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Abstract

We develop an algorithm that incorporates network information into regres-
sion settings. It simultaneously estimates the covariate coefficients and the signs
of the network connections (i.e. whether the connections are of an activating or of
a repressing type). For the coefficient estimation steps an additional penalty is set
on top of the lasso penalty, similarly to Li and Li (2008). We develop a fast imple-
mentation for the new method based on coordinate descent. Furthermore, we show
how the new methods can be applied to time-to-event data. The new method yields
good results in simulation studies concerning sensitivity and specificity of non-zero
covariate coefficients, estimation of network connection signs, and prediction per-
formance. We also apply the new method to two microarray time-to-event data
sets from patients with ovarian cancer and diffuse large B-cell lymphoma. The new
method performs very well in both cases. The main application of this new method
is of biomedical nature, but it may also be useful in other fields where network data
is available.
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1 Introduction

The last decades have seen a surge of availability of data containing network informa-

tion. Statistical techniques that deal with this network data have started to evolve, but

are still in their early development. One of the main concerns of such models is to

incorporate network information into regression settings to lead to better estimations

and better prediction performance. In many cases it is also important to have statistical

tools that give information about the nature of the network. In this paper, we develop

an algorithm that incorporates network information into regression settings. It simulta-

neously estimates covariate coefficients and the signs of the network connections (i.e.

whether the connections are of an activating or of a repressing type). The main motiva-

tion and application of this method is of biomedical nature, but it might also be useful

to deal with other data concerning network information, such as for example web data

or data on social and economic networks.

The evolution of biotechnological knowledge has made it possible to extract large

amounts of data, e.g. gene expression data, from patients suffering from all kinds of

diseases. The nature of these data poses new challenges to the regression techniques

applied. One of these challenges is that the data are high-dimensional, which means

that the number of covariates is much larger than the number of observations – the

number of covariates easily reaches a few thousands, whereas the number of observa-

tions is much lower. In the last decades, regression techniques have been developed

to deal with this kind of data, such as for example the lasso (Tibshirani, 1996), the

SCAD (Fan and Li, 2001) or the elastic net (Zou and Hastie, 2005). By now, not only

the gene expression data itself is available, but also a lot of biological knowledge about

regulatory relationships between genes or gene products, for example knowledge about

pathways. This external knowledge about the regulatory relationships is usually given

through networks that are represented by graphs. It has been shown already that good

results can be achieved when this external knowledge is incorporated into statistical

testing (see for example Wei and Pan, 2008). Although many regression techniques

have been developed that can deal with high-dimensional data hardly any of them is

able to incorporate knowledge about pathways and regulatory networks (exceptions

are e.g. Li and Li, 2008, and Binder and Schumacher, 2009).

Li and Li (2008) develop a penalty that makes use of external network information.

One problem of their approach is that they assume that all connections within the

pathways are connections where genes and gene products are enforced or triggered by

one another. This does not always have to be the case. There can also be connections

where genes are suppressed by other genes, for example transcription factors might
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exist that up-regulate some genes and down-regulate others. We extend their approach,

so that it is possible to consider both, activating (positive) and repressing (negative)

connections.

Unfortunately, there is only very little knowledge about the signs of the connections

in the databases so far. Thus, also a procedure to estimate the connection signs is

needed. Having such a procedure is not only a tool to improve prediction performance,

it is also a goal in its own. If the procedure performs well, it can bring about additional

biomedical knowledge – knowledge about the nature of the connections between genes

in a network.

The algorithm we develop estimates covariate coefficients and connection signs simul-

taneously. Computational efficiency is often crucial when dealing with high-dimensional

data. We develop computationally efficient implementations for these procedures. Fur-

thermore, we adapt the methods to the Cox proportional hazards model to be able to

handle time-to-event data appropriately.

This paper is organized as follows. Section 2 contains the methods we use in this

paper and their implementations. Section 3 contains simulation results. In Section 4

we apply the new method to time-to-event microarray data from patients with ovarian

cancer and from patients with large B-cell lymphoma. Section 5 concludes.

2 Methods

Later on, we will consider time-to-event data. Until then, we consider a data set (y,X)

with a continuous response y and covariate matrix X (also called input matrix). The

number of observations is n and the number of covariates is p. Thus, y = (y1, ...,yn)
T is

an n-vector and X is an n× p-matrix with rows xT
i = (xi1, ...,xip). x( j) denotes the j-th

column of the input matrix. For simplicity we assume y to be centered and X to be

standardized, which means that ∑
n
i=1 yi = 0, ∑

n
i=1 xi j = 0 and 1

n ∑
n
i=1 x2

i j = 1 for j = 1, ..., p.

The vector of coefficients to be estimated is β = (β1, ...,βp), linking X and y.1

1In the classical linear model yi = xT
i β +εi, with εi ∼ N(0,σ2). β is usually estimated by the maximum

likelihood estimator β̂ ; maximizing the log-likelihood is equivalent to minimizing the residual sum of
squares.
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2.1 Incorporating network information with only positive connec-

tion signs (Li and Li, 2008)

In problems involving gene expression data, graphs of networks depicting biological

information are often given. To make use of this additional information when fitting a

regression model, Li and Li (2008) introduce an additional penalty, similar in spirit to

the fused lasso (Tibshirani et al., 2005), which is set on top of the lasso penalty. Addi-

tional to the aim of improving prediction performance, another aim of this method is to

get well interpretable models and to identify pathways involved in diseases and other

biological processes. The additional information for the regression problem is given by

a regulatory network depicted by a weighted graph. In the graph, the vertices repre-

sent genes (or gene products), which are the covariates, and the edges indicate some

regulatory relationship between the covariates. The regulatory network is incorporated

into the network penalty via the normalized Laplace matrix of the associated graph.

This is a p× p -matrix defined as in Chung (1997) by

(L)uv =


1− w(u,v)

du
if u = v and du 6= 0

−w(u,v)√
dudv

if u and v are adjacent

0 otherwise

where u and v stand for the u-th and v-th covariate and w(u,v) denotes the weight of

the edge that links the u-th and v-th covariate. Often the information is given via a

connection matrix which consists only of zeros and ones indicating only which genes

are connected, thus w(u,v) is usually zero or one. du is the degree of vertex u defined as

the sum of w(u,v) over all vertices v that are linked to vertex u. When the normalized

Laplacian is used to describe biological network information, there cannot be any loops,

i.e. w(u,u) is always zero. The matrix L is symmetric and positive semi-definite (see

Chung, 1997).

The network-constrained model-fitting procedure Li and Li (2008) propose is to choose

the β̂ that minimizes the penalized residual sum of squares

RSS(λ1,λ2,β ) = (y−Xβ )T (y−Xβ )+λ1

p

∑
j=1
|β j|+λ2β

T Lβ . (1)

Thus the first part of the penalty is just the lasso penalty. λ1 and λ2 are chosen via

10-fold cross-validation (or any other model complexity selection procedure).

The set of all edges is denoted by {u∼ v}, indicating that the predictors u and v are

linked on the network directly. For the normalized Laplacian L of a graph without
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loops as defined above and β ∈ Rp it is then β T Lβ = ∑u∼v

(
βu√
du
− βv√

dv

)2
w(u,v).2

2.2 A new algorithm to estimate covariate coefficients and network

connection signs simultaneously

Li and Li (2008) implicitly assume that all connections between the connected covari-

ates are positive, i.e. that they influence the outcome in the same direction. Thus,

all the true coefficients of the connected covariates should have the same sign. It is

likely, though, that some of the connections have a negative sign, for example if a tran-

scription factor suppresses another gene. In this case it would be suitable to add a

penalty of the form λ2

(
βu√
du
+ βv√

dv

)2
w(u,v) rather than λ2

(
βu√
du
− βv√

dv

)2
w(u,v). Usually,

the signs of the connections are not known ex ante. Therefore, we develop an algo-

rithm that estimates the covariate coefficients and the connection signs simultaneously

(straightforward maximization of the penalized log likelihood over all coefficients and

connection signs is computationally unfeasible for high-dimensional data). On top of

improving upon the estimation of the regression coefficients, gaining knowledge on the

signs of the coefficients can already be seen as a goal on its own.

In the algorithm we develop there will be two steps repeated after one another. In

the coefficient (or parameter) estimation step, the covariate coefficients are estimated

by maximizing the penalized log-likelihood given estimates of the connection signs.3

Then, in a connection sign estimation step, the signs of the connections are estimated,

taken the covariate coefficients as given from the last parameter estimation step. These

two steps are then repeated (the algorithm is thus similar in spirit to an EM-algorithm;

see McLachlan and Krishan, 1997).

The implementation Li and Li (2008) use for their problem is computationally very

expensive.4 We develop a much more efficient implementation via coordinate descent.

2Minimizing the penalized residual sum of squares (1) is then equivalent to maximizing the penalized
log-likelihood

l(λ1,λ2,β ) = `(β )−λ1

p

∑
j=1
|β j|−λ2 ∑

u∼v

(
βu√
du
− βv√

dv

)2

w(u,v)

for λ1 and λ2 adjusted by a factor of 1
2σ2 , which we omit (`(β ) denotes the log-likelihood of the classical

linear model).
3Here, we use the additional penalty on top of the L1 penalty to obtain sparse solutions (similarly to

Li and Li, 2008). The algorithm we develop also works well in settings were non-sparse solutions are
wanted – the additional penalty can be used together with the L2 instead of the L1 penalty. This can be
seen in Weber (2009), which is available on request.

4They transform their problem into a lasso problem of an augmented data set following Zou and
Hastie (2005). With their implementation the problem for fixed λ1 and λ2 with n observations and p
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2.2.1 Definitions, notation and assumptions

On top of using the normalized Laplacian as penalty matrix (or mutations of it that arise

through negative connection signs), we also use the combinatorial Laplacian, which is

defined by

(Lcomb)uv =


du−w(u,u) if u = v and du 6= 0,

−w(u,v) if u and v are adjacent,

0 otherwise

and which leads (with positive connection signs) to a penalized log-likelihood of the

form

l(λ1,λ2,β ) = `(β )−λ1

p

∑
j=1
|β j|−λ2 ∑

u∼v
(βu−βv)

2 w(u,v).

This is thus a very natural penalty and indeed Li and Li (2008) write that they would

have liked to use this penalty as well, but that they were not able to do so.

If there is a connection between covariate i and covariate j we define

ξi j =

{
-1 if the connection has negative sign,

1 if the connection has positive sign

and extend the definition immediately to all i, j ∈ {1, ..., p} for convenience by

ξi j =

{
-1 if there is a negative connection between covariates i and j,

1 otherwise.

Given a penalty matrix M with Mi j = 0 if covariates i and j are not connected, we would

actually like to use the penalty matrix Mcorrect , which is defined by

(Mcorrect)i j =−ξi j|(M)i j| for i 6= j and (Mcorrect)ii = |(M)ii|, i, j ∈ {1, ..., p},

which is the penalty matrix arising from M when all connection signs are known. In

most cases, the ξi j are unknown and thus Mcorrect as well. In the connection sign esti-

mation step described later, we estimate the ξi j.

It is (only) in theory possible that one gene suppresses another gene and simultaneously

influences the outcome directly in positive direction, while the suppressed gene also

influences the outcome directly in positive direction. Then the true coefficients of these

covariates would both be positive, whereas their connection is negative. In practice,

covariates is equivalent to solving a lasso problem with n+ p observations and p covariates, which is
computationally very expensive if p is large.
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a case like the above is extremely unrealistic. We always assume that the influence a

gene has on the outcome is either only direct influence or influence only through one

or more connections or, if both together, that the influences are of a kind that does not

give room for the unrealistic problem described above.5

Analogous to the meaning of {u∼ v} in Li and Li (2008),
{

u +∼ v
}

denotes the set of

all connections that we assume to have positive signs, where u and v are the covariates

linked by each connection. By
{

u −∼ v
}

we denote the set of connections that we assume

to have negative signs, such that we have, with the definition of ξi j from above and for

example the additional penalty term arising from the normalized Laplacian,6

∑
u+∼v

(
βu√
du
− βv√

dv

)2

w(u,v)+ ∑
u−∼v

(
βu√
du

+
βv√
dv

)2

w(u,v) = ∑
u∼v

(
βu√
du
− ξ̂uv

βv√
dv

)2

w(u,v).

β T Lβ = ∑u+∼v

(
βu√
du
− βv√

dv

)2
w(u,v)+∑u−∼v

(
βu√
du
+ βv√

dv

)2
w(u,v). Lcomb denotes the combi-

natorial Laplacian or the version arising from the combinatorial Laplacian by changing

signs (sometimes also called combinatorial Laplacian).

We assume without loss of generality that any penalty matrix M is symmetric. Further-

more, we assume that M is such that we can write β T Mβ = ∑u∼v (a(u,v)βu +b(u,v)βv)
2,

with a(u,v) and b(u,v) real numbers.7

2.2.2 The Network Algorithm

Estimation of the covariate coefficients

Given a penalty matrix M and penalty parameters λ1 and λ2 we estimate β by maximiz-

5 One can also use the following alternative definition (this will make the biological interpretability
of results more difficult, though). When the unrealistic scenario described above does not appear, the
definitions are equivalent: When two connected covariates influence the outcome in the same direction,
we say that the connection is positive, when two connected covariates influence the outcome in different
directions, we say that the connection is negative.

6Usually the network information is given via an unweighted graph which means that the weights
w(u,v) are zero or one. We do not want to exclude the possibility of using weights and carry along
the weights for the normalized Laplacian, but for the combinatorial Laplacian we always assume that
the weights only take values zero (not connected) or one (connected) and thus we get β T Lcombβ =

∑u+∼v
(βu−βv)

2 +∑u−∼v
(βu +βv)

2.
7With the penalty matrix we want to incorporate network information that is given via a graph and

penalize some squared terms, thus this assumption is not a great restriction. This also implies that
(M)i j = 0 for i 6= j if there is no connection between covariates i and j. Obviously, the normalized
Laplacian and the combinatorial Laplacian are of this form.
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ing the penalized log-likelihood

l(λ1,λ2,β ) = `(β )−λ1

p

∑
j=1
|β j|−λ2β

T Mβ

or by minimizing the corresponding residual sum of squares. Solving this extreme

value problem in a computationally efficient way (which is important, especially if the

number of covariates is large) is not trivial. We develop a fast implementation, which

we describe in Section 2.2.3.

Estimation of the connection signs

We estimate the connection signs by directly by considering the influence of the two

connected covariates when all other coefficients are fixed. This means that to get an

estimation of the sign of the connection between covariates i and j, we keep β̂k fixed

for k 6= i, j and then fit a small linear model.

We denote by X−(i, j) the input matrix excluding the colums i and j and by β̂−(i, j) the

estimated β excluding β̂i and β̂ j, while x(i) denotes again the i-th column of the input

matrix. We consider the new response

ỹ = y−X−(i, j)β̂−(i, j)

and minimize

n

∑
k=1

(
ỹk−Xkiβi−Xk jβ j

)2
=

(
ỹ−
(
x(i),x( j)

)( βi

β j

))T (
ỹ−
(
x(i),x( j)

)( βi

β j

))
(2)

over (βi,β j)
T . We denote the minimizer of the above residual sum of squares by

(β̂i
∗
, β̂ j
∗
)T . If the signs of β̂i

∗
and β̂ j

∗
are different we estimate the connection be-

tween covariates i and j to have negative sign, otherwise we assume it to have positive

sign. Thus: If covariates i and j are connected, update ξ̂i j by ξ̂i j ← sign(β̂ ∗i ) · sign(β̂ ∗j ).

In the end of Section 2.2.3 we show a decomposition through which the large number

of linear models can be computed very efficiently.

As starting values we propose to use the signs of the empirical covariance of the

columns of the input matrix. Because the covariate matrix is standardized, we can

simply take the sign of xT
(i)x( j) as starting value for the sign of the connection between

covariates i and j, i.e. we assume the connection to be positive, if xT
(i)x( j) > 0, and

negative, if xT
(i)x( j) < 0.
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Algorithm

Now we have all the ingredients for the algorithm. We have a procedure to initially

estimate the signs of the connections, we have a procedure to minimize the penal-

ized residual sum of squares and we have a procedure to update the estimates of the

connection signs. Given a log-likelihood `(β ), a penalty matrix M1 and fixed penalty

parameters, we get the following Network Algorithm:

1. Find starting values for the estimates of the connection signs by employing the

empirical covariance, i.e. ξ̂i j = sign(xT
(i)x( j)).

2. Estimate β by maximizing the penalized log-likelihood

l(λ1,λ2,β ) = `(β )−λ1

p

∑
j=1
|β j|−λ2β

T Mβ ,

where (M)i j =−ξ̂i j|(M1)i j| for i 6= j and (M)ii = |(M1)ii|, i, j ∈ {1, ..., p},

with the current estimates of the connection signs.

3. Update the estimates of the connection signs by running mini OLS models as

described in Section 2.2.2, with the current estimate of β from step 2, so that

ξ̂i j← sign(β̂ ∗i ) · sign(β̂ ∗j ).

4. Iterate steps 2 and 3 until convergence (which means that the ξ̂i j do not change

anymore once for all connections) or for a fixed number of repetitions.

We cannot guarantee that this algorithm converges. However, even when it does not

converge it can be run for a certain number of repetitions and then be stopped as it is

very unlikely that a large number of connections have still changing signs and that their

coefficients are important. It is much more likely that the few connections with still

changing signs have coefficients that are estimated to be zero. The failure to converge

that can occur in some circumstances is thus not necessarily problematic.

2.2.3 Implementation and convergence results

As noted above, the implementation of our algorithm is not trivial. Here, we first show

a computationally efficient way to find the minimum of the penalized residual sum of

squares (in the coefficient estimation step) via a coordinate descent algorithm (and

covariate updates). In order to make this comprehensible we first review coordinate
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descent and and covariance updates very briefly for the lasso. Afterwards, we prove that

the coordinate descent algorithm in the coefficient estimation step always converges to

the global minimum. In the end, we show how we improved the efficiency of the

computation in the connection sign estimation step by decomposing the terms and

storing and accessing certain parts.

Coordinate descent and covariate updates for the lasso

Given a log-likelihood `(β ) and a penalty parameter λ ≥ 0, the solution to a lasso

problem (Tibshirani, 1996) maximizes the penalized log likelihood l(λ ,β ) = `(β )−
λ ∑

p
j=1 |β j| over β . In the classical linear model, this is equivalent to minimizing the

following residual sum of squares:

RSS(λ ,β ) =
n

∑
i=1

(
yi−

p

∑
j=1

xi jβ j

)2

+λ

p

∑
j=1
|β j|= (y−Xβ )T (y−Xβ )+λ

p

∑
j=1
|β j|. (3)

We take a look at an implementation of this minimization procedure via coordinate

descent. This method minimizes a function, e.g. a residual sum of squares, over β "step

by step", i.e. all βk, k = 1, ...p except one, say β j, are kept fixed (at their current value)

and the function is minimized only over one coordinate, i.e. over one coefficient, β j,

which is then updated. This is carried out for all β j, j = 1, ..., p and then the whole cycle

is repeated until convergence. The coordinate updates can be written down explicitly

as

β̃ j←
S
(

∑
n
i=1 2xi j

(
yi− ỹ( j)

i

)
,λ
)

2n
,

where S(·, ·) is the soft thresholding operator defined by

S(x,κ) = sign(x)(|x|−κ)+ =


x−κ if x > 0 and |x|> κ

x+κ if x < 0 and |x|> κ

0 if |x| ≤ κ

(4)

and ỹ( j)
i := ∑k 6= j xikβ̃k (the tilde indicates that the values are fixed at their current

value).8 This algorithm (updating each coefficient β j in this way continuously) con-

verges to the lasso solution.

8This can be seen as follows. The function to be minimized is the penalized residual sum
of squares (3), which can be rewritten a little bit (k = 1, ..., p, j ∈ {1, ..., p}): RSS(λ ,β ) =

∑
n
i=1
(
yi−∑k 6= j xikβk− xi jβ j

)2
+ λ ∑k 6= j |βk|+ λ |β j|. Now, only β j is considered and minimized over it,

while all others are kept fixed at their current values β̃k. A possible starting value is for exam-
ple zero for all coefficients. For β j > 0, the derivative with respect to β j becomes ∂

∂β j
RSS(λ ,β ) =

∑
n
i=1

(
−2xi j

(
yi− ỹ( j)

i

)
+2x2

i jβ j

)
+λ . Setting this equal to zero, having in mind that ∑

n
i=1 x2

i j = n (stan-
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When dealing with high-dimensional data, computational efficiency is very important.

Friedman et al. (2010) introduce covariance updates to get a considerable speed-up of

the procedure in most cases. Denoting by x( j) the j-th column of the input matrix and

by 〈·, ·〉 the standard inner product, the coordinate updates from above can be written

as

β̃ j←
S
(

2
(

nβ̃ j + 〈x( j),y〉−∑
p
k=1 〈x( j),x(k)〉β̃k

)
,λ
)

2n
.

Using these updates, the inner products of y with the columns of the input matrix and

the inner products of two columns of this matrix can be computed in the beginning

and then stored. Each time a coordinate is updated, the values of these inner products

are accessed. As often many of these updates have to be performed this can result in a

considerable reduction of compute time.

Coordinate descent with a network penalty

When a network penalty is present, the following residual sum of squares has to be

minimized:

RSS(λ1,λ2,β ) =
n

∑
i=1

(
yi−

p

∑
h=1

xihβh

)2

+λ1

p

∑
h=1
|βh|+λ2β

T Mβ

=
n

∑
i=1

(
yi−∑

k 6= j
xikβk− xi jβ j

)2

+λ1

p

∑
h=1
|βh|+λ2

p

∑
h=1

Mhhβ
2
h +λ2 ∑

u∼v
2Muvβuβv.

Now we want to look at β j and minimize over it, while keeping all other coefficients

fixed at their current values β̃k. For β j > 0 and ỹ( j)
i := ∑k 6= j xikβ̃k, the derivative with

respect to β j becomes

∂

∂β j
RSS(λ1,λ2,β ) =

n

∑
i=1

(
−2xi j

(
yi− ỹ( j)

i

)
+2x2

i jβ j

)
+λ1 +2λ2M j jβ j +2λ2 ∑

j 6=v
M jvβ̃v.

dardized input), yields β j =
∑

n
i=1 2xi j

(
yi−ỹ( j)

i

)
−λ

2n . For β j < 0 differentiating and setting the derivative equal

to zero leads to β j =
∑

n
i=1 2xi j

(
yi−ỹ( j)

i

)
+λ

2n . It is important to note that setting the derivative equal to zero

leads to the minimum only if |∑n
i=1 2xi j

(
yi− ỹ( j)

i

)
| ≥ λ , otherwise the minimum is at β j = 0 (see Friedman

et al., 2007). Thus we arrive at the solution given in the main text.
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Setting this equal to zero, having in mind that ∑
n
i=1 x2

i j = n (standardized input), we get

β j =
∑

n
i=1 2xi j

(
yi− ỹ( j)

i

)
−2λ2 ∑ j 6=v M jvβ̃v−λ1

2n+2λ2M j j
.9

This finally leads to coordinate updates of the form

β̃ j←
S
(

∑
n
i=1 2xi j

(
yi− ỹ( j)

i

)
−2λ2 ∑ j 6=v M jvβ̃v,λ1

)
2n+2λ2M j j

,

where S(·, ·) is the soft thresholding operator as defined in expression (4).

Covariance updates with a network penalty

As already mentioned, for methods concerning high-dimensional data, computational

efficiency is very important. Therefore we use covariance updates. We have

yi− ỹ( j)
i = yi− ỹi + xi jβ̃ j = ri + xi jβ̃ j,

where ỹi = ∑
p
j=1 xi jβ̃ and ri is the current residual. Because the input matrix is stan-

dardized, we have
n

∑
i=1

xi j

(
yi− ỹ( j)

i

)
=

n

∑
i=1

xi jri +nβ̃ j.

Then we can write
n

∑
i=1

xi jri = 〈x( j),y〉−
p

∑
k=1
〈x( j),x(k)〉β̃k,

where x( j) is the j-th column of the input matrix (〈·, ·〉 is again the standard inner

product). Finally we can write the coordinate updates as

β̃ j←
S
(

2
(

nβ̃ j + 〈x( j),y〉−∑
p
k=1 〈x( j),x(k)〉β̃k

)
−2λ2 ∑ j 6=v M jvβ̃v,λ1

)
2n+2λ2M j j

.

We can then compute the inner products of y and all columns of the covariate matrix as

well as all inner products of two columns of the covariate matrix in the beginning and

store them. At each coordinate update they are accessed – this leads to a considerable

reduction of compute time.

Convergence results for the coordinate descent algorithm

We have not established yet that the coordinate descent algorithm converges to the

9For β j < 0, we similarly get β j =
∑

n
i=1 2xi j

(
yi−ỹ( j)

i

)
−2λ2 ∑ j 6=v M jvβ̃v+λ1

2n+2λ2M j j
.
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global minimum given the penalty structure we use. It indeed converges to the global

minimum, which we prove now.

We make use of a theorem from Tseng (1988) stating that the coordinate descent al-

gorithm converges to the global minimum in cases where the function f that shall be

minimized is of the form

f (β1, ...,βp) = g(β1, ...,βp)+
p

∑
j=1

h j(β j),

with g differentiable and convex and h j, j = 1, ..., p convex.

For fixed parameters λ1 and λ2, we can write the penalized residual sum of squares of

as

RSS(β ) = g(β )+
p

∑
j=1

h j(β j),

with g(β ) = (y−Xβ )T (y−Xβ )+λ2β T Mβ and h j(β j) = λ1|β j|.

Then g is a sum of differentiable and convex functions and thus again differentiable

and convex, while the h j are obviously convex. Thus, the coordinate descent algorithm

converges to the global minimum.10

Storing decomposition elements in the connection sign estimation step

Dealing with high-dimensional data the number of connections can be very large (M is

a p× p matrix). Therefore it can be computationally very expensive to solve a whole

linear regression problem for each connection many times in the algorithm (in the

connection sign estimation step), although each single one of these problems with p= 2
is solved very fast. We now show a decomposition that can yield a considerable speed-

up of the computations.

Note that with the notation X̃ :=
(
x(i),x( j)

)
, the input matrix consisting only of the two

columns x(i) and x( j) and β̃ := (β̂i
∗
, β̂ j
∗
)T (the tildes are not to be confused with the

tildes in the coordinate descent algorithm), the solution to the least squares problem of

Expression 2 (when satisfying the usual conditions) becomes

β̃ =
(
X̃T X̃

)−1
X̃T ỹ.

10Here we can nicely see a sufficient condition that the penalty matrix M must satisfy for the coordinate
descent algorithm to work. If ϕM(β ) = β T Mβ is convex, the coordinate wise descent algorithm is sure
to converge to the global minimum (the differentiability is obvious). That is in particular the case for
all M which allow β T Mβ to be written as a sum of squared terms as assumed in the beginning of this
section, which are the only penalty matrices we are interested in. Of course, the normalized and the
combinatorial Laplacian satisfy this sufficient condition.
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As ỹ = y−X−(i, j)β̂−(i, j), this is equivalent to

β̃ =
(
X̃T X̃

)−1
X̃T y−

(
X̃T X̃

)−1
X̃T X−(i, j)β̂−(i, j).

For each connection (between two covariates i and j), X̃ , X−(i, j) and y do not change

when β̂ changes. Thus, for each connection (again between two covariates i and j) we

compute in the beginning

Bi j
y :=

(
X̃T X̃

)−1
X̃T y

and

Bi j
X :=

(
X̃T X̃

)−1
X̃T X−(i, j),

which are 2× 1 and 2× (p− 2)-matrices, respectively. These matrices are stored and

accessed each time one of these small linear models has to be solved. This reduces

the problem of solving a linear model each time to a single matrix multiplication and

subtraction and leads to a considerable speed-up of the computation.

2.3 Adapting the new method to time-to-event data

When gene expression data is used for prediction, we are often in a time-to-event set-

ting, for example predicting the probability of survival for cancer patients. In a time-to-

event setting, observations are usually of the form (ti,δi,xi), i = 1, ...,n, where ti is the

observed time, δi is the censoring indicator taking value one, if the observed time is due

to an event and value zero, if the observed time is due to censoring, xi is the covariate

vector of observation (or individual) i.

In time-to-event settings, the Cox model (Cox, 1972) is often appropriate. There, the

hazard λ (t|xi), i.e. the instantaneous risk of having an event at time t, is modeled as

λ (t|xi) = λ0(t)exp(xT
i β ) = λ0(t)exp(ηi),

where λ0(t) is an unspecified baseline hazard. β̂ is obtained by maximizing the partial

log-likelihood

`(β ) =
n

∑
i=1

δi

(
ηi− log

(
n

∑
k=1

I(tk ≥ ti)exp(ηk)

))
,

where I (·) denotes the indicator function.

For the case of real data, when there is a possibility of ties, i.e. a possibility of having two

equal observation times, the most common approximations of the partial log-likelihood

are the ones of Breslow (1975) and the more accurate one provided by Efron (1977),

14



which we use here. Let Di denote the set of all k∈ {1, ...,n}with tk = ti. We consecutively

number all elements of Di from 1 to |Di|. When Di = D j we agree that the numbers in

the sets have to be equal, thus any i ∈ {1, ...,n} has exactly one associated number

which we denote by #i (note that once we have chosen this number, it is fixed, but we

can choose the numbers within each Di (and simultaneously the numbers in the equal

sets) in the beginning arbitrarily without changing the partial log-likelihood). Then the

Efron version of the partial log-likelihood can be written as11

`(β ) =
n

∑
i=1

δi

(
ηi− log

((
n

∑
k=1

I(tk ≥ ti)exp(ηk)

)
− #i−1
|Di| ∑

l∈Di

exp(ηl)

))
. (5)

For the estimation of the cumulative baseline hazard the Breslow estimator can be used,

which is in the Efron version

Λ̂0(t) = ∑
ti≤t

1
(∑n

k=1 I(tk ≥ ti)exp(η̂k))− #i−1
|Di| ∑l∈Di exp(η̂l)

,

thus

Ŝ0(t) = exp
(
−Λ̂0(t)

)
= exp

(
−∑

ti≤t

1
(∑n

k=1 I(tk ≥ ti)exp(ηk))− #i−1
|Di| ∑l∈Di exp(ηl)

)
.

Then we have an estimator for the survival function S. S(t|x) is the probability of still

being alive at time t for an individual with covariate vector x. For such an individual

the estimate of the survival function is

Ŝ(t|x) =
(
Ŝ0(t)

)exp(xT β̂ )
. (6)

To implement this method, one possibility to maximize the partial log-likelihood of the

Cox model is via iteratively reweighted least squares (Green, 1984; see also Hastie and

Tibshirani, 1990). We note that ∂ l
∂β

=
(

∂η

∂β

)T
∂ l
∂η

= XT ∂ l
∂η

and use the approximation

∂ 2l
∂ββ T ≈ XT ∂ 2l

∂ηηT X ,

∂ l
∂β
∈ Rp×1, ∂ 2l

∂ββ T ∈ Rp×p. Let u = ∂ l
∂η

and A = − ∂ 2l
∂ηηT , u ∈ Rn×1, A ∈ Rn×n. Then the

iteratively reweighted least squares algorithm that implements the Newton-Raphson

11This way to write the Efron version of the partial log-likelihood is not very common, but convenient
for our demands later on.
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method to maximize the partial log-likelihood involves finding β that solves

XT AX(β −β0) = XT u,

where β0 is the value of β from the previous step and A and u are evaluated at η0 = Xβ0.

This is equivalent to finding the β that minimizes

(y∗−X∗β ∗)T (y∗−X∗β ∗)

with X∗=QX , y∗= Q̃u and β ∗= β−β0 for matrices Q and Q̃ with QT Q=A and QT Q̃= I,

if these matrices exist. They do not have to exist, but they do for example if A is positive

definite.

The implementation of the Cox model via iteratively reweighted least squares can also

be used when the partial log-likelihood is penalized, which results in a corresponding

penalty on the residual sum of squares of the adapted data set. This can be seen when

one regards the maximization of a penalized (log-)likelihood as a maximization under

constraints (see Hastie et al., 2009). This is what we do here.12

The Network Algorithm can be applied to time-to-event data by solving the above least

squares problem using a Network Algorithm instead of ordinary least squares (the pe-

nalization of the log-likelihood leads to a penalization of the residual sum of squares

representing the Newton-Raphson steps).13 Similar to Witten and Tibshirani (2009)

we propose to perform only one step to save compute time. As quadratic functions are

minimized in one step via the Newton-Raphson algorithm, it seems to be admissible

to perform only one Newton Raphson step and empirically this approach works well.

12For the calculation of u and A as introduced above, we need the derivatives of the Efron approxima-
tion of the log-likelihood (Equation 5). They are

∂ l
∂η j

= δ j−
n

∑
i=1

δi
I(t j ≥ ti)exp(η j)− #i−1

|Di| exp(η j)I( j ∈ Di)

(∑n
k=1 I(tk ≥ ti)exp(ηk))− #i−1

|Di| ∑l∈Di exp(ηl)
,

∂ 2l
∂η2

j
=

n

∑
i=1

δi

(
−

I(t j ≥ ti)exp(η j)− #i−1
|Di| exp(η j)I( j ∈ Di)

(∑n
k=1 I(tk ≥ ti)exp(ηk))− #i−1

|Di| ∑l∈Di exp(ηl)
+

(I(t j ≥ ti)exp(η j)− #i−1
|Di| exp(η j)I( j ∈ Di))

2

((∑n
k=1 I(tk ≥ ti)exp(ηk))− #i−1

|Di| ∑l∈Di exp(ηl))2

)
,

and for all j 6= m

∂ 2l
∂η jηm

=
n

∑
i=1

δi

(
I(t j ≥ ti)exp(η j)− #i−1

|Di| exp(η j)I( j ∈ Di)
)

(
(∑n

k=1 I(tk ≥ ti)exp(ηk))− #i−1
|Di| ∑l∈Di exp(ηl)

)
(

I(tm ≥ ti)exp(ηm)− #i−1
|Di| exp(ηm)I(m ∈ Di)

)
(
(∑n

k=1 I(tk ≥ ti)exp(ηk))− #i−1
|Di| ∑l∈Di exp(ηl)

)
 .

13To make sure that we can find matrices Q and Q̃, which may be impossible when censoring occurs,
we add a small multiple of the identity matrix to the matrix A. Thus, instead of A we use the matrix
A+ τI. In the applications shown later we use τ = n ·10−6.
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β0 = 0 is used as starting value. The cumulative baseline hazard can then be estimated

by the Breslow estimator in the Efron version, leading to the estimate of the survival

function as in Equation 6.

3 Simulations

The simulations we consider are the same simulations as in Li and Li (2008). Suppose

that there is a regulatory network with 200 transcription factors (T Fs), each of them

controlling ten genes. The resulting network then consists of 2200 genes and the con-

nections between the T Fs and the genes that they regulate. The covariate matrix X has

2200 columns, the first column consists of the expression levels of the first T F , the next

ten columns of the expression levels of the genes regulated by it, and so on. The four

different models (i.e. simulation scenarios) are as follows, differing only in the nature

of β .

We assume that yi = Xiβ + εi, the number of observations being 100 and εi ∼ N(0,σ2),

where σ2 = (∑ j β 2
j )/4. The expression levels of the 200 T Fs are independent and follow

a standard normal distribution. The expression levels of the T Fs and the genes they

regulate are jointly distributed as bivariate normal with a correlation of 0.7. A gene

regulated by the j-th T F , with expression level T Fj, follows thus a N(0.7 ·T Fj, 0.51)-
distribution. In the first model

β =

5,
5√
10

, ...,
5√
10︸ ︷︷ ︸

10

,−5,
−5√

10
, ...,

−5√
10︸ ︷︷ ︸

10

, 5,
5√
10

, ...,
5√
10︸ ︷︷ ︸

10

,−5,
−5√

10
, ...,

−5√
10︸ ︷︷ ︸

10

,0, ...,0

 .

In the second model

β =

5,
−5√

10
, ...,

−5√
10︸ ︷︷ ︸

3

,
5√
10

, ...,
5√
10︸ ︷︷ ︸

7

,−5,
5√
10

, ...,
5√
10︸ ︷︷ ︸

3

,
−5√

10
, ...,

−5√
10︸ ︷︷ ︸

7

,

5,
−5√

10
, ...,

−5√
10︸ ︷︷ ︸

3

,
5√
10

, ...,
5√
10︸ ︷︷ ︸

7

,−5,
5√
10

, ...,
5√
10︸ ︷︷ ︸

3

,
−5√

10
, ...,

−5√
10︸ ︷︷ ︸

7

,0, ...,0

 .

In the third and fourth models β is the same as in the first two models, respectively, but

the coefficients of the genes that are regulated by a transcription factor are divided by

10 instead of
√

10.
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Some doubts whether these simulations make sense biologically or not seem to be

appropriate. It seems very unrealistic to have genes with fairly large true coefficients

that are positively correlated to a transcription factor that has a large negative true

coefficient. Also, scenarios 1 and 3 are somewhat extreme, because in these scenarios,

all connections have positive signs. We use these scenarios nevertheless – in doing so

we use a setting that is beyond any doubt of having been created to favor our method.

Scenarios one and three are also interesting from the particular perspective of how

much our algorithm could "destroy" when indeed all of the connections have positive

signs.

For each scenario considered, 50 training and 50 test data sets are simulated.14 The

combination of penalty parameters is chosen on a two dimensional grid. This is done

in the training set, via 10-fold cross-validation. Then the predicted mean squared error

(PMSE) is calculated on the corresponding test set.

Prediction performance is not the only criterion for a regression model. It is also impor-

tant to have high interpretability, which means for gene expression data especially to

identify genes or networks that really influence the outcome. For Li and Li (2008) this is

one of the main achievements of their new penalty, as it performs very well concerning

sensitivity and specificity and thus concerning the identification of involved networks

and pathways. Therefore, also sensitivity and specificity with respect to identification

of non-zero coefficients are considered. Furthermore, we also show how many of the

connection signs have been identified correctly. As mentioned before, this can be seen

as a goal in itself as it could help bring about new biomedical knowledge.

3.1 Simulation Results

We compare the new method and two natural competitors. We consider two versions

of the Network Algorithm, using either the normalized Laplacian as penalty matrix (de-

noted by NW-Alg) or the combinatorial Laplacian (denoted by NW-AlgCL). We compare

their performances to the performance of the network penalty as in Li and Li (2008),

which we denote by Net (Li Li), and to the performance of the lasso. One would ex-

pect the fixed network penalty to perform best in scenarios 1 and 3 as there indeed all

connection signs are positive. In models 2 and 4 we expect the Network Algorithms to

perform better, as there are some connections with negative signs. Before we show the

results in terms of prediction performance, we show the performance in terms of the

14This has been done with the parallel computing solution of sfCluster/snowfall (Knaus, 2008;
Knaus et al., 2009).
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identification of non-zero coefficients and the performance in terms of correct estima-

tion of connection signs.

First we take a look at sensitivity and specificity with respect to the identification of

non-zero coefficients. The results are shown in Table 1. The sensitivity shows the

fraction of non-zero coefficients that have been correctly estimated to be non-zero, the

specificity shows the fraction of zero coefficients that have been correctly estimated

to be zero. The first column indicates the simulation scenario used. We can see that

Table 1: Sensitivity/Specificity

NW-Alg NW-AlgCL Lasso Net (Li Li)

1 1.00/0.61 1.00/0.56 0.56/0.97 1.00/0.69
2 0.96/0.62 0.94/0.60 0.48/0.93 0.87/0.84
3 0.97/0.65 0.91/0.65 0.41/0.97 0.99/0.73
4 0.84/0.71 0.75/0.72 0.39/0.95 0.87/0.76

the Network Algorithms in general keep the fixed network penalty’s property of good

identification of non-zero coefficients. The Network Algorithm with the normalized

Laplacian performs better than the one with the combinatorial Laplacian which still

performs quite well.

Now we deal with the question of how well the signs of the connections are identified

by our algorithms. The lasso and the network penalty from Li and Li (2008) are not

meant to discover any connection signs, but they are nevertheless shown as a com-

parison. We take a connection sign between two covariates to be estimated correctly

when the estimates of the coefficients of the two connected covariates are non-zero

and when either both estimates and both true coefficients have the same signs or if

both have different signs. The results are shown in Table 2. The fourth scenario seems

Table 2: Fraction of correctly estimated connection signs

NW-Alg NW-AlgCL Lasso Net (Li Li)

1 0.99 0.99 0.56 1.00
2 0.84 0.79 0.44 0.69
3 0.94 0.90 0.39 0.99
4 0.64 0.58 0.33 0.65

to be somehow difficult for the Network Algorithms, here only around sixty percent
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of the connection signs are identified correctly. This could be the case, because the

unrealistic structure of positive correlations of covariates that influence the outcome in

different directions might be especially harmful to the Network Algorithms when the

true coefficients of these covariates are relatively small, which is the case in scenario

4. In the other three scenarios the results are very good. In scenarios 1 and 3 where

all connection signs are positive, more than 90% of the signs are identified correctly by

both versions of the Network algorithm. In scenario 2 with different connection signs,

the Network Algorithm with the normalized Laplacian estimates 84% of the connection

signs correctly, the algorithm with the combinatorial Laplacian identifies 79% of the

connection signs correctly.

Now we get to the prediction performance. The results are shown in Table 3. The

values are the predicted mean squared errors (PMSE) with standard errors (SE) in

parentheses below. As a comparison, the PMSE when predicting with the true β (True

model) and the prediction error of a null model using no covariate information at all,

always predicting the intercept (Intercept) are given. The two best performances in

each scenario are shown in bold.

Table 3: Predicted mean squared errors (two best performances in bold, SE in paren-
theses)

True model Intercept NW-Alg NW-AlgCL Net (Li Li) Lasso

1 33.3 743.9 45.2 45.2 45.7 84.4
(0.6) (15.9) (1.1) (1.1) (1.2) (2.3)

2 33.3 299.5 66.1 76.7 83.5 90.4
(0.6) (6.8) (2.1) (2.5) (2.5) (2.2)

3 18.3 209.9 27.3 29.3 26.1 32.5
(0.3) (4.6) (0.7) (0.7) (0.6) (1.1)

4 18.3 127.8 33.5 35.3 32.3 32.9
(0.3) (2.9) (0.9) (0.9) (0.9) (0.8)

We can see that the newly developed algorithms compete well with the lasso and the

fixed network penalty. We also see that the Network Algorithms do not achieve consid-

erably worse results than the fixed network penalty even when all connection signs are

positive (scenarios 1 and 3). In scenario 4, the performance of the Network Algorithms

is also very similar to the performances of the fixed network penalty and the lasso, al-

though only around 60 percent of the connection signs were identified correctly (see

Table 2). In scenario 2, we see that the Network Algorithms achieve results that are

by far better than the result of the fixed network penalty which still outperforms the
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lasso. The Network Algorithm with the normalized Laplacian performs consistently bet-

ter than the one using the combinatorial Laplacian. Nevertheless, the algorithm with

the combinatorial Laplacian also performs well.

4 Applications to two microarray time-to-event data sets

In this section, we apply the new method to two data sets of microarray survival data

(as explained in Section 2.3).

To estimate the prediction error of a model fitted to real data, bootstrap resampling is

often adequate (Efron and Tibshirani, 1993). Because the bootstrap estimate is biased

upwards, Efron and Tibshirani (1997) propose the bootstrap .632+ estimate, which is

a weighted combination of the error in the full data set and the bootstrap error esti-

mate. To evaluate prediction performance in time-to-event settings, bootstrap .632+
prediction error curve estimates are appropriate (Gerds and Schumacher, 2007; Schu-

macher et al., 2007; Gerds and Schumacher, 2006), which track the .632+ prediction

error estimates over time. The quantity that is estimated is the (time dependent) Brier

score

BS
(
t, Ŝ
)
= E

(
Y (t)− Ŝ (t|Z)

)2
,

where Y (t) = I(T > t) is the true event status at time t and Ŝ (t|Z) is the predicted event

status at that time.

We use bootstrap resampling without replacement, drawing 0.632 · n observations per

sample, which is the expected number of unique observations when drawing with re-

placement. Binder and Schumacher (2008a) show that this results in better estimation

of the prediction error (.632+ estimates can be employed here as well). To select the

penalty parameters in each of the bootstrap samples and in the full data set, 10-fold

cross-validation is used and the parameters are selected that maximize the predictive

partial log-likelihood.15

As the observations are not uniformly distributed over time, the interpretation of the

prediction error curves can sometimes be difficult. Therefore and to have a good sum-

mary measure of these curves, we also give the estimated integrated prediction error

curves (IPEC, see Gerds and Schumacher, 2007, and Porzelius et al., 2010). The IPEC is

the integral of the prediction error curve with respect to the distribution of event times.

15The .632+ prediction error curve estimates are computed employing the R package peperr
(Porzelius and Binder, 2009; Porzelius et al., 2009). The number of bootstrap samples is 50.
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Thus,

IPEC
(
Ŝ
)
=
∫

∞

0
BS
(
t, Ŝ
)

p(t)dt

is estimated, where p(t) is the probability density of the event times. Low values indi-

cate good performance.

We show the results of the same methods as in Section 3.1. As comparison, we also

show the prediction error curve of the null model, which is the Kaplan-Meier estimator

(Kaplan and Meier, 1958).

4.1 Application to microarray data from patients with ovarian can-

cer

In this section, we apply the methods to time-to-event data from 133 patients with

ovarian cancer. 72 of the patients had an event. Preprocessing of the microarray data

using the RMA approach (Irizarry et al., 2003) was performed, resulting in 21801 mi-

croarray features. The original analysis of the data by Bild et al. (2006) already shows

a connection between pathway activity and survival, with pathway information that is

derived from prior experiments (see also Binder and Schumacher, 2009). We restrict

our analysis to the 2503 features included in regulatory or cancer pathways in the

KEGG database.

Figure 1 shows the prediction error curves. Table 4 shows the values of the estimated

IPEC, multiplied by 100 for convenience.

Table 4: IPEC of different methods applied to time-to-event microarray data from pa-
tients with ovarian cancer (two best performances in bold)

Null model NW-Alg NW-AlgCL Net (Li Li) Lasso

IPEC · 100 14.27 11.85 12.17 12.43 13.65

We see that all three considered methods using network information improve consid-

erably over the null model and the lasso. The Network Algorithm with the normalized

Laplacian performs best, but the difference to the Network Algorithm with the combina-

torial Laplacian is not very big. The network penalty of Li and Li (2008) performs well

compared to the null model and the lasso not incorporating any network information.

Both Network Algorithms (with normalized and combinatorial Laplacian) select almost

all of the 2503 covariates (the one with the normalized Laplacian 2502 covariates of
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Figure 1: Prediction error curves of different methods applied to time-to-event microar-
ray data from patients with ovarian cancer

which 1331 have positive coefficients, the one with the combinatorial Laplacian 2499

covariates of which 1246 have positive coefficients). The network penalty of Li and Li

(2008) selects 1592 covariates of which 870 have positive coefficients. The regulatory

network consists of 28945 connections. The Network Algorithm with the normalized

Laplacian estimates 14821 of the connection signs to be positive and 14088 to be neg-

ative. The Network Algorithm with the combinatorial Laplacian estimates 14482 of the

connection signs to be positive and 14411 to be negative.

4.2 Application to microarray data from patients with large B-cell

lymphoma

In this section, the methods are applied to time-to-event data from patients with dif-

fuse large B-cell lymphoma (Rosenwald et al., 2002). These data have already been
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used to illustrate prediction error curve techniques (Schumacher et al., 2007) and a

likelihood-based boosting technique for the Cox proportional hazards model (Binder

and Schumacher, 2008b). Details of preprocessing of the data are explained there.

There are 240 observations with 7399 microarray features, the number of events is

133. Again, we restrict the analysis to the microarray features represented in regula-

tory and cancer pathways in the KEGG pathway database. This reduces the number of

microarray features to 1281.

Figure 1 shows the prediction error curves and Table 4 the values of the estimated IPEC,

again multiplied by 100 for convenience.
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Figure 2: Prediction error curves of different methods applied to time-to-event microar-
ray data from patients with large B-cell lymphoma

Again, we can see that the three methods incorporating network information perform

better than the null model and the lasso. The Network Algorithm with the normalized

Laplacian performs best (in terms of IPEC), followed closely by the Network Algorithm

with the combinatorial Laplacian and the fixed network penalty.
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Table 5: IPEC of different methods applied to time-to-event microarray data from pa-
tients with large B-cell lymphoma (two best performances in bold)

Null model NW-Alg NW-AlgCL Net (Li Li) Lasso

IPEC · 100 13.47 12.04 12.17 12.23 12.86

Of the 1281 covariates, 924 are selected by the Network Algorithm with the normal-

ized Laplacian, 450 of the coefficients have positve sign. The Network Algorithm with

the combinatorial Laplacian selects 935 covariats, of which 443 have positive coeffi-

cients. The network penalty of Li and Li (2008) selects 721 covariates, of which 378

have positive coefficients. The regulatory network in this example consists of 12144

connections. The Network Algorithm with the normalized Laplacian estimates 3696 of

the connection signs to be positive and 3650 to be negative. The Network Algorithm

with the combinatorial Laplacian estimates 4235 of the connection signs to be positive

and 4284 to be negative.

5 Discussion

In this paper, we introduced a new method to incorporate external network informa-

tion into regression models. We built upon a network penalty introduced by Li and Li

(2008) where an additional penalty term, incorporating network information, is put on

top of the lasso penalty. We first generalized their approach, not restricting the method

to the assumption of only positive connections between covariates. Thus, in addition to

activating (positive) connections, also repressing (negative) connections can be consid-

ered. As there is often not much knowledge on the signs of the connections available,

we developed an algorithm that estimates both the covariate coefficients and the con-

nection signs. An obvious goal of this algorithm is to lead to improved prediction

performance, but it can also lead to better interpretable models and it can be used to

gain additional knowledge on the signs of the network connections, which is (especially

in the case of pathway information) important in itself.

Furthermore, we not only incorporated the network information via the normalized

Laplace matrix, but also investigated the penalty when the additional information is

incorporated via the combinatorial Laplace matrix. We developed a fast implementation

via coordinate descent that can also be used for the fixed network penalty as proposed

by Li and Li (2008). Then, we showed how to handle time-to-event data with these
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methods. Therefore, we adapted the methods to the Cox proportional hazards model

via iteratively reweighted least squares.

In simulation studies we tested the performance of the new algorithm, using the nor-

malized Laplacian as well as the combinatorial Laplacian as penalty matrices. We com-

pared the new methods to adequate competitors, regarding prediction performance,

sensitivity and specificity (when judging whether covariates have an influence on the

dependent variable), as well as the performance concerning the estimation of network

connection signs. We found that the new algorithms perform well consistently – the

prediction performance mainly improved over the competitors while the new algorithm

generally keeps the good properties of the network penalty from Li and Li (2008) con-

cerning sensitivity and specificity; furthermore, the majority of connection signs was

discovered correctly.

In the end we applied both versions of the new method to time-to-event microarray data

from patients with ovarian cancer and to time-to-event microarray data from patients

with diffuse large B-cell lymphoma. There, the new methods improve massively over

the null model and over the lasso, in terms of prediction performance. Both methods

also perform better than the network penalty proposed by Li and Li (2008), which still

outperforms the lasso. This affirms our approach and indicates that it is beneficial to

allow for negative connection signs.
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