy for HFM and HFB) The equilibrium strategy in the stage

game is as follows:

(i) The incumbent HFM cancels all limit orders if there was news event in the previous period.

(ii) The incumbent HFM does not cancel any of his outstanding limit orders if there was no news in the

previous period.

(iii) An HFM posts a sell price quote at vt + s∗2 and a buy price quote at vt − s∗2 when the order book is

empty. He monitors only if s∗2 = sI2.

(iv) The HFM posts a sell price quote of vt + s∗1 if the order book is empty on the sell side. He posts a

buy price quote of vt − s∗1 if the book is empty on the buy side. He monitors only if s∗1 = sI1.

(v) HFBs submit a market order to trade on news in case there is news.

Informed HFMs earn rents from economies of scope. To understand why, consider the case when an informed

HFM posts a two-sided order and in the next interval an LT arrives, but there is no news event. At the next

arrival the HFM can only post a one-sided order. No competing HFM can post a half-spread less that sI1, the

informed one-sided competitive half-spread. It is optimal for the incumbent HFM to then post sI1, as this

quote cannot be undercut. He makes a positive expected profit, since sI1 > sI2. The incumbent HFM benefits

from economies of scope which are unavailable to competitor HFMs. The potential for rents disappears if

monitoring is never optimal.

3.5 Steady state equilibrium

Proposition 1 stated that there are only two possible equilibrium levels of the half-spread at each side of the

order book, i.e., s∗2 or s∗1. Consequently, after the order submission stage there are four (22) possible states of

the order book:

(Askt − vt, vt − Bidt) ∈
{ (

s∗2, s
∗
2

)
,

(
s∗2, s

∗
1

)
,

(
s∗1, s

∗
2

)
,

(
s∗1, s

∗
1

) }
. (10)
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The equilibrium in the trade economy can thus be described by a Markov chain with the state space defined

by the state of the order book. Let the distribution across order book states be denoted by the stochastic row

vector x. Then,

xt = xt+1P, (11)

where P is the transition matrix:

P =



(1 − αδ) (1 − µδ) + αδ (1 − αδ) 1
2µδ (1 − αδ) 1

2µδ 0

αδ (1 − αδ)
(
1 − µδ + 1

2µδ
)

0 (1 − αδ) 1
2µδ

αδ 0 (1 − αδ)
(
1 − µδ + 1

2µδ
)

(1 − αδ) 1
2µδ

αδ 0 0 1 − αδ


. (12)

With probability αδ there is a news event between two consecutive HFM arrivals. Proposition 1 states that

the first arriving HFM will post two-sided price quotes and the book jumps to the spread state
(
s∗2, s

∗
2

)
.

With probability (1 − αδ) there is no news event between two consecutive HFM arrivals. With probability µδ

an LT arrived an, with equal probability, consumed either the bid or the ask quote. The order book is refilled

based on a one-sided competitive half-spread. The incumbent HFM earns rents if monitoring is optimal.

The market always remains in the same state if there is no news event or liquidity trader arrival, i.e., with

probability (1 − αδ) (1 − µδ). This term appears in all diagonal terms of P.

The steady state probability distribution of the book is given by the left eigenvector of P corresponding to the

unit eigenvalue (λP = λ). The eigenvector λ is given by

λ =

(
α(2α+µ−αµδ)
µ2(1−αδ)2

1
L , α

µ(1−αδ)
1
L , α

µ(1−αδ)
1
L , 1

L

)
, (13)

where L = (α(2α+µ−αµδ)
µ2(1−αδ)2 + 2α

µ(1−αδ) + 1) is a normalization factor to guarantee that the probabilities sum up to

one.

The steady state spread s is defined by the scalar product of the steady state probability distribution and the

spread in each state of the book:
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s ≡ λ ·
(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
. (14)

Proposition 2 presents the main result of the model. It relates the equilibrium steady state spread to exchange

latency and asset volatility.

Proposition 2. (Steady state spread properties) The steady state equilibrium spread s

1. increases in exchange speed (i.e., it decreases in δ).

2. increases in the frequency of news arrival (α).

3. increases in the size of news (σ).

Figure 3 illustrates how the steady state spread increases in exchange speed. The moment speed exceeds a

threshold, the adverse selection becomes so large that monitoring becomes optimal for an HFM. The slope of

the relationship between the steady state spread and exchange speed decreases as monitoring reduces the

marginal adverse selection cost.

[ insert Figure 3 here ]

The effect of exchange latency can be decomposed into a static conditional spread effect and a dynamic

spread distribution effect. The conditional spread effect captures the impact of exchange latency on the spread

through increased adverse selection cost, keeping the state probabilities constant. The spread distribution

effect captures the effect of latency on steady state probabilities:

∂s
∂δ

=
∂λ

∂δ
·
(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
︸                                  ︷︷                                  ︸

Spread distribution effect

+ λ ·
∂

∂δ

(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
︸                                    ︷︷                                    ︸

Conditional spread effect

. (15)

Proposition 3. (Dynamic and static latency effects) If HFMs monitor quotes the spread increases as the

exchange speed increases both through a static and a dynamic channel. A higher exchange speed both

increases the adverse selection cost (conditional spread) and the probability of rents for HFMs as the state
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distribution shifts. If monitoring is never optimal, the exchange latency does not affect the steady state

distribution. The static effect is the only one in that case.

[ insert Figure 4 here ]

The decomposition of the spread change into the two effects is illustrated in Figure 4. The spread distribution

effect is generated by monitoring rents. In low latency environments, the probability of a news event between

HFM arrivals (αδ) decreases. Market makers compete through two-sided quotes only after a common value

innovation (as outstanding quotes are either wiped out through a market order or have become stale). In

equilibrium, two-sided quote competition becomes less likely at low latencies. Therefore, the probability of

an incumbent HFM earning rents increases. If monitoring is never optimal, rents are not possible. In this

case, a higher exchange speed increases the spread only through a widening conditional spread.

3.6 Exchange latency and quote flickering

The Securities and Exchanges Commission (SEC) defines flickering quotes as “quotations that change

multiple times in a single second.”7 The model predicts that, all else equal, a faster exchange produces more

flickering. Suppose that the model parameter δ is expressed as a fraction of a second. Let a low frequency

investor monitor the market each second. The quote flickering intensity is higher if the low frequency investor

observes a lower fraction of total market activity.

Definition 2. (Quote flickering) Quote flickering is defined as the expected number of spread size changes

in a second.

The (unconditional) probability of a spread change between two HFT arrivals is given by the weighted

average of transition probabilities to a different state. The weights are the steady state probabilities.

Pr[Spread change] = λ(ι − diag(P)), (16)

7Regulation NMS: SEC Exchange Act Release No. 34-51808 (June 9, 2005)

19



where ι denotes a unit matrix and diag(P) is the matrix with the same diagonal as P but zero elsewhere.

Therefore,

E[Spread changes per second] =
Pr[Spread change]

δ
=
λ(ι − diag(P))

δ
. (17)

Proposition 4. (Flickering and exchange latency) Quote flickering increases in exchange speed (i.e.,

decreases in δ).

[ insert Figure 5 here ]

In fast markets, low frequency observers miss more of the order book activity. In the model, high-frequency

traders respond only to news and to liquidity driven market orders. The intensity of these market events

does not depend on speed. Flickering is thus more intense in faster markets even in the absence of strategic

order submission and cancellations, a channel explored in Baruch and Glosten (2013) and Yueshen (2014).

Figure 5 illustrates how quote flickering increase in exchange speed.

4 Empirical results

The NASDAQ-OMX speed upgrade, INET, is used as an instrument to test the predictions of the model.

The upgrade was implemented on February 8, 2010, on the equity exchanges of Copenhagen, Helsinki, and

Stockholm. The round-trip narrow exchange latency dropped from 2.5 milliseconds to 250 microseconds.

We expect that the total latency drop for HFTs was be even larger as NASDAQ-OMX made a colocation

available as part of the upgrade. The section first generates the most salient predictions of the model, then

discusses the data sample with trader identity, provides summary statistics, and finally tests the predictions.

4.1 Empirical predictions

Perhaps the model’s most “idiosyncratic” and surprising prediction is that a lower exchange latency increases

the adverse selection cost on price quotes from HFMs ( ∂s
∂δ < 0, see Proposition 2). This prediction will be

tested in this section utilizing a NASDAQ-OMX speed upgrade.
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A natural second prediction on flickering could not be tested as the data only reveals trader identity on

transactions, not on price quotes.

4.2 Data sample

Data is collected from the Thomson Reuters Tick History (TRTH) database. The data consists of trade and

quote information for the NASDAQ-OMX exchanges in Copenhagen, Helsinki, and Stockholm. A unique

feature of this data is that it reveals trader identity for each side of a transaction.

The data sample consists of all 40 stocks that are included in the OMX Nordic 40 index. It covers a period of

six months, three months before and after the exchange speed upgrade: November 8, 2009, to May 8, 2010.

In this period 111 traders are active. The start of the sample is chosen so as to not overlap with another major

infrastructure change on NASDAQ-OMX, the implementation of centralized clearing on October 19, 2009.

Appendix B presents a snapshot of the data. Data is aggregated to the stock-day-trader level.

High-frequency traders. High-frequency traders (HFTs) are identified by following the approach pro-

posed by Kirilenko, Kyle, Samadi, and Tuzun (2011). A trader is labeled HFT if he meets essentially two

conditions. First, his daily position change does not exceed 5% of his volume. The trader mean-reverts most

of his position within the day. Second, the average distance between a trader’s minute-end position and

end-of-day position does not exceed 1.5% of his volume. The trader keeps his intraday position close to zero.

Further details on the methodology are presented in Appendix C.

The identification procedure identifies five high-frequency traders in the data set: Citadel Securities, Spire

Europe, International Algorithmic Trading GmbH, Getco Europe, and Nyenburgh Holding B.V. The empirical

tests focus on the adverse selection cost on limit orders by these HFTs, i.e., it is the cost they incur as HFMs.

Various variables are used in the panel regression to test the predictions. Their acronym, definition, and

computation is summarized in Appendix A. One variable is key in the tests and deserves to be discussed in

the remainder of this subsection.
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Adverse selection cost. The adverse selection cost on price quotes is derived from a standard effective

spread decomposition model (see, e.g., Bessembinder, 2003; Hendershott, Jones, and Menkveld, 2011). For

each trade, define pt as the transaction price and mt as the prevailing midpoint at the time of the transaction.

A transaction sign dummy qt takes the value one for buys and minus one for sells (from the perspective of the

market-order submitter).

The effective spread (ES ) for limit orders is defined as the distance of the transaction price from the prevailing

midpoint, expressed as a fraction of that midpoint:

ES = qτ
pτ − mτ

mτ
, (18)

where τ denotes the time of the transaction.

The average effective spread is decomposed into an adverse selection cost component (AS ) and a realized

spread (RS ) “profit” component. A five-minute “wait” (∆) is used to compute the market order’s long-term

price impact:

ES = qτ
mτ+∆ − mτ

mτ︸          ︷︷          ︸
AS

+ qτ
pτ − mτ+∆

mτ︸          ︷︷          ︸
RS

. (19)

The adverse selection component is a cost as it captures the extent to which a price moves against the price

quote submitter upon execution.

4.3 Summary statistics

[ insert Table 1 here ]

Table 1 reports trade statistics for the months before and after the exchange speed upgrade. The table leads to

a couple of observations. First, adverse selection cost for price quotes increased by 51%, from 2.63 basis

points to 3.99 basis points. Second, conditioning on HFM price quotes only, the adverse selection cost

increased by 574%, from 0.39 to 2.59 basis points. The cost increased by more than ten times as much for
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HFMs. Note that in spite of this extraordinary increase, the cost remains lower for HFMs potentially due to

superior monitor capacity. Third, effective spread for all price quotes increased by 6.8%, from 4.24 basis

points to 4.53 basis points. Conditioning on HFM prices quotes, the increase was three times as large, from

4.48 basis points to 5.44 basis points. Fourth, NASDAQ-OMX index volatility remained largely unchanged

as it was 0.99% pre-event and 1.01% post-event. Finally, volume increased by 35%, from 121.46 million

stocks per day to 164.02 stocks per day.

[ insert Figure 6 here ]

Figure 6 illustrates that both the adverse selection cost and the effective spread on HFM limit orders increase

around the NASDAQ-OMX speed upgrade. One salient feature of the figure is that both measures seem to

jump to a higher level on February 1, 2010. This jump occurs a week before the implementation date and is

due to the fact that traders were allowed to test the new system in the week before its official launch.8

4.4 Panel regression results

A panel data regression with fixed effects is used to test the model’s main predictions9:

AS ijt = β0 + β1dHFM
j + dINET

t

(
β2 + β3dHFM

)
+ θi + Controlsit + εijt, (20)

where i indexes stocks, j indexes traders, and t indexes days. The dependent variable is the stock-trader-day

average adverse selection cost on limit orders. The dummy dHFM
t is one when an HFT issued the price

quote that was consumed and zero otherwise. The dummy dINET
t takes the value one after NASDAQ-OMX

switched to INET and is zero otherwise. The main explanatory variable are the HFM dummy and volatility.

They are interacted with the INET dummy to be able to test the predictions for the exchange speed upgrade.

The control variables that are included stem from standard spread decomposition models. They include

volatility, share turnover, the inverse of price, and market capitalization (see, e.g., Hendershott, Jones, and

8As confirmed by a NASDAQ-OMX official.
9The availability of trader identity only for the “treated sample” precludes adding a non-treated sample (e.g., German stocks). A

full diff-in-diff approach is therefore infeasible.
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Menkveld, 2011). The regression further includes stock fixed effects θi. Standard errors are computed based

on clustering across both stocks and days (Petersen, 2009).

[ insert Table 2 here ]

Table 2 finds that adverse selection cost on HFM price quotes increases after the exchange speed upgrade.

Various model specifications show that adverse selection cost is increased for all price quotes after the

upgrade. The following detailed picture arises from the most general model, i.e., model (1). The adverse

selection cost increase from agents other than the identified HFMs, is significant and amounts to 1.43 basis

points. The increase for HFMs is a significant 47% higher, i.e., 1.43 + 0.68 = 2.11 basis points. The effect is

economically large as adverse selection cost is more than five times higher for HFMs after the event, i.e., it

changes from 0.39 basis points (see Table 1) to 0.39 + 2.11 = 2.50 basis points, an increase of 541%. The

adverse selection cost increase confirms the model’s main prediction as stated in Subsection 4.1. The control

variables – when significant – have the expected sign. For example, the sign is the same as Hendershott,

Jones, and Menkveld (2011, Table III).

The panel regression analysis is repeated with the realized spread as the dependent variable. This complements

the adverse selection analysis as the realized spread is the other component of the effective spread. The table

shows that the overall realized spread significantly decreases by 1.02 basis points after the speed upgrade. For

the HFMs the decrease is less pronounced as for them it declines by only 1.02− 0.37 = 0.65 basis points. The

economic magnitude of this change is modest relative to the adverse selection change, i.e., realized spread

drops from 4.48 − 0.39 = 4.09 basis points to 4.09 − 0.65 = 3.44 basis points for HFMs, a decline of 16%.

The table further shows that in general the realized spread is higher for HFMs when compared to other quote

submitters, 2.04 basis points higher in the most general model.

Finally, the effective spread is used as the dependent variable. The general effective spread increase after the

speed upgrade is significant and amounts to 0.41 basis points. For HFMs the increase in effective spread is

0.41 + 1.04 = 1.44 basis points. It is economically large as it implies a 32% increase in the effective spread

relative to a pre-upgrade level of 4.48 basis points.

24



In summary, the spread component analysis shows that the speed upgrade increased the effective spread

charged by HFMs. The result is both statistically and economically significant. This increase is driven by a

very strong increase in the adverse selection cost of their quotes that is partially offset by a decline in their

gross profit, i.e., the realized spread.

5 Model calibration

The model is calibrated in this section to analyze whether it could generate the INET introduction pattern

for “reasonable” parameter values. We target the adverse selection cost change for HFMs as this result is

at the heart of the model. The strategy is to first pick values for the parameter estimates and calculate the

adverse selection cost change that it implies. Then, the elasticity of the cost change to each of the parameters

is calculated to get a sense for which parameters matter most for the calibration fit.

The following values were picked for the model parameters:

• Pre- and post-event latency (δpre and δpost, respectively). The NASDAQ-OMX INET upgrade

was primarily a change in speed. The latency of the system itself was decreased from 2.5 to 0.25

milliseconds. More important was the introduction of colocation, which enabled clients to avoid latency

due to traveling a physical distance to the exchange via cable. A latency reduction due to colocation is

estimated to be at around 50 milliseconds.10

• Intensity of liquidity trader arrivals (µ). A stylized fact that emerged from econometric analysis

of high-frequency trade data is that trades are extremely clustered in time. Trading is characterized

by bursts of activity and long periods of calm (e.g., Engle and Russell, 1998). Inter-trade durations

therefore exhibit strong right skewness. We therefore use the median inter-trade duration for trades

in which at least one side is a non-HFT as a basis for the calibration. This median duration is 75

milliseconds. It implies a liquidity trader arrival intensity of 13 per second.

• Intensity and size of news arrivals (α and σ, respectively). News is any piece of information

that is relevant for predicting fundamental price change, i.e., any information sent through newswire
10Latency change due to colocation as estimated by Gainsville Data Center (http://goo.gl/ppRr5n).
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services, order book activity, same-industry stock activity, index activity, etc. We set it at five items per

second, each with a size of 15 basis points. All else equal, these values match the adverse selection

cost for HFMs in the post-event period: 2.59 basis points (see Table 1). Admittedly, they were chosen

somewhat arbitrarily but the calibration fit turns out not to depend strongly on these values (analysis

below).

• Monitoring cost (c). The monitoring cast is set to 0.1 basis points per second. As this cost is to be

understood as the shadow cost of directing installed computing power and bandwidth towards parsing

information for a particular security, it is hard to find a public source for the level of this cost. We are

fortunate to again find that the calibration fit is relatively insensitive to this parameter.

At these parameter values the model-implied adverse selection cost increase due to a latency reduction

from 50 to 0.25 milliseconds is 40%.11 If the pre-event latency is increased to 133 milliseconds then there

is a perfect match with the observed 541% increase in adverse selection cost. We believe such pre-event

latency value is not “crazy.” For example, Budish, Cramton, and Shim (2013) find that median duration

for an arbitrage opportunity between the most active Chicago index futures and the most active New York

index product is about 100 milliseconds in 2006. This value is large relative to its lower bound set by data

transmission at the speed of light between New York and Chicago: 3.81 milliseconds.

A sensitivity analysis reveals that the calibration fit is most sensitive to the liquidity trader arrival rate and

pre-event latency. We calculate the elasticity of the relative change of adverse selection cost (AS post −

AS pre)/AS pre to all of the model parameters. The elasticities are: 1.66 with respect to liquidity trader arrival

rate µ, 1.49 with respect to pre-event latency δpre, -0.17 with repect to the news rate α, -0.005 with respect to

news size σ, and 0.005 with repect to monitoring cost c.12

11The adverse-selection part of the model-implied spread is calculated by subtracting the average rent and monitoring cost from
the model-implied spread.

12For ease of exposition, the probability of an HFB arriving before an HFM on a news event was set to 1/2. It turns out that freeing
up this parameter does little for the calibration fit. Its sensitivity is extremely low: −0.001. The reason is that it scales pre- and
post-latency adverse selection cost almost equally.
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6 Concluding remarks

This paper finds that a reduction in exchange latency could hurt liquidity. The recursive model reveals that

trading becomes more of a zero-sum game between high-frequency traders as (by assumption) they are the

only ones whose clock speed can match the speed of the exchange. High-frequency market makers have to

set a wider spread to recoup the increased adverse selection cost due to more often meeting high-frequency

“bandits.” The liquidity trader suffers as he has to pay a higher equilibrium spread. The model establishes

this result and shows that it operates on two levels: a state by state “static” effect and a “dynamic” effect

through a change in the steady state probability distribution. The analysis further reveals an additional social

cost. If the exchange speed passes a threshold then a high-frequency market maker will invest in monitoring

technology which is a deadweight cost to the trading community.

The empirical analysis exploits a NASDAQ-OMX speed upgrade to test the model’s main prediction. The

results show that the adverse selection cost for high-frequency market makers indeed jumps to a higher level

after the upgrade. This cost increase is reflected in the HFM effective spread which also increases significantly

after the upgrade.

The paper’s findings contribute to the public debate on electronic markets and, in particular, the role of speed

in the trading process. It adds the insight that a faster market implies more interaction among HFTs, i.e., their

market participation increases and, more importantly, transaction cost for “low frequency” investors increases

as a result.

Finally, the novel model framework could be used for additional economic analysis of speed. The model’s

relative appeal is two-fold. First, it can be solved in closed-form. Second, its recursive structure allows for

identification of dynamic effects. A type of question that could be analysed with this model is how various

policies affect liquidity (e.g., minimum resting time for limit orders, financial transaction tax).
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Appendix

A Notation summary

Model parameters and their interpretation

Parameter Definition

vt Common value of the risky asset at time t.
δ Exchange latency: the time elapsed between two HFT arrivals.
α Probability of a common value change per unit of time.
µ Probability of an LT arrival per unit of time.
σ Size of the common and private value innovations.
c Monitoring cost per unit of time.

Variables used in the empirical analysis.
The subscript i indexes stocks, j indexes traders, and t indexes days.

Variable Description Computation

AS ijt Adverse selection cost mτ+∆−mτ

mτ
(mτ is quote midpoint, pτ is trade price, ∆ = 5 min).

RS ijt Realized spread mτ+∆−pτ
mτ

(mτ is quote midpoint, pτ is trade price, ∆ = 5 min).
dINET

t Post-INET dummy dINET = 1 for days after exchange speed upgrade.
dHFM

j HFM dummy dHFM = 1 for price quote executions of HFTs.
Volatilityit Stock-day volatility Volatilityit = 1

2
√

ln(2)
ln

(maxτ(pitτ)
minτ(pitτ)

)
where pitτ denotes trans-

action prices.13

Turnoverit Stock-day turnover Turnoverit =
Volumeit

MarketCapit
.

LogMarketCapit Market capitalization Natural logarithm of market capitalization.
InversePriceit Inverse price Inverse of the closing price.

13Alizadeh, Brandt, and Diebold (2002) and Andersen, Bollerslev, Diebold, and Labys (2003) argue that this volatility measure,
based on the range between intraday high and low prices, is more robust to microstructure noise than intraday realized volatility.
Patton (2011) shows it is an unbiased estimator of the true volatility if the stock price follows a geometric Brownian motion.
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B Data sample snapshot

Dates are formatted as dd-mm-yyyy. Time is formatted as hh:mm:ss.µs. Prices are expressed in local currency.

Symbol Date Time Type Price Volume Buyer Bid Seller Ask

CARLa.CO 01-11-2009 09:09:12.582 Quote 380
...
CARLa.CO 01-11-2009 09:15:49.579 Trade 380 150 ALM NDA
...
CARLa.CO 01-11-2009 09:22:15.529 Quote 378.5

C HFT identification criteria

Let i index stocks (from one to I), t index days (from one to T ), and j index traders (from one to J). Two
criteria are used to identify the high-frequency traders. To compute them, we only use the stock-day-trader
observations for which the traded volume is at least ten shares.

End of day position. The first criterion states that an HFT mean-reverts most of his position within the day.
The average end-of-day net position does not exceed 5% of the daily volume. The dummy EOD_position j
takes the value one if trader j satisfies the end-of-day position criterion:

EOD_position j =

1, if 1
T I

∑I
i=1

∑T
t=1

(
|
∑
τ Volumei jtτqi jtτ |∑
τ Volumei jtτ

)
≤ 5%

0, elsewhere
, (21)

where τ denotes the time of the transaction, Volumei jtτ is the number of shares traded, and the transaction
dummy qi jtτ takes the value one for buys and minus one for sells.

Intraday position. The second criterion states that an HFT keeps his intraday position close to zero. The
average of the square root of the sum of squared deviations of the net contract holdings for each minute from
the net contract holdings at the end of the day does not exceed 1.5% of the daily volume.

An auxiliary variable is needed to compute this criterion. We partition a trading day into minutes, indexed by
τm, m ∈ {0, 1, ....,M}. Net contract holdings are defined as the net number of contracts bought or sold from
the beginning of the day until the end of the minute for which the calculation is made:

ContractHoldingi jt (τm) =

τm∑
τ=0

Volumei jtτqi jtτ, (22)

where τ denotes the time of the transaction, Volumei jtτ is the number of shares traded, and the transaction
dummy qi jtτ takes the value one for buys and minus one for sells.
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The dummy Intraday_position j takes the value one if trader j satisfies the intraday position criterion:

Intraday_position j =


1, if 1

T I
∑I

i=1
∑T

t=1

 1
M

√∑M
m=1

(
ContractHoldingi jt(τm)−ContractHoldingi jt(τM)

)2∑
τ Volumei jtτ

 ≤1.5%

0, else
. (23)

The trader j is labeled as an HFT if the end-of-day and intraday positions criteria hold simultaneously. Since
the empirical tests focus on the adverse selection cost on limit orders, we are capturing their activity as HFMs.
The dummy dHFM

j equals one if both EOD_position j and Intraday_position j equal one:

dHFM
j = EOD_position j × Intraday_position j. (24)

D Proofs

Lemma 1

Proof. Let πt (st) be the HFM expected profit at time t as a function of the half-spread st.

The expected profit is conditional on the state of the order book: either empty (no quotes), half full (a quote
on one side of the book only), or full (quotes on both sides). If the order book is empty, then the expected
profit function is given either by equation (2) if the HFM monitors his quotes, or by equation (4) if the HFM
does not monitor his quotes. If the order book is half empty, then the expected profit function is given either
by equation (6) if the HFM monitors his quote, or by equation (8) if the HFM does not monitor his quote. If
the order book is full, then the HFM cannot post new quotes and his profit is zero.

HFM maximizes total expected profit by choosing for each time t the posted half-spread st for which a rival
HFM would make zero profit:14

max
st

∑
t

πt (st) subject to: (25)

πt (st) = 0, ∀t ∈ {δ, 2δ, ..., kδ, ...} .

The competitive constraint is binding for all t. Hence, if the HFM monitors his quotes, the competitive
half-spread is given at any time t by the solution to either equation (2) or equation (6). If the HFM does not
monitor the quotes, the competitive half-spread is given by the solution to equation (4) or equation (8).

The HFM expected profit function only depends on the state of the order book. Thus, the half-spread that sets
the HFM expected profit to zero also depends only on the order book state. �

Lemma 2
14The argument for defining the competitive half-spread as the one for a rival HFM would make zero profit is discussed in Section

3.4
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Proof. We compute the partial derivatives with respect to σ of the competitive half-spread functions sI2, sI1,
and sU :

∂sI2

∂σ
=

α (2 − δµ)
4µ + α (2 − δµ)

> 0, (26)

∂sI1

∂σ
=

α (2 − δµ)
4µ + α (2 − δµ)

> 0, and

∂sU

∂σ
=

α (2 − δµ)
2µ + α (2 − δ)

> 0.

Since all partial derivatives are positive, the competitive half-spread increases with σ, the size of an asset
value innovation.

Next, the partial derivatives with respect to µ of the competitive half-spread functions sI2, sI1, or sU are:

∂sI2

∂µ
= −

4c (4 − δµ) + 2ασ
(4µ + α (2 − δµ))2 < 0, (27)

∂sI1

∂µ
= −

8c (4 − δµ) + ασ

(4µ + α (2 − δµ))2 < 0, and

∂sU

∂µ
= −

4ασ
(2µ + α (2 − δ))2 < 0.

Since all partial derivatives are negative, the competitive half-spread decreases with µ, the probability of an
LT arrival per unit of time.

The partial derivatives with respect to α of the competitive half-spread functions sI2, sI1, and sU are:

∂sI2

∂α
= −

4 (2 − δµ) (c − µσ)
(4µ + α (2 − δµ))2 , (28)

∂sI1

∂α
= −

4 (2 − δµ) (2c − µσ)
(4µ + α (2 − δµ))2 , and

∂sU

∂α
=

2µσ (2 − δµ)
(2µ + α (2 − δ))2 > 0.

The competitive half-spread posted by an uninformed HFM (sU) increases with α. To show that sI2 or sI1
also increase with α whenever they are larger than sU , we establish conditions for sI2 < sU and sI1 < sU .

From equations (3) and (5), it follows that sI2 < sU if:

sI2 − sU =
ασ (2 − µδ) + 4c
4µ + α (2 − µδ)

−
ασ (2 − µδ)

2µ + α (2 − µδ)
=

2 (4cµ + α (2 − δµ) (2c − µσ))
(4µ + α (2 − δµ)) (2µ + α (2 − δµ))

< 0. (29)

The denominator of the last expression is always positive. The condition can be rewritten as:

8cµ + 2α (2 − δµ) (2c − µσ) < 0⇔ c < µσ
α (2 − δµ)

2α (2 − δµ) + 4µ
< µσ. (30)
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If sI2 < sU , then it follows that c < µσ. From equation (28) and c < µσ it follows further that ∂sI2
∂α > 0.

From equations (5) and (7), sI1 < sU if:

sI1 − sU =
ασ (2 − µδ) + 8c
4µ + α (2 − µδ)

−
ασ (2 − µδ)

2µ + α (2 − µδ)
=

2 (8cµ + α (2 − δµ) (4c − µσ))
(4µ + α (2 − δµ)) (2µ + α (2 − δµ))

< 0. (31)

The denominator of the last expression is always positive. The condition can be rewritten as:

8cµ + α (2 − δµ) (4c − µσ) < 0⇔ c <
αµσ (2 − δµ)

4 (2α + 2µ − αδµ)
= µσ

α (2 − δµ)
4α (2 − δµ) + 8µ

<
µσ

2
. (32)

If sI1 < sU , then it follows that c < 1
2µσ. From equation (28) and c < 1

2µσ, it follows that ∂sI1
∂α > 0.

Next, we compute the partial derivatives with respect to δ of the competitive half-spread functions sI2, sI1, or
sU :

∂sI2

∂δ
= −

4αµ (µσ − c)
(4µ + α (2 − δµ))2 , (33)

∂sI1

∂δ
= −

4αµ (µσ − 2c)
(4µ + α (2 − δµ))2 , and

∂sU

∂δ
= −

2µ2ασ

(2µ + α (2 − δ))2 < 0.

The competitive half-spread posted by a non-monitoring HFM (sU) decreases with δ (increases with exchange
speed). If sI2 < sU , then c < µσ and ∂sI2

∂δ < 0. Hence, the competitive two-sided half-spread posted by a
monitoring HFM also decreases with δ. Similarly, if sI1 < sU , then c < 1

2µσ and ∂sI1
∂δ < 0.

To show that min {sI1, sI2, sU} < σ, we compute sU − σ:

sU − σ = −
2µσ

2µ + α (2 − δµ)
< 0. (34)

Since sU < σ, then min {sI1, sI2, sU} < σ regardless of exchange latency or monitoring costs. �

Lemma 3

Proof. From equations (3) and (7), it follows that:

sI1 − sI2 =
ασ (2 − µδ) + 8c
4µ + α (2 − µδ)

−
ασ (2 − µδ) + 4c
4µ + α (2 − µδ)

=
4c

4µ + α (2 − µδ)
> 0, (35)

which is true for any c > 0 and µδ < 1. For a monitoring HFM, the competitive one-sided half-spread posted
is always larger than the competitive two-sided half-spread.
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From equation (31) it follows that:

sI1 < sU =⇒ c ≤ c1 (δ) ≡
αµσ (2 − δµ)

4 (2α + 2µ − αδµ)
. (36)

The monitoring cost threshold c1 (δ) decreases with δ.

Let c1 = minδ c1 (δ), for δ = 1
µ . It follows that c1 =

αµσ
4(α+2µ) . For any c < c1, sI1 is smaller than sU regardless

of the level of δ. Thus, HFMs monitor one-sided quotes regardless of the exchange speed.

Similarly, let c1 = maxδ c1 (δ), for δ = 0. It follows that c1 =
αµσ

4(α+µ) . For any c > c1, sI1 is larger than sU

regardless of the level of δ. In this case, HFMs do not monitor one-sided quotes regardless of exchange speed.

For any c ∈
(
c1, c1

)
, sI1 < sU only if δ < δ1, with δ1 defined below:

c −
αµσ (2 − δµ)

4 (2α + 2µ − αδµ)
< 0⇔ δ < δ1 ≡

1
µ

[
2 −

4cµ
α (0.5µσ − 2c)

]
. (37)

HFMs monitor one-sided quotes only for fast enough markets: δ < δ1, which is equivalent to c < c1 (δ).

A similar reasoning applies for the relationship between the two-sided informed competitive half-spread and
the uninformed competitive half-spread. From equation (29) it follows that:

sI2 < sU =⇒ c ≤ c2 (δ) ≡
αµσ (2 − δµ)

2 (2α + 2µ − αδµ)
. (38)

Again, the monitoring cost threshold c2 (δ) decreases with δ.

Let c2 = minδ c2 (δ), for δ = 1
µ . It follows that c2 ≡

αµσ
2(α+2µ) . For any c < c2, sI2 is smaller than sU regardless

of the level of δ. Hence, HFMs monitor two-sided quotes regardless of exchange speed.

Similarly, let c2 = maxδ c2 (δ), for δ = 0. It follows that c2 =
αµσ

2(α+µ) . For any c > c2, sI2 is larger than sU

regardless of the level of δ. In this case, HFMs do not monitor two-sided quotes regardless of exchange speed.

For any c ∈
(
c2, c2

)
, sI2 < sU only if δ < δ2, with δ2 defined below:

c −
αµσ (2 − δµ)

4 (2α + 2µ − αδµ)
< 0⇔ δ < δ2 ≡

1
µ

[
2 −

4cµ
α (µσ − 2c)

]
. (39)

HFMs monitor two-sided quotes only for fast enough markets: δ < δ2, which is equivalent to c < c2 (δ).

The monitoring cost threshold values satisfy the inequality c1 < c1 < c2 < c2. For c ∈
(
c1, c2

)
, it follows that

sI2 < sU and sI1 > sU . It follows that for c ∈
(
c1, c2

)
, HFMs monitor two-sided quotes but not one-sided

quotes. �

Proposition 1

Proof. We prove separately each part of Proposition 1.

Proof for part (i). Let an HFM have an outstanding quote on the news side at the half spread s. If no LT
arrives on the news side within the δ interval, then an HFM who does not try to cancel his quote is always
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adversely selected by HFB. By contrast, an HFM who rushes to cancel a quote on the news side is adversely
selected by the HFB only half of the time. From equations (2) and (4), it follows that by not rushing to cancel
a quote on the news side, the HFM’s expected profit drops by:

∆π (s) =
1
2

(
1 −

µδ

2

)
(σ − s) > 0. (40)

If the HFM does not cancel a quote on the no-news side, then he will not trade in the next period. Since the
common value jumps in the direction of the news, the quote on the no-news side is now at a distance of 2σ
from the new common value. The HFM is weakly better off by canceling the no-news side quote and posting
a new one at the equilibrium half-spread.

Proof for part (ii). In the absence of a news event, the HFM does not face adverse selection risk from the
HFB. Moreover, as the common value of the asset is unchanged, the competitive half-spread values remain
the same. If the HFM has either a two-sided quote or a one-sided quote with half-spread sI1 outstanding, then
he has no incentive to cancel it. In the order submission stage, it is optimal to post the same quote again. If
the HFM has a one-sided quote outstanding with a half-spread of sI2, then he can earn a positive profit in the
next trading game by filling the other side of the book at the half-spread sI1 > sI2. No competitor HFM can
undercut the sI1 half-spread and break even with a one-sided quote.

Proof for parts (iii) and (iv). The size of the half-spread is given by the solution to the zero-profit conditions,
explicitly stated in equations (3), (5), and (7). The HFM always posts the minimum competitive half-spread
across monitoring strategies. Any other half-spread can be undercut by a competitor HFM who chooses the
monitoring strategy that yields the minimum competitive half-spread.

The HFM quotes always add the competitive half-spreads to the current common value. Assume an HFM
posts a different quote, with a slightly higher half-spread on the ask side of the book (ε > 0):

(Askt − vt, vt − Bidt) = {s + ε, s} .

This HFM strategy is suboptimal. A competitor HFM can post a quote at (Askt − vt, vt − Bidt) = {s, s}, and
thus undercut the ask quote of the incumbent HFM. The reasoning is identical for the bid side of the book.
Proof for part (v). If there is news, the expected profit of HFB from submitting a market order is:

πHFB (s) =
1
2

(σ − s) > 0, (41)

since Lemma 2 implies that min {sI1, sI2, sU} < σ.

�

Proposition 2

Proof. There are three possible values of the steady state spread, depending on the relationship between the
competitive half-spreads sI2, sI1, and sU .

Case 1. If sI2 < sI1 < sU , the conditional half-spread is the competitive half-spread that corresponds to the
case where HFM monitors all quotes: s∗2 = sI2 and s∗1 = sI1. The equilibrium steady state spread s is given
by:
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s = 2
8cµ + α2 (2 − δµ)2 σ + α (8c (1 − δµ) + µ (2 − δµ)σ)

(4µ + α (2 − δµ)) (µ + α (2 − δµ))
. (42)

The partial derivative of the steady state spread with respect to δ is:

∂s
∂δ

= −2
µ (µσ − 2c) + 2α (c + 2cδµ + µ (2 − δµ)σ) + α2 (2 − δµ) (2cµ + (2 − δµ)σ)

(4µ + α (2 − δµ))2 (µ + α (2 − δµ))2 . (43)

From equation (29), sI2 < sU implies µσ − 2c > 0. Thus, it follows that ∂s
∂δ < 0. The steady state spread

decreases with the exchange latency (increases with exchange speed).

The partial derivative of the steady state spread with respect to σ is positive – the steady state spread increases
with the size of asset value innovations:

∂s
∂σ

=
2α (2 − δµ)

4µ + α (2 − δµ)
> 0. (44)

The partial derivative of the steady state spread with respect with α is given by:

∂s
∂α

= −
(2 − δµ)2

(
2α (2c − µσ) + α2 ((2c − σ) (1 − δµ) − µσ (δµ − 3))

)
− µ2 (2c (6 − δµ) + µσ (2 − δµ))

2 (4µ + α (2 − δµ))2 (µ + α (2 − δµ))2 .

(45)
Since sI2 < sU implies µσ − 2c > 0, all terms in the numerator are negative. It follows that s is increasing in
α.

Case 2. If sI2 < sU < sI1, the conditional half-spread is the competitive half-spread that corresponds to the
case where HFM monitors only two-sided quotes: s∗2 = sI2 and s∗1 = sU . The equilibrium steady state spread
s is given by:

s = 2
α
(
−α2 (2 − δµ)3 σ + α (2 − δµ) (8c + µ (6 − 5δµ)σ) + 4µ (4c + µ (2 − δµ))σ

)
(4µ + α (2 − δµ)) (µ + α (2 − δµ)) (2µ + α (2 − δµ))

. (46)

To prove s decreases with δ, we first state a helpful result. The second derivative of the steady state spread
with respect to the exchange latency and monitoring cost is given by:

∂2s
∂δ∂c

=
16α2µ (5µ + α (4 − 2δµ))

(4µ + α (2 − δµ))2 (µ + α (2 − δµ))2 > 0. (47)

From the proof of Lemma 3, c2 =
αµσ(2−δµ)

2(2α+2µ−αδµ) is the maximum monitoring cost level for which HFM monitors
two-sided quotes. It remains to show that ∂s

∂δ < 0 for c = c2. Then, from equation (47), the steady state spread
decreases with latency for any lower monitoring cost.

Indeed,
∂s
∂δ

(c = c2) = −
4αµ2σ

(2µ + α (2 − δµ))2 < 0. (48)
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It follows that the steady state spread decreases with latency (increases with the exchange speed) for any
monitoring cost for which sI2 < sU < sI1.

The steady state spread increases with σ:

∂s
∂σ

=
2α (2 − δµ)

(
4µ2 + αµ (6 − 5µ) + α2 (2 − δµ)2

)
(4µ + α (2 − δµ)) (2µ + α (2 − δµ)) (µ + α (2 − δµ))

> 0.

The partial derivative with respect to α is positive for any monitoring cost c < c2. Again, we compute the
second derivative of the steady state spread with respect to α and c:

∂2s
∂α∂c

= −
16

(
4µ2 + α2 (2 − δµ)2

)
(µ + α (2 − δµ))2 (4µ + α (2 − δµ))2 < 0. (49)

To show that ∂s
∂α > 0 for any c < c2, it remains to verify that ∂s

∂α > 0 for c = c2. Indeed,

∂s
∂α

(c = c2) = −
4µσ (2 − δµ)

(2µ + α (2 − δµ))2 > 0. (50)

Hence, the steady state spread increases with the probability of an asset value innovation for any monitoring
cost for which sI2 < sU < sI1.

Case 3. If sU < sI2 < sI1, the conditional half-spread is the competitive half-spread that corresponds to
the case where HFM never monitors. The equilibrium steady state spread is then 2sU , as all conditional
half-spreads are equal to sU . Lemma 2 establishes that sU is increasing in exchange latency, news size, and
the probability of a news event. �

Proposition 3

Proof. The effect of exchange latency on the steady state spread is decomposed into a static conditional
spread effect and a dynamic spread distribution effect:

∂s
∂δ

=
∂λ

∂δ
·
(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
︸                                  ︷︷                                  ︸

Spread distribution effect

+ λ ·
∂

∂δ

(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
︸                                      ︷︷                                      ︸

Conditional spread effect

. (51)

From Lemma 2, all components of the conditional spread vector
(
2s∗2, s

∗
1 + s∗2, s∗1 + s∗2, 2s∗1

)
decrease with δ.

It follows that the static effect is negative. Keeping the state probabilities constant, a lower latency leads to a
higher spread.

To assess the sign of the dynamic effect, we compute ∂λ
∂δ ·

(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
for all possible relation-

ships between the competitive half-spreads sI2, sI1, and sU .

Case 1. If sI2 < sI1 < sU , the conditional half-spread is the competitive half-spread that corresponds to the
case where HFM monitors: s∗2 = sI2 and s∗1 = sI1. It follows that:

∂λ

∂δ
·
(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
= −

16α2cµ
(µ + α (2 − δµ))2 (4µ + α (2 − δµ))

< 0. (52)
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The dynamic effect of latency on the steady state spread is also negative. A higher exchange speed leads to a
wider spread.

Case 2. If sI2 < sU < sI1, the conditional half-spread is the competitive half-spread that corresponds to the
case where HFM monitors only two-sided quotes: s∗2 = sI2 and s∗1 = sU . It follows that:

∂λ

∂δ
·
(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
=

8α2µ (4cµ + α (2 − δµ) (2c − µσ))
(4µ + α (2 − δµ)) (2µ + α (2 − δµ)) (µ + α (2 − δµ))2 . (53)

For sI2 < sU to be true, the proof of Lemma 3 shows that the monitoring cost level needs to be low enough:
c < αµσ(2−δµ)

2(2α+2µ−αδµ) . It follows that ∂λ
∂δ ·

(
2s∗2, s

∗
1 + s∗2, s

∗
1 + s∗2, 2s∗1

)
< 0. Again, a higher exchange speed leads to

a wider spread.

Case 3. If sU < sI2 < sI1, the conditional half-spread is the competitive half-spread that corresponds to the
case where HFM never monitors: s∗2 = sU and s∗1 = sU . Then:

∂λ

∂δ
·
(
2s∗2, s

∗
1 + s∗2, s∗1 + s∗2, 2s∗1

)
= 0, (54)

since the state probabilities add up to one by definition. Since the spread is the same for all states of the order
book, it follows that the sum of the elements of ∂λ

∂δ is zero. In this case, there is no dynamic effect of latency
on the steady state spread. �

Proposition 4

Proof. We compute the partial derivatives with respect to δ for the spread and the quote flickering measures.
For the quote flickering measure:

∂E[Spread changes per second]
∂δ

= −
α3µ

(
5µ2 + 2αµ (6 − 5δµ) + α2

(
8 − 12δµ + 5δ2µ2

))
(α + µ − αδµ)2 (µ + 8 (2 − δµ))2 < 0, (55)

since the polynomial 8 − 12δµ + 5δ2µ2 is larger than zero for any δ ∈ (0, 1), µ ∈ (0, 1), and δµ ≤ 1.

Since E[Spread changes per second] decreases with exchange latency δ, flickering increases with exchange
speed. �
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Table 1: Summary statistics
This table presents the mean and its standard deviation for adverse selection cost for price quotes, the effective
spread, market index volatility, and volume. Adverse selection is calculated as how much the midquote
changes against the price quote after execution (i.e., midquote increase after ask quote execution and midquote
decrease after bid quote execution. The waiting period is set to five minutes. The statistics are presented for a
sample of OMX Nordic index stocks. The pre-event period runs from November 8, 2009 to February 1, 2010;
the post-event period runs from February 8, 2010 to May 8, 2010.

Variable Sample Before INET After INET

Adverse selection (basis points) All traders 2.63
(0.36)

3.99
(1.16)

HFM 0.39
(1.11)

2.59
(1.07)

Effective spread (basis points) All traders 4.24
(0.18)

4.53
(0.39)

HFM 4.48
(0.93)

5.44
(0.74)

OMX Nordic 40 index daily volatility (percent) Full sample 0.99
(0.38)

1.01
(0.50)

Daily volume (million stocks) Full Sample 121.46
(45.31)

164.02
(63.09)
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Table 2: Spread components change after exchange speed upgrade (INET)
This table presents the results of regressions that relate the effective spread, the adverse selection cost, and the
realized spread for price quotes to various explanatory variables. The effective spread is the relative distance
between the transaction price and the midquote prevailing at the time of the transaction. Adverse selection is
calculated as how much the midquote changes against the price quote after execution (i.e., midquote increase
after ask quote execution and midquote decrease after bid quote execution. The waiting period is set to five
minutes. ions that relates the realized spread for price quotes to various explanatory variables. The realized
spread is the effective spread minus the adverse selection cost (and could be interpreted as a gross profit for the
price quote submitter). The explanatory variables are a dummy for the post-event period (dINET ), a dummy
for high-frequency market makers (dHFM), volatility (Volatilityit), share turnover (Turnoverit), log market cap
(LogMarketCapit), the inverse of the stock price (InversePriceit), as well as stock fixed effects. The pre-event
period runs from November 8, 2009 to February 1, 2010; the post-event period runs from February 8, 2010
to May 8, 2010. All variables are standardized to have zero mean and unit variance. Standard errors are
double-clustered at day and stock levels following Petersen (2009). Robust t-statistics are reported below the
coefficients (significance levels are as follows: 1% - ***, 5% - **, 10% - *).

Adverse selection Realized spread Effective spread

Controls Yes No Yes No Yes No

dHFMdINET 0.68
2.20

∗∗ 0.68
2.22

∗∗ 0.37
1.22

0.38
1.21

1.04
4.87

∗∗∗ 1.06
4.46

∗∗∗

dINET 1.43
12.06

∗∗∗ 1.21
9.42

∗∗∗ −1.02
−7.14

∗∗∗ −1.12
−6.14

∗∗∗ 0.41
2.26

∗∗ 0.08
0.35

dHFM −1.88
−7.48

∗∗∗ −1.89
−7.49

∗∗∗ 2.04
7.93

∗∗∗ 2.03
7.69

∗∗∗ 0.15
0.94

0.13
0.75

Volatilityit 0.34
7.21

∗∗∗ 0.03
0.73

0.38
6.67

∗∗∗

Turnoverit −0.06
−1.10

0.04
0.63

−0.02
−0.27

LogMarketCapit −3.44
−1.79

∗ −4.55
−1.29

−7.98
−1.52

InversePriceit −1.73
−1.13

−2.55
−1.18

−3.79
−1.19

Intercept 2.78
24.11

∗∗∗ 2.85
21.69

∗∗∗ 2.56
14.09

∗∗∗ 2.54
13.26

∗∗∗ 5.34
20.89

∗∗∗ 5.40
19.33

∗∗∗

Stock fixed effects Yes Yes Yes Yes Yes Yes

#Observations 151,075 151,075 151,075 151,075 151,075 151,075
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Figure 1: Optimal monitoring strategy as a function of exchange latency and monitoring cost
This figure plots the optimal monitoring strategy in a two-dimensional space defined by monitoring cost
(horizontal axis) and exchange latency (inverted vertical axis). High-frequency market makers (HFMs) always
monitor their quotes for low monitoring cost. For medium monitoring cost, monitoring is optimal only if
exchange latency is low enough. For high monitoring cost HFMs never monitor, irrespective of exchange
latency.

Monitoring  cost (c)

c = c1 c = c1 c = c2 c = c2

All quotes are monitored.

Only two-sided quotes monitored.

No quotes are monitored.

Faster markets

Slower markets

1

0.8

0.6

0.4

0.2

Exchange latency H∆L
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Figure 2: Competitive bid-ask spread and exchange latency
This figure illustrates the optimal monitoring strategy for high-frequency market makers (HFMs). The
strategy is pinned down by competitive pressure of rival HFMs. It therefore determined by the lower envelope
of the half-spread curves associated with a monitoring and non-monitoring HFM. Panel (a) shows that for
low monitoring cost HFMs decide to always monitor their two-sided price quotes if they find an empty book
on arrival. If they find a one-sided book they decide to monitor only if the exchange is fast enough. Panel (b)
finds that for high monitoring cost HFMs monitor two-sided price quotes only if the exchange is fast enough.
They never monitor a one-sided price quote. Parameter values are: α = 0.92, µ = 0.86, and σ = 0.23.
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Figure 3: Steady state bid-ask spread and exchange latency
This figure depicts how the equilibrium bid-ask spread changes with exchange latency for low and high
monitoring cost. The spread is calculated as a weighted average where the weights are the steady state
probabilities. The vertical lines correspond to the exchange latency levels for which the optimal HFM
monitoring strategy changes. Dotted lines correspond to a high monitoring cost and solid lines to a low
monitoring cost. Parameter values are: α = 0.92, µ = 0.86, and σ = 0.23.
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Figure 4: Decomposition of the effect of exchange latency on the steady state bid-ask spread
This figure illustrates the decomposition of the effect of exchange latency on the steady state bid-ask spread
into a static and a dynamic component. The static component is due to a change in the quoted spread in each
state of the world. It is illustrated by keeping the steady state probabilities fixed at the values one observes
for the slowest possible exchange (δ = 1). The dynamic component is due to changes in the steady state
probabilities as a result of a faster exchange. The size of this additional effect is illustrated by the difference
between the steady state spread line and the spread line with fixed steady state probabilities. Parameter values
are: α = 0.92, µ = 0.86, σ = 0.23, and c = 0.05.
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Figure 5: Flickering as a function of exchange latency
This figure illustrates how quote flickering depends on exchange latency. Quote flickering is defined as the
expected number of spread changes per unit of time. Parameter values are: α = 0.92, µ = 0.86, σ = 0.23, and
c = 0.05.
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Figure 6: Adverse selection cost and effective spread before and after exchange speed upgrade
This figure depicts the daily average adverse selection cost and effective spread on price quotes of high-
frequency market makers (HFMs) surrounding the NASDAQ-OMX speed upgrade (INET) on February 8,
2010. The adverse selection cost and the effective spread are averaged across all stocks included in the OMX
Nordic 40 index. Adverse selection cost is computed as the long-term (five-minute) adverse price impact
suffered by price quotes that get executed. The effective spread is the relative distance between the transaction
price and the midquote prevailing at the time of the transaction. Traders were allowed to submit orders to the
new system in a testing period in the week before the upgrade.
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