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Abstract

We propose a new Markov switching model with time varying probabilities for the

transitions. The novelty of our model is that the transition probabilities evolve over

time by means of an observation driven model. The innovation of the time varying

probability is generated by the score of the predictive likelihood function. We show

how the model dynamics can be readily interpreted. We investigate the performance of

the model in a Monte Carlo study and show that the model is successful in estimating a

range of different dynamic patterns for unobserved regime switching probabilities. We

also illustrate the new methodology in an empirical setting by studying the dynamic

mean and variance behaviour of U.S. Industrial Production growth. We find empirical

evidence of changes in the regime switching probabilities, with more persistence for

high volatility regimes in the earlier part of the sample, and more persistence for low

volatility regimes in the later part of the sample.
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1 Introduction

Markov regime switching models have been widely applied in economics and finance. Since

the seminal application of Hamilton (1989) to U.S. real Gross National Product growth and

the well-known NBER business cycle classification, the model has been adopted in numerous

other applications. Examples are switches in the level of a time series, switches in the

(autoregressive) dynamics of vector time series, switches in volatilities, and switches in the

correlation or dependence structure between time series; see Hamilton and Raj (2002) for a

partial survey. The key attractive feature of Markov switching models is that the conditional

distribution of a time series depends on an underlying latent state or regime, which can take

only a finite number of values. The discrete state evolves through time as a discrete Markov

chain and we can summarize its statistical properties by a transition probability matrix.

Diebold et al. (1994) and Filardo (1994) argue that the assumption of a constant transi-

tion probability matrix for a Markov switching model is too restrictive for many empirical

settings. They extend the basic Markov switching model to allow the transition probabili-

ties to vary over time using observable covariates, including strictly exogenous explanatory

variables and lagged values of the dependent variable. Although this approach can be useful

and effective, it is not always clear what variables or which functional specification we should

use for describing the dynamics in the transition probabilities.

Our main contribution in this paper is to propose a new, dynamic approach to model

time variation in transition probabilities in Markov switching models. We let the transition

probabilities vary over time as specific transformations of the lagged observations. Hence

we adopt an observation driven approach to time varying parameter models; see Cox (1981)

for a detailed discussion. Observation driven models have the advantage that the likeli-

hood is typically available in closed form using a prediction error decomposition. Our main

challenge is to specify a suitable functional form to link past observations to future transi-

tion probabilities. For this purpose, we use the scores of the predictive likelihood function.

Such score driven dynamics have been introduced by Creal et al. (2011, 2013) and Harvey

(2013). Score driven models encompass many well-known time series models in economics

and finance, including the ARCH model of Engle (1982), the generalized ARCH (GARCH)

model of Bollerslev (1986), the exponential GARCH (EGARCH) model of Nelson (1991),

the autoregressive conditional duration (ACD) model of Engle and Russell (1998), and many

more. In addition, various successful applications of score models have appeared in the re-

cent literature. For example, Creal et al. (2011) and Lucas et al. (2014) study dynamic

volatilities and correlations under fat-tails and possible skewness; Harvey and Luati (2014)

introduce new models for dynamic changes in levels under fat tails; Creal et al. (2014) inves-

tigate score-based mixed measurement dynamic factor models; Oh and Patton (2013) and

De Lira Salvatierra and Patton (2013) investigate factor copulas based on score dynamics;

and Koopman et al. (2012) show that score driven time series models have a similar fore-
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casting performance as correctly specified nonlinear non-Gaussian state space models over a

range of model specifications.

We show that the score function in our Markov switching model has a highly intuitive

form. The score combines all relevant innovative information from the separate models

associated with the latent states. The updates of the time varying parameters are therefore

based on the probabilities of the states, given all information up to time t − 1. In our

simulation experiments, the new model performs well and succeeds in capturing a range of

time varying patterns for the unobserved transition probabilities.

We apply our model to study the monthly evolution of U.S. Industrial Production growth

from January 1919 to October 2013. We uncover three regimes for the mean and two

regimes for the variance over the sample period considered. The corresponding transition

probabilities are time varying. In particular, the high volatility regime appears to be much

more persistent in the earlier part of the sample compared to the later part. The converse

holds for the low volatility regime. Such changes in the dynamics of the time series are

captured in a straightforward way within our model. Moreover, the fit of the new model

outperforms the fit of several competing models.

As a final contribution, it is worthwhile mentioning that our model also presents an

interesting mix of parameter driven (Markov switching) dynamics with observation driven

score dynamics for the corresponding (transition probability) parameters. In particular,

it is interesting to see that score driven models can still be adopted when an additional

filtering step (for the unobserved discrete states) is required to compute the score of the

resulting conditional observation density. This feature of the new dynamic switching model

is interesting in its own right. Similar developments for a linear Gaussian state space model

have been reported by Creal et al. (2008) and Delle Monache and Petrella (2014)

The remainder of the paper is organized as follows. In Section 2 we briefly discuss the

main set-up of the Markov switching model and its residual diagnostics. In Section 3 we

introduce the new Markov switching model with time varying transition probabilities based

on the score of the predictive likelihood function. In Section 4 we discuss some of the

statistical properties of the model. In Section 5 we report the results of a Monte Carlo

study. In Section 6 we present the results of our empirical study into the dynamic salient

features of U.S. Industrial Production growth. Section 7 concludes.

2 Markov switching models

Markov switching models are well-known and widely used in applied econometric studies.

We refer to the textbook of Frühwirth-Schnatter (2006) for an extensive introduction and

discussion. The treatment below establishes the notation and discusses some basic notions

of Markov switching models.
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Let {yt, t = 1, . . . , T} denote a time series of T univariate observations. We consider

the time series {yt, t = 1, . . . , T} as a subset of a stochastic process {yt}. The probability

distribution of the stochastic process yt depends on the realizations of a hidden discrete

stochastic process zt. The stochastic process yt is directly observable, whereas zt is a latent

random variable that is observable only indirectly through its effect on the realizations of

yt. The hidden process {zt} is assumed to be an irreducible and aperiodic Markov chain

with finite state space {0, . . . , K − 1}. Its stochastic properties are sufficiently described by

the K ×K transition matrix, Π, where πij is the (i+ 1, j + 1) element of Π and is equal to

the transition probability from state i to state j. All elements of Π are nonnegative and the

elements of each row sum to 1, that is

πij = P[zt = j|zt−1 = i],
K−1∑
j=0

πij = 1, πij ≥ 0, ∀i, j ∈ {0, . . . , K − 1}. (1)

Let p( · |θi, ψ) be a parametric conditional density indexed by parameters θi ∈ Θ and ψ ∈ Ψ,

where θi is a regime dependent parameter and ψ is not regime-specific. We assume that the

random variables y1, . . . , yT are conditionally independent given z1, . . . , zT , with densities

yt| (zt = i) ∼ p( · |θi, ψ). (2)

For the joint stochastic process {zt, yt}, the conditional density of yt is

p(yt|ψ, It−1) =
K−1∑
i=0

p(yt|θi, ψ) P(zt = i|ψ, It−1), (3)

where It−1 = {yt−1, yt−2, . . .} is the observed information available at time t− 1. All param-

eters ψ and θ0, . . . , θK−1 are unknown and need to be estimated.

The conditional mean of yt given zt and It−1 may contain lags of yt itself. Francq and

Roussignol (1998) and Francq and Zaköıan (2001) derive the conditions for the existence of

an ergodic and stationary solution for the general class of Markov switching ARMA models.

In particular, they show that global stationarity of yt does not require the stationarity

conditions within each regime separately.

As an example, consider the case K = 2 for a continuous variable yt with conditional

density

p( · |zt) = N
(

(1− zt)µ0 + ztµ1 , σ
2
)
, (4)

where µ0 and µ1 are static regime-dependent means, and σ2 is the common variance. The

latent two-state process {zt} is driven by the transition probability matrix Π

Π =

(
π00 1− π00

1− π11 π11

)
, (5)
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where the transition probabilities satisfy 0 < π00, π11 < 1. We have θi = µi for i = 0, 1, and

ψ = (σ2, π00, π11)′.

To evaluate equation (3), we require the quantities P(zt = i|ψ, It−1) for all t. We can

compute these efficiently using the recursive filtering approach of Hamilton (1989). Assuming

we have an expression for the filtered probability P(zt−1 = i|ψ, It−1), we can obtain the

predictive probabilities P(zt = i|ψ, It−1) as

P(zt = i|ψ, It−1) =
K−1∑
k=0

πki · P(zt−1 = k|ψ, It−1). (6)

Hence, the conditional density of yt given It−1 is given by

p(yt|ψ, It−1) =
K−1∑
i=0

K−1∑
k=0

p(yt|θi, ψ) · πki · P(zt−1 = k|ψ, It−1). (7)

We can rewrite this expression more compactly in matrix notation. Define ξt−1 as the

K−dimensional vector containing the filtered probabilities P(zt−1 = i|ψ, It−1) at time t− 1

and let ηt be the K−dimensional vector collecting the densities p(yt|θi, ψ) at time t for

i = 0, . . . , K − 1. It follows that (7) reduces to

p(yt|ψ, It−1) = ξ′t−1Πηt. (8)

The filtered probabilities ξt can be updated by the Hamilton recursion

ξt =

(
Π′ ξt−1

)
� ηt

ξ′t−1Πηt
, (9)

where � denotes the Hadamard element by element product. The filter needs to be started

from an appropriate set of initial probabilities P(z0 = i|ψ, I0). The smoothed estimates of the

regime probabilities P(zt = i|ψ, IT ) can be obtained from the algorithm of Kim (1994). The

Hamilton filter in (9) is implemented for the evaluation of the the log-likelihood function

which is numerically maximized with respect to the parameter vector (θ′0, . . . , θ
′
K−1, ψ

′)′

using a quasi-Newton optimization algorithm. To avoid local maxima, we consider different

starting values for the numerical optimization.

Diagnostic checking in Markov regime switching models is somewhat more complicated

when compared to other time series models because the true residuals depend on the latent

variable zt. Hence the residuals are unobserved. A standard solution is the use of generalized

residuals which have been introduced by Gourieroux et al. (1987) in the context of latent

variable models. They have been used in the context of Markov regime switching models

by Turner et al. (1989), Gray (1996), Maheu and McCurdy (2000), and Kim et al. (2004).

Given the filtered regime probabilities P(zt = i|ψ, It−1), for i = 0, . . . , K − 1, let µi and σ2
i
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denote the conditional mean and the conditional variance of yt in regime i. The standardized

generalized residual et is defined as

et =
K−1∑
i=0

yt − µi
σi

P(zt = i|ψ, It−1), t = 1, . . . , T. (10)

Also in the context of switching models, Smith (2008) adopts the transformation proposed

by Rosenblatt (1952) and defines the Rosenblatt residual ẽt as

ẽt = Φ−1

(
K−1∑
i=0

P(zt = i|ψ, It−1)Φ
(
σ−1
i (yt − µi)

))
, (11)

where Φ denotes the cumulative distribution function of a standard normal with the corre-

sponding inverse function Φ−1. If yt is generated by the distribution implied by the Markov

switching model, then the Rosenblatt residual ẽt is standard normally distributed. Further-

more, Smith (2008) shows in an extensive Monte Carlo study that Ljung-Box tests based on

the Rosenblatt transformation have good finite-sample properties for the diagnostic checking

of serial correlation in the context of Markov regime switching models.

3 Time varying transition probabilities

In the previous section we considered the transition probability matrix Π to be constant

over time. Diebold et al. (1994) and Filardo (1994) argue for having time varying transition

probabilities Πt. They propose to let the elements of Πt be functions of past values of the

dependent variable yt and of exogenous variables. The Hamilton filter and Kim smoother can

easily be generalized to handle such cases of time varying Πt. A key challenge is to specify an

appropriate and parsimonious function that links the lagged dependent variables to future

transition probabilities. For the specification of the dynamics of Πt, we adopt the generalized

autoregressive score dynamics of Creal et al. (2013); similar dynamic score models have been

proposed by Creal et al. (2011) and Harvey (2013). We provide the details of the score driven

model for time varying transition probabilities in the Markov regime switching model. The

new dynamic model is parsimonious and the updating mechanism is highly intuitive. Each

probability update is based on the weighting of the likelihood information p( · |θi, ψ) in (2)

for each separate regime i.

3.1 Dynamics driven by the score of predictive likelihood

The parameter vector ψ contains both the transition probabilities as well as other parameters

capturing the shape of the conditional distributions p(yt|ψ, It−1). With a slight abuse of

notation, we split ψ into a dynamic parameter ft that we use to capture the dynamic
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transition probabilities, and a new static parameter ψ∗ that gathers all remaining static

parameters in the model, as well as some new static parameters that govern the transition

dynamics of ft. For example, in the two-state example of Section 2 we may choose ft =

(f00,t, f11,t)
′ with f00,t = logit(π00,t) and f11,t = logit(π11,t), where logit(π00,t) = log(π00,t) −

log(1 − π00,t), and log( · ) refers to the natural logarithm. At the same time, we set ψ∗ =

(σ2, ω, A,B), where ω, A, and B are defined below in equation (12). For the remainder of

this paper, we denote the conditional observation density by p(yt|ft, ψ∗, It−1).

In the framework of Creal et al. (2013), the dynamic processes for the parameters

are driven by information contained in the score of the conditional observation density

p(yt|ft, ψ∗, It−1) with respect to ft. The main challenge in the context of Markov switching

models is that the conditional observation density is itself a mixture of densities using the

latent mixing variable zt. Therefore, the shape of our conditional observation density as

given by equation (3) is somewhat involved.

The updating equation for the time varying parameter ft based on the score of the

predictive density is given by

ft+1 = ω + Ast +Bft, st = St · ∇t, ∇t =
∂

∂ft
log p(yt|ft, ψ∗, It−1), (12)

where ω is a vector of constants, A and B are coefficient matrices, and st is the scaled score

of the predictive observation density with respect to ft using the scaling matrix St. The

updating equation (12) can be viewed as a steepest ascent or Newton step for ft using the

log conditional density at time t as its criterion function. An interesting choice for St, as

recognized by Creal et al. (2013), is the square root matrix of the inverse Fisher information

matrix. This particular choice of St accounts for the curvature of ∇t as a function of ft.

Also, for this choice of St and under correct model specification, the scaled score function st

has a unit variance; see also Section 4.

3.2 Time varying transition probabilities: the case of 2 states

We first consider the two-state Markov regime switching model, K = 2. We let the transition

probabilities π00,t and π11,t vary over time while the two remaining probabilities are set to

π01,t = 1− π00,t and π10,t = 1− π11,t as in (5). We specify the transition probabilities as

πii,t = δii + (1− 2δii) exp(−fii,t)/(1 + exp(−fii,t)), i = 0, 1,

where f00,t and f11,t are the only two elements in the time varying parameter vector ft, and

where the two parameters 0 ≤ δii ≤ 0.5, for i = 0, 1, can be set by the econometrician to

limit the range over which πii,t can vary. In the application in Section 6, we set we set δii = 0,

for i = 0, 1, such that πii,t can take any value in the interval (0, 1).

We prefer to work with a parsimonious model specification and therefore we typically

have diagonal matrices for A and B in (12). The updating equations for the time varying
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parameter ft is given by equation (12) where the scaling is set to St = I−0.5
t−1 where It−1 is

the 2 × 2 Fisher information matrix corresponding to the 2 × 1 score vector ∇t defined in

(12). The score vector for the conditional density in (7) takes the form

∇t =
p(yt|θ0, ψ

∗)− p(yt|θ1, ψ
∗)

p(yt|ψ∗, It−1)
g
(
ft, ψ

∗, It−1

)
, (13)

g
(
ft, ψ

∗, It−1

)
=

(
P[zt−1 = 0|ψ∗, It−1] · (1− 2δ00)π00,t (1− π00,t)

−P[zt−1 = 1|ψ∗, It−1] · (1− 2δ11)π11,t (1− π11,t)

)
. (14)

This expression has a highly intuitive form. The first factor in (13) is the difference in the

likelihood of yt given zt = 0 versus zt = 1. The difference is scaled by the total likelihood

of the observation given all the static parameters. If the likelihood of yt given zt = 0 is

relatively large compared to that for zt = 1, we expect f00,t to rise and f11,t to decrease.

This is precisely what happens in equations (13) and (14). The magnitudes of the steps

are determined by the conditional probabilities of being in regime zt−1 = 0 or zt−1 = 1,

respectively, at time t − 1. The remaining factors (1 − 2δii)πii,t(1 − πii,t), for i = 0, 1, are

due to the logit parameterization. In particular, if we are almost certain of being in regime

zt−1 = 0 at time t − 1, that is P[zt−1 = 0|ψ∗, It−1] ≈ 1, then we take a large step with f00,t

but we do not move f11,t by much. Obviously, if we are almost certain of being in regime

zt−1 = 0, yt can only learn us something about π00,t. We do not learn much about π11,t in

this case. The converse holds if we are almost certain of being in regime zt−1 = 1 at time

t− 1, in which case we can only learn about f11,t = logit(π11,t). The weights for the filtered

probabilities in the vector g(ft, ψ
∗, It−1) in (13) takes account of this.

The conditional Fisher information matrix based on (13) is singular by design. The vector

g(ft, ψ
∗, It−1) on the right-hand side of (13) is It−1-measurable and hence the expectation

of its outer product remains of rank 1. Therefore, we scale the score by a square root

Moore-Penrose pseudo-inverse1 of the conditional Fisher information matrix. We have

st = Gt
[p(yt|θ0, ψ

∗)− p(yt|θ1, ψ
∗)] / p(yt|ψ∗, It−1)√∫∞

−∞ [p(yt|θ0, ψ∗)− p(yt|θ1, ψ∗)]
2 / p(yt|ψ∗, It−1) dyt

, (15)

with Gt = g
(
ft, ψ

∗, It−1

)
/
∥∥g(ft, ψ∗, It−1

)∥∥, and where the integral has no closed form in

general and is computed numerically, for example using Gauss-Hermite quadrature methods.

An alternative to the analytic Moore-Penrose pseudo-inverse is a numerical pseudo inverse;

for example, we could use the Tikhonov regularized matrix inverse as given by I∗1/2t−1 =(
λI + (1 − λ)It−1

)−1/2
, with unit matrix I and fixed scalar 0 < λ < 1. For λ → 0 the

Tikhonov inverse collapses to the Moore-Penrose pseudo-inverse.

1If x ∈ Rn is a vector, then the Moore-Penrose pseudo-inverse of xx′ is given by ‖x‖−4xx′, and

its square root by ‖x‖−3xx′, as ‖x‖−3xx′‖x‖−3xx′ = ‖x‖−4xx′. As g(ft, ψ
∗, It−1) is It−1-measurable,

scaling the score by the square root Moore-Penrose pseudo-inverse of the conditional Fisher information

matrix yelds an expression proportional to ‖g(ft, ψ
∗, It−1)‖−3g(ft, ψ

∗, It−1)g(ft, ψ
∗, It−1)′g(ft, ψ

∗, It−1) =

‖g(ft, ψ
∗, It−1)‖−1g(ft, ψ

∗, It−1).
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3.3 Time varying transition probabilities: the case of K states

We can easily generalize the two-regime model to K regimes. To enforce that all transition

probabilities are non-negative and sum to one (row-wise), we use the multinomial logit

specification. Given a set of values for 0 ≤ δij ≤ 0.5, we set

πij,t = δij+(1−2δij) exp(fij,t)

[
1 +

K−1∑
j=1

exp(fij,t)

]−1

, πi,K−1,t = 1−
K−1∑
j=1

πij,t(δij), (16)

for i = 0, . . . , K − 1 and j = 0, . . . , K − 2. The time varying parameters fij,t, corresponding

to the time varying transition probabilities πij,t, are collected in the K(K − 1)× 1 vector ft.

The vector ft is subject to the updating equation (12). The ingredients for the scaled score

vector in the updating equation (12) are given by

∇t = J ′t∇Π
t ,

It−1 = E[J ′∇Π
t ∇Π

t
′
Jt],

∇Π
t =

∂ log p(yt|ψ∗, It−1)

∂vec(Π)′
=

ηt ⊗ ξt−1

p(yt|ψ∗, It−1)
,

where ⊗ is the Kronecker product and the elements of Jt = ∂vec(Πt)/∂f
′
t are given by

∂πij,t
∂fi′j′,t

=


(1− 2δij)πij,t(1− πij,t), for i = i′ ∧ j = j′,

−(1− 2δij)πij,t πij′,t, for i = i′ ∧ j 6= j′,

0, otherwise.

,

for i, i′ = 0, . . . , K − 1 and j, j′ = 0, . . . , K − 2.

4 Statistical properties

In this section we study the stochastic properties of the estimated dynamic transition prob-

abilities in our score driven Markov switching model. In particular, we analyze the behavior

of the estimated time varying parameter as a function of past observations y1, . . . , yt−1, pa-

rameter vector ψ∗, and initial point f̄1. We write the process as {f̃t} with f̃t := f̃t(ψ
∗, f̄1), for

t = 1, . . . , T . We follow Blasques et al. (2012), who use the stationarity and ergodicity (SE)

conditions formulated by Bougerol (1993) and Straumann and Mikosch (2006) for general

stochastic recurrence equations. Define X̃t = (f̃ ′t , ξ̃
′
t)
′ as the stacked vector of filtered time

varying parameters f̃t and filtered probabilities ξ̃t as defined in (9). We define ξ̃t = ξ̃t(ψ
∗, ξ̄1)

for some initial point ξ̄1. Our stochastic recurrence equation for the filtered process {X̃t}
now takes the form X̃t+1 = H(X̃t, yt;ψ

∗), where

X̃t+1 =

[
ξ̃t+1

f̃t+1

]
= H(X̃t, yt;ψ

∗) :=

[
α(ξ̃t, f̃t, yt;ψ

∗)

ω + As(ξ̃t, f̃t, yt;ψ
∗) +B f̃t

]
,

where s(ξ̃t, f̃t, yt;ψ
∗) is the scaled score defined in (15) and α(ξ̃t, f̃t, yt;ψ

∗) is the fraction

defined in (9) for the recursion ξ̃t+1 = α(f̃t, ξ̃t, yt;ψ
∗) :=

(
Π′ ξ̃t−1

)
� ηt /

(
ξ̃′t−1Πηt

)
. The
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following proposition states sufficient conditions for the filtered process {X̃t(ψ
∗, X̄1)} with

initialization at X̄1 := (ξ̄′1, f̄
′
1)′ to converge almost surely and exponentially fast (e.a.s) to a

unique limit SE process {X̃t(ψ
∗)}.2

Proposition 1. Let {yt} be SE, with δij in (16) satisfying δij > 0 for all pairs (i, j), and

assume that for every ψ∗ ∈ Ψ∗

(i) E log+
∥∥∥H(ξ̄1, f̄1, y1, ψ

∗)∥∥∥ <∞;

(ii) E ln sup(f,ξ)

∥∥∥Ḣ(f, ξ, y1, ψ
∗)∥∥∥ < 0;

where Ḣ(X, y1;ψ∗) = ∂H(X, y1;ψ∗)/∂X denotes the Jacobian function of H w.r.t. X. Then

{X̃t(ψ
∗, X̄1)} converges e.a.s. to a unique SE process {X̃t(ψ

∗)}, for every ψ∗ ∈ Ψ∗, that is

‖X̃t(ψ
∗, X̄1)− X̃(ψ∗)‖ e.a.s.→ 0 as t→∞ ∀ψ∗ ∈ Ψ∗.

Proof. The assumption that {yt} is SE implies that {ηt} in (9) is SE. Together with the continuity of H

(and the resulting measurability w.r.t. the Borel σ-algebra), it follows that {H(·, ·, yt, ψ∗)} is SE for every ψ∗

by Krengel (1985, Proposition 4.3). Condition C1 in Bougerol (1993, Theorem 3.1) is immediately implied

by assumption (i) for every ψ∗ ∈ Ψ∗. Condition C2 in Bougerol (1993, Theorem 3.1) is implied, for every

ψ∗ ∈ Ψ∗, by condition (ii). As a result, for every ψ∗ ∈ Ψ∗, {X̃t(ψ
∗, f1)} converges almost surely to an SE

process {X̃(ψ∗)}. Uniqueness and e.a.s. convergence is obtained by Straumann and Mikosch (2006, Theorem

2.8).

Proposition 1 effectively defines those combinations of δ, A and B for which we can

ensure that the filtered sequence {X̃t(ψ
∗, f1)} converges e.a.s. to an SE limit for a given SE

data sequence {yt}. We emphasize that a finite ω is required for condition (i) to hold since

ω enters the H function. However, ω plays no role in the contraction condition (ii) as it

does not influence the Jacobian Ḣ. Numerical experiments (not reported here) suggest that

stability is achieved by a wide range of combinations of the parameters δ, A and B, where

δ is a vector containing all δij. In particular, the set of stable combinations (A,B) becomes

larger for higher values of δ. This mechanism is intuitive because the entries of the vector

δ bound the elements of the vector ξ and Π away from zero and one. As a result, δ > 0

ensures that the denominator in (9) is bounded away from zero and hence the sequence {ξt}
becomes more stable.

Proposition 1 is essential in characterizing the stochastic properties of the filtered time

varying parameters. It does not only allow us to have further insights into the nature of

the filtered estimates ft in the Monte Carlo study of Section 5, but it also enables us to

interpret the parameter estimates of the GAS model. The SE nature of the filtered sequence

is also an important ingredient in obtaining proofs of consistency and asymptotic normality

of the maximum likelihood estimator that rely on an application of laws of large numbers

and central limit theorems; see Blasques et al. (2014) for more details.

2We say that a random sequence {X̃t} converges e.a.s. to another random sequence {X̃∗t } if there is a

constant c > 1 such that ct‖X̃t − X̃∗t ‖
a.s.→ 0; see Straumann and Mikosch (2006) for further details.
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Table 1: Simulation patterns for π00,t and π11,t

Model π00,t π11,t

1. Constant 0.95 0.85

2. Slow Sine 0.5 + 0.45 cos (4πt/T ) 0.5− 0.45 cos (4πt/T )

3. Sine 0.5 + 0.45 cos (8πt/T ) 0.5− 0.45 cos (8πt/T )

4. Fast Sine 0.5 + 0.45 cos (20πt/T ) 0.5− 0.45 cos (20πt/T )

5. Break 0.2 1{T<T/2} + 0.8 1{t≥T/2} 0.8 1{T<T/2} + 0.2 1{t≥T/2}

5 Monte Carlo study

5.1 Design of the simulation study

To investigate the performance of our estimation procedure for the Markov regime switching

model with time varying transition probabilities, we consider a Monte Carlo study for the

two regime model (4). The two regimes consist of two normal distributions with common

variance σ2 = 0.5 and means µ0 = −1 and µ1 = 1. We set δ00 = δ11 = 0 and consider 5

different forms of time variation for the transition probabilities π00,t and π11,t. The patterns

are summarized in Table 1 and range from a constant set of transition probabilities, via slow

and fast continuously changing transition probabilities to an incidental structural break in

the middle of the sample. We investigate the robustness of our estimation procedure in these

different settings. For all of the data generation processes considered, our regime switching

model with time varying parameters is clearly misspecified.

In our Monte Carlo study we consider three different sample sizes: T = 250, 500, 1000.

The number of Monte Carlo replications is set to 100. We adopt the model with K = 2

states as described in detail in Sections 3.1 and 3.2. For each data generating process and

sample size, we estimate the static parameters ψ∗ using the method of maximum likelihood.

Given the estimated values for the static parameters, we compute the filtered parameters

π̂00,t and π̂11,t using the updating equations in (12). We compare the results to those for the

Markov switching model with time invariant transition probabilities.

5.2 The simulation results

In Table 2, we present Monte Carlo averages of the maximized log-likelihood value, a

goodness-of-fit statistic and a forecast precision measure. Our statistic for model fit is

the corrected Akaike Information Criterion (AICc). The AICc is the original AIC of Akaike

(1973) but with a stronger finite sample penalty; see Hurvich and Tsai (1991). Our measure

of forecast precision is the mean squared one-step ahead forecast error (MSFE). The MSFE

uses the past observations y1, . . . , yt−1 to make a forecast of yt, using the static parameter
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Table 2: Simulation results I

We have simulated 100 time series from each data generation process (DGP) listed in Table 1

and for sample sizes T = 250, 500, 1000. The static parameters are estimated by the method of

maximum likelihood, both for the Markov regime switching model with static (Static ψ) and with

time varying transition probabilities (TV ψ∗, ft). In the latter case, the underlying time varying

parameters are updated using equation (12). We report the sample averages for the 100 simulated

series of the maximized log-likelihood value (LogLik), the corrected Akaike Information Criterion

(AICc) and the mean squared error of the one-step ahead forecast of yt (MSFE). The one-step

ahead forecast errors are computed within the sample that is used for parameter estimation.

LogLik AICc MSFE

DGP T Static π TV ψ∗, ft Static ψ TV ψ∗, ft Static ψ TV ψ∗, ft

Constant

250 -300.299 -293.037 610.859 604.871 1.695 1.583

500 -617.392 -611.947 1244.910 1242.271 1.670 1.627

1000 -1255.957 -1252.046 2521.975 2522.276 1.683 1.668

Slow Sine

250 -355.189 -344.200 720.639 707.196 2.373 2.240

500 -730.993 -704.058 1472.110 1426.493 2.212 2.100

1000 -1483.296 -1412.045 2976.652 2842.274 2.219 2.148

Sine

250 -354.946 -346.154 720.153 711.105 2.389 2.237

500 -732.544 -711.564 1475.213 1441.507 2.243 2.174

1000 -1485.593 -1426.265 2981.248 2870.714 2.237 2.152

Fast Sine

250 -356.440 -347.479 723.141 713.754 2.602 2.323

500 -733.108 -720.650 1476.341 1459.678 2.358 2.277

1000 -1487.584 -1449.217 2985.229 2916.619 2.216 2.212

Break

250 -356.643 -343.721 723.547 706.239 2.438 2.197

500 -735.293 -706.544 1480.711 1431.467 2.384 2.137

1000 -1493.767 -1429.812 2997.596 2877.809 2.372 2.104

estimates obtained from the entire sample y1, . . . , yT . The criterion therefore measures the

forecast precision of the model for the maximum likelihood estimate of ψ in the static model

and for the maximum likelihood estimate of ψ∗ in the time varying parameter model.

We learn from Table 2 that the average maximized log-likelihood values are uniformly

higher for the model with time varying transition probabilities compared to the model with

constant transition probabilities. This result is not very surprising since the time varying

model is a dynamic generalization of the static model and has more parameters. A more

convincing result is that the time varying model produces overall substantially smaller AICc

values than the constant model. As expected, the only exception is the data generating

process with constant transition probabilities. For time series simulated with time varying

transition probabilities change gradually or are of a structural break type, the model with

time varying transition probabilities performs substantially better than the static model.

Finally, when we focus on the forecast precision measure MSFE, we also conclude that the
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Table 3: Simulation results II

We have simulated 100 time series from each data generation process (DGP) listed in Table 1

and for sample sizes T = 250, 500, 1000. The static parameters are estimated by the method

of maximum likelihood, both for the Markov regime switching model with static (Static) and

with time varying transition probabilities (TV). In the latter case, the underlying time varying

parameters are updated using equation (12). We report the sample averages for the 100 simulated

series of the mean squared error (MSE) and the mean absolute error (MAE) of the one-step

ahead forecast of two transition probabilities π00 and π11. The one-step ahead forecast errors are

computed within the sample that is used for parameter estimation.

MSE MAE MSE MAE

π00 π11

DGP T Static TV Static TV Static TV Static TV

Constant

250 0.000 0.010 0.015 0.046 0.006 0.037 0.049 0.136

500 0.000 0.005 0.012 0.032 0.002 0.015 0.032 0.089

1000 0.000 0.002 0.007 0.019 0.001 0.006 0.021 0.057

Slow Sine

250 0.189 0.087 0.356 0.223 0.197 0.097 0.362 0.238

500 0.204 0.073 0.369 0.194 0.208 0.085 0.372 0.212

1000 0.202 0.055 0.367 0.160 0.205 0.055 0.369 0.161

Sine

250 0.184 0.108 0.350 0.255 0.190 0.122 0.355 0.275

500 0.200 0.084 0.365 0.219 0.204 0.094 0.367 0.234

1000 0.199 0.065 0.364 0.182 0.201 0.068 0.365 0.190

Fast Sine

250 0.159 0.164 0.329 0.326 0.155 0.167 0.326 0.328

500 0.182 0.114 0.348 0.265 0.186 0.119 0.350 0.274

1000 0.199 0.079 0.363 0.216 0.201 0.086 0.365 0.229

Break

250 0.177 0.101 0.341 0.220 0.170 0.094 0.342 0.221

500 0.175 0.082 0.339 0.181 0.172 0.079 0.340 0.188

1000 0.174 0.076 0.337 0.162 0.172 0.077 0.338 0.171

Markov switching model with time varying transition probabilities convincingly outperforms

its static counterpart.

Next we verify the precision of the filtered transition probability estimates for the static

model with π00 and π11, and for the time varying model with π00,t and π11,t. In a Monte

Carlo study, the transition probabilities are simulated as part of the data generation process.

Hence we are able to compare true transition probabilities with their filtered estimates and

compute the mean squared error (MSE) and the mean absolute error (MAE) statistics. In

Table 3 we present the Monte Carlo averages of these two statistics, for the different data

generation processes, the different samples sizes and the two models: the static model (static)

and the time varying model (TV).

The results in Table 3 provide strong evidence that the Markov regime switching model

with time varying transition probabilities is successful in producing accurate filtered esti-
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mates of the probabilities for all different time varying patterns. It is only for the series that

are simulated from a model with constant transition probabilities that the MSE and MAE

statistics for the static model are smaller than those for the time varying model. For this

case, however, the absolute value of all statistics are of an order of magnitude smaller than for

all the other data generating processes. For constant transition probabilities, the differences

between the static and time varying model can thus be qualified as small. We also observe

that for increasing sample sizes T , the MSE and MAE statistics mostly decrease for the time

varying model, while this does not occur for the static model. To put these observations in

some perspective, we notice that the sinusoid patterns have the same number of swings over

the entire sample for different sample sizes. Therefore, the change in the transition proba-

bilities gets smaller per unit of time as T increases. It follows that the updating equation

(12) for the time varying model can track the true transition probability more accurately as

T increases. This mechanism does not affect the inaccuracy of the estimates obtained from

the static model.

6 An empirical study of U.S. Industrial Production

Markov regime switching models are popular in empirical studies of macroeconomic time

series. We therefore illustrate our new methodology for time varying transition probabilities

in an empirical study concerning a key variable for macroeconomic policy, U.S. Industrial

Production (IP). The time series for IP is obtained from the Federal Reserve Bank of St. Louis

economic database (FRED); we have monthly seasonally adjusted observations from January

1919 to October 2013, T = 1137. We analyze the percentage growth of IP (log-differences

×100) and consider the resulting series as our yt variable. Figure 1 presents both the IP

index and the IP percentage log differences yt.

6.1 Three model specifications

The time series of IP growth is relatively long. Inspecting the time series plot of yt, we

anticipate that there may be possible changes in both the mean and variance of the series

over time. To remain within a parsimonious modelling framework, we adopt the model of

Doornik (2013). Doornik analyzes a quarterly time series of post-war U.S. gross domestic

product growth by means of a Markov switching mean-variance component model. In our

specific setting, we consider a model with three regimes for the mean (m = 0, 1, 2) and

two regimes for the variance (v = 0, 1). The three regimes for the mean may represent

recession, stable and growth periods in U.S. production. Each regime for the mean consists

of a constant and pm lagged dependent variables for yt, with m = 0, 1, 2. The constant and

the pm autoregressive coefficients are collectively subject to the regime to which they belong.
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Figure 1: U.S. Industrial Production (monthly, seasonally adjusted) and IP percentage

growth (log-differences ×100)

Hence, in case of three regimes for the mean, we have 3 +
∑3

m=1 pm coefficients. The two

regimes for the variance may simply distinguish periods of low and high volatility. Hence

the number of coefficients for the variance part equals 2.

Model I: static specification

Let {zµt } and {zσt } denote the hidden processes that determine the mean and the variance

for the density of yt, respectively. We have

yt | (zµt = m, zσt = v, It−1) ∼ N
(
µm,t , σ

2
v

)
, m = 0, 1, 2, v = 0, 1, (17)

with the three mean equations

µm,t = φ0,m + φ1,myt−1 + . . .+ φpm,myt−pm , m = 0, 1, 2, (18)

where φ0,m is an intercept, φ1,m, . . . , φpm,m are autoregressive coefficients, for pm ∈ N+, and

σ2
1 and σ2

2 are the two variances. The transition probabilities for the mean and variance are

collected in the matrices Πµ and Πσ, respectively, which are given by

Πµ =

 πµ00 πµ01 1− πµ00 − π
µ
01

πµ10 πµ11 1− πµ10 − π
µ
11

πµ20 πµ21 1− πµ20 − π
µ
21

 , Πσ =

(
πσ00 1− πσ00

1− πσ11 πσ11

)
. (19)
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We follow Doornik (2013) in specifying the transition probability matrix for the 3 × 2 = 6

regimes as

Π = Πσ ⊗ Πµ,

where the 36 probabilities in Π are a function of 6 mean and 2 variance probabilities. The

conditional density of yt given It−1 can be expressed in terms of the filtered probabilities as

in (8). We have

p(yt|ψ, It−1) =


P[zµt−1 = 0, zσt−1 = 0|ψ, It−1]

P[zµt−1 = 1, zσt−1 = 0|ψ, It−1]
...

P[zµt−1 = 2, zσt−1 = 1|ψ, It−1]


′

(Πσ ⊗ Πµ)


p(yt;µ0,t, σ

2
0, It−1)

p(yt;µ1,t, σ
2
0, It−1)

...

p(yt;µ2,t, σ
2
1, It−1)


= ξ

′

t−1 (Πσ ⊗ Πµ) ηt. (20)

Next we consider two time varying extensions of the variance regimes in the static model.

After experimentation with time varying parameters for the mean regimes, we have concluded

that in our empirical setting only the introduction of time varying transition probabilities

for the variance regimes can improve the fit of the static model. We notice that once the

probabilities in Πσ are time varying, all probabilities in Π = Πσ ⊗ Πµ are time varying.

Model II: time varying variance probabilities as a function of |yt−1|

In model II, we construct a benchmark in the spirit of Diebold et al. (1994) and Filardo

(1994). We specify the time varying transition probabilities for the variance regimes in Πσ
t

as a logistic transformation of the lagged dependent variable, that is

πσvv,t =
exp(gvv,t)

1 + exp(gvv,t)
, gvv,t = c0,v + c1,v|yt−1|, v = 0, 1, (21)

where c0,v is an intercept and c1,v is a fixed coefficient, for v = 0, 1. The four c coefficients

are estimated by the method of maximum likelihood, jointly with the other coefficients.

Model III: time varying variance probabilities as a function of the score

In this specification of time varying transition probabilities for the variance regimes, we

adopt the framework of Section 3.2. Empirically, it turns out there is no need to shrink the

range of πii,t ex ante. We therefore set δii = 0 and specify the time varying matrix Πσ
t as

πσvv,t =
exp(fvv,t)

1 + exp(fvv,t)
, v = 0, 1, ft = (f00,t , f11,t)

′,

where ft is updated over time as in (12). The resulting conditional density for yt is given

by p(yt|ψ∗, It−1) = ξ
′
t−1 (Πσ

t ⊗ Πµ) ηt. The regime probability structure of Doornik (2013) is
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more restricted than the one for the general K-regime Markov switching model in Section 3.3.

We therefore have different expressions for the score vector and scaling matrix. The score

vector is given by ∇t = (∇00,t , ∇11,t)
′ where

∇vv,t =
πσvv,t(1− πσvv,t)
p(yt|ψ∗, It−1)

× ξ
′

t−1

(
∂Πσ

t

∂πσvv,t
⊗ Πµ

)
ηt, v = 0, 1,

with ξt−1 and ηt defined implicitly in (20). To compute the conditional Fisher Information

E[∇t∇′t], where E is with respect to p(yt|ψ∗, It−1), we evaluate 4 numerical integrals, for

every time t and for each value for the parameter vector ψ∗, by a Gauss-Hermite method.

6.2 Parameter estimates, model fit and residual diagnostics

Table 4 presents the parameter estimates for the three model specifications. For all models

we have taken pm = 3 in (18), with m = 0, 1, 2. We have experimented with other values

of pm but this choice provides an adequate fit. The parameter estimates are obtained by

numerically maximizing the log-likelihood function with respect to the static parameter

vector ψ or ψ∗. The associated standard errors are obtained by numerically inverting the

Hessian matrix at the maximized log-likelihood value. The sets of estimated coefficients

for the three mean regimes are very similar across the three model specifications. The

introduction of time varying variance transition probabilities does not appear to affect the

mean specification much. The coefficient φ0,m determines the interpretation of a regime. We

can learn from our estimation results that regime m = 0 corresponds to low IP growth, m = 1

represents recession and m = 2 identifies high growth in IP. The autoregressive coefficients

φ1,m, . . . , φ3,m show that in ”normal years” IP growth is persistent, while during recessions

IP growth is subject to persistent cyclical dynamics. Periods of high IP growth are very

short lived given the strong negatively estimated autoregressive coefficients for m = 2. The

estimated transition probabilities reveal the typical situation in regime switching models

that once we are in a recession or low growth regime, it is most likely that we remain in this

state. It is only for the high growth regime that it is more likely to move to a low growth

regime while the probability to stay, πµ22 = 1− πµ20 − π
µ
21, is estimated around 0.35.

For the variance regimes, the models clearly distinguish between a low (approximately

0.3) and a high (approximately 5.5 to 6.0) variance regime. The magnitudes of these variances

are again comparable across the different models. For Model I, both variance regimes are

highly persistent with probabilities πσ00 and πσ11 both estimated close to 1. We also learn from

Table 4 that the model fit has improved after introducing time varying variance transition

probabilities, both for Model II and Model III. The maximized log-likelihood values have

increased by 8 and 17 basis points at the cost of an additional 2 and 4 parameters for

the respective Models II and III. The corrected Akaike information criterion clearly points

to Model III as the best comprimise to model fit and a parsimonious model specification.
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The time varying transition probabilities for the low volatility (v = 0) and high volatility

(v = 1) regimes in Model III are highly persistent processes over time: the estimates for

the diagonal elements of B are very close to unity. From Model II we may conclude that

only the transition probability of a low volatility regime is time varying: the estimate of c1,1

is not significant. For Model III we find somewhat stronger evidence that both transition

probabilities are time varying: the estimates of both diagonal elements of A are significant

at the usual level of 5%.

Finally, Table 4 presents diagnostic test statistics for the generalized and Rosenblatt

residuals which we have discussed in Section 2. The p-values for the well-known Jarque-

Bera χ2 normality test and the Ljung-Box χ2 serial correlation test, for the residuals and the

squared residuals, indicate that all models are capable of describing the salient features in IP

growth. There are some differences between the statistics for the generalized and Rosenblatt

residuals, but they are small and have no bearings on the main conclusions. The Jarque-Bera

test may indicate that the IP growth time series is subject to a few outlying observations.

6.3 Signal extraction: regime and transition probabilities

In Figure 2 we present the smoothed estimates of probabilities for mean and variance regimes

and the filtered estimates of (time varying) transition probabilities for Models I, II and

III. Model II appears unable to capture the dynamics in the transition probabilities. We

have learned from Table 4 that the estimate of coefficient c1,1 is not significant; it is also

reflected in Figure 2 with the time series plot of the filtered probability estimates for the

high variance regime that is almost constant over time. On the other hand, the filtered

probability estimates for the low volatility regime are highly erratic.

The filtered probabilities for Model III show an entirely different pattern. Both the

low and high volatility transition probabilities evolve gradually over time. In particular,

the persistence of the low volatility regime appears to have gone up over time, with values

around 0.7 in the early part of the sample, and values close to 1 in the second half of the

sample. The converse holds for the high volatility regime. The persistence probability πσ11

is close to 1 up to the 1940s. After that, the probability decreases substantially to values

around 0.5, and slowly rises towards the end of the sample again. The pattern for the filtered

probabilities is consistent with the empirical pattern in the data in Figure 1. In the earlier

part of the sample, high volatility levels are predominant. Towards the middle of the sample,

large volatilities are incidental and short-lived, whereas towards the end of the sample during

the years of the financial crisis, U.S. debt ceiling crisis, and the European sovereign debt

crisis, higher volatility levels appear to cluster again more.

The empirical patterns are also corroborated by the parameter estimates in Table 4. In

particular, the parameter estimates for the diagonal elements of B are both close to 1; it

suggests that the dynamic transition probabilities evolve gradually over time. The estimates
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Table 4: Parameter estimates, model fit and residual diagnostics

In the first two panels we report the maximum likelihood estimates with standard errors in parantheses

below, for Models I, II and III. In the first panel the parameter estimates for the mean µm,t in (17) are

reported for each regime m = 0, 1, 2: the intercept φ0,m, the autoregressive coefficients φ1,m, . . . , φ3,m, and

the transition probabilities πµmj , for j = 0, 1, in Πµ of (19). In the second panel the two regime variance

estimates for σ2
v are reported. The variance transition probability for Model I πσvv is estimated directly while

we have πσvv = logit−1(xv) for Model II (xv = c0,v) and for Model III (xv = ωv/(1 − Bvv)), for v = 0, 1,

where ωv and Bvv are the (v + 1)th elements of vector ω and diagonal matrix B in (12), respectively. The

time varying variance probabilities are determined in Model II by c1,v, and in Model III by Avv and Bvv

which are the (v+ 1)th diagonal elements of A and B in (12), respectively, for v = 0, 1. In the third panel we

report model fit statistics: Fit(1) is number of static parameters; Fit(2) is maximized log-likelihood value;

Fit(3) is AICc, see Section 5.2. We further report the p-values of the residual diagnostic (RD) test statistics

for the generalized (et) and Rosenblatt’s residuals (ẽt): RD(1) is Jarque-Bera normality χ2(2) test; RD(2)

is Ljung-Box serial correlation χ2(6) test; RD(3) is as RD(2) for squared residuals.

Model I Model II Model III

m = 0 m = 1 m = 2 m = 0 m = 1 m = 2 m = 0 m = 1 m = 2

φ0,m 0.076 -0.212 0.846 0.068 -0.277 0.837 0.043 -0.128 0.737

(0.038) (0.182) (0.168) (0.037) (0.140) (0.172) (0.033) (0.095) (0.128)

φ1,m 0.316 1.121 -0.609 0.327 1.126 -0.621 0.351 1.087 -0.479

(0.050) (0.096) (0.135) (0.050) (0.088) (0.130) (0.040) (0.079) (0.107)

φ2,m 0.212 -0.569 -0.395 0.220 -0.526 -0.484 0.234 -0.537 -0.221

(0.050) (0.146) (0.123) (0.040) (0.139) (0.086) (0.037) (0.108) (0.086)

φ3,m 0.105 0.076 0.039 0.113 0.011 0.133 0.112 0.036 0.103

(0.037) (0.107) (0.124) (0.035) (0.115) (0.101) (0.030) (0.065) (0.092)

πµm0 0.909 0.111 0.577 0.909 0.113 0.592 0.864 0.145 0.576

(0.041) (0.103) (0.140) (0.032) (0.072) (0.142) (0.036) (0.070) (0.175)

πµm1 0.016 0.858 0.055 0.014 0.858 0.073 0.021 0.842 0.048

(0.019) (0.092) (0.052) (0.012) (0.064) (0.062) (0.015) (0.059) (0.055)

v = 0 v = 1 v = 0 v = 1 v = 0 v = 1

σ2
v 0.336 5.579 0.351 5.866 0.317 5.920

(0.025) (0.629) (0.026) (0.691) (0.023) (0.541)

πσvv 0.980 0.947 0.996 0.883 0.886 0.702

(0.007) (0.018) (0.003) (0.053) (0.080) (0.200)

c1,v -1.899 0.108

(0.419) (0.209)

Avv 0.132 0.148

(0.058) (0.074)

Bvv 0.998 0.989

(0.003) (0.011)

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

Fit(i) 22 -1642 3330 24 -1634 3317 26 -1625 3302

RD(i) et 0.065 0.772 0.556 0.032 0.968 0.659 0.019 0.792 0.924

RD(i) ẽt 0.011 0.409 0.648 0.012 0.830 0.738 0.007 0.632 0.676
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Figure 2: Smoothed probability estimates for the recession regime in the mean and for the

high variance regime. Filtered transition probability estimates for the low and high variance

regimes. In the first graph, the vertical gray areas indicate recessions according to the NBER

business cycle classifications.
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of both diagonal elements of A have the correct sign and lead to parameter changes that

increase the local fit of the model in terms of log-likelihood.

Finally, we present the smoothed estimates of zt in the top panels of Figure 2, together

with the NBER business cycle classifications. We may conclude that all models result in

higher smoothed recession probabilities in the NBER classified periods. The model fit for a

model with time varying transition probabilities for the variance regimes (Model II or III)

is typically higher than the static Model I. From the smoothed probabilities for the high

variance regime, most of the high variance regime is located in the first half of the sample.

The second episode of high variance is during the financial crisis, with the intermediate

period having predominantly a low level of volatility. We notice that some, but not all,

NBER recessions correspond to periods of high volatility. This supports the use of our

current framework with separate regimes for the (conditional) means and for the variances.

7 Conclusion

We have introduced a new methodology for time varying transition probabilities in Markov

switching models. We have shown that the use of the score of the predictive likelihood and

the generalized autoregressive score (GAS) modelling framework of Creal et al. (2013) can

drive the dynamics of the transition probabilities effectively over time. The corresponding

dynamics can easily be interpreted while the information embedded in the conditional ob-

servation densities are fully incorporated. We have formulated conditions for the estimated

time varying probabilities from our score driven model to converge to stationary and ergodic

stochastic processes.

By means of an extensive Monte Carlo study, we have shown that the our proposed

observation driven model is able to adequately track the dynamic patterns in transition

probabilities, even if the underlying dynamics themselves are possibly misspecified. Both for

deterministic structural breaks and deterministic sinusoid patterns, our model yields a large

improvement in model fit compared to a model with constant transition probabilities only.

In our empirical study for Industrial Production growth, we have shown that we can

effectively use the model dynamic features in the mean and variance simultaneously. We

have found that our proposed model outperforms both the Markov switching model with

constant probabilities and with transition probabilities depending on a lagged dependent

variable. In particular, the patterns filtered by our model can be easily interpreted, with

higher (lower) persistence for high (low) volatility regimes in the beginning of the sample

compared to the later part of the sample. Higher volatilities appear to re-occur again at the

very end of the sample, during the financial and sovereign debt crises. We conclude that the

model can provide a useful benchmark in settings where transition probabilities in a regime

switching model may vary over time.
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