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Abstract

We develop a new dynamic model for fat-tailed realized covariance matrix and daily

return observations. The score dynamics for the unobserved true covariance matrix

in our model are robust to outliers and incidentally large observations in both types

of data by assuming a matrix-F distribution for the realized covariance measures

and a multivariate Student’s t distribution for the daily returns. The filter for the un-

known covariance matrix has a convenient matrix formulation, which makes the model

computationally highly efficient. We formulate convenient parameter restrictions for

stationarity and positive definiteness. A simulation exercise shows that the model is

able to capture unknown volatility dynamics even if the model is mis-specified. The

model is applied to daily equity returns and realized covariance matrices of up to 30

dimensions. The new model both statistically and economically outperforms compet-

ing multivariate volatility models out-of-sample.

Keywords: matrix-F distribution; multivariate volatility; realized covariance matri-

ces; heavy tails; generalized autoregressive score (GAS) dynamics.
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1 Introduction

A substantial body of literature focusses on modeling volatilities and correlations of finan-

cial asset returns.; see Bauwens et al. (2006) and Asai et al. (2006) for surveys. More

recently, the increasing availability of intraday data has led to the introduction of new

types of volatility models that include so-called ‘realized measures’ of variances and co-

variances. These new models lead to more accurate measurements and forecasts of the

conditional variance of daily financial returns. Examples of such models in the univariate

case are the Multiplicative Error Model (MEM) model (Engle and Gallo, 2006), the HEAVY

(High-frEquency-bAsed VolatilitY) model (Shephard and Sheppard, 2010), and the Real-

ized GARCH model (Hansen et al., 2012). These models consist of dynamic specifications

for both returns and realized (variance) measures. In the multivariate context, Noureldin

et al. (2012) extend the univariate version of the HEAVY model, while Gourieroux et al.

(2009) develop a Wishart autoregressive (WAR) model for the covariance matrix and apply

it to realized covariance matrices, discarding the daily return observations. Likewise, the

multivariate volatility models of Chiriac and Voev (2011) and Bauer and Vorkink (2011)

also focus on (multivariate) realized measures only, as does the Conditional Autoregressive

Wishart (CAW) model of Golosnoy et al. (2012).

The asset prices used to estimate the above models are typically subject to the pres-

ence of fat-tails and jumps. These may not only affect the daily return observations, but

also the realized measures. In particular, depending on the chosen estimator, the realized

measure estimates either integrated variance, or both integrated variance and variation due

to jumps. The latter may obviously substantially inflate realized measures occasionally

whenever jumps occur; see for example Lee and Mykland (2008) on the estimation of spot

variances in the presence of jumps. Huang and Tauchen (2005) show the importance of

jumps and argue that they account for up to 7% of S&P 500 index variation.

None of the methods described earlier shows how to deal with fat tails in the realized

covariance measures and returns simultaneously. In fact, most of the earlier methods center

around the use of a Wishart distribution for the realized covariance matrix. The Wishart

distribution is rather ill-suited to handle outliers and incidental large observations. In this

paper we therefore develop a new model for the covariance matrix dynamics based on joint
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measurements of possibly fat-tailed intraday-based realized covariance matrices and daily

returns. Our set-up is particularly suitable for cases where no explicit robustification meth-

ods are applied while estimating realized measures. The new model is observation driven,

thus allowing for easy likelihood evaluation, estimation, and inference. We describe the

dynamics of the unobserved true daily return covariance matrix by adopting the generalized

autoregressive score framework (GAS) of Creal et al. (2011, 2013); see also Harvey (2013).

The GAS framework uses the score of the conditional density function to drive the dynamics

of the time-varying parameters, which in our case is the unknown covariance matrix. Score

driven dynamics possess information theoretic optimality properties even if the model is

mis-specified; see Blasques et al. (2015). The framework has been successfully applied in

the recent literature to a variety of different areas.1

The key ingredient in our dynamic modeling framework for realized covariance matrices is

the matrix-F distribution. For an introduction to the matrix-F distribution, see for example

Konno (1991). Though the matrix-F distribution has been around for some time, we have

not found any applications to economic or financial data. This is the more surprising given

the typical fat-tailed nature of such data. Incidental large observations may easily corrupt

the estimated dynamic pattern of the underlying covariance matrix if modeling distributions

with relatively thin tails are used; see Creal et al. (2011), Janus et al. (2014), Harvey (2013),

and Lucas et al. (2014). The matrix-F distribution provides a coherent approach to address

such sensitivities.

The use of the matrix-F distribution together with the GAS dynamics of Creal et al.

(2013) automatically yields a robust recursive method for filtering the covariance matrix

dynamics. The form of this recursion is new, and a direct generalization of both Wishart

(thin-tailed) dynamics, and multivariate Student’s t (vector rather than matrix) dynamics.

By a suitable choice of scaling, our recursion retains a convenient matrix format, rendering

our approach numerically highly efficient, also in higher dimensional settings. The ma-

trix format of our recursion contrasts sharply with the approaches of Lucas et al. (2014)

1For example, Creal et al. (2011) use the GAS framework to model volatilities and correlations in stock
returns; Lucas et al. (2014) develop new dynamic copula models under skewness and fat tails and apply
this to systemic risk measurement; Harvey and Luati (2014) describe a new framework for dynamic local
level models and state filtering based on scores; Creal et al. (2014) introduce observation driven mixed
measurement dynamic factor models to describe default and loss-given-default dynamics; Andres (2014)
studies score driven models for positive random variables; and Oh and Patton (2013) study high dimensional
factor copula models based on GAS dynamics for systemic risk measurement.
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or Hansen et al. (2014), which become infeasible in higher dimensions due to the use of

vectorization and subsequent scaling operations.

We establish intuitive parameter restrictions for the stationarity and ergodicity proper-

ties of our new model. In particular, we show that our stochastic recurrence relation can be

seen as a special case of the semi-polynomial Markov chains studied by Boussama (2006).

The stationary of the model then hinges on the simple and intuitive condition that the

autoregressive roots in the GAS recursion lie outside the unit circle. In addition we show

that the positivity of the filtered covariance matrices can easily be ensured.

We illustrate the performance of the new method in both a controlled simulation envi-

ronment and in an empirical application. The simulation results indicate that the model

is able to capture deterministic volatility patterns. In addition, when the (co)variance dy-

namics are generated by a stochastic volatility (SV) type process, the model outperforms

existing multivariate models such as the CAW model of Golosnoy et al. (2012) and the

normal-Wishart model of Hansen et al. (2014).

In our empirical application, we use the new model to describe daily returns and daily

realized measures of 30 equities from the S&P 500 index over the period January 2001 to

July 2014. We show that the volatilities and correlations estimated by our model produce

fewer spikes due to incidental large tail observations. The differences follow directly from the

fat-tailed nature of the observation densities we assume, and the GAS transition dynamics

used to drive the time variation in the true daily covariance matrices. We compare density

forecasts based on our matrix-F distribution and the familiar Wishart distribution used in

competing model specifications and show that the matrix-F provides a much better fit to

the data. In addition, we assess the economic significance by considering mean-variance

efficient portfolios. The results indicate that our proposed model significantly produces

lower ex-post conditional portfolio standard deviations than competing models.

The rest of this paper is set up as follows. In Section 2, we introduce the new GAS model

for multivariate returns and realized covariance matrices under fat-tails. In Section 3, we

study the performance of the model in a simulation setting. In Section 4, we apply the

model to a high-dimensional panel of 30 daily equity returns and daily realized measures

from the S&P 500 index. We conclude in Section 5. The appendix gathers the proofs.
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2 Modeling Framework

2.1 The HEAVY GAS tF model

Let yt ∈ R
k denote the vector of (demeaned) asset returns over day t, t = 1, . . . , T , and let

RCt ∈ R
k×k denote the realized covariance matrix over period t, where RCt is computed

using high-frequency data, e.g., a standard realized covariance matrix estimator based on 5

minute return intervals.2 We assume that yt is fat-tailed and follows a standardized Student’s

t distribution with ν0 degrees of freedom and positive definite time varying covariance matrix

Vt ∈ R
k×k. The conditional observation density for yt is

py(yt|Vt,Ft−1; ν0) =
Γ((ν0 + k)/2)

Γ(ν0/2) [(ν0 − 2)π]k/2 |Vt|1/2
×

(

1 +
ytV

−1
t yt

ν0 − 2

)−(ν0+k)/2

, (1)

where Ft denotes the information set containing all returns and realized covariances up to

and including time t. We assume that ν0 > 2, such that the covariance matrix exists.

Whereas a Student’s t distribution for yt is fairly standard in the literature, the distribu-

tion of the realized covariance matrix RCt has received much less attention. Typically, one

assumes a Wishart distribution for RCt; see for example Noureldin et al. (2012), Gourieroux

et al. (2009), and Golosnoy et al. (2012). As the empirical data used in Section 4 show,

however, the Wishart distribution is strongly rejected by the data. In particular, for the

diagonal elements of RCt we strongly reject the scaled χ2 (i.e. univariate Wishart) distribu-

tion, whereas we cannot reject a scaled F -distribution. Using this preliminary finding, we

assume in this paper that the realized covariance matrices RCt follow a conditional matrix-F

distribution with ν1 and ν2 degrees of freedom. The corresponding conditional observation

density is

pRC(RCt|Vt,Ft−1; ν1, ν2) = K(ν1, ν2)×

∣

∣

∣

ν1
ν2−k−1

V −1
t

∣

∣

∣

ν1/2

|RCt|
(ν1−k−1)/2

∣

∣

∣
Ik +

ν1
ν2−k−1

V −1
t RCt

∣

∣

∣

(ν1+ν2)/2
, (2)

with positive definite expectation Et[RCt|Ft−1] = Vt, degrees of freedom parameters ν1, ν2 >

2Alternatively, one could using realized kernels as in Barndorff-Nielsen et al. (2011). For high dimensions
such as 15 or 30 stocks as used later in the paper, such methods suffer from increasing biases due to
increasingly sparse refresh-time sampling.
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k − 1, and

K(ν1, ν2) =
Γk((ν1 + ν2)/2)

Γk(ν1/2)Γk(ν2/2)
, Γk(x) = πk(k−1)/4 ·

k
∏

i=1

Γ(x+ (1− i)/2), (3)

where Γk(x) denotes the multivariate Gamma function; see Konno (1991), Tan (1969), and

Gupta and Nagar (2000). The matrix-F distribution is the multivariate analogue of the

univariate F distribution, which in turn is a ratio of two independent χ2 distributions.

Similarly, the matrix-F distribution is obtained by considering a Wishart times an inverted-

Wishart distributed random matrix. When ν2 → ∞, the matrix-F distribution degenerates

to the Wishart distribution (the multivariate analogue of a χ2 distribution) with ν1 degrees

of freedom.

The conditional observation densities for yt and RCt both depend on the common time

varying covariance matrix Vt. To describe the dynamics of the unobserved matrix Vt, we

use the generalized autoregressive score (GAS) framework of Creal et al. (2011, 2013); see

also Harvey (2013), Creal et al. (2014), Lucas et al. (2014), and Hansen et al. (2014). The

approach is observation driven in the classification of Cox (1981). An important advantage of

this approach over parameter driven approaches is that the likelihood function is available

in closed form, and therefore estimation and inference by means of maximum likelihood

methods are straightforward.

The GAS recursion for Vt is given by

Vt+1 = Ω + αSt + β Vt, (4)

where St ∈ R
k×k is the scaled score as derived further below, α and β are scalars, and

Ω ∈ R
k×k is a matrix of intercepts. A straightforward extension is to let α and β be

diagonal matrices, or to follow the set-up of Golosnoy et al. (2012) and consider Vt+1 =

CC ′ + AStA
′ +B VtB

′ for triangular parameter matrices A, B, and C.

The recursion in (4) is reminiscent of the dynamic conditional correlation (DCC) recur-

sion of Engle (2002). The main difference is that we use the scaled score St rather than

the outer products yty
′
t of past returns. Unlike Creal et al. (2011), Lucas et al. (2014),

and Hansen et al. (2014), our score is a matrix-valued rather than a vector-valued variable.
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This substantially increases the numerical efficiency of our procedure in high dimensions.

Whereas we only need to keep track of matrices of size k × k, these other approaches need

to track 1
2
k(k+1)× 1

2
k(k+1) sized matrices due to vectorization and scaling manipulations.

Note that further lags of Vt and St can be added on the right-hand side of (4), as well as

‘asymmetry’ effects as in Cappiello et al. (2006).

We assume that conditional on Vt and Ft−1, returns yt and realized covariances RCt are

independent.3 The total log-likelihood at time t, denoted by Lt, equals the sum of the log-

likelihood contributions corresponding to the Student’s t and matrix-F densities. Likewise,

the score ∇t of the conditional observation density of (yt, RCt) with respect to Vt is equal

to the sum of the scores of (1) and (2), i.e.,

Lt = log py(yt|Vt,Ft−1; ν0) + log pRC(RCt|Vt,Ft−1; ν1, ν2), (5)

∇t = ∂Lt/∂Vt = ∇y,t +∇RC,t, (6)

∇y,t = ∂ log py(yt|Vt,Ft−1; ν0)/∂Vt,

∇RC,t = ∂ log pRC(RCt|Vt,Ft−1; ν1, ν2)/∂Vt.

This leads to the following result.

Proposition 1. For the Student’s t density (1) and the matrix-F distribution (2), the

corresponding k × k score matrices ∇y,t and ∇RC,t are

∇y,t =
1

2
V −1
t [wtyty

′
t − Vt]V

−1
t (7)

∇RC,t =
ν1
2
V −1
t





ν1 + ν2
ν2 − k − 1

RCt

(

Ik +
ν1

ν2 − k − 1
V −1
t RCt

)−1

− Vt



V −1
t (8)

where wt = (ν0 + k)/(ν0 − 2 + y′tV
−1
t yt), and where derivatives have been taken with respect

to a general non-symmetric matrix Vt rather than a positive definite symmetric matrix Vt.

Proofs of all propositions are provided in the appendix.

Creal et al. (2013) propose to scale the score ∇t to account for the curvature in the

log conditional observation density with respect to Vt. They do so using powers of the the

3Extensions to include conditional dependence between a vector -valued random variable yt and a matrix -
valued random variable RCt currently appear non-trivial, and we leave such extensions to a future paper.

7



inverse conditional Fisher information matrix. In the context of our current model with

vector-valued and matrix-valued random variables this would lead to a cumbersome and

numerically inefficient procedure. We therefore propose a much more straightforward and

numerically efficient way to scale the score expressions in equations (7) and (8) while still

accounting for curvature of the raw score ∇t as a function of Vt. In particular, we scale

vec(∇t) by a scalar multiple of (Vt ⊗ Vt) and obtain

vec(St) ≡
2

ν1+1
(Vt ⊗ Vt) vec(∇t) =

2
ν1+1

vec(Vt ∇t Vt) ⇒ (9)

St =
wtyty

′
t − Vt

ν1 + 1
+

ν1
ν1 + 1





ν1 + ν2
ν2 − k − 1

RCt

(

Ik +
ν1 V −1

t RCt

ν2 − k − 1

)−1

− Vt



 , (10)

where wt is defined in Proposition 1, vec( · ) stacks the columns of a matrix into a vector, and

⊗ denotes the Kronecker product. Alternative forms of scaling may also be considered, but

the computational advantages of (10) are substantial and typically outweigh the numerical

complications incurred when considering more complex forms of scaling. This appears most

clearly in Sections 3 and 4 when comparing the new approach with the approach of Hansen

et al. (2014) based on 1
2
k(k+1)× 1

2
k(k+1) matrices compared to our current k×k recursion

in (4). We label the model given by equations (1), (2), (4), and (10) the HEAVY GAS tF

model.

Let us now discuss the basic intuition underlying the score equation (10). The first term

in (10) relates to the multivariate Student’s t distribution and has two important features.

First, this score considers the deviations of the weighted outer product wtyty
′
t from the

local covariance matrix Vt. When ν0 → ∞, i.e, when the Student’s t distribution collapses

to the normal distribution, the weights collapse to wt ≡ 1 for all t and the dynamics of

Vt resemble the covariance dynamics of a multivariate GARCH model, i.e., yty
′
t − Vt. In

that case also the scaling matrix (Vt⊗ Vt) is directly proportional to the inverse conditional

Fisher information matrix. Second, as discussed in Creal et al. (2011), the impact of ‘large

values’ yty
′
t on Vt is tempered by wt if the density for y is heavy-tailed, i.e., if 1/ν0 > 0. Put

differently, wt decreases when y′tV
−1
t yt explodes. This gives the covariance matrix dynamics

as driven by the multivariate Student’s t distribution an attractive robustness feature. The

interpretation is that if yt is drawn from a heavy-tailed distribution, large values of yty
′
t
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could arise as a result of the heavy-tailed nature of the distribution rather than as a result

of a substantial change in the underlying covariance matrix. The score based approach

automatically accounts for this.

The second term in (10) is new and due to the matrix-F distribution. The expression

has a highly similar form and interpretation as the Student’s t score discussed before. The

main difference is that RCt is a matrix-valued rather than a vector-valued random variable.

Due to the fat-tailedness of the matrix-F distribution, ‘large’ values of RCt as measured

by V −1
t RCt do not automatically lead to substantial changes in the covariance matrix Vt.

Instead, the matrix ‘weight’ (Ik + ν1V
−1
t RCt/(ν2−k−1))−1 takes the same role as wt in (7)

and downweights the impact of a large V −1
t RCts on future values of Vt. When ν2 → ∞, the

matrix-F distribution collapses to the Wishart distribution with ν1 degrees of freedom and

the second term of the scaled score St in (10) collapses to ν1 (ν1 +1)−1 (RCt − Vt), which is

directly in line with the expressions in Hansen et al. (2014). The parameter ν2 thus takes

the same robustification role for the realized covariance measures RCt as the parameter ν0

takes for the returns yt.

Looking at the two terms in (10) simultaneously, the value of ν1 clearly trades off the

relative contributions of the Student’s t score and the matrix-F score when updating Vt.

If ν1 is large, the information in RCt is deemed relatively precise compared to that in the

daily return vector yt. In that case, the score is dominated by the second term in the scaled

score. The converse holds if ν1 is low. In the limit ν1 → ∞, RCt measures Vt exactly, and

the weight of the score part due to yt drops out entirely. Each of the three parameters ν0,

ν1, and ν2 thus has a clear and intuitive interpretation in the construction of the score.

We end the model presentation by providing parameter restrictions to ensure positivity

of the covariance matrices Vt. We also prove a result on the suitability of the derivative

concept used in Proposition 1. Using (9), Proposition 2 provides a simple set of parameter

restrictions ensuring that Vt is positive for each time t.

Proposition 2. Consider the sequence of covariance matrices {Vt} generated by equation

(4). Assume that the realized measures RCt are positive semi-definite for each time t. Given

the scaled score steps as in equation (10) and given an initial positive definite matrix V1 and

positive semi-definite matrix Ω, then Vt is positive definite for each t ≥ 1 if β > α > 0.
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The parameter restrictions β > α > 0 and Ω positive definite can easily be imposed during

the estimation stage.

To formulate our final result in this section, we define the operator devec(·) as the inverse

of vec(·), i.e., devec(vec(V )) = V . Similarly, we define the operators vech(·) and devech(·),

with vech(V ) stacking the lower triangular elements of a symmetric matrix V into a vector,

and devech(vech(V )) = V . Finally, we define the selection matrix S with 1s and 0s such

that vec(V ) = S vech(V ) for a symmetric matrix V . We now obtain the following result.

Proposition 3. For symmetric k × k matrices V and ∇,

devec
(

(

V −1 ⊗ V −1
)−1

vec(∇)
)

= devech
(

(

S ′ (V −1 ⊗ V −1)S
)−1

S ′ vec(∇)
)

. (11)

The result in Proposition 3 is important given that in Proposition 1 we ignored the

fact that Vt is symmetric when taking derivatives. We subsequently scaled the resulting

vectorized derivative vec(∇t) by a scalar multiple of the inverse of (V −1
t ⊗ V −1

t ) to obtain

our score step St in (10). Analagously, we scale the score with respect to vech(Vt), i.e.,

∂Lt/∂ vech(Vt) = S ′ vec(∇t), by the inverse of S ′(V −1
t ⊗ V −1

t )S. Proposition 3 now states

that these two approaches yield precisely the same score steps St as both ∇t and Vt are

symmetric. It thus appears immaterial whether or not we account for the fact that Vt

is symmetric when taking derivatives, as long as we use the appropriate form of scaling.

Clearly, this does not necessarily hold for other forms of scaling, and therefore provides a

further advantage to our current definition of St.
4

2.2 Stationarity and ergodicity

A useful feature of our HEAVY GAS tF model is that under the assumption of correct

specification the scores ∇y,t and ∇RC,t are martingale differences by design and therefore

have conditional expectation 0. This follows directly from the fact that they are scores of

a correctly specified density. To obtain stationarity of Vt, however, we need to study the

4One may also follow a more direct line of argument and look upon the steps in Proposition 1 as steepest-
ascent steps on the simpler manifold of real, possibly asymmetric matrices rather than on the more complex
manifold of positive definite symmetric matrices. Even though the derivatives in Proposition 1 do not
a priori force the next covariance matrix Vt+1 to be positive definite, the recursions make clear that all
matrices Vt will ex post be positive definite almost surely for all times t under appropriate initialization and
parameter restrictions; see Proposition 2.
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probabilistic properties of the new model as generated by the non-linear recursion (4). We

obtain the following result.

Proposition 4. If 0 < α < β < 1, the process generated by the HEAVY GAS tF model is

stationary, geometrically ergodic, and β-mixing.

A key step in the proof of Proposition 4 is to rewrite the scaled score as

V
−1/2
t St (V

′
t )

−1/2 =
(ν0 + k)

(ν1 + 1)(ν0 − 2)
εy,tε

′
y,t

(

1 +
1

ν0 − 2
ε′y,tεy,t

)−1

+ (12)

ν1 (ν1 + ν2)

(ν1 + 1)(ν2 − k − 1)
εRK,t

(

Ik +
ν1

ν2 − k − 1
εRK,t

)−1

− Ik,

where εy,t has Student’s t distribution with mean zero, covariance matrix Ik, and degrees

of freedom ν0, and εRK,t has a matrix-F distribution with expectation Ik, and degrees of

freedom parameters ν1 and ν2. The right-hand side of (12) does not depend on Vt. Moreover,

the terms on the right-hand side are transformations of (matrix) Beta distributed random

variables and have finite expectations and variances if 2 < ν0 < ∞, k − 1 < ν1 < ∞, and

k − 1 < ν2 < ∞; see Tan (1969).

A further inspection of the proof of Proposition 4 and Theorem 2 in Boussama (2006)

shows that we can easily generalize the result to models with dynamics of the type

Vt+1 = Ω+ AStA
′ +B Vt B

′, (13)

for k × k matrices A and B. Such models allow for possible volatility spillover effects.

It is also clear from (12) that we can establish the existence of moments for Vt using the

feature that the (matrix) Beta random variables are ‘bounded’ in the appropriate matrix

sense. For 0 < β < 1, we then directly obtain the unconditional first moment of Vt as

E[Vt] = (1 − β)−1Ω. A number of these features are discussed for the univariate case

in Harvey (2013). Proposition 4 generalizes these results to the fully multivariate matrix

context.
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2.3 Estimation

We collect matrix-valued Ω and scalar-valued α, β, ν0, ν1, ν2 into the static parameter vector

θ and estimate θ by maximum likelihood. To do so, we maximize the log-likelihood LT (θ) =
∑T

t=1 Lt, where Lt was defined in equation (5). The starting value V1 can be either estimated

or set equal to RC1. We further reduce the number of parameters following Hansen et al.

(2014) by using a covariance targeting approach to estimate Ω. As Ω = (1 − β) E[Vt] for

0 < β < 1, we replace Ω during estimation by (1− β) times the sample mean of RCt. This

should be a consistent estimator for the expectation under a standard ergodicity assumption.

Hence we are left only with 5 scalar-valued parameters: α, β, ν0, ν1 and ν2. The resulting

maximum likelihood estimation procedure is fast and numerically efficient. In our empirical

section, we use it to estimate the parameters of dynamic systems up to 30 dimensions.

Proceeding to even higher dimensional systems should be feasible as well, but is probably

better addressed by studying covariance models with factor structures.

3 Simulation experiment

3.1 Monte Carlo analysis based on the correctly specified model

We now perform a Monte Carlo study to investigate the statistical properties of the max-

imum likelihood estimator for θ. We simulate time series of T daily returns and daily

realized covariances of dimension k. We use T = 500, 1000, and k = 5, 15. We generate

data using the HEAVY GAS tF model as the true data generating process (DGP) and set

α = 0.8, β = 0.97, ν0 = 12, ν1 = 22, and ν2 = 35. In addition, V0 is a matrix with Vjj = 4

(j = 1, . . . , k) and Vij = 4ρ (i 6= j) with ρ = 0.7. The parameters resemble values found in

the empirical application of Section 4. For each simulated series, we estimate θ by maximum

likelihood.

Table 1 presents the results. All parameters are estimated near their true values. Stan-

dard deviations shrink as either the sample size T or the dimension k grows. Interestingly,

there appears to be a small bias in A for larger dimensions k = 15, especially when the

sample size is small. This could be due to the incidental parameter problem, as shown by

Engle et al. (2008) for the DCC model.
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Table 1: Parameter estimations of HEAVY GAS DGP
This table shows Monte Carlo averages and standard deviations (in parentheses) of parameter estimates from
simulated HEAVY GAS processes. The table reports the mean and the standard deviation in parentheses
based on 4000 replications.

Coef. True k = 5 k = 15
T = 500 T = 1000 T = 500 T = 1000

Maximum Likelihood
A 0.80 0.797 (0.036) 0.798 (0.025) 0.787 (0.010) 0.792 (0.007)
B 0.97 0.966 (0.005) 0.968 (0.004) 0.967 (0.003) 0.969 (0.002)
ν0 12.00 12.419 (2.233) 12.179 (1.460) 12.178 (1.147) 12.096 (0.805)
ν1 22.00 22.063 (0.794) 22.037 (0.559) 21.998 (0.129) 21.997 (0.092)
ν2 35.00 35.127 (2.049) 35.054 (1.435) 35.040 (0.374) 35.012 (0.267)

3.2 Monte Carlo analysis based on mis-specified models

One of the main aims of the new HEAVY GAS tF model is to obtain estimates of the

unobserved Vt and to do so robustly in the presence of heavy-tailed distributions for the

observations yt and RCt. Given θ̂, such estimates follow directly from the recursion (4) of the

GAS model. To see how well the model does in tracking unknown dynamics of the covariance

matrix Vt, we perform the following experiment. First, we consider a deterministic process

for the daily volatilities and correlation of a bivariate return vector yt. Over the t-th day, we

simulate n intra-day returns yi,t, i = 1, . . . , n. The returns are i.i.d. with covariance matrix

Vt/n:

yi,t
i.i.d.
∼ N(0, Vt/n),

σt = 4 + sin(2πt), ρt = 0.5 sin(2πt),

where σ2
t and ρtσ

2
t are the variance and covariance at day t = 1, . . . , T . Using the intra-day

returns, we construct the daily return yt and the realized covariance matrix RCt, computed

as
∑n

i=1 yi,ty
′

i,t. We set T = 1000 and n = 50.

In a second experiment, we let the (co)variances vary in a stochastic, rather than a

deterministic way. This DGP combines the fat-tailedness of returns and realized covariance

matrices with stochastic volatility dynamics for the covariance matrix Vt. It does so in the

13



following way:

yt|Ft−1 ∼ t(ν0, Vt), RCt|Ft−1 ∼ F (ν1, ν2, Vt),

Vt = V̄ + γVt−1 + ηt, ηt ∼ F (νη,1, νη,2, V0,η),

V0 = 4





1 0.7

0.7 1



 , (14)

with ηt a 2 × 2 matrix drawn from a matrix-F distribution with mean V0,η = κ(1 − γ)V0,

and νη,1 and νη,2 degrees of freedom. We set ν0 = 5, ν1 = 20, ν2 = 18, γ = 0.98, T = 1000,

νη,1 = 8, νη,2 = 7, κ = 5, and V̄ = (1/2)(1− γ)V0. All these values are chosen such that we

obtain reasonable volatility and correlation patterns.

We compare our model with two alternatives. First we demonstrate the difference be-

tween the fat-tailed matrix-F distribution and the Wishart distribution in the context of

the GAS framework, by considering the model of Hansen et al. (2014), which we label HJK.

Second, we consider the CAW model of Golosnoy et al. (2012). This model assumes a

Conditional Wishart distribution for RCt and specifies its dynamics as follows:

Vt = Ω + αRCt + β Vt−1 (15)

which is in fact similar as the observation equation of the Multivariate HEAVY model of

Noureldin et al. (2012). As in the HEAVY GAS tF model, α and β are scalars and we

estimate the matrix Ω by means of covariance targeting. After simulating 1500 paths from

the DGP of (14), we report the root mean squared error (RMSE), defined as

RMSE =

[

1

T

T
∑

t=1

‖Vt − V̂t‖
2

]1/2

=

[

1

T

∑

i,j,t

(Vij,t − V̂ij,t)
2

]1/2

, (16)

with V̂t the estimated covariance matrix from a particular model, and ‖ · ‖ denoting the

(matrix) Frobenius norm.

Figure 1 presents results for one particular realization of the deterministic DGP. The

blue lines represents the true values of the volatility, correlation, or covariance. The figure

shows that the new model easily recovers the patterns for the volatility, correlation, and
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Figure 1: Model fit for a deterministic DGP
This figure shows a realization of the simulated (co)variance process of (14) (blue line) with T = 1000 and
the fit from the HEAVY GAS tF model (green line). Panels A and D represent the volatilities, while panels
B and C present the correlation and covariance, respectively

covariance.

Turning to the stochastic (co)variance case, Table 2 reports the means of the RMSE

of the three models with respect to the true DGP. The standard deviations of the means

are reported between parentheses. Note that all models are mis-specified in this case. The

HEAVY GAS tF model produces the lowest RMSE. Compared to the HJK model, it does

so by using the matrix-F distribution rather than the Wishart distribution when estimat-

ing the parameters. This also affects the score dynamics of the transition equation for Vt.

Compared to the CAW model, both the HJK and the HEAVY GAS tF model do better.

Apparently, using the information in the daily returns both for estimatiing the static model

parameters and for filtering the covariance matrix is helpful for estimating the true covari-

ance matrix dynamics. Overall, the results highlight the advantage of modeling the Realized

Covariance matrix by a fat-tailed matrix-F distribution in combination with the general-

ized autoregressive score framework for the matrix dynamics. The impact of large incidental

jumps are downweighted by the HEAVY GAS tF model, producing a lower RMSE than the

Wishart based models that lack this property.
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Table 2: Statistical fit on stochastic DGP
This table shows Monte Carlo averages and standard deviations (in parentheses) of the RMSE of three
misspecified models with respect to the true bivariate covariance matrix, which is simulated from the SV
process of (14). We compare the the HEAVY GAS tF model with the HJK model and the CAW model. The
table reports the mean and the standard deviation of the mean in parentheses based on 1500 replications.

HGAS tF HJK CAW

mean 11.42 12.66 13.49
st.dev. (0.14) (0.17) (0.18)

4 Empirical application: U.S. equity returns

4.1 Data

We apply the HEAVY GAS tF model to daily realized (co)variances and daily returns of

30 randomly chosen U.S. equities from the S&P 500 index over the period January 2, 2001

until July 31, 2014, a total of 3415 observations. Table 3 lists the ticker symbols. For each

stock, we observe consolidated trades (transaction prices) extracted from the Trade and

Quote (TAQ) database with a time-stamp precision of one second. We first clean the high-

frequency data following the guidelines of Brownlees and Gallo (2006) and Barndorff-Nielsen

et al. (2009). Second, we follow Noureldin et al. (2012) and construct Realized Covariance

matrices using 5-minute returns with subsampling.

In order to motivate the use of the matrix-F distribution, Table 3 lists p values for

Kolmogorov-Smirnov (KS) tests. The tests take the sequence of realized variances for each

stock and test whether its distribution is equal to a scaled χ2, i.e., the univariate version of

the Wishart distribution. We also compute the tests for the null of a scaled F distribution.

Table 3 indicates that in all cases the χ2 or Wishart distribution is strongly rejected by

the realized variance data. By contrast, the null hypothesis that the data come from an F

distribution is rejected at the 5% significance level for only 5 out of the 30 stocks. Part of

this is of course due to the fact that the unconditional distribution of RCii,t is fatter tailed

than a χ2 due to the time variation in Vii,t. However, our subsequent empirical results show

that the F distribution also significantly improves upon the χ2 distribution in a conditional

distribution sense.

More insight in the rejection of the Wishart or χ2 distribution is given in Figure 2. The
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Table 3: Kolmogorov-Smirnov test on the distribution of realized variances
This table shows p-values associated with the Kolmogorov-Smirnov test on realized variances of 30 equities.
The columns represent the Ticker symbol as well as p-values corresponding with the null hypothesis that
RCt is χ

2 or F distributed.

Ticker H0: χ2 H0: F Ticker χ2 F Ticker χ2 F

AA 0.00 0.05 MCD 0.00 0.01 BHI 0.00 0.82
AXP 0.00 0.00 PFE 0.00 0.86 BAC 0.00 0.00
BA 0.00 0.20 PG 0.00 0.22 C 0.00 0.00
CAT 0.00 0.44 WMT 0.00 0.25 DD 0.00 0.11
GE 0.00 0.05 XOM 0.00 0.84 DOV 0.00 0.93
HD 0.00 0.23 AIG 0.00 0.01 DUK 0.00 0.17
HON 0.00 0.19 AEP 0.00 0.48 F 0.00 0.06
IBM 0.00 0.06 ABT 0.00 0.86 JNJ 0.00 0.11
JPM 0.00 0.05 AEE 0.00 0.05 KEY 0.00 0.46
KO 0.00 0.15 BAX 0.00 0.87 LLY 0.00 0.97

left-hand panel shows the histogram of the RCii,t series of Boeing (BA), as well as the best

fitting χ2 and F distributions. The left-hand panel is truncated at RCii,t = 10. The right

panel shows the same three items, but for tail observations of RCii,t > 10%. Combining

the information in the two panels, the overall histogram is peaked at the left and suggests

a fat right tail as values larger than 10% occur quite often. In addition, it is clear that the

χ2 distribution neither captures the peak at small values of RCii,t, nor the fat tail for large

values of RCii,t. The F distribution on the other hand captures both of these features quite

well. This example therefore strongly suggests that the matrix F distribution may lead to

an empirically more congruent model than the familiar Wishart distribution when modeling

the entire matrix RCt.

4.2 In-sample performance

Using the full sample of 3415 trading days, we estimate the HEAVY GAS tF model. We

compare the outcomes to the same two contemporary benchmarks as in the simulation

section: the Wishart based CAW model of Golosnoy et al. (2012), see equation (15), and

the HJK model of Hansen et al. (2014). The HJK model uses GAS dynamics for the the

vech-torized form of the Cholesky decomposition of Vt and assumes a conditional normal

distribution for the daily returns yt and aWishart distribution for the daily realized measures

RCt. The form of scaling adopted by Hansen et al. forces them to keep track of scaling
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Figure 2: The fit of the probability distribution of the realized variance of BA
This figure shows a histogram of the realized variances (RV) of Boeing over the period 2001-2014. Panel A
shows the histogram for RV < 10, while Panel B shows the remaining part of the histogram for values of
RV larger than 10. The solid and dashed curves present the best fitting F and χ2 distribution, respectively.

matrices of order 1
2
k(k + 1) × 1

2
k(k + 1), which makes the model hard to operationalize in

higher dimensions. For k = 15, for example, this amounts to matrices of size 120 × 120,

while for k = 30, the sizes even become 480 × 480. Because of the computational burden,

we implement the HJK model only up to dimension k = 15.

Table 4 presents the parameter estimates and standard errors. Standard errors are based

on the inverse negative hessian of the likelihood evaluated at the optimum. We show the

results for two selections of k = 5 stocks, a selection of 15 stocks, and the full set of k = 30

equities. In addition, we present the log-likelihood values L∗, the AIC and the BIC values

corresponding to the RCt observations. This is done to make the models comparable, as

the CAW model does not have a model equition for the daily return obserations.

The results in Table 4 suggest that allowing for fat tails in the distribution of the realized

covariances improves the fit. The differences between the log-likelihood of the matrix-F

based model and the Wishart based models are substantial and increase rapidly when the

dimension becomes larger. Recall that the matrix-F distribution converges to the Wishart

distribution if ν2 → ∞. Also the differences in AIC and BIC values are also large and favor

the HEAVY GAS tF model for all values of k considered.

Looking at the individual parameter estimates, we first note that the estimates of β

are comparably high for the HEAVY GAS tF and the HJK model, and also similar to the

persistence parameter β+α for the CAW model. This holds for all dimensions k = 5, 15, 30

considered. The α parameters cannot be compared directly between the different models.
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Table 4: Parameter estimates, likelihoods and loss functions
This table reports maximum likelihood parameter estimates of the HEAVY GAS tF model, the HJK model
of Hansen et al. (2014) and the CAW model of Golosnoy et al. (2012), applied to daily equity returns
and/or daily realized covariances. Panels A.1 and A.2 list results for two randomly chosen sets containing
five different assets. Panel B considers 15 assets and Panel C shows the results for the full set of 30 assets.
Standard errors are provided in parenthesis. We report the total likelihood and the AIC and BIC of the
CAW model and the likelihood associated with the Realized Covariance matrix (i.e. the matrix-F and the
Wishart distributions) for the GAS models. Data are observed over the period January 2, 2001 until July
31, 2014 (T = 3415 observations).

α β ν0 ν1 ν2 L∗ AIC BIC

Panel A.1:
BA/HD/JPM/PFE/PG
GAS tF 0.87 0.99 10.20 69.46 34.90 -11,895 23,800 23,831

(0.02) (0.00) (0.45) (1.52) (0.41)
HJK 0.05 0.97 17.91 -21,747 43,500 43,519

(0.00) (0.00) (0.10)
CAW 0.34 0.65 19.74 -18,030 36,065 36,084

(0.00) (0.01) (0.11)

Panel A.2:
CAT/HON/IBM/MCD/WMT
GAS tF 0.83 0.99 9.11 72.65 34.03 -4,848 9,707 9,737

(0.02) (0.00) (0.36) (2.13) (0.45)
HJK 0.04 0.97 19.09 -12,927 25,861 25,879

(0.00) (0.00) (0.11)
CAW 0.31 0.67 20.26 -10,046 20,099 20,117

(0.00) (0.00) (0.11)

Panel B:
AA/AXP/BA/CAT/GE/HD/HON/IBM/JPM/KO/MCD/PFE/PG/WMT/XOM
GAS tF 0.67 0.99 12.21 140.19 63.98 149,152 -298,295 -298,264

(0.01) (0.00) (0.38) (0.99) (0.22)
HJK 0.03 0.98 37.47 88,986 -177,966 -177,948

(0.00) (0.00) (0.05)
CAW 0.23 0.75 39.32 104,666 -209,327 -209,308

(0.00) (0.00) (0.07)

Panel C:
All equities (k=30)
GAS tF 0.52 0.99 13.54 203.66 91.55 938,320 -1,876,631 -1,876,601

(0.00) (0.00) (0.38) (0.40) (0.14)
CAW 0.17 0.82 57.04 725,787 -1,451,568 -1,451,550

(0.00) (0.00) (0.05)
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For example, the HJK model takes the vech of the Choleski decomposition of Vt as its time

varying parameter, whereas the HEAVY GAS tF and CAW models take Vt itself as the time

varying parameter. It is interesting to see that the parameter estimates in Panels A.1 and

A.2 are highly similar, despite the fact that they use non-overlapping sets of stocks. The

degree of persistence as well as the strength of the dependence of Vt on past values of yt and

RCt thus seems a shared feature between stocks.

The three degrees of freedom parameters reveal that both the realized measures (ν2) and

the returns (ν0) are fat-tailed. The degrees of freedom ν2 may seem high at first sight, but

one should realize that the matrix-F distribution requires ν2 > k−1. On top of that, already

moderately large values of ν2 cause a substantial change in the behavior of the matrix-F

distribution compared to the Wishart. The values of ν0 and ν2 also moderate the impact

of outliers and incidental large observations yt and RCt on future values of Vt+1. This is

clearly seen by the estimated values of ν1 between the HEAVY GAS tF model and the HJK

model. The large values of ν1 for the HEAVY GAS tF model signal that the model puts

almost all attention on the realized kernels RCt when determining the dynamics of Vt. The

information in yty
′
t is hardly used, particularly in high dimensions (k = 30). By contrast,

the HJK model still puts about 5% (k = 5) to 3% (k = 15) of the weight on the score of

the distribution for yt. We can attribute the difference to the fact that the robust filtering

approach of the HEAVY GAS tF filter based on the matrix-F distribution provides a much

better estimate of the time varying covariance matrix Vt.

Figure 3 plots a small selection of the fitted volatilities and correlations. We show the

results for PG and PFE, according to the HEAVY GAS tF model (red line) and the HJK

model (blue line). The upper-left and lower-right graphs show the estimated volatilities,

while the upper-right and lower-left graphs present the estimated covariances and (implied)

correlations, respectively.

The figure shows that the robust transition scheme based on the matrix-F GAS dynamics

is successful in mitigating the impact of incidental large RCt observations on the estimates

of Vt. The HJK model, being based on thin-tailed densities, is much more sensitive to such

observations. Important episodes where we see large differences are at the start of 2005

for Pfizer (PFE), or around the May 2010 flash crash for Procter & Gamble (PG). Note

that in case of real stress periods (such as the financial crisis) the HEAVY GAS tF model
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Figure 3: Estimated volatilities and correlations
This figure depicts estimated volatilities of PFE and PG at the main diagonal and their pairwise correlations
and covariances at the off-diagonal, estimated by the HJK and HEAVY GAS tF model. The blue line
corresponds with the HJK model, while the red line denotes the fit from the HEAVY GAS tF model.
The estimation is based on the full sample, which runs from January 2, 2001 until July 31, 2014 (3415
observations).

produces larger volatilities than the HJK model. Interestingly, apart from the main striking

differences for Pfizer and Procter & Gamble, we also see a range of other days where the

HJK model produces a short-lived spike in the estimated Vt, whereas the fat-tailed HEAVY

GAS tF model is much more stable around those times.

The patterns for the correlations and covariances reveal similar features. The correlation

pair between PFE and PG clearly displays sudden incidental drops in correlations, for

example around 2005, during the flash crash of May 2010, but also at the start of 2003

and the end of 2006. Incidental spikes in the covariances are visible for the HJK model in

2006, 2010 and 2013. Again, the robust HEAVY GAS tF model results in much more stable

correlation and covariance patterns that are filtered from the data.

21



4.3 Out-of-sample performance

We assess the short-term forecasting performance of the models by considering 1-step ahead

forecasts. Similar to the in-sample analysis of the previous subsection, we compare the

HEAVY GAS tF model with the HJK model and the CAW model. We perform both a

statistical and economic application. The former is based on 1-step ahead density forecasts

of the realized covariance matrix. Recall that the HJK and CAW models assume a Wishart

distribution for the realized covariance matrix, while the Heavy GAS tF model assumes a

matrix-F distribution. In addition, we estimate Vt by a simple EWMA scheme

Vt+1 = βVt + (1− β)RCt,

with β = 0.96, and plug the resulting estimates into the matrix-F density as estimated by

the HEAVY GAS tF model.

We use a moving-window approach in the forecasting exercise with an in-sample period

of 1500 observations. This corresponds roughly to five calender years. The out-of-sample

period contains N = 1914 observations and contains the financial crisis, which therefore

constitutes an important test for the robustness of the model. We re-estimate our model

repeatedly after each 25 observations, which roughly corresponds to monthly updating of

the parameters.

We use the log score (see Mitchell and Hall, 2005; Amisano and Giacomini, 2007) as a

scoring rule to differentiate between the density forecasts of the models. Define the difference

in log score between the two density forecasts M1 and M2 as

dls,t = Sls,t(RCt,M1)− Sls,t(RCt,M1), (17)

for t = R,R + 1, . . . T − 1 with R the length of the estimation window and Sls,t(RCt,M1)

the log score of the density forecast corresponding to model M1 at time t, which in turn is

denoted as

Sls,t(RCt,M1) = log pt(RCt|Vt,Ft−1,M1), (18)
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where pt(·) is the probability distribution function of the matrix-F or Wishart distribution

respectively. The corresponding null hypothesis on equal predictive ability is given by

H0 : E[dls] = 0 for all N out-of-sample forecasts. This null can be tested by means of a

Diebold and Mariano (1995) (DM) statistic given by

tls =
d̄

√

σ̂2/N
(19)

with d̄ the out-of-sample average of the log score differences and σ̂2 a HAC-consistent vari-

ance estimator of the true variance σ2 of dls,t. Under the assumptions of the framework of

Giacomini and White (2006) dls asymptotically follows a standard Normal distribution. A

significantly positive value means that model M1 has a superior forecast performance over

model M2.

Rather than only presenting a statistical out-of-sample comparison of the different mod-

els, we also provide an economic comparison. Following Chiriac and Voev (2011) we consider

global minimum variance portfolios (GMVP), motivated by the mean-variance optimization

setting of Markowitz (1952). The model that provides the most accurate forecasts of the

covariance matrix should give a lower portfolio variance than the portfolio variance of the

competing models. Let us assume that the investor aims to minimize the 1-step ahead port-

folio volatility over period t+1 subject to a fully invested portfolio, given his best estimate

of the covariance matrix at time t. The resulting GMVP weights wt+1|t are given by the

solution of the quadratic problem:

minw′
t+1|t Vt+1|t wt+1|t s.t. w′

t+1|tι = 1. (20)

Similar as Chiriac and Voev (2011), we assess the predictive ability of the different models

by comparing the ex post realizations of the conditional standard deviation, which are given

by σp,t =
√

w′
t+1|tRCt+1 wt+1|t. We again test whether the differences in portfolio standard

deviation between the different models are significant using the DM test statistic as defined

in (19).

Table 5 shows the average values of the log score and the ex-post portfolio standard

deviations over the out-of-sample period for two sets of five assets, a set of 15 assets and the
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Table 5: Out-of-sample log-scores and ex-post conditional standard deviations
This table shows the mean of log scores, defined in (18) and ex-post portfolio standard deviation, based
on 1-step ahead predictions of the covariance matrix, according to the HEAVY GAS tF, HJK and the
EMWA model for two pairs of five assets (Panel A), one pair of fifteen assets (Panel B) and for all equities
(Panel C, k = 30). The highest (lowest) value of the predictive log-score (portfolio standard deviation)
across the models are marked bold. In addition, we report HAC based test-statistics on the difference in
predictive ability (DMDF ) and standard deviation (DMσp

) between the HEAVY GAS tF model and the
other considered models. The superscripts ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5% and 10% level
respectively. The out-of-sample period goes from 2007 until July 2014 and contains 1914 observations.

GAS tF HJK CAW EMWA

Panel A: BA/HD/JPM/PFE/PG
Sls -2.22 −6.39 −4.44 −4.42
DMDF (7.05)∗∗∗ (3.41)∗∗∗ (10.11)∗∗∗

σp 0.791 0.811 0.794 0.794
DMσp

(−5.76)∗∗∗(−2.77)∗∗∗(−2.27)∗∗

Panel B: k = 15

Sls 57.55 33.70 42.03 48.86
DMDF (11.37)∗∗∗ (7.85)∗∗∗ (9.47)∗∗∗

σp 0.630 0.649 0.632 0.631
DMσp

(−10.63)∗∗∗(−2.83)∗∗∗(−2.34)∗∗

Panel C: All equities (k = 30)

Sls 313.50 238.97 291.24
DMDF (16.20)∗∗∗ (9.75)∗∗∗

σp 0.572 0.574 0.574
DMσp

(−2.61)∗∗∗(−2.29)∗∗

complete set of 30 assets. In addition, we provide corresponding t-statistics for the difference

in the log predictive density scores between the HEAVY GAS tF model and the competing

models. Likewise, DMσp
represents the t-statistic based on the portfolio standard deviations

of the HEAVY GAS tF model and the HJK, CAW, or EWMA model.

The results reinforce our earlier analysis, but now in an out-of-sample setting. The test

statistics show that the HEAVY GAS tF model significantly outperforms the HJK, CAW

and the EMWA models with respect to one step ahead density forecasts. This result has two

implications. First, considering a matrix-F distribution for the realized covariance matrix

is more accurate in terms of density fit than a Wishart distribution. This is in line with our

in-sample results. The results are large and significant. Second, the GAS dynamics based

on the matrix-F distribution provide improved forecasting densities. This is for example

seen when comparing the EWMA and GAS tF approaches. The improvement from EWMA

to GAS tF is roughly similar to the improvement from CAW to GAS tF. The HJK model
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appears to the most problematic in terms of out-of-sample density forecasts. Note that this

model not only uses the Wishart rather than the matrix-F distribution for RCt, but also

parameterizes the Choleski matrix of Vt rather than Vt itself. Both features result in a worse

density forecast.

Apart from the statistical evidence, the HEAVY GAS tF model also outperforms its

competitors in the economic application. For all dimensions, the DMσp
statistics are neg-

ative and statistically significant at the 5% (1%) level in case of the EWMA (CAW/HJK)

model, indicating that the HEAVY GAS tF model produces the lowest ex-post portfolio

standard deviation compared to the competing models. We conclude that the new model

also does well in an out-of-sample context, both statistically and economically.

5 Conclusions

We introduced a new dynamic multivariate HEAVY model that combines return obser-

vations and (ex-post) observed realized covariance matrices to estimate the unobserved

common underlying covariance matrices. The proposed model explicitly acknowledges that

both realized covariance matrices and returns are typically fat-tailed. The proposed setup

is particularly suitable for cases where no explicit robustification methods are applied while

estimating realized measures. Using the GAS dynamics of Creal et al. (2011, 2013) based on

a matrix-F distribution for the realized covariance matrices and a Student’s t distribution

for the returns, we derived an observation driven model for the unobserved covariances with

robust propagation dynamics. We proved that stationarity and ergodicity of the model and

positive definiteness of the filtered covariance matrices could be ensured under simple and

intuitive parameter restrictions.

An important feature of our model is that it retains the matrix format for the transition

dynamics of the covariance matrices, unlike score driven models proposed earlier. This makes

the model computationally highly efficient. We showed that the model adequately captures

both deterministic and stochastic volatility (SV) dynamics. Using U.S. equity data over

2001–2014, the model also improves both the in-sample and out-of-sample fit of the covari-

ance matrices for high-dimensional data sets of up to 30 dimensions. These improvements

are both statistically and economically significant and persist over the episodes including the
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recent financial crisis. We conclude that the model provides a valuable tool when modeling

combinations of fat-tailed matrix-valued and vector-valued random variables. Moreover, the

matrix-F distribution used here can also prove useful beyond the scope of the current paper,

such as in for instance a Bayesian context.
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Appendix A: Proofs

We use the following matrix calculus results for a general matrix X ,

dX−1 = −X−1(dX)X−1, d log |X | = tr(X−1 dX),

tr(A′B) = vec(A)′ vec(B), vec(ABC) = (C′ ⊗A) vecB,

b⊗ a = vec(a′b),

with a, b ∈ R
k×1, and tr(·) denoting the trace. See for instance Abadir and Magnus (2005) for these and

other useful results.

Proof of Proposition 1: The general form of the score is given by (7) and (8). The relevant parts of the

log-likelihood that depend on Vt are

ℓy,t = −
1

2
log |Vt| −

ν0 + k

2
log

(

1 +
y′tV

−1
t yt

ν0 − 2

)

= −
1

2
log |Vt| −

ν0 + k

2
log(w̃t)

ℓRC,t = −
ν1

2
log |Vt| −

ν1 + ν2

2
log

∣

∣

∣

∣

Ik +
ν1

ν2 − k − 1
V −1
t RCt

∣

∣

∣

∣

= −
ν1

2
log |Vt| −

ν1 + ν2

2
log
∣

∣

∣
W̃t

∣

∣

∣
,

with w̃t = (1 + (ν0 − 2)−1y′tV
−1
t yt) and W̃t = (Ik + ν1 (ν2 − k − 1)−1V −1

t RCt). Using the matrix calculus

results above, we obtain

d ℓy,t = −
1

2
tr(V −1

t dVt)−
ν0 + k

2
w̃−1

t d w̃t

= −
1

2
tr(V −1

t dVt)−
ν0 + k

2
w̃t d

y′tV
−1
t yt

ν0 − 2

= −
1

2

(

vecV −1
t

)

′ d vecVt +
ν0 + k

2
w̃t

1

ν0 − 2
y′tV

−1
t dVt V

−1
t yt

= −
1

2

(

vecV −1
t

)

′ d vecVt +
1

2

[

ν0 + k

ν0 − 2
w̃t y

′

tV
−1
t ⊗ y′tV

−1
t

]

d vecVt

= −
1

2

(

vecV −1
t

)

′ d vecVt +
1

2

[

ν0 + k

ν0 − 2
w̃t vec(V −1

t yty
′

tV
−1
t )′

]

d vecVt,

such that

∂ℓy,t

∂ vecVt
= −

1

2
vecV −1

t +
1

2

[

ν0 + k

ν0 − 2
w̃t vec(V −1

t yty
′

tV
−1
t )

]

.

Note that we have dealt with Vt in the above derivations as a general rather than a symmetric matrix, for

reasons explained in the main text. Omitting the vec operator and rewriting yields the desired result.
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For d ℓRC,t we have

d ℓRC,t = −
ν1

2
tr(V −1

t dVt)−
ν1 + ν2

2
tr
(

W̃−1
t d W̃t

)

= −
ν1

2

(

vecV −1
t

)

′ d vecVt +
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2
tr

(
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ν2 − k − 1
V −1
t dVt V

−1
t RCt

)

= −
ν1

2

(

vecV −1
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)
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2
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V −1
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vec

(
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t RCt W̃
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Consequently,

∂ℓRC,t

∂ vecVt
= −

ν1

2
vecV −1

t +
ν1 + ν2

2
vec

(

ν1

ν2 − k − 1
V −1
t RCt W̃

−1
t V −1

t

)

.

Again, removing the vec operator yields the desired result.

Proof of Proposition 2: We can rewrite (4) using (10) as

Vt+1 = Ω+ (β − α) Vt + α
wtyty

′
t

ν1 + 1
+ α

ν1 (ν1 + ν2)

(ν1 + 1)(ν2 − k − 1)
RCt

(

Ik +
ν1 V −1

t RCt

ν2 − k − 1

)−1

. (A.1)

As β > α > 0, the sum of the first two terms Ω+ (β − α)Vt is positive definite if Vt is positive definite. As

α > 0, the third term is positive semi-definite. Finally, given that RCt is positive semi-definite for every t,

also the last term is positive semi-definite. To see this, note that ν2 > k + 1 and let k∗t denote the rank of

RCt, with RCt = UtStU
′
t the singular value decomposition of RCt, with Ut and St a k × k∗t and a k∗t × k∗t

matrix, respectively. For a ∈ R
k×1, c = ν1 (ν2 − k − 1)−1 > 0, and positive definite Vt, we have

a′RCt

(

Ik + c V −1
t RCt

)−1
a = a′UtStU

′

t (Vt + c UtStU
′

t)
−1

Vta =

a′UtStU
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tV
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a′Ut
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c−1S−1
t + U ′

tV
−1
t Ut

)−1
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a′Ut
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St − St
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c−1
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)−1
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)
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a′Ut

(

S−1
t + c U ′

tV
−1
t Ut

)−1
U ′

ta ≥ 0,

because both St and U ′
tV

−1
t Ut are positive definite for every t. The proof then follows by induction from

the assumption that V1 is positive definite.

Proof of Proposition 3: Let ei and v∗i denote the ith column of the k × k unit matrix and of V −1,

respectively. Define J = V −1⊗V −1. Note that the columns of S are of the form (1+δi=j)(ei⊗ej+ej⊗ei),

with δi=j denoting the Kronecker delta. If S⊥ denotes the null space of S, i.e., S ′

⊥
S = 0, then we can take
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the columns of S⊥ equal to (ei ⊗ ej − ej ⊗ ei) for i 6= j. Define S = (S,S⊥), where S is invertible. Using

these definitions, (11) holds if

0 = J −1 vec(∇)− S(S ′JS)−1S ′ vec(∇)

=
(

J −1 − S(S ′JS)−1S ′
)

vec(∇)
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0

−(S ′

⊥
JS)(S ′JS)−1S ′S







 vech(∇),

which is true for arbitrary vech(∇) if and only if S ′

⊥
JS = 0. Given the form of J , S, and S⊥, we have for

i 6= j that

S ′

⊥JS = (ei ⊗ ej − ej ⊗ ei)
′J

(ek ⊗ eℓ + eℓ ⊗ ek)

1 + δk=ℓ
= (v∗i ⊗ v∗j − v∗j ⊗ v∗i )

′
(ek ⊗ eℓ + eℓ ⊗ ek)

1 + δk=ℓ

=
v∗ikv

∗

jℓ − v∗jℓv
∗

ik + v∗iℓv
∗

jk − v∗jkv
∗

iℓ

1 + δk=ℓ
= 0.

Proof of Proposition 4: Note that the recursion in (4) can be written as

Vt+1 = Ω + βVt + α(Vt)
1/2V

−1/2
t St (V

′

t )
−1/2(V ′

t )
1/2 = Ω+ (β − α)Vt + α(Vt)

1/2ηt(V
′

t )
1/2, (A.2)

with ηt = V
−1/2
t St (V

′
t )

−1/2 + I. From (12), we note that ηt is i.i.d. with expectation I. The recursion in

(A.2) can now be recognized as a semi-polynomial Markov chain as defined in Boussama (2006). The result

then follows directly by an application of his Theorem 2, noting that his requirement |(β − α) + α| < 1

together with the positivity constraint β > 0 implies 0 < β < 1. We remark that the fact that Boussama

uses η̃tη̃
′
t for i.i.d. vector-valued η̃t with mean zero and covariance matrix I rather than a matrix valued ηt

with expectation I, is immaterial for his result to hold. The only important feature in the proof of Boussama

(2006) for our current purposes is that (A.2) is quadratic in V
1/2
t , and that ηt is i.i.d. with mean I.
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