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1 Introduction

This paper proposes a modeling framework that draws upon the self-exciting behavior of

stock returns around a financial market crash, which is similar to the seismic activity around

earthquakes. Incorporating the tendency for shocks to be followed by new shocks, our

framework is able to create probability predictions on a medium-term financial market crash.

A large literature in finance has focused on predicting the risk of downward price movements

one-step ahead with measures like Value-at-Risk and Expected Shortfall. Our approach

differs however as we interpret financial crashes as earthquakes in the financial market,

which allows us to develop an Early Warning System (EWS) for crash days within a given

period. The EWS is tested on S&P 500 data during the recent financial crisis, starting from

September 1, 2008. As will become apparent in later sections, our modeling framework differs

from Extreme Value models as we allow dependencies across arrival times and magnitudes

of shocks. At the same time, our framework differs from the conventional GARCH models

by generating highly insightful medium term forecasts, while not having to make stringent

assumptions on the tail behavior of error distributions. This makes our approach rather easy

to implement and understand in practice.

The identification and prediction of crashes is very important to traders, regulators of

financial markets and risk management because a series of large negative price movements

during a short time interval can have severe consequences. For example, on Black Monday,

that is October 19, 1987, the S&P 500 index registered its worst daily percentage loss of

20.5%. During the recent credit crisis, financial indices declined dramatically for numerous

days, thereby suffering its worst yearly percentage loss of 38.5 % in 2008. Unfortunately,

crashes are not easy to predict, and there still is a need for tools to accurately forecast the

timing of a series of large negative price movements in financial markets.

To initiate the construction of our modeling framework for stock market crashes, we first

focus on the potential causes of such crashes. Sornette (2003) summarizes that computer

trading, and the increased trading of derivative securities, illiquidity, and trade and budget

deficits and also overvaluation can provoke subsequent large negative price movements. More

importantly, Sornette (2003) points out that speculative bubbles leading to crashes are likely

to result from a positive herding behavior of investors. This positive herding behavior causes

crashes to be locally self-enforcing. Hence, while bubbles can be triggered by an exogenous

factor, instability grows endogenously. A model for stock market crashes should therefore

be able to capture this self-excitation. Notably, such a self-excitation can also be observed
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in seismic behavior around earthquake sequences, where an earthquake usually generates

aftershocks which in turn can generate new aftershocks and so on. For many academics

(and perhaps practitioners), earthquakes and stock returns therefore share characteristics

typically observable as the clustering of extremes and serial dependence.

Potential similarities across the behavior of stock returns around crashes and the dynam-

ics of earthquake sequences have been noted in the so-called econophysics literature, in which

physics models are applied to economics.1 In contrast to the studies in the econophysics lit-

erature and also to related studies like Bowsher (2007) and Clements and Liao (2013), in

our framework we do not model the (cumulative) returns but only the extreme returns. As

such, we most effectively exploit the information contained in the returns about the crash

behavior. As Aı̈t-Sahalia et al. (2013) already show, only taking the jump dynamics of

returns into account to approximate the timing of crashes gives more accurate results than

using the full distribution of the returns. As is well known, the distribution of stock returns

is more heavy-tailed than the Gaussian distribution as extreme returns occur more often

than can be expected under normality. Furthermore, the distribution of stock returns is

usually negatively skewed. As risk in financial markets is predominantly related to extreme

price movements, we propose to model only extreme (negative) returns in order to improve

predictions.

To model the extreme (negative) returns we use a particular model that is often used

for earthquake sequences, and which is the so-called Epidemic-type Aftershock Sequence

model (ETAS). This model has been developed by Ogata (1988) and its use for earthquakes

is widely investigated by geophysicists.2 In the ETAS model a Hawkes process, an inho-

mogeneous Poisson process, is used to model the occurrence rate of earthquakes above a

certain threshold. The jump rate of the Hawkes process increases when a jump (or shock)

arrives after which the rate decays as a function of the time passed since the jump. As the

probability of jumps increases after a jump has occurred, the Hawkes process is thus called

self-exciting. The ETAS model has been exploited for crime rates (Mohler et al., 2011) and

for the spread of red banana plants (Balderama et al., 2011). Interestingly, the ETAS model

has also been applied to financial data, for example to model arrival data of buy and sell

trades (Hewlett, 2006), the duration between trades (Bauwens and Hautsch, 2009) or the

returns on multiple indices (Aı̈t-Sahalia et al. 2013, Embrechts et al. 2011, and Grothe et

1See amongst others: Sornette, 2003, Weber et al., 2007, Petersen et al., 2010, Baldovin et al., 2011,

Baldovin et al., 2012a, Baldovin et al., 2012b, and Bormetti et al., 2013
2See amongst others: Ogata, 1998, Helmstetter and Sornette, 2002, Zhuang et al. 2002, Zhuang and

Ogata, 2004, Saichev et al., 2005, Hardebeck et al., 2008, and Veen and Schoenberg, 2008
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al. 2012).

Our modeling framework entails that we use the ETAS model as a tool to warn for an

upcoming crash (read: earthquake) in a financial market. As Herrera and Schipp (2009),

Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012), already showed

when deriving their Value-at-Risk and Expected Shortfall estimates, the ETAS model can

contribute to the modeling and prediction of risk in finance. However, in contrast to Herrera

and Schipp (2009), Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012)

who do not provide a practical tool like an Early Warning System or an easily interpretable

measure to quantify the risk of crashes, but instead we provide a ready-to-use application of

the information from an estimated ETAS model by means of an EWS.

In somewhat more detail, we consider several specifications of the key triggering functions.

The parameters of the Hawkes models are estimated by maximum likelihood. And, to

judge the fit of the different models, we compare the log-likelihoods and Akaike information

criterion (AIC) values. We also develop simulation procedures to graphically assess whether

data generated by the models can reproduce features of, for example, the S&P 500 data. The

correctness of the ETAS model specification is further evaluated by means of the residual

analysis methods as proposed in Ogata (1988). We review the performance of our Early

Warning System using the hit rate and the Hanssen-Kuiper Skill Score, and compare it to

EWS based on some commonly used and well known volatility models.

The estimation results confirm that crashes are self-enforcing. Furthermore we find that

on average larger events trigger more events than smaller events and that larger extremes

are observed after the occurrence of more and/or big events than after a tranquil period.

Testing our EWS on S&P 500 data during the recent financial crisis, we find positive Hanssen-

Kuiper Skill Scores. Thus as our modeling framework exploits the self-exciting behavior of

stock returns around financial market crashes, it is capable of creating crash probability

predictions on the medium term. Furthermore our modeling framework seems capable of

exploiting information in the returns series not captured by the volatility models.

Our paper is organized as follows. In Section 2 the model specifications are discussed,

as well as the estimation method. Estimation results are presented in Section 3. Section 4

contains an assessment of the models by means of simulations and residual analysis. The

Early Warning Systems are reviewed in Section 5 and compared to EWS based on volatility

models in Section 6. Section 7 concludes also with directions for further research.
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2 Models

The Epidemic-Type Aftershock Sequence (ETAS) model is a branching model, in which

each event can trigger subsequent events, which in turn can trigger subsequent events of

their own. The ETAS model is based on the mutually self-exciting Hawkes point process,

which is an inhomogeneous Poisson process. For the Hawkes process, the intensity at which

events arrive at time t depends on the history of events prior to time t.

Consider an event process (t1,m1),...,(tn,mn) where ti defines the time and mi the mark

of event i. Let Ht = {(ti,mi) : ti < tg} represent the entire history of events up to time t.

The conditional intensity of jump arrivals following a Hawkes process is given by

λ(t|θ;Ht) = µ0 +
∑
i:ti<t

g(t− ti,mi) (1)

where µ0 > 0 and g(s−ti,mi) > 0 whenever s > 0 and 0 elsewhere. The conditional intensity

consists of a constant term µ0 and a self-exciting function g(s), which depends on the time

passed since jumps that occurred before t and the size of these jumps. The rate at which

events take place is thus separated in a long-term background component and a short-term

clustering component describing the temporal distribution of aftershocks. The conditional

intensity uniquely determines the distribution of the process.

We consider the following specifications of triggering functions

gpow(t− ti,mi) =
K0

(γ(t− ti) + 1)1+ω
eα(mi−M0) (2)

gexp(t− ti,mi) = K0e
−β(t−ti)+α(mi−M0) (3)

where K0 controls the maximum triggering intensity. Furthermore in (3) K0 covers the

expected number of events directly triggered by an event in (3). In (2) the parameter γ

controls the expected number of descendants of an event.

The possibility of an event triggering a subsequent event decays according to a power

law distribution for (2), while it decays according an exponential distribution for (3). The

parameters ω and β determine how fast the possibility of triggering events decays with

respectively the time passed since an event. When ω and β are larger, the possibility that

an event triggers another event dies out more quickly.

When α 6= 0 the intensity at which subsequent events are triggered by an event is

influenced by the size of the event. The minimum magnitude of events that are modeled

and marked as an event is represented by M0. How much the size of an event affects the
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possibility of triggering other events is determined by α. Assuming that larger events trigger

more events than smaller events, so that α > 0, the possibility of triggering events increases

with the size of the excess magnitude of an event (x = mi −M0). The larger α, the more

pronounced is the influence of the size of events.

The process is stationary when the expected number of off springs of an event, that is the

branching ratio n, is smaller than 1. When n ≥ 1 the number of events arriving will grow

to infinity over time. The condition for stationarity of the Hawkes process with triggering

function (2) and (3) can be stated as respectively∫ ∞
0

gpow(t− ti,mi)dt =
K0

γω
< 1 (4)∫ ∞

0

gexp(t− ti,mi)dt =
K0

β
< 1 (5)

As shown in Herrera and Schipp (2009), Chavez-Demoulin, Davison and McNeill (2005)

and Chavez-Demoulin and McGill (2012), the sizes of excess magnitude of the events in our

model follow a Generalized Pareto Distribution, that is

Gξ,σ(x) =

 1−
(

1 + ξ x
σ(t)

)−1/ξ
ξ 6= 0

1− e−
x
σ(t) ξ = 0

where σ(t) = φ+ η
∑

i:ti<t
g(t− ti,mi). We examine models with a constant scale parameter

(η = 0) and a history dependent scale parameter (η 6= 0). The hypothesis underlying the first

class of models states that the sizes of the events are unpredictable, whereas in the second

class of models the times and sizes of previous events affect the probability distribution of

the sizes of subsequent events. The larger η, the more pronounced is the influence of the

history of events on the size of subsequent events. The mean and variance of the distribution

of the sizes of excess magnitudes of the events scale with σ(t). Therefore when φ or η is

larger, the events modeled are on average larger and deviate more in size.

We investigate several specifications of the ETAS model. We consider both the power

law triggering function (2) and the exponential triggering function (3) with and without

influence of the magnitude of events on the triggering of subsequent events and with and

without influence of the history of events on the magnitude of subsequent events. In Table

1 it is set out how the different models are configured.

[Table 1 about here.]
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While Bacry et al. (2011) use a non-parametric kernel estimation technique for a sym-

metric Hawkes process on high frequency data, we prefer parametric kernel estimation to

make the model more interpretable. We can advocate this technique as the literature is not

consistent in which triggering function to use for financial data. A well known stylized fact

of the absolute returns is that they decay roughly according to a power law (Cont, 2001).

Selçuk and Genlçay (2006), Weber et al. (2007) and Petersen et al. (2010) conclude that

the intraday volatility of stock returns above a certain threshold decays roughly according

a power-law, approximating the intraday volatility by the absolute returns. However while

for example Hardiman et al. 2013, find power law functions fit the S&P 500 data, others re-

port the superior performance of exponential functions (Filimov and Sornette, 2013, among

others). We consider both functions.

We estimate the parameters θ = {µ,K0, γ, ω, β, ξ, φ, η} of the models by maximum like-

lihood. The log-likelihood of the model is given by

logL(θ) =
N∑
i=1

log λ(ti|θ;Ht)− log σ(t) +

(
1 +

1

ξ

)
log

(
1 + ξ

mi −M0

σ(t)

)
−
∫ T

0

λ(ti|θ;Ht)dt

(6)

where λ(ti|θ;Ht) is the conditional intensity and ti are the event arrival times in the inter-

val [0, T ]. We optimize the log-likelihood numerically using the Nelder-Mead simplex direct

search algorithm. The difficulty of accurately estimating the parameters of a Hawkes process

has well been recognized in the literature on Hawkes processes 3. Therefore we exploited dif-

ferent estimation methods and optimization algorithms and test our procedure on simulated

data series.

The probability of the occurrence of an event following a Hawkes process with conditional

intensity λ(t|θ;Ht) between tn−1 and tn is given by

Pr (N(tn)−N(tn−1) > 0) = 1− Pr (N(tn)−N(tn−1) = 0)

= 1− F (t∗ > tn − tn−1)

= exp

(
−
∫ tn

tn−1

λ(t|θ;Ht)dt

) (7)

Thus, using the conditional intensity (1) specified by the estimated parameters of the ETAS

models and the history of the stock returns, we are able to predict the probability of the

3See amongst others: Rasmussen, 2013, Filimonov and Sornette, 2013, Hardiman et al., 2013, Aı̈t-Sahalia

et al., 2013, Chavez-Demoulin et al., 2012, Bacry et al., 2012, Veen and Schoenberg, 2008
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occurrence of an event during a given time period. These probability predictions form the

basis of our Early Warning system.

3 Application to Financial Data

We consider data of the S&P 500 index over a period from 2 January, 1957, to 1 September,

2008 to calibrate our models and 5 years thereafter for an out-of-sample evaluation of the

models. The dataset consists of daily returns Rt = pt−pt−1

pt−1
× 100, where pt denotes the value

of the index at t. Figure 1 shows the evolution of respectively the S&P 500 index and the

returns on this index. Severe drops in the price index ans large negative returns corresponding

to these drops, are observed around famous crash periods, “Black Monday” (1987) and the

stock market downturn of 2002 after the “dot-com bubble” (1997-2000). Furthermore the

Figure illustrates the clustering of extreme returns, that is tranquil periods with small price

changes alternate with turbulent periods with large price changes. This clustering feature

can be related to the positive herding behavior of investors and the endogenous growth of

instability in the financial market.

We apply the ETAS models to the 95% quantile of extreme returns and the 95% quantile

of extreme negative returns referred to as extremes and crashes, respectively. The quantiles

correspond with 687 events over a time period of 13, 738 trading days. The estimation results

are presented in Table 2 and Table 3.

Giving interpretation to the parameter µ, returns above the 95% threshold not triggered

by previous extremes, occur on average at a daily rate that ranges from 0.0058 (model

A) to 0.0078 (model H). Over the time period approximately 80–107 of the total of 687

events arrived spontaneously according to the models. This means that about 84–88% of

the events took place by self-excitement. For the crashes, the mean background intensity of

events ranges from 0.0075 (model A, B and E) to 0.0111 (model H), so that about 78–85%

of the events are triggered by other events according to the models. Also for both sets of

returns the branching ratio (n), that is the expected number of descendants of an event,

lies between 0.8 and 0.9 in the models where the magnitude of an event has no influence

on the triggering of descendants (α = 0). When α 6= 0, the branching ratio, depends on

the magnitude of the event. However the branching ratio of an event with the threshold

magnitude (M0) lies above 0.7 in the models. Therefore, as α > 0, the minimum expected

number of descendants of an event in these models lies above 0.7.

We can therefore state that many extreme movements in the S&P 500 index are triggered
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by previous extreme movements in this index. This does not come as a surprise as the

clustering and serial dependence of extremes is a well known feature of stock returns. It

confirms our expectation that crashes are local self-enforcing and grow endogenously as

events provoke the occurrence of new events.

The ETAS models with a power law triggering function (models A to D) have a higher

log-likelihood and a lower AIC value, than their counterparts with an exponential triggering

function (models E to H) for both sets of returns. The decay of the triggering probability

seems slower than exponential for our data. When the estimate for ω is large or not signif-

icant, this indicates that other distributions like the exponential or hyperbolic distribution

can be more appropriate.

Comparing the ETAS models with the parameter restriction α = 0 to the ETAS models

without this restriction, the magnitude of an extreme has a significant positive influence on

the probability of triggering another extreme for both sets of returns. This means that on

average larger events trigger more events than smaller events. The models B, D, F and H

have a higher ranking both in terms of log-likelihood as in AIC value than their counterparts

with α = 0, that is model A, C, E and G respectively. Incorporating the size of the events

into an ETAS model for the extreme (negative) returns thus improves the model.

The estimates for η in the models C, D, G and H are positive and significant for both sets

of returns. The models score better in both log-likelihood and AIC value than the models

A, B, E and F. This suggests a model which incorporates the history of the event process

to prospect the sizes of subsequent events, matches the extreme (negative) returns closer

than a model which assumes the sizes of events are independent of the past. When η > 0,

the mean and variance of the distribution of the excess magnitudes of the events scale with

the value of the cumulative triggering function, and thus the probability of the arrival of an

event triggered by another event. This means that on average larger extremes are observed

after the occurrence of more and/or big events than after a tranquil period.

A likelihood ratio test shows that all the estimated parameters of the models are signif-

icant at a 5% level. All together model D with a power law triggering function, a non-zero

influence of the size of the events on the triggering of subsequent events and predictable

event sizes, fits best according to the log-likelihoods and AIC values for both the extremes

as the crashes.

Figure 2 presents the intensity with which extremes occur estimated with model D, over

the estimation period, that is from 2 January, 1957, to 1 September, 2008. The estimated

intensity shows large spikes around the famous crash periods, “Black Monday” (1987) and
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the “stock market downturn of 2002” (2002) after the “dot-com bubble” (1997-2000). As

expected, the rate at which events arrive is high around crashes, reflecting the increase in

the triggering probability after the occurrence of events.

[Figure 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Figure 2 about here.]

4 Goodness-of-fit

4.1 Simulation

To check whether our estimated models can reproduce features of the extreme (negative)

returns we develop two different simulation procedures and compare their generated data

with the observed data. While in the first procedure the probability of occurrence of an event

is used to realize a series of events in discrete time, the second procedure is carried out in

continuous time employing the branching structure of the ETAS model. In the first procedure

events can occur at a daily frequency. In the second procedure event times are not integers

and multiple events can occur during one day. As the first procedure seems to resemble

the data generating process more closely, we only discuss results from this procedure. Both

procedures can be found in the appendix.

We generate 1000 data series from the models using the parameters estimates derived

from the extreme negative returns on the S&P 500 index (Table 3). We set the sample period

equal to the number of trading days over which we estimated the models for the S&P 500

crashes. Estimation results for these series are shown in Table 4. One thing that stands out

is the estimation results of the ETAS models with a power law triggering function (models

A to D) are not so satisfactory. The maximum likelihood estimation does not converge in

a number of simulations. Furthermore the estimated ω̂ of the triggering functions deviate

much from the ω used to simulate the data and the standard deviations of the ω̂ are much

larger than the standard deviation of ω̂ derived from the crashes. The estimates for ω derived

from data series generated with a continuous time procedure are much closer to values used

to simulate the series. Also the standard deviations of these ω̂ are much smaller.
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We have examined several methods to simulate and estimate the ETAS model with the

power law triggering function. When estimating the models, the Expectation-Maximization

procedure of Veen and Schoenberg (2008), the Bayesian procedure of Rasmussen (2011) and

gradient-based optimization algorithms give inferior results in terms of speed and robustness

for our kind of data. The estimated ETAS models with the exponential triggering function

(models E to H) appear more reliable.

In Figure 3 the S&P 500 crashes are compared to a series simulated with the discrete

time procedure from model D (power law triggering function) and H (exponential triggering

function), the ETAS models with a non-zero influence of the magnitude on the triggering

of subsequent events and a non-zero influence of the history of the event process on the

sizes of subsequent events. Models D and H have the highest log-likelihoods and lowest AIC

values amongst the models, when applied to the crashes. The simulated series share the

major features characteristic to the models and similar to the crashes like the clustering of

events, heavy-tailed distributed event sizes, and large events are especially observed after the

occurrence of more and/or other big events. Histograms show the data simulated with the

discrete time procedure differs from the S&P 500 data as much less event pairs are observed

with an inter event time of 1 or 2 days. Examining plots of the logarithm of the cumulative

number of events against the logarithm of time, model H seems to match the crashes more

closely than model D. However, when looking at the figures that show the magnitudes and

times of events, the clustering of the S&P 500 crashes is more similar to the clustering

observed when events are simulated from model D.

[Table 4 about here.]

[Figure 3 about here.]

4.2 Residual analysis

We also assess the goodness-of-fit of our models using the residual analysis technique of Ogata

(1988). This method states that if the event process {ti} is generated by the conditional

intensity λ(t), the transformed times

τi =

∫ ti

0

λ(t)dt (8)
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are distributed according a homogeneous Poisson process with intensity 1. Furthermore the

transformed interarrival times, that is

τi − τi−1 =

∫ ti

ti−1

λ(t)dt (9)

are independent exponential random variables with mean 1. If the models are correctly

specified, λ(t) can be approximated by λ(t|θ̂;Ht). The sequence {τi} is called the residual

process. In order to verify whether the residual process derived from the models is Poisson

with unit intensity, we perform the Kolmogorov-Smirnov (KS) test. The null hypothesis of

our test is that the distribution of the residual process and the unit Poisson distribution are

equal.

The p-values of the KS tests are reported in Table 5. Figure 4 shows the cumulative

number of S&P 500 crashes against the transformed times derived from model D and model

H together with the 95% and 99% error bounds of the KS statistic. The p-values and the

Figure indicate that the extreme (negative) returns do not deviate from an event process

specified by an ETAS model at a 5% level. However the p-values belonging to the power law

models are higher than the p-values of the exponential models. The models with a non-zero

influence of the magnitude of events on the triggering of events and the models with a zero

influence of the history of the event process on the magnitude of events have higher p-values

than their counterparts. Overall, p-values are higher for the extremes than for the crashes.

This suggests that ETAS models are more suitable for the extremes than for the crashes,

whereas model B fits both sets of returns the best.

[Table 5 about here.]

[Figure 4 about here.]

5 Forecasting

5.1 Early Warning System

The identification of financial market crashes is of great importance to traders, regulators of

financial markets and risk management. They can benefit from an Early Warning System

that sets an alarm when the probability of a crash becomes too high, urging the traders, reg-

ulators and risk managers to take action. We develop an Early Warning System for extremes
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and crashes in the financial market within a certain time period using the conditional inten-

sity specified by the estimated parameters of the ETAS models and the history of the stock

returns. The probability of an extreme or a crash occurring between tn−1 and tn is given by

(7). To evaluate the performance of the EWS, we use measures reported in Candelon et al.

(2012). We do not compute the optimal threshold value for giving an alarm. Instead we set

the threshold at 0.5. Therefore an alarm is given when the models predict that it is more

likely that at least one event occurs than that no event occurs within a certain time period.

Here we consider the occurrence of events within a time period of 5 days during the last few

years, that is from 1 September, 2008, to 1 January, 2013, and during the recent financial

crisis, that is from 1 September, 2008, to 1 January, 2010.

To compare the probability predictions made by the different models, we compute the

Quadratic Probability Score (QPS) and the Log Probability Score (LPS) for each model,

that is

QPS =
2

T

T∑
t=1

(p̂t − yt)2 (10)

LPS = − 1

T

T∑
t=1

[(1− yt) log (1− p̂t) + yt log (p̂t)] (11)

where pt represents the predicted probability of crash and yt is an indicator function taking

the value one when a crash occurs and the value zero otherwise. The QPS and LPS range

respectively from 0 to 1 and from 0 to ∞, with 0 indicating perfect accuracy.

When the QPS or the LPS are higher, the probability predictions deviate more from

a binary variable indicating the occurrence of events. The LPS punishes large deviations

heavier than small deviations. The QPS and the LPS are displayed in Table 6. LPS of

the models with a size-dependent triggering probability are slightly lower. QPS and LPS

of the models with an exponential triggering function are slightly lower during the financial

crisis of 2008 than the QPS and LPS of the models with a power law triggering function.

The probability predictions for crashes seem somewhat less accurate than the probability

predictions for the extremes as the QPS and LPS of the models for crashes are higher than

the QPS and LPS of the models for extremes.

Furthermore we compare the accuracy of the probability predictions made by the differ-

ent models. For nested models, that is the models with the same triggering function with

and without influence of the size of the events on the triggering probability, we compute

the adjusted Mean Squared Prediction Error (adjusted MSPE). According to the adjusted
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MSPEs the probability predictions based on models with a size-dependent triggering prob-

ability are significantly more accurate from 1 September, 2008, to 1 January, 2013. For the

non-nested models, that is the models with a different triggering function, we compute the

Diebold Mariano (DM) statistic. According to the DM statistics the models with an ex-

ponential triggering function predict the probability on crashes significantly more accurate

during the financial crisis of 2008 than the models with a power law triggering function.

Table 9 reports the number of correct predictions, the number of false predictions, the

hit rate, the false alarm rate and the Hanssen-Kuiper Skill Score of the EWS. As a reference,

no events are predicted by an EWS using a homogeneous Poisson model. Here the intensity

of the Poisson process is set equal to the number of events during the forecast period divided

by the length of the forecast period. The Hanssen-Kuiper Skill Score (KSS) is computed as

the hit rate minus the false alarm rate. The KSS of all EWS are positive, meaning that the

rate of correct predictions is higher than the rate of false predictions, whereas KSS of the

Poisson-EWS is zero. The KSS of models with a size-dependent triggering probability are

slightly higher. The KSS of the models with an exponential triggering function are slightly

higher during the financial crisis of 2008 than the KSS of the models with a power law

triggering function.

Figure 5 shows the predicted probability of a financial market crash occurring within 5

days based on the models C and G, from 1 September, 2008, to 1 January, 2013. The Figure

shows that during the financial crisis of 2008 the crash probability is exceptionally high.

The crash probability also becomes high when the stock market falls at the end of July/the

beginning of August, 2011. Comparing the crash probabilities based on the different models,

the model with the power law triggering function (model C) forecasts a higher probability

on a crash than the model with the exponential triggering function (model G). Furthermore

during the financial crisis of 2008, the risk of a crash decays more slowly according to model

C than to G.

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

[Figure 5 about here.]
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6 Comparison volatility models

We are interested in whether our models are capable of getting information out of stock

market data on future crashes or extremes, not captured by commonly used and well known

volatility models. In order to assess whether this is the case, we compare the performance of

the Early Warning Systems based on the ETAS models with EWS based on GARCH-type

and ACD-type models. For the EWS we again consider the occurrence of events within a

time period of 5 days during the last few years, that is from 1 September, 2008, to 1 January,

2013.

In General AutoRegressive Conditional Heteroskedasticity (GARCH) type models, the

variance of the current error term is a function of the error terms and innovations in previous

periods. The time-varying conditional variance enables the models to capture the volatil-

ity clustering feature of stock market returns. After evaluating the performance of several

GARCH-type models and error distributions we consider two GARCH-type models, that is

the GARCH(1,1) model and the GJR(1,1) model, in combination with a Student-t distribu-

tion for the error terms. The heavy-tailed Student-t distribution accounts for the stylized

fact that, even after correcting for volatility clustering, extreme returns occur more often

than under normality (Cont, 2001). As shown by Hansen and Lunde (2005), it is difficult to

beat the GARCH(1,1) model when forecasting conditional volatility. The GJR(1,1) model

of Glosten, Jagannathan and Runkle differs from the GARCH(1,1) model, as the model

allows for separate influences of positive and negative innovations on future volatility. This

asymmetric response to shocks, or so-called “leverage effect”, is in line with the observation

that measures of the volatility of assets tend to correlate negatively with the returns on

those assets (Cont, 2001). This can be of an advantage when modelling returns (see Hua

and Mansan, 2013). The conditional variance σ2
t in respectively the GARCH(1,1) and the

GJR(1,1) model is specified as follows

σ2
t = ω + αε2t−1 + βσ2

t−1 (12)

σ2
t = ω +

(
αε2t−1 + γI [εt−1 < 0]

)
ε2t−1 + βσ2

t−1 (13)

Autoregressive Conditional Duration type models, see Engle and Russell (1998), focus on

modeling the expected duration between events. As well as in the ETAS models, the condi-

tional intensity in these models is a function of the time between past events. Futhermore

the event process on which the models are based is self-exciting. Analogous to GARCH-

type and Hawkes models, ACD-type models are therefore able to pick up the characteristic

clustering of extreme stock market returns. After evaluating the performance of several
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ACD-type models and error distributions we consider two ACD-type models, that is the

ACD(1,1) model and the log-ACD(1,1) model, in combination with a Generalized Gamma

distribution. Like Bauwens et al. (2004) and Allen et al. (2009), we find other ACD-type

models much more costly to estimate and to evaluate, but not of superior performance,

while the use of the Generalized Gamma distribution instead of the epxonential or Weibull

distribution does add to the performance of the models. A survey on ACD-type models is

provided by Pacurar (2008).

In the regular ACD model the expected duration is a linear function of past durations and

conditional durations. The logarithmic version of the ACD model implies a nonlinear relation

between the variables, which guarantees positive durations without imposing restrictions on

the parameters. The duration in the ACD(1,1) and the log-ACD(1,1) model is given by

τt = θtzt, where zt independent and identically distributed according to the Generalized

Gamma distribution such that E[zt] = 1. In respectively the ACD(1,1) and the log-ACD(1,1)

model is θt is specified as follows

θt = ω + ατt−1 + βθt−1 (14)

log(θt) = ω + α log(τt−1) + β log(θt−1) (15)

We apply the models again for daily return data on the S&P 500 index between 2 January,

1957, and 1 September, 2008. Like the ETAS models, the volatility models are estimated by

maximum likelihood in combination with the Nelder-Mead simplex direct search algorithm.

Consulting Andersen, Bollerslev et al. (2006) and Lau and McSharry (2010) for forecasting

multi-step ahead densities with GARCH-type models, we use Monte Carlo methods to derive

the probability of the occurence of no event within a certain period. For the ACD-type

models this probability follows easily from the model specification, by noticing it is equal to

the probability of the duration exceeding the time period.

6.1 In sample results

In order to evaluate the ability of ETAS models to exploit information in the returns series

not captured by GARCH-type models, we apply the ETAS models to the standardized

residuals from the GARCH-type models. The results of this exercise are reported in 10 and

11. As estimated parameters are significant, our evidence for ETAS models is not simply

driven by volatility clustering. A likelihood ratio test shows that only the α parameter is not

significant at a 5% level, such that the size of previous extreme residuals does not seem to
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influence the probability of the arrival of new extremes. As the η parameter is significantly

different from zero at a 5% level, and the models with a non-zero η parameter have a higher

log-likelihood and a lower AIC value than their counterparts with η = 0, the size of future

extreme residuals appears to be affected by the history of the event process.

We check the goodness-of-fit of the ETAS models by means of residual analysis, and verify

whether the distribution of the transformed times is unit Poisson with the Kolmogorov-

Smirnov (KS) test. The p-values of the KS tests are reported in Table 12. The (negative)

extremes do not deviate from an event process specified by a ETAS model at a 1% level.

At a 5% level the ETAS models are only inappropriate for negative extremes from the

GARCH(1,1) model at the 95% and 96% quantile. Not surprisingly the models without

influence of the magnitude of events on the triggering of events have slightly higher p-

values than their counterparts. Overall, p-values are higher for absolute extremes than

for negative extremes. Also p-values are higher for the standardized residuals from the

GJR(1,1) model than for the standardized residuals from the GARCH(1,1) model, especially

at higher quantiles. This suggests ETAS models are most suitable for absolute extremes of

the standardized residuals from the GJR(1,1) model.

[Table 10 about here.]

[Table 11 about here.]

[Table 12 about here.]

6.2 Out-of-sample results

Tables 13 and 14 report the results of the EWS based on the GARCH-type, the ACD-

type and two ETAS models for the extreme (negative) returns above the 95–99% in sample

quantile. It is immediately apparent from the tables that the ACD-type models do not

perform well. While the EWS based on the the ACD(1,1) model predicts the occurrence of

an event almost every period, the EWS based on the log-ACD(1,1) model predicts far too

few events over the out-of-sample period. This results in a KSS around zero (the KSS is

even slightly negative for some model-quantile combinations).

In constrast to the ACD-type models, both GARCH-type models are capable of delivering

accurate warning signals. Overall the GJR(1,1) does slightly better than the GARCH(1,1)

in terms of their KSS. Compared to the ETAS models the KSS of the EWS for crashes are

slightly higher. However the EWS based on the ETAS model outperform the EWS based on
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the GARCH-type models for extremes, especially at higher quantiles. Examining whether

using information on positive extreme returns improves forcasting the occurrence of negative

extreme returns with ETAS models, our findings are in line with Embrechts et al. (2011).

Negative extremes do help to forecast positive ones, however this does not apply the other

way around.

However forecasting with the GARCH-type models is much more time consuming than

forecasting with the other models. Using these models, the probability distribution of the

occurence of one or more events during an certain time period, has to be derived empirically

by means of a Monte Carlo procedure. Roughly about one to two hours are needed to execute

the Monte Carlo simulation and deduce alarm signals over the out-of-sample period (when

using 10, 000 replications), while with EWS based on ETAS models, it takes no more than

half a second to compute forecasts.

[Table 13 about here.]

[Table 14 about here.]

7 Conclusion

This paper explores similarities between stock returns during a financial market crash and

earthquakes to make predictions of the probability of a crash in the financial market. We

provide a ready-to-use application of this information by means of an Early Warning System.

The basis of the models examined is the self-exciting Hawkes point process. The rate

at which events arrive is separated in a long-term background component and a short-term

clustering component describing the temporal distribution of triggered events.

The models are applied to the 95% quantile of extreme (negative) returns on the S&P

500 index over a period from 2 January, 1957, to 1 September, 2008. The estimation results

confirm that like earthquakes, crashes are self-enforcing. The decay of the probability of

triggering events seems better modeled by the power law distribution than by the exponential

distribution. The triggering probability is size-dependent, as larger events trigger on average

more events than smaller events. The sizes of events are history dependent, as on average

larger extremes are observed after the occurrence of more and/or big events than after a

tranquil period.

Simulated series have the major features that are characteristic to the models and sim-

ilar to the extreme (negative) returns like the clustering of events, heavy-tailed distributed
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event sizes, and that the large events are especially observed after the occurrence of more

and/or other big events. Furthermore performing residual analysis, we find that the extreme

(negative) returns do not significantly deviate from an event process specified by a Hawkes

model.

We develop an Early Warning System for events in the financial market based on the

probability of the occurrence of an event within a certain time period predicted by the models.

These are reviewed from 1 September, 2008, to 1 January, 2010, and from 1 September, 2008,

to 1 January, 2013. Testing the EWS, the rate of correct predictions is higher than the rate

of false predictions. Thus as our modeling framework exploits the self-exciting behavior

of stock returns around financial market crashes, it is capable to create crash probability

predictions on the medium term. The models with an exponential triggering function and a

non-zero influence of the size of events on the triggering probability perform best according

to the Hanssen-Kuiper Skill Score.

From 1 September, 2008, to 1 January, 2013, we also consider EWS based on some

commonly used and well known volatility models. While the ACD models do not perform

well, the GARCH models are, like our models, capable of delivering accurate warning sig-

nals. However our models outperform the GARCH models for extremes, especially at higher

quantiles. Moreover, forecasting with GARCH models is much more time consuming, taking

over a hour compared to less than half a second using our models.

In order to further evaluate the ability of our models to exploit information in the returns

series not captured by GARCH models, the models are applied to the standardized residuals

from the GARCH models. The significance of the parameters indicates that GARCH-models

do not completely capture the self-exciting behavior of crashes. Moreover, checking the

goodness-of-fit of the models by means of residual analysis, we find that our models are

appropriate for modeling the extreme residuals from the GARCH models.

We indicate four directions for further research. The first is the application of the models

to high-frequency stock market data. The second is a multivariate extension of the models

as events tend to occur simultaneously in financial markets. Furthermore, the models could

benefit from the addition of a time-varying exogenous component to the conditional intensity.

This allows the models to incorporate information of precursors of financial market crashes.

Lastly, models with a regime-switching conditional intensity could match the data more

closely.
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A Simulation procedures

Discrete time procedure

1. Simulate the time till the first event from an exponential distribution with parameter

µ. As no other events are present yet the occurrence of the first event is Poisson

distributed with µ, the constant background rate. The time of the event t1 recorded is

the end of the interval in which the event occurs. Simulate the magnitude of the event

from an independent General Pareto Distribution.

2. For tn after t1 calculate the probability of the occurrence of no event in the interval

[tn−1, tn], that is (7). Simulate a random number u from a uniform distribution on

the interval [0, 1]. When u > P (N(tn)−N(tn−1) = 0) record the time point tn as

the time of an event and simulate the magnitude of the event from a General Pareto

Distribution. When u < P (N(tn)−N(tn−1) = 0) do nothing.

3. Repeat for all time points after t1 till tn = T .

Continuous time procedure

1. Sample the background events

(a) Simulate the number of background events, Nback as Nback = µ× T .

(b) Simulate the times of the background events tback as random numbers between

zero and T . That is tback = u × T , where u is a (Nback × 1)-vector containing

random numbers from a uniform distribution on the interval [0, 1].

(c) Simulate the magnitudes of background events mback from an independent General

Pareto Distribution.

2. Sample the triggered events

(a) Simulate the number of triggered events Noff from a Poisson distribution with an

intensity given by the mean number of children of a parent event following that

event in the given time window. The mean number of children of a parent is equal

to the integrated triggering function, that is

G(T − tparent,mparent) =
K0

γω

(
1− (γ(T − tparent) + 1)−ω

)
eα(mparent−M0) (16)

G(T − tparent,mparent) =
K0

β

(
1− e−β(T−tparent)

)
eα(mparent−M0) (17)
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for the power law triggering function and the exponential triggering function

respectively.

(b) Simulate the times of these events toff from the following distribution

P (t∗ ≤ t0 + t|t∗ > t0, t
∗ < T ) =

F (t0 + t)− F (t0)

F (T )− F (t0)
=
S(t0)− S(t0 + t)

S(t0)− S(T )
(18)

where St is the survival function of the hazard model, that is S(t) = 1−F (t). The

probability of no event in the interval [0, t] for events distributed according a homo-

geneous Poisson process is given by P (N(t) = 0) = F (t∗ > t) = (λt)0e−λt

0!
= e−λt.

The Hawkes process is an inhomogeneous Poisson process, where the intensity

of the process between 0 and t is not constant, so that λt has to replaced with

G(t− ti,mi) = −
∫ t
0

∑
i:ti<t∗

g(t∗ − ti,mi)dt
∗.

(c) Simulate the magnitudes of these events moff from an independent General Pareto

Distribution.

(d) Repeat the simulation of triggered events till Noff = 0.
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Figure 1: S&P 500 index

(a) Prices (b) Returns

Evolution of the S&P 500 index prices and returns over the period January 2, 1957, until
September 1, 2008
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Figure 2: Conditional intensity model D

(a) Extremes (b) Crashes

Estimated conditional intensity for the 95% quantile of daily extreme (negative) returns over
the period January 2, 1957, until September 1, 2008, using model D
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Figure 4: Residual analysis for the S&P 500 crashes

(a) Model D (b) Model H

Cumulative number of events against the transformed time {τi}. The red lines indicate the
95% and 99% error bounds of the Kolmogorov-Smirnov statistic.
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Figure 5: Crash probability predictions

(a) Model C (b) Model G

The probability of the occurrence of a crash within 5 days is predicted according to the models
C and G (blue lines) from 1 September, 2008, to 1 January, 2013. When this probability
is larger than 0.5 the background is shaded. The green line corresponds to the predicted
probability of the occurrence of a crash within 5 days according to a homogeneous Poisson
model with intensity equal to the number of crashes during the forecast period divided by
the length of the forecast period.
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Table 1: Specification ETAS models

Model A B C D E F G H
Triggering function Power law Exponential

Influence magnitude events α = 0 α 6= 0 α = 0 α 6= 0 α = 0 α 6= 0 α = 0 α 6= 0
Influence event history η = 0 η = 0 η 6= 0 η 6= 0 η = 0 η = 0 η 6= 0 η 6= 0

Influence magnitude on triggering subsequent events is zero when α is restricted to 0. Influ-
ence event history on magnitude events is zero when η is restricted to 0.
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Table 5: Kolmogorov-Smirnov tests

Model A B C D E F G H

Extremes 0.2204 0.3906 0.1881 0.3277 0.1441 0.2594 0.0974 0.1697

Crashes 0.2003 0.3192 0.1488 0.2523 0.0613 0.1041 0.0501 0.0824

The tests are performed on the transformed times {τi} specified by the models. The null
hypothesis of the test is transformed times {τi} are distributed according to a homogeneous
Poisson process with intensity 1. In the Table the p-values of the Kolmogorov-Smirnov tests
are reported.
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Table 6: Quadratic and Log Probability Scores

2008–2013 2008–2010

Model A C E G A C E G

Crashes QPS 0.39 0.39 0.39 0.39 0.41 0.41 0.40 0.40
LPS 0.58 0.58 0.58 0.58 0.60 0.60 0.59 0.59

Extremes QPS 0.33 0.32 0.32 0.32 0.29 0.29 0.29 0.28
LPS 0.51 0.50 0.51 0.50 0.46 0.45 0.45 0.45

QPS and LPS of probability predictions of the occurrence of events within 5 days from 1
September, 2008, to 1 January, 2013 and from 1 September, 2008, to 1 January, 2010.
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Table 7: Diebold Mariano Statistics

2008–2013 2008–2010

Models E G E G

Crashes A 1.30 1.57 2.02 1.90
C 0.81 1.20 1.97 1.89

Extremes A 1.24 2.29 1.15 1.37
C 0.16 1.53 0.56 0.98

DM statistics comparing predictions of non-nested models. Probability predictions of the
occurrence of events within 5 days are made from 1 September, 2008, to 1 January, 2013
and from 1 September, 2008, to 1 January, 2010.
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Table 8: Adjusted Mean Squared Prediction Errors

2008–2013 2008–2010

Models A-C E-G A-C E-G

Crashes 2.58 1.83 1.76 0.47

Extremes 2.29 2.94 1.88 1.50

Adjusted MSPE comparing predictions of nested models. Probability predictions of the
occurrence of events within 5 days are made from 1 September, 2008, to 1 January, 2013
and from 1 September, 2008, to 1 January, 2010.
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Table 9: Results for the Early Warning Systems

2008–2013 2008–2010

Model A C E G A C E G

Crashes Hits 248 249 243 242 161 161 158 156
False alarms 140 137 136 134 68 66 64 62
Hit rate 0.61 0.61 0.60 0.60 0.87 0.87 0.85 0.84
False alarm rate 0.19 0.19 0.19 0.18 0.41 0.40 0.39 0.38
KSS 0.42 0.43 0.41 0.41 0.45 0.46 0.46 0.46

Extremes Hits 341 343 333 335 221 220 218 216
False alarms 118 121 113 107 58 57 52 50
Hit rate 0.74 0.74 0.72 0.72 0.94 0.93 0.92 0.92
False alarm rate 0.18 0.18 0.17 0.16 0.51 0.50 0.46 0.44
KSS 0.56 0.56 0.55 0.56 0.43 0.43 0.47 0.48

Hits, hit rates, false alarms, false alarm rates and the Hanssen-Kuiper Skill Scores (KSS) of
the EWS predicting the occurrence of events within 5 days from 1 September, 2008, to 1
January, 2013 and from 1 September, 2008, to 1 January, 2010. An event is predicted when
the probability according to the models given the history of the event process exceeds 0.5.
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Table 12: Kolmogorov-Smirnov tests

GARCH GJR

Model E F G H E F G H

Extremes

Quantile (%) 95 0.2099 0.2096 0.2106 0.2104 0.1589 0.1578 0.1773 0.1763
96 0.1529 0.1523 0.1527 0.1522 0.2916 0.2903 0.2915 0.2902
97 0.2410 0.2403 0.2395 0.2395 0.3825 0.3800 0.3803 0.3784
98 0.1419 0.1418 0.1420 0.1418 0.4072 0.4062 0.4059 0.4055
99 0.1246 0.1070 0.1245 0.1072 0.4243 0.4229 0.4240 0.4229

Crashes

Quantile (%) 95 0.0378 0.0378 0.0428 0.0428 0.0789 0.0788 0.0798 0.0798
96 0.0384 0.0384 0.0398 0.0400 0.0580 0.0577 0.0577 0.0573
97 0.0959 0.0961 0.0961 0.0956 0.1234 0.1229 0.1230 0.1226
98 0.1097 0.1095 0.1095 0.1094 0.1980 0.1977 0.1988 0.1981
99 0.0725 0.0722 0.0725 0.0722 0.2531 0.2528 0.2570 0.2567

The tests are performed on the transformed times {τi} specified by the models. The null
hypothesis of the test is transformed times {τi} are distributed according to a homogeneous
Poisson process with intensity 1. In the Table the p-values of the Kolmogorov-Smirnov tests
are reported.
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