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Abstract

We consider the dynamic factor model where the loading matrix, the dynamic factors

and the disturbances are treated as latent stochastic processes. We present empirical

Bayes methods that enable the efficient shrinkage-based estimation of the loadings and

the factors. We show that our estimates have lower quadratic loss compared to the

standard maximum likelihood estimates. We investigate the methods in a Monte Carlo

study where we document the finite sample properties. Finally, we present and discuss

the results of an empirical study concerning the forecasting of U.S. macroeconomic

time series using our empirical Bayes methods.
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1 Introduction

Consider the dynamic factor model for N time series and T time periods given by

yi,t = λ′iαt + εi,t, i = 1, . . . , N, t = 1, . . . , T, (1)

where yi,t is the observation corresponding to variable i and time period t, λi is the r × 1

vector of factor loadings, αt is the r× 1 vector of dynamic factors and εi,t is the disturbance

term. The aim is to decompose the vector of time series observations yt = (y1,t, . . . , yN,t)
′ into

two independent components: a common component that is driven by r common dynamic

processes in the vector αt and an idiosyncratic component represented by the N time series

processes εi,t. Dynamic factor models are typically used for macroeconomic forecasting or

structural analysis; see for example Stock en Watson (2002a) and Bernanke et al. (2005).

The reviews of Bai en Ng (2008) and Stock en Watson (2011) provide more discussion and

references.

We consider the dynamic factor model (1) for the case where the loading vectors λi,

the dynamic factor vectors αt and the disturbances εi,t are all treated as stochastic pro-

cesses. More specifically, the loading vectors are assumed to be normally and independently

distributed while the dynamic factors are specified as a stationary vector autoregressive pro-

cess. The stochastic assumptions for both the loadings and factors have been considered

earlier in Bayesian dynamic factor analysis; see for example Aguilar en West (2000). How-

ever, they contrast with most other specifications, where the elements of the loading vectors

and possibly the factors are treated as deterministic unknown variables; see Stock en Watson

(2011).

For the dynamic factor model (1) with stochastic components we develop empirical

Bayesian methods for the estimation of the loadings and the factors. This approach com-

bines the benefits of dimension reduction imposed by the structure of the dynamic factor

model, see Forni et al. (2000) and Stock en Watson (2002b), with shrinkage-based parame-

ter estimation, see James en Stein (1961), Efron en Morris (1973), Knox et al. (2004) and

Efron (2010). In particular, we estimate the loadings and factors using filtering methods

and the vector of unknown parameters, which is associated with the stochastic processes for
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λi, αt and εi,t, using the maximum likelihood method. The resulting filtered estimates have

lower expected quadratic loss compared to the standard maximum likelihood estimates for

approximate dynamic factor models. The implementation of empirical Bayes methods for

the dynamic factor model is non-trivial given the product of stochastic variables λi and αt in

(1). Standard state space methods, as discussed in Durbin en Koopman (2012), for example,

cannot be used and need to be modified. In particular, we provide three new results.

First, we apply the iterative conditional mode algorithm of Besag (1986) for obtaining

the posterior modes of the loadings and the factors, simultaneously. The algorithm iterates

between the updating of the loadings conditional on the factors and vice versa. We show

that this algorithm can be implemented in a computationally efficient manner by exploiting

the results of Jungbacker en Koopman (2014) and Mesters en Koopman (2014). We show

that after convergence we have obtained the joint posterior mode of the loadings and factors.

Second, we develop a two-step estimation procedure for the vector of deterministic model

parameters using likelihood-based methods. In the first step we treat the elements of the

loading matrix deterministic and estimate the model using standard state space methods;

see Jungbacker en Koopman (2014) and Doz et al. (2012). This gives maximum likelihood

estimates for the loadings and the parameters that pertain to the distributions of the factors

and the disturbances. In the second step we estimate the parameters that pertain to the

distribution of the loadings using the maximum likelihood estimates for the loadings as

observations.

Third, we consider the estimation of other posterior statistics, such as the posterior mean

and the posterior variance of the loadings and the factors. We argue that analytical solutions

are not available when both λi and αt are considered stochastic; see also the arguments

provided in Bishop (2006, Chapters 8 and 12). We can resort to simulation methods which are

a standard solution for the estimation of latent variables in nonlinear models. However, given

the typical large dimensions of the dynamic factor model (N, T > 100), standard simulation

methods converge slowly and are unreliable because they are subject to so-called infinite

variance problems; see Geweke (1989). To solve this problem we factorize the estimation

into two separate parts: one for the loadings and one for the factors. We show that the

integral over the factors can be calculated analytically, while the integral over the remaining

λ-dependent terms can be calculated using basic simulation methods. The performance of
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the “integrated” simulation-based estimation methods is more stable and has overall good

properties.

The factors and loadings of the dynamic factor model are traditionally estimated by

principal components and maximum likelihood methods; see for example Watson en En-

gle (1983), Stock en Watson (1989), Sargent (1989), Forni et al. (2000), Stock en Watson

(2002b), Bai (2003), Bai en Ng (2008), Doz et al. (2012), Bai en Li (2012), and Jungbacker

en Koopman (2014), where the loadings and, in some occasions, the factors are treated de-

terministic. More recently, a variety of two-step estimation methods have been proposed to

combine the favorable elements of both traditional estimation methods. They typically rely

on a principal components step to first approximate the factor space after which regression

or state space methods are used to estimate the underlying factor dynamics; see for examples

Stock en Watson (2005), Giannone et al. (2008), Doz et al. (2011), Breitung en Tenhofen

(2011) and Bräuning en Koopman (2013). Alternatively, and more related to our model

specification, Bayesian Markov Chain Monte Carlo (MCMC) methods for state space mod-

els can be used to jointly estimate the factors and loadings. In this approach, the loadings

are typically treated as part of the parameter vector; examples are Kose et al. (2003) and

Bernanke et al. (2005). Recent advances in Bayesian dynamic factor analysis that aim to

model the loading matrix more sparsely include Bhattacharya en Dunson (2011), Kaufmann

en Schumacher (2013) and Nakajima en West (2013).

The benefits of our model specification and estimation methods can be summarized as

follows. First, we show that the parametric empirical Bayes joint posterior mode estimates

for the loadings and the factors are more accurate in the mean squared error (MSE) sense

when compared to the maximum likelihood estimates; see Hansen (2013). The differences

are significant and large for both the loadings and the factors. The reductions in MSE for

the loadings can be as large as 80% depending on the data generating process, number of

factors and panel sizes. Under various forms of misspecification for the disturbances the

differences remain the same. Second, given that the loadings and factors are estimated more

accurate it follows that the resulting forecast errors are smaller when compared to those

resulting from the maximum likelihood estimates. This is illustrated in our empirical study

where we consider out-of-sample forecasting for a panel of macroeconomic and financial time

series. Third, from a computational perspective, by computing several integrals analytically
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we reduce the computational complexity when compared to hierarchical Bayesian MCMC

methods that also aim to learn about the prior distributions. While we predominantly focus

on empirical Bayes methods, the results can be adapted for full Bayesian inference methods

as well. Finally, our methods produce posterior estimates that are not subject to errors and

they do not depend on Taylor expansions or discrete function approximations. Therefore

they compare favorably to other algorithms for nonlinear state space models such as the

extended Kalman filter of Anderson en Moore (1979) and the unscented Kalman filter of

Julier en Uhlmann (1997).

This paper develops and evaluates parametric empirical Bayes methods for dynamic

factor models in finite sample settings. A full asymptotic analysis of the empirical Bayes

posterior mode estimates is beyond the scope of the paper. Such an analysis involves de-

veloping a limit theory for the posterior mode estimates when N, T → ∞. Similar analysis

have been recently conducted by Doz et al. (2012) and Bai en Li (2012), who consider the

analysis of maximum likelihood estimates for the dynamic factor model with deterministic

loadings. We leave this for future work.

The remainder of this paper is organized as follows. In the next section we detail the

specification of the dynamic factor model with stochastic loadings. In Section 3 we discuss the

implementation of the empirical Bayesian estimation methods. The finite sample properties

of the posterior mode estimates are studied in a Monte Carlo study that is presented in

Section 4. The methods are evaluated for different panel sizes and different number of factors.

In Section 5 we present the results from our empirical study for macroeconomic forecasting

with many predictors (see Stock en Watson (2002b) and Stock en Watson (2012)). Section

6 concludes the paper and provides some directions for further research.

2 Dynamic factor model with stochastic loadings

We define the dynamic factor model with stochastic loadings for N variables which are

indexed by i = 1, . . . , N . The variables are observed over time for a span of T periods;

each time period is indexed by t = 1, . . . , T . The observation vector yt = (y1,t, . . . , yN,t)
′ is
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modeled by

yt = Λαt + εt, εt ∼ NID(0,Ω),

Λ = {λ1, . . . ,λN)′, λi ∼ NID(δ,Σλ),

αt+1 = Hαt + ηt, ηt ∼ NID(0,Ση), t = 1, . . . , T,

(2)

where Λ is the N × r loading matrix, with r < N , αt is the r × 1 vector of common

dynamic factors and εt is the N × 1 is the disturbance vector, with mean zero and variance

matrix Ω. The loading vectors λi are normally and independently distributed with mean

δ variance Σλ. The dynamic factors αt follow a vector autoregressive process of order one,

with r × r coefficient matrix H and r × r variance matrix Ση. The initial state vector α1

is normally distributed with mean a1 and variance matrix P1. Our estimation methods are

sufficiently general to consider more elaborate specifications for the factors. For notational

and expositional convenience, we focus on the basic specification in (2).

The observation equation of model (2) can also be written as

yt = (α′t ⊗ IN)λ+ εt, εt ∼ N(0,Ω), (3)

where λ = vec(Λ) = (λ́′1, . . . , λ́
′
r)
′ and the N × 1 vector λ́j is the jth column of Λ, for

j = 1, . . . , r. This alternative representation of the observation equation is convenient for

our exposition below. To identify the space of the model components and the underlying

parameters several strategies can be pursued; see Bai en Li (2012) for a recent discussion.

The dynamic factor model with stochastic loadings is subject to the following identifying

restrictions for the factor and loading spaces.

Assumption 1. Consider the dynamic factor model in (2). We assume the following.

(a) Common factors

The r×1 vector of common factors αt is stationary and restricted such that Var(αt) =

Ir; see Ansley en Kohn (1986). The initial state is given by α1 ∼ N(0, Ir), that is

a1 = 0 and P1 = Ir. The common innovations ηt and the initial state α1 are mutually

independent and distributed independent of the loading vectors λi and the disturbances

εi,s, for all i = 1, . . . , N and s, t = 1, . . . , T .
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(b) Loading vectors

The loading vectors λi in (2), for i = 1, . . . , N , are distributed normally and indepen-

dently with mean δ and positive definite variance Σλ. The distribution of the loadings

λi is independent of the disturbances εt, for all i = 1, . . . , N and t = 1, . . . , T .

(c) Disturbances

The disturbance vectors εt in (2) are distributed normally and independently with mean

zero and diagonal variance matrix Ω = diag(ω2
1, . . . , ω

2
N).

The assumptions 1.(a) and 1.(c) are standard for exact dynamic factor models and identify

the factor space; see Doz et al. (2012). Assumption 1.(b) is novel but necessary. The value

for Σλ determines the shrinkage for the loadings. Assumption 1.(c) rules out cross-section

and serial correlation in the disturbances but allows for heteroskedasticity. Serial correlation

can be handled by rewriting the model; see Stock en Watson (2005) and Jungbacker en

Koopman (2014). To identify a particular rotation of the loadings and factors we need to

impose hierarchical constraints on r vectors of the loading matrix Λ; see Geweke en Zhou

(1996). The choice for the restrictions will typically depend on the empirical application of

interest and we consider different choices in Sections 4 and 5.

It follows from Brown en Rutemiller (1977) that under Assumption 1 the mean and

variance for the observations yi,t are given by

E(yi,t) = E(λ′iαt) + E(εi,t) = E(λ′i)E(αt) + E(εi,t) = 0 (4)

Var(yi,t) = Var(λ′iαt) + Var(εi,t)

= E(λ′i)Var(αt)E(λi) + E(α′t)Var(λi)E(αt) + Tr [Var(λi)Var(αt)] + Var(εi,t)

= Tr(δδ′ + Σλ) + ω2
i , (5)

where Tr() denotes the trace operator. These moment expressions do not rely on the nor-

mality assumptions.

The equations in (2) define the dynamic factor model with stochastic loadings. The

parameters pertaining to the model are collected in the vector ψ. For our model (2) it

contains the unrestricted elements of δ, Σλ, H , Ση and Ω. We notice that the number of
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deterministic parameters is much smaller compared to the standard dynamic factor model

with deterministic loadings as considered in for example Jungbacker en Koopman (2014)

and Doz et al. (2012). When Σλ → ∞ the prior restriction on the loading matrix vanishes

and when H → 0 and Ση →∞ prior restriction on the factors vanishes.

In our exposition below we assume that the panel of observations is balanced and that

there are no missing observations. This assumption is merely for notational convenience and

in Appendix E we present the adjustments for the methods of Section 3 for the case where

there are observations missing. The adjustments are minor.

3 Estimation of the loadings, factors and parameters

We develop the parametric empirical Bayesian methods for the estimation of the loadings,

factors and the parameter vector for the dynamic factor model in (2) given the conditions in

Assumption 1. The posterior modes of the loadings and factors are estimated using filtering

methods and the vector of deterministic parameters is estimated by maximum likelihood.

We provide an iterative algorithm for computing the joint posterior modes of the loadings

and factors. The posterior mode estimates provide the point estimates and are the subject of

our Monte Carlo study in Section 4. Further, we develop methods for the estimation of other

posterior statistics for the loadings and the factors. These are necessary for the construction

of finite sample confidence intervals.

3.1 Joint posterior mode analysis

The posterior modes for λ = vec(Λ) and α = (α′1, . . . ,α
′
T ,α

′
T+1)

′ are defined by

{λ̂, α̂} = arg max
λ,α

log p(λ,α|y;ψ), (6)

where y = (y′1, . . . ,y
′
T )′. The direct optimization of p(λ,α|y;ψ) with respect to λ and α

is complicated as the first order conditions for λ and α depend on each other and solving

analytically, or numerically, for either one is infeasible when N and T are large. The following

theorem shows that we can separate the first order conditions of the posterior density into

two parts. One part that can be used for calculating the posterior mode of λ and another
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part that can be used for calculating the posterior mode of α.

Theorem 1. For y defined by model (2) it holds, under Assumption 1, that

∂ log p(λ,α|y;ψ)

∂(λ′,α′)′

∣∣∣∣
λ=λ̃,α=α̃

=
∂ log

[
p(λ|y;α = α̃,ψ)p(α|y;λ = λ̃,ψ)

]
∂(λ′,α′)′

∣∣∣∣∣∣
λ=λ̃,α=α̃

,

for all given λ̃ and α̃.

The proof is given in Appendix A. The decomposition of the score function in Theorem

1 enables the efficient computation of the posterior modes of both λ and α. It holds that λ̂

can be found by maximizing log p(λ|y;α = α̂,ψ) with respect to λ. Also, α̂ can be found

by maximizing log p(α|y;λ = λ̂,ψ) with respect to α. The modes, means and variances

of p(λ|y;α = α̂,ψ) and p(α|y;λ = λ̂,ψ) can be evaluated using standard methods. In

particular, conditionally on α the observation equation (3), together with the marginal

density for λ forms a linear Gaussian regression model. Multivariate regression methods are

used to evaluate the mean and variance of p(λ|y;α = α̂,ψ). The mode follows from the

equality between the mean and mode for the Gaussian density. Also, conditional on λ model

(2) is a linear Gaussian state space model. The mean, and thus the mode, and variance of

p(α|y;λ = λ̂,ψ) are evaluated by the Kalman filter smoother; see Durbin en Koopman

(2012, Chapter 4).

However, we can only obtain the modes λ̂ or α̂ when we have knowledge of either α̂ or

λ̂. The iterative conditional mode algorithm proposed in Besag (1986) provides a simple

and stable solution for this problem. For the model (2) the following Theorem summarizes

this algorithm.

Theorem 2. Suppose that p(λ,α|y;ψ) is uni-modal in λ and α with λ̂ and α̂ being the

only stationary points. We assume that the conditions in Assumption 1 hold. For given

arbitrary starting values λ(s) 6= 0, for s = 0, and using Theorem 1, the posterior modes λ̂

and α̂ in (6) can be obtained by iterating between

(i) α(s) = E(α|y;λ = λ(s−1),ψ);

(ii) λ(s) = E(λ|y;α = α(s),ψ);
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(iii) s = s+ 1,

until convergence.

The proof is presented in Appendix B, together with the details for the efficient compu-

tation of E(α|y;λ = λ(s−1),ψ) and E(λ|y;α = α(s),ψ). The computational advances are

based on Jungbacker en Koopman (2014) and Mesters en Koopman (2014). The algorithm

can be viewed as the expectation conditional maximization (ECM) algorithm of Meng en

Rubin (1993), where the E-step is unity. We notice that the steps (i) and (ii) in this algorithm

are M-steps since given the Gaussian Assumption 1 the conditional expectations are equal

to conditional maximization steps. The assumption of uni-modality is not different from the

assumptions on the ECM algorithm and, as argued in Meng en Rubin (1993), not different

from the assumptions for the EM algorithm. In practice, we use as a convergence criteria

||λ(s)i,j /λ
(s−1)
i,j − 1|| < 10−5 and ||α(s)

j,t /α
(s−1)
j,t − 1|| < 10−5, for all i = 1, . . . , N , j = 1, . . . , r and

t = 1, . . . , T .

While the conditional modes can be calculated iteratively up to any degree of accuracy, we

should emphasize that the curvatures around p(λ,α|y;ψ) and p(λ|y;α = α̂,ψ)p(α|y;λ =

λ̂,ψ) are different. The former takes into account the posterior dependence between λ and

α, while the latter does not. Nevertheless, the point estimates for the factors in (6) are

interesting from a classical perspective as they can be compared to the standard maximum

likelihood estimates that compute the posterior mean of the factors given the maximum

likelihood estimate for the loading matrix. To operationalize the computation of the posterior

mode estimates using Theorem 2, we require a choice for the parameter vector ψ, which is

the topic of the next section.

3.2 Likelihood evaluation

The parameter vector ψ contains the parameters that pertain to the distributions of the

loadings, factors and the disturbances. The estimation of the parameter vector is based

on maximum likelihood. For model (2) it is difficult to evaluate the marginal likelihood

L(ψ;y) = p(y;ψ) analytically. This follows as the product of stochastic variables Λ and

αt prohibits closed form solutions for the integral representation of the marginal likelihood
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given by

p(y;ψ) =

∫
α

∫
λ

p(y,λ,α;ψ) dλ dα. (7)

More specifically, both sequential methods, such as filtering, and iterative methods, such

as the expectation-maximization procedures, require at some point the evaluation of the

conditional mean function E(Λαt|y1, . . . ,ys;ψ), for some s ∈ {1, . . . , T}. Since closed form

expressions for the conditional expectation of products of stochastic variables do not exist

we cannot use these methods.

To solve this problem we rely on a two-step estimation method. We decompose the

parameter vector ψ = {ψ1,ψ2}, where ψ1 = {Ω,H ,Ση} and ψ2 = {δ,Σλ}. In the first

step we consider the classical state space problem given by

{λ̃, ψ̂1} = arg max
λ,ψ1

log p(y|λ,ψ1), (8)

where λ is treated deterministic; see Jungbacker en Koopman (2014) and Doz et al. (2012).

The conditional likelihood p(y|λ,ψ1) is evaluated via the prediction error decomposition

given by

log p(y|λ;ψ1) = −NT
2

log 2π − 1

2

T∑
t=1

(
log |Ft|+ v′tF−1t vt

)
, (9)

where the quantities vt = yt − Λat and Ft = ΛPtΛ
′ + Ω are computed by the Kalman

filter. It holds that at = E(αt|yt−1, . . . ,y1,λ) and Pt = Var(αt|yt−1, . . . ,y1,λ), which are

also functions of λ and are computed by the Kalman filter. The likelihood can be optimized

with respect to λ and ψ1 using numerical optimization methods. Computation efficiency

can be improved by using the methods discussed in Jungbacker en Koopman (2014). We

emphasize that λ̃ is the maximum likelihood estimate for the loadings.

In the second step we estimate the parameters ψ2 by solving

ψ̂2 = arg max
ψ2

log p(λ̃;ψ2), (10)

where the observations λ̃ are obtained from the first step and the density p(λ̃;ψ2) is implied

by assumption 1.(b). It is easy to verify that the procedure yields consistent estimates for

the parameter vector ψ; see for example Newey en McFadden (1994).
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3.3 Posterior Statistics for the Loadings

We consider the evaluation of the posterior means and variances of the loadings and the

factors. For the mean and the variance analytical solutions are not available as the product

of Λ and αt prohibits closed form solutions. Instead, we show that when evaluating the mean

and variance of the loadings and the factors the factors can be integrated out analytically.

The reverse is also possible but computationally much harder. To evaluate the resulting

expressions, which only depend on the latent vector λ, we develop adequate importance

densities that are based on the Laplace approximation; see So (2003) and Jungbacker en

Koopman (2007). Thus, we do half the work analytically and the other half by simulation

methods.

Let f(λ) denote some arbitrary vector function of λ. In the simplest case f(λ) = λ. We

are interested in estimating the conditional mean function f̄ = E(f(λ)|y;ψ). It holds that

f̄ =

∫
λ

f(λ)p(λ|y;ψ) dλ, (11)

where the posterior density p(λ|y;ψ) is of unknown form. This can be seen by noticing

that p(λ|y;ψ) ∝ p(y|λ;ψ)p(λ;ψ), where p(y|λ;ψ) follows from the prediction error de-

composition that is provided by the Kalman filter; see equation (9). The elements of the

latent loading vector λ enter the log density (9) nonlinearly in both the mean vector and

the variance matrix. Therefore the posterior density p(λ|y;ψ) has a complicated form.

To solve the problem of evaluating the integral in (11) we make use of the importance

sampling technique. We rewrite the integral (11) using the importance density g(λ|y;ψ). It

holds that

f̄ =

∫
λ

f(λ)
p(λ|y;ψ)

g(λ|y;ψ)
g(λ|y;ψ) dλ. (12)

In Appendix C we show that the Monte Carlo estimate of (12) is given by

f̄ =

∑M
j=1 f(λ(j))wλ(y,λ(j);ψ)∑M

j=1wλ(y,λ(j);ψ)
, M →∞, (13)

where wλ(y,λ(j);ψ) = p(y|λ;ψ) / g(y|λ;ψ) and where the samples λ(j) are drawn from

g(λ|y;ψ). The importance density g(λ|y;ψ) targets p(λ|y;ψ), which is the marginal pos-
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terior density of the loadings that does not depend on α. An adequate importance density

g(λ|y;ψ) that accurately approximates the marginal posterior density p(λ|y;ψ) needs to

be obtained. An initial candidate that seems appropriate is p(λ|y;α = α̂,ψ). While the

location of this density is accurately chosen it can be verified that its variance is too small

relative to p(λ|y;ψ) since p(λ|y;α = α̂,ψ) does not account for the variance of the posterior

mode estimate α̂.

Instead, we choose g(λ|y;ψ) to follow a Gaussian distribution, where the mean and the

variance are equal to the mode and the curvature around the mode of p(λ|y;ψ). So (2003)

and Jungbacker en Koopman (2007) argue that the mode can be obtained by maximizing

log p(λ|y;ψ) = log p(y|λ;ψ) + log p(λ;ψ) − log p(y;ψ) with respect to λ. We notice that

this conditional mode is different from the conditional mode given in Theorem 2. From

Jungbacker en Koopman (2007, Theorem 1) it follows that the mode and curvature can be

found by the following Newton-Raphson steps:

(i) Initialize λ = λ∗;

(ii) Compute

x = λ∗ − {p̈(y|λ∗;ψ)}−1 ṗ(y|λ∗;ψ), C = −{p̈(y|λ∗;ψ)}−1 ,

where

ṗ(y|λ;ψ) =
∂ log p(y|λ;ψ)

∂λ
, p̈(y|λ;ψ) =

∂2 log p(y|λ;ψ)

∂λ∂λ′
;

(iii) Update λ∗ by computing E(λ|x;ψ), where x = λ+ u, with u ∼ N(0,C);

(iv) Iterate between (ii) and (iii) until convergence.

After convergence λ∗ is equal to the mode of p(λ|y;ψ) and C is equal to the curvature

around the mode. The main difficulty in the implementation of these steps is the computation

of the derivatives in step (ii) since λ occurs in the log-determinant, the inverse and the

predictive mean and variance of the density p(y|λ;ψ) in (9). Given that the derivatives of

the marginal likelihood are equivalent to the derivatives of the expected complete likelihood,

Koopman en Shephard (1992) show that the derivatives can be computed in closed form.
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Explicit expressions for the dynamic factor model with given loadings are given in Jungbacker

en Koopman (2014).

The resulting importance density is chosen as g(λ|y;ψ) ≡ N(λ∗,C∗), where C∗ =

Var(λ)−Var(λ)(Var(λ)+C)−1Var(λ) evaluated at λ = λ∗. The observation model for x in

step (iii) can be used for sampling and to compute the weights wλ(y,λ(j);ψ). We typically

ignore the off-diagonal elements in C as they do not affect the quality of the weights. In our

Monte Carlo study we show that the weights that result from this choice for the importance

density have finite variance for all model specifications that we consider. Given that the

model for x is low dimensional and static by construction, sampling from g(λ|y;ψ) can be

implemented in a computationally efficient way.

By integrating out α analytically via the Kalman filter we reduce the amount of simu-

lation and the simulation variance. This is a direct application of the Rao-Blackwellization

principal, which is discussed in general in Doucet et al. (2001, pp. 499-515) and Durbin en

Koopman (2012, Section 12.7).

3.4 Posterior Statistics for the Factors

Similar results can be obtained for functions of the factors. In particular, define h(α)

as a vector function of α. We are interested in estimating the conditional mean function

h̄ = E(h(α)|y;ψ). Similar as for the loadings it holds that

h̄ =

∫
α

h(α)p(α|y;ψ) dα, (14)

where the marginal conditional density p(α|y;ψ) is unknown when λ is stochastic. We do

not want to construct an additional importance density for the estimation of the factors

for the following two reasons. First, when α constitutes a persistent dynamic process, ap-

proximating p(α|y;ψ) accurately in high dimensions is complicated; see for example Koop-

man et al. (2014). Second, given that an accurate importance density is obtained, sampling

from it is typically computationally demanding. Therefore we take a different approach and
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rewrite the integral in (14) as

h̄ =

∫
λ

∫
α

h(α)p(α,λ|y;ψ) dα dλ

=

∫
λ

∫
α

h(α)p(α|λ,y;ψ)p(λ|y;ψ) dα dλ

=

∫
λ

E(h(α)|y,λ;ψ) p(λ|y;ψ) dλ. (15)

We have rewritten the conditional mean function in terms of the marginal posterior density

of the loadings. For a given value of λ, we can evaluate E(h(α)|y,λ;ψ) using the Kalman

filter smoother for many functions h(α). From Section 3.2 we have learned that analytic

expressions for the moments of p(λ|y;ψ) do not exist. In Appendix D we develop the Monte

Carlo estimate for h̄ which is given by

h̄ =
M−1∑M

j=1 E(h(α)|y,λ(j);ψ) wλ(y,λ(j);ψ)

M−1
∑M

j=1 wλ(y,λ(j);ψ)
, M →∞, (16)

where the weights wλ(y,λ;ψ) are defined below (13) and the samples λ(j) are drawn from

g(λ|y;ψ). Given that for every draw λ(j) we can evaluate E(h(α)|y,λ(j);ψ) analytically,

we only require the construction of the importance density g(λ|y;ψ), as in Section 3.3, for

the estimation of h̄.

4 Simulation study

In this section we study the finite sample properties of the methods that are discussed in

Section 3. Our main interest is to compare the empirical Bayes estimates with the classical

maximum likelihood estimates. The empirical Bayes point estimates that we consider are the

posterior mode estimates from Section 3.1. The estimates are computed given the estimated

parameter vector ψ̂ which is obtained as discussed in Section 3.2. The maximum likelihood

estimates for the loadings are given by λ̃ in (8) and the corresponding smoothed estimates

for the factors are given by α̃t = E(αt|y; λ̃, ψ̂1); see Jungbacker en Koopman (2014) and

Doz et al. (2012). We study the differences between the empirical Bayes and maximum

likelihood estimates for different data generating processes that are outlined below.
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Further we examine the validity of the importance sampling methods that are discussed

in Sections 3.3 and 3.4. We estimate the variances of the integrated importance sampling

weight function wλ(y,λ;ψ). We apply the extreme value based tests that are discussed in

Koopman et al. (2009) to determine whether the variance of the weights exists and hence

whether a central limit theorem for the importance sampling estimate applies; see Geweke

(1989).

4.1 Simulation design

We study the dynamic factor model for different cross-section and time series dimensions.

We include combinations for N, T = 50 and 100. The number of factors is chosen to be equal

to r = 3 or r = 5. During the simulation study we assume that the true number of factors

is known. In empirical applications it is possible to rely on economic theory or information

criteria to determine an appropriate number of factors; see Bai en Ng (2002).

We draw L = 5000 different panels of observations from model (2) for each combination

of panel size and number of factors. We denote the sampled vectorized panels by y(l) for

l = 1, . . . , L. Each observation vector has its own “true” loadings and factors; λ(l) and

α(l). The loading vectors λi(l) are drawn from a variety of mixture distributions. The

distributions are chosen such that they mimic the empirical distribution of the loadings that

is found in the macroeconomic application of Stock en Watson (2012) (see Figure 4). In

particular, we consider the elements of the loading vector to be given by

λi,j = k1N(µ1, σ
2
1) + . . .+ ksN(µs, σ

2
s), (17)

where the values for µn, σ2
n, kn, for n = 1, . . . , s and s are taken such that the loadings have

normal, tri-modal, skewed and outlier distributions. The values for the loading settings are

given in Marron en Wand (1992, Table 1). The variety of sampling schemes for the “true”

loadings ensures that our results do not depend on the normality assumption for the loadings

and that we remain close to empirically relevant distributions. Additionally, we restrict the

loading matrix Λ = (Λ′1,Λ
′
2)
′, such that the r × r matrix Λ1 is lower triangular with ones

on the main diagonal. This identifies a particular rotation for the factors and allows us to

calculate mean squared error statistics for the estimates.
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The dynamic factors are simulated from the autoregressive process in (2) with autoregres-

sive polynomial matrixH and variance matrix Ση = Ir−HH ′, such that Var(αt) = Ir. The

elements for the diagonal of H are drawn uniformly for each panel over the range (0.5,0.95).

The off-diagonal elements are drawn from N(0, 0.1). The transformations of Ansley en Kohn

(1986) are applied to ensure that H and Ση form a stationary vector autoregressive process.

For both the maximum likelihood and the empirical Bayes methods the factor process is

correctly specified. The error term εt is drawn from N(0,Ω) with Ω = diag(ω2
1, . . . , ω

2
N),

where the elements ωi are drawn uniformly over the range (0.1,0.9).

We also study the performance of our methods under some common forms of misspec-

ification with respect to the error term εt. In particular, we evaluate our methods for

cross-sectional dependent errors and serial correlated errors. Cross-section dependence is

implemented by generating εi,t from

εi,t = (1 + b2)ζi,t + bζi−1,t + bζi+1,t, ζi,t ∼ N(0, ω2
i ), (18)

where we choose b = 0.5. Serial correlation is generated by

εi,t = ρiεi,t−1 + ζi,t, ζi,t ∼ N(0, ω2
i ), (19)

where the autoregressive coefficients ρi are drawn from the uniform distribution between 0.5

and 0.9. We may also combine the equations (18) and (19) to have both serial correlation

and cross-section dependence in the errors. Similar sources of misspecification are studied

in Stock en Watson (2002b) and Doz et al. (2012) for principal components and maximum

likelihood methods. We emphasize that we have implemented our methods of Section 3

under the conditions of Assumptions 1.

4.2 Comparing empirical Bayes and maximum likelihood

We study the accuracy of the empirical Bayes estimates and compare these to the maximum

likelihood estimates. We define the accuracy of the estimates for the loadings and the factors

17



by computing the average mean squared error statistics. In particular, we compute

MSE(λ̌) = L−1
∑L

l=1(λ(l)− λ̌(l))′(λ(l)− λ̌(l)),

MSE(α̌) = L−1
∑L

l=1(α(l)− α̌(l))′(α(l)− α̌(l)),

(20)

where the averaging is over the L samples and λ̌ and α̌ may denote the empirical Bayes esti-

mates (λ̂ and α̂) or the maximum likelihood estimates (λ̃ and α̃). For each data generating

process that is discussed in Section 4.1 we present the relative mean squared error statistics

MSE(λ̃)/MSE(λ̂) and MSE(α̃)/MSE(α̂).

In Table 1 we present the results from which we deduct the following six conclusions.

First, the relative statistics are smaller then one in most cases. It shows that the empirical

Bayes estimates are on average more accurate when compared to the maximum likelihood

estimates. Second, the relative statistics for the loadings are smaller when compared to the

relative statistics for the factors. This is not surprising since the factors are specified the

same for both the empirical Bayes and the maximum likelihood methods. Third, the relative

statistics depend on the panel dimensions. For panels with N ≥ T the relative performance

of the empirical Bayes estimates is much better. When N < T the results are mixed.

Fourth, the relative performance of the empirical Bayes estimates improves for most cases

when the number of factors r increases. Fifth, the results depend on the sampling scheme

for the loadings. Perhaps somewhat counter intuitive, but the empirical Bayes estimates

improve relative to the maximum likelihood estimates when the sampling scheme for the

loadings deviates from the standard normal distribution. Sixth and finally, the different

sampling schemes for the error terms do not affect the results. This is not surprising since

both the empirical Bayes and the maximum likelihood estimates are affected similarly by

misspecification in the error term and the relative statistics.

When we study the results for the loadings more carefully we find that the standard nor-

mal specification for the loadings (L = 1) is relatively unfavorable for the empirical Bayes

estimates. When the standard normal distribution is replaced by the normal distribution

with standard deviation 0.2 (L = 2) the performance of the empirical Bayes estimates be-

comes much better. Some further experiments (not shown) have confirmed that the relative
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performance of the empirical Bayes estimates increases under a variety of circumstances

when the variance of the true loadings decreases. In other words, when the sampling space

of the loadings becomes smaller the empirical Bayes estimates show more relative improve-

ment. Also, under multi-modal, skewed and outlier distributions for the true loadings, the

empirical Bayes estimates show large improvements over the maximum likelihood estimates.

We emphasize that these cases are empirically relevant for macroeconomic applications; see

Figure 4. Only when N < T and when the loadings are sampled from the standard normal

distribution the maximum likelihood estimates outperform the empirical Bayes estimates.

The magnitude of the gain depends on the data generating process. The gains for the em-

pirical Bayes estimates of the loadings can be as large as 82% while the largest loss has only

been 7%.

For the factors the results are closer. Nevertheless, only for cases where N < T we

sometimes find that the maximum likelihood estimates outperform the empirical Bayes es-

timates. When N ≥ T the relative gains for the empirical Bayes estimates are around 20%.

While both the maximum likelihood and the empirical Bayes estimates are based on vector

autoregressive process for the factors, the empirical Bayes estimates are on average more

accurate.

Overall we may conclude that the empirical Bayes estimates are more accurate when

compared to the maximum likelihood estimates for many data generating processes. The

magnitude of the gains depend on the sampling scheme for the loadings and the panel dimen-

sions. For all computations in this study, we have written the code in the Ox programming

language version 7.00 of Doornik (2007).

4.3 Importance sampling weights

The integrated importance sampling weights wλ(λ,y;ψ), defined below (13), need to have

finite variance in order for the conditional mean function estimates in (13) and (16) to have

a
√
M convergence rate; see Geweke (1989). Failure of this condition leads to slow and

unstable convergence.

In this section we use the diagnostic tests of Koopman et al. (2009) to empirically assess

whether the integrated weights have finite variance. For the simulated observation vectors
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MSE(λ̂)/MSE(λ̃) MSE(α̂)/MSE(α̃)
N T r E L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5
50 50 3 n 0.59 0.35 0.54 0.38 0.36 0.78 0.84 0.84 0.86 0.87
50 100 3 n 0.96 0.48 0.60 0.48 0.42 1.10 0.94 0.98 0.95 0.94
100 50 3 n 0.58 0.32 0.37 0.33 0.29 0.81 0.84 0.83 0.86 0.85
100 100 3 n 0.71 0.39 0.52 0.42 0.34 0.80 0.89 0.89 0.91 0.88
50 50 5 n 0.52 0.39 0.39 0.38 0.38 0.81 0.88 0.86 0.91 0.87
50 100 5 n 0.92 0.43 0.51 0.45 0.44 1.05 0.94 0.96 0.94 0.92
100 50 5 n 0.52 0.28 0.32 0.29 0.29 0.83 0.91 0.85 0.87 0.91
100 100 5 n 0.73 0.33 0.40 0.32 0.31 0.85 0.89 0.89 0.90 0.94
50 50 3 c 0.59 0.38 0.42 0.27 0.33 0.73 0.91 0.81 0.79 0.92
50 100 3 c 1.03 0.46 0.60 0.38 0.40 1.13 1.01 1.03 1.02 1.02
100 50 3 c 0.71 0.37 0.43 0.40 0.29 0.97 0.89 0.89 0.90 0.88
100 100 3 c 0.60 0.39 0.50 0.44 0.40 0.72 0.91 0.83 0.83 0.95
50 50 5 c 0.50 0.24 0.28 0.22 0.26 0.70 0.93 0.80 0.83 0.95
50 100 5 c 0.90 0.29 0.40 0.25 0.33 1.10 1.03 1.02 1.09 1.04
100 50 5 c 0.57 0.21 0.31 0.17 0.23 0.90 0.82 0.87 0.68 0.93
100 100 5 c 0.55 0.26 0.29 0.27 0.23 0.79 0.91 0.79 0.85 0.97
50 50 3 s 0.60 0.43 0.48 0.40 0.35 0.66 0.87 0.78 0.78 0.89
50 100 3 s 1.04 0.52 0.69 0.50 0.43 1.12 0.97 1.04 1.04 0.99
100 50 3 s 0.66 0.37 0.48 0.46 0.35 0.94 0.84 0.80 0.77 0.86
100 100 3 s 0.64 0.47 0.54 0.46 0.43 0.67 0.87 0.77 0.79 0.94
50 50 5 s 0.54 0.29 0.36 0.27 0.26 0.68 0.88 0.77 0.83 0.90
50 100 5 s 1.00 0.35 0.51 0.33 0.35 1.05 1.00 1.00 1.09 1.01
100 50 5 s 0.57 0.27 0.30 0.23 0.28 0.89 0.79 0.85 0.72 0.87
100 100 5 s 0.55 0.22 0.28 0.30 0.31 0.87 0.89 0.83 0.81 0.93
50 50 3 sc 0.54 0.42 0.41 0.33 0.62 0.65 0.89 0.76 0.78 0.80
50 100 3 sc 1.07 0.56 0.59 0.39 0.93 1.09 0.96 0.96 1.00 1.05
100 50 3 sc 0.50 0.33 0.38 0.32 0.56 0.81 0.85 0.76 0.72 0.78
100 100 3 sc 0.57 0.43 0.45 0.39 0.71 0.66 0.88 0.75 0.79 0.82
50 50 5 sc 0.45 0.31 0.27 0.18 0.50 0.65 0.89 0.74 0.79 0.81
50 100 5 sc 0.78 0.37 0.39 0.26 0.81 0.97 0.97 0.93 1.03 1.00
100 50 5 sc 0.98 0.21 0.33 0.18 0.48 0.87 0.81 0.72 0.66 0.80
100 100 5 sc 0.62 0.23 0.25 0.20 0.63 0.83 0.84 0.88 0.82 0.82

Table 1: Simulation results for the empirical Bayes and maximum likelihood estimates. The DGP
and parameters are chosen as discussed in Section 4.1. The code L indicates 1; normal(0,1), 2;
normal(0,0.04), 3; tri-modal, 4; skewed, or 5; outlier distribution for the true-loadings. The codes
n, c, s and sc indicate : n; normal disturbances, s; serial correlated disturbances, c; cross-section
correlated disturbances and sc; serial and cross-section correlated disturbances.
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y(1) for different panel sizes and number of factors we estimate the parameter vector as

discussed in Section 3.2. Next, given the estimated parameter vector we generate 100, 000

importance sampling weights wλ(λ(j),y; ψ̂) using the importance density g(λ|y; ψ̂). The

choice for the data vector y(1) does not affect the results.

For each set of weights we consider s exceedence sampling weights, denoted by x1, . . . , xs,

which are larger than some threshold wmin and are assumed to come from the generalized

Pareto distribution with logdensity function f(a, b) = − log b− (1 + a−1) log (1 + ab−1xi) for

i = 1, . . . , s, where unknown parameters a and b determine the shape and scale of the density,

respectively. When a ≤ 0.5, the variance of the importance sampling weights exists and a
√
M convergence rate can be assumed. A Wald type test statistic is computed as follows.

Estimate a and b by maximum likelihood and denote the estimates by ã and b̃, respectively.

Compute the t-test statistic tw = b̃−1
√
s / 3(ã−0.5) to test the null hypothesis H0 : a = 0.5.

We reject the null hypothesis when the statistic is positive and significantly different from

zero, that is, when it is larger than 1.96 with 95% confidence.

We compute the test statistics for different thresholds wmin, such that between 1% and

50 % of the largest weights are included. This ensures that we capture sufficiently the tail of

the distribution and that the results do not depend on the choice of the threshold. In Figure

1 we present the test statistics for different thresholds and for correctly specified models.

The horizontal line at 1.96 indicates the rejection area. For the integrated weights the test

statistics are always very negative. This even holds for samples of weights from the end of the

tail of the distribution. It provides evidence that the variance in the sampled weights is likely

to exist. Hence we may conclude that the constructed importance density g(λ|y;ψ), from

which α is integrated out, can be used to obtain reliable importance sampling estimates. For

misspecified models the importance sampling weights are the same since the misspecification

affects the original density and the importance density in the same way.

5 Macroeconomic forecasting

Our empirical study is concerned with the comparison of the empirical Bayes and maximum

likelihood approaches for dynamic factor models based on a quarterly U.S. macroeconomic

dataset. The key question is whether and to what extent the empirical Bayes methods
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Figure 1: Importance sampling diagnostics for dynamic factor models with r = 2 and r = 3 factors,
based on 100, 000 simulations of weights wλ(λ(j),y; ψ̂) . We computed test statistics for different
thresholds wmin, by procedures explained in Section 4.3.
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improve out-of-sample forecasts when compared to the maximum likelihood methods. We

consider the data set of Stock en Watson (2012), which includes N = 144 macro economic

and financial time series. These series capture a large part of the available disaggregated

macroeconomic and financial time series. Table 2 summarizes the categories for which the

time series are included. There are 13 different blocks including large blocks for employment

series and prices. Each block is indexed by a letter. From this data set we construct

stationary quarterly time series following the guidelines in the web appendix of Stock en

Watson (2012). The resulting panel ranges from 1959-1 until 2008-4, with T = 200. The

panel is unbalanced and the estimation methods of Section 3 are adjusted accordingly as

discussed in Appendix E.

We consider the dynamic factor model with stochastic loadings in (2) with the conditions

of Assumption 1. Additionally, we partially restrict the loading matrix Λ = (Λ′1,Λ
′
2)
′, where

the r × r upper block matrix Λ1 is lower triangular. The loadings and factors are identified

up to a sign change and this is sufficient for forecasting applications. We have taken this

particular rotation for the factors to facilitate the comparison of mean squared error statistics

for the different estimates. The same restrictions are imposed on the dynamic factor model

with deterministic loadings.

We consider the dynamic factor model with r = 5 factors and a diagonal variance matrix

for the disturbances. Similar results can be obtained for models with r = 6 factors; see also

Stock en Watson (2012). We first discuss the full sample parameter estimation results after

which we discuss the forecasting exercise and its results.

5.1 Estimation results

In Table 3 we present the parameter estimates together with the distributions of the loadings

and the factors. The methods of Section 3 are used to obtain the estimates. In the top panel

we show the estimates for the autoregressive matrix H . From the eigenvalues it follows

that all the factors are estimated as stationary processes. The factors are persistent since

the largest eigenvalue is 0.822. Additionally, we find some evidence for a persistent cyclical

behavior in the factors because one conjugate pair of complex eigenvalues is obtained with

its real part equal to 0.809. The remaining two eigenvalues are relatively small. Since the
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Category number of series (144)

A GDP components 16
B Industrial production 14
C Employment 20
D Unemployment rate 7
E Housing starts 6
F Inventories 6
G Prices 37
H Wages 6
I Interest rates 13
J Money 8
K Exchange rates 5
L Stock prices 5
M Consumer expectations 1

Table 2: Summary of the time series that are included in the empirical application

VAR process of the factors impose a zero mean and an identity variance matrix, we can

relate the individual coefficients in H to each other. However, as for any VAR analysis,

individual coefficients in H do not have a clear interpretation.

In the bottom panel of Table 3 we show the estimates for the mean and variance of the

loading matrix. The mean coefficients are small and centered around zero. The diagonal

elements of the variance matrix indicate that the variance in the loadings is small. This

indicates that relatively large gains in accuracy are likely for the empirical Bayes estimates

as Hansen (2013) shows that shrinkage estimates gain most when the estimates are close to

the restriction imposed; see also Section 4.

In Figures 2 and 3 we show the estimates for the loadings and the factors, both for the

empirical Bayes and maximum likelihood estimation methods. The differences between the

two are small and hard to visualize. The real economic time series, such as the industrial

production and employment time series, load mainly on the first and third factors. The first

factor is noisy, whereas the third factor displays some slowly varying business cycle indicator

around a long term declining trend. The fourth factor evolves around zero but becomes

negative during recession times.

In Figure 4 we show the empirical distributions of the demeaned estimates for the columns

of the loading matrix. The first loading column displays multiple modes, whereas the second

is slightly skewed to the left. Their empirical distributions are similar to the normal distribu-
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Autoregressive coefficients H Eigenvalues
# 1 2 3 4 5 real img

1 0.308 -0.278 -0.055 -0.160 0.268 0.822 0.000
2 -0.191 0.355 0.266 -0.029 -0.029 0.809 0.174
3 0.371 -0.041 0.822 -0.074 0.119 0.809 -0.174
4 -0.148 0.069 -0.183 0.299 0.520 0.029 0.000
5 0.125 -0.157 0.053 0.427 0.557 -0.129 0.000

Distribution loadings Σλ δ
# 1 2 3 4 5

1 0.079 -0.021 0.028 -0.002 0.001 0.229
2 -0.020 0.050 -0.006 0.002 -0.007 -0.070
3 0.028 -0.006 -0.006 -0.006 0.005 0.153
4 -0.002 0.002 -0.007 0.032 -0.009 0.033
5 0.001 -0.007 0.005 -0.009 0.035 0.019

Table 3: Parameter estimates for the vector autoregressive coefficients and the mean and variance
of the loadings. The full sample of observations is used (N = 144 and T = 200) and we estimate
the model parameters using the methods developed in Section 3. The columns indicated by Eigen
summarize the real and imaginary eigenvalues of the matrix H in decreasing order.

tion, with standard deviations of approximately 0.25. This also holds for the third column of

the loading matrix. The distributions of the fourth and fifth columns of the loading matrix

are centered around zero but show outliers. The tails of the distributions are heavier when

compared to the normal distribution. In the lower right of Figure 4 we show the empirical

distribution for all loadings. This distribution is skewed to the left and has heavy tails.

5.2 Forecasting study

The out-of-sample forecasting study for the panel of macroeconomic time series is designed

as follows. We forecast each time series 1, 2 and 4 quarters ahead for 1985-1 until 2008-4.

In total we compute m = 96 out-of sample predictions for each horizon. In particular, let

the integer n denote the sample split point (1984-4 for h = 1, 1984-3 for h = 2 and 1984-1

for h = 4). The forecasts are computed for n + 1, . . . , n + m based on subsamples of the

observations y1, . . . ,yn+j−h, for j = 1, . . . ,m. We estimate the parameter vector ψ for each

subsample using the methods of Section 3. Based on the estimated parameter vector we
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Figure 2: Posterior mode empirical Bayes estimates and maximum likelihood estimates for the
loadings. The left bars pertain to the empirical Bayes estimates and the right bars pertain to the
maximum likelihood esitimates.)
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Figure 3: Posterior mode empirical Bayes estimates and maximum likelihood estimates for the
factors.
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Figure 4: Empirical distribution for the posterior modes of the loadings. We present the results
per factor and overall. The dotted line indicates the normal approximation.
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compute the empirical Bayes posterior mode and maximum likelihood forecasts by

ŷn+j = Λ̂α̂n+j and ỹn+j = Λ̃α̃n+j, (21)

where α̂n+j = E(αn+j|y1, . . . ,yn+j−h; Λ̂; ψ̂) is the posterior mode forecast for the factors and

α̃n+j = E(αn+j|y1, . . . ,yn+j−h; Λ̃; ψ̂1) is the forecast for the factors based on the maximum

likelihood estimates. These forecasts are computed for all horizons h = 1, 2, 4.

As a measure of accuracy we consider the mean squared error (MSE) of the out-of-sample

forecasts. In particular we compute for each time series

MSEPEB
i = m−1

m∑
j=1

(yi,n+j − ŷi,n+j)2 and MSEMLE
i = m−1

m∑
j=1

(yi,n+j − ỹi,n+j)2, (22)

where ŷi,n+j and ỹi,n+j are the elements of ŷn+j and ỹn+j. In this way we compute mean

squared error statistics for 144 time series for all forecasting horizons.

5.3 Forecasting results

In Table 4 we present summary statistics for the relative mean squared error statistics;

MSEPEB
i /MSEMLE

i . In the first row the average statistics over all series are displayed. For

the one quarter ahead forecasts, the empirical Bayes estimates are almost 10% more accurate,

this decreases to 8% for the two quarters ahead forecasts and to 4% for the four quarters

ahead forecasts. We have obtained substantial forecasting gains for shorter forecast horizons.

When we increase the number of factors, the relative gains become larger (not shown here).

The relative improvement in accuracy of empirical Bayes forecasts declines as we forecast

further into the future. This is not surprising since both the empirical Bayes and maximum

likelihood estimates are based on the same vector autoregressive process for the factors.

The out-of sample forecasting variance for a larger forecast horizon is dominated by the

contribution of the factors given that the loadings are time-invariant.

We further present a selection of quantiles of the distributions. For the 0.05 quantile,

we find gains between 50% and 27% depending on the forecast horizon. This indicates

that for a modest number of time series the gains are very large. On the other side of the

distribution, the relative accuracy is somewhat more in favor of the maximum likelihood
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estimates. However, the differences are as small as between 6% and 4%.

Finally, we summarize the relative mean squared error statistics per category. We find

that the largest gains are obtained for the real economic categories such as Housing (this

includes series related to housing starts), Inventories and Industrial Production. For the

category of Wages and Prices we do not obtain much improvements for the empirical Bayes

methods. We notice that the largest gains are found for the time series that load strongly

on the factors.

h = 1 h = 2 h = 4

All series
Mean 0.904 0.928 0.965
Quantiles
0.05 0.498 0.586 0.736
0.25 0.849 0.895 0.959
0.50 0.969 0.985 0.995
0.75 1.004 1.008 1.006
0.95 1.061 1.050 1.044

Components (Mean)
GDP components 0.855 0.898 0.971
Industrial Production 0.838 0.899 0.943
Employment 0.888 0.923 0.962
Unemployment rate 0.891 0.920 0.970
Housing 0.581 0.647 0.799
Inventories 0.715 0.867 1.002
Prices 0.996 0.997 1.000
Wages 0.969 0.947 0.981
Interest rates 0.796 0.800 0.859
Money 0.914 0.949 0.974
Exchanges rates 0.991 0.982 1.001
Stock prices 0.993 1.003 0.999
Consumer Expectations 0.999 1.005 1.009

Table 4: Relative mean squared error statistics for out-of-sample forecasting using empirical
Bayes and maximum likelihood methods. The results summarize the distribution of the statis-
tics MSEPEB

i /MSEMLE
i , for i = 1, . . . , 144 and forecast horizons h = 1, 2, 4.
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6 Conclusion

We have developed parametric empirical Bayes methods for the estimation of the dynamic

factor model. The loadings, factors and disturbances of the model are treated as latent

stochastic variables, which follow Gaussian distributions. For the estimation of the load-

ings and factors we have developed a posterior mode algorithm which relies on standard

methods for linear time series and regression models. The parameter vector is estimated by

likelihood based methods using a simple two-step implementation. The posterior means and

variances of the loadings are estimated by standard simulations methods, where we circum-

vent the infinite variance problem by calculating the integral over the factors analytically.

We emphasize that the computational effort for the empirical Bayes methods is only mod-

estly larger when compared to standard maximum likelihood methods; see Jungbacker en

Koopman (2014) and Doz et al. (2012). The methods are evaluated in a Monte Carlo study

for dynamic factor models with different dimensions and different numbers of factors. The

empirical Bayes estimates for both the loadings and the factors outperform the maximum

likelihood estimates for the data generating processes considered. This holds even when the

data generating process for the loadings is highly non-Gaussian. We have further illustrated

our methods in an empirical application for forecasting macroeconomic time series. The

empirical Bayes approach again dominates the maximum likelihood approach.
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Appendix A

In order to provide parsimonious proofs for the results of this paper we first write model

(2) in matrix notation. Details for this can be found in Durbin en Koopman (2012, Section

4.13).

The observation equation for model (2) can be written as

y = Λ∗α+ ε ε ∼ N(0,Ω∗),

or, alternatively,

y = A∗λ+ ε ε ∼ N(0,Ω∗),

where y = (y′1, . . . ,y
′
T )′, α = (α′1, . . . ,α

′
T ,α

′
T+1)

′, λ = (λ́′1, . . . , λ́
′
r), where λ́j denotes the

jth column of Λ and ε = (ε′1, . . . , ε
′
T )′. Further

Λ∗ =


Λ 0 0

. . .
...

0 Λ 0

 , A∗ =


(α′1 ⊗ IN)

...

(α′T ⊗ IN)

 ,

Ω∗ =


Ω 0

. . .

0 Ω

 .
The state equation takes the form

α = H∗(α∗1 + η), η ∼ N(0,Σ∗η),
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with α∗1 = (α′1,0, . . . ,0)′, η = (0,η′1, . . . ,η
′
T )′ and

H∗ =



I 0 0 0 0 0

H I 0 0 0 0

H2 H2 I 0 0 0

H3 H2 H I 0 0
. . .

...

HT−1 HT−2 HT−3 HT−4 I 0

HT HT−1 HT−2 HT−3 . . . H I


, Σ∗η =


Ση 0

. . .

0 Ση

 .

It holds that

α ∼ N(H∗a∗1,H
∗(P ∗1 + Σ∗η)H

∗′),

where

a∗1 =



a1

0

0
...

0


, P ∗1 =



P1 0 0 . . . 0

0 0 0 0

0 0 0 0
...

. . .

0 0 0 0


.

For the loadings it holds that

λ ∼ N ((δ ⊗ ιN), (Σλ ⊗ IN)) .

Now we are ready to proceed with the proof of Theorem 1. We suppress the dependence on

the parameter vector ψ for notational convenience. All densities can be considered given ψ.

For model (2) under Assumption 1 it follows from Bayes rule that

log p(λ,α|y) = log p(y|λ,α) + log p(α) + log p(λ)− log(y),

where assumption (C) implies p(y|λ,α) ≡ N(Λ∗α,Ω∗) and the densities for p(α) and p(λ)
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are given above. When we consider only the terms that depend on α or λ we obtain

log p(λ,α|y) ∝ log p(y|λ,α) + log p(α) + log p(λ)

∝ −1

2
α′Λ∗

′
(Ω∗)−1Λ∗α+α′Λ∗

′
(Ω∗)−1y

−1

2
α′(H∗(P ∗1 + Σ∗η)H

∗′)−1α+ a∗
′

1H
∗′(H∗(P ∗1 + Σ∗η)H

∗′)−1α

−1

2
λ′(Σλ ⊗ IN)−1λ+ (δ ⊗ ιN)′(Σλ ⊗ IN)−1λ,

which can be alternatively written as

log p(λ,α|y) ∝ log p(y|λ,α) + log p(α) + log p(λ)

∝ −1

2
λ′A∗

′
(Ω∗)−1A∗λ+ λ′A∗

′
(Ω∗)−1y

−1

2
α′(H∗(P ∗1 + Σ∗η)H

∗′)−1α+ a∗
′

1H
∗′(H∗(P ∗1 + Σ∗η)H

∗′)−1α

−1

2
λ′(Σλ ⊗ IN)−1λ+ (δ ⊗ ιN)′(Σλ ⊗ IN)−1λ.

Next we calculate the first order conditions for p(λ,α|y). Using the first representation for

p(λ,α|y) we find that

∂ log p(λ,α|y)

∂α
= −Λ∗

′
(Ω∗)−1Λ∗α+ Λ∗

′
(Ω∗)−1y

−(H∗(P ∗1 + Σ∗η)H
∗′)−1α+ (H∗(P ∗1 + Σ∗η)H

∗′)−1H∗a∗1.

When using the second representation for p(λ,α|y) we find that

∂ log p(λ,α|y)

∂λ
= −A∗′(Ω∗)−1A∗λ+A∗

′
(Ω∗)−1y

−(Σλ ⊗ IN)−1λ+ (Σλ ⊗ IN)−1(δ ⊗ ιN).

Next, we show that the first order conditions for log p(λ|y;α = α̃)p(α|y;λ = λ̃) with respect

to α and λ are the same when both are evaluated at α̃ and λ̃. It holds that p(λ|y;α = α̃)
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is independent of α and that p(α|y;λ = λ̃) is independent of λ. Thus,

log p(α|y;λ = λ̃) ∝ log p(y|α;λ = λ̃) + log p(α)

∝ −1

2
y′(Ω∗)−1y − 1

2
α′Λ̃∗

′
(Ω∗)−1Λ̃∗α+α′Λ̃∗

′
(Ω∗)−1y

−1

2
α′(H∗(P ∗1 + Σ∗η)H

∗′)−1α+ a∗
′

1H
∗′(H∗(P ∗1 + Σ∗η)H

∗′)−1α

and

∂ log p(α|y;λ = λ̃)

∂α
= −Λ̃∗

′
(Ω∗)−1Λ̃∗α+ Λ̃∗

′
(Ω∗)−1y

−(H∗(P ∗1 + Σ∗η)H
∗′)−1α+ (H∗(P ∗1 + Σ∗η)H

∗′)−1H∗a∗1.

Similarly, for the loadings it holds that

log p(λ|y;α = α̃) ∝ log p(y|λ;α = α̃) + log p(λ)

∝ −1

2
y′(Ω∗)−1y − 1

2
λ′Ã∗

′
(Ω∗)−1Ã∗λ+ λ′Ã∗

′
(Ω∗)−1y

−1

2
λ′(Σλ ⊗ IN)−1λ+ (δ ⊗ ιN)′(Σλ ⊗ IN)−1λ,

where the first order condition is given by

∂ log p(λ|y;α = α̃)

∂λ
= −Ã∗′(Ω∗)−1Ã∗λ+ Ã∗

′
(Ω∗)−1y

−(Σλ ⊗ IN)−1λ+ (Σλ ⊗ IN)−1(δ ⊗ ιN).

It is easy to see that the first order conditions for both p(λ,α|y) and

p(λ|y; α̃)p(α|y; λ̃) are the same when λ is evaluated at λ̃ and α is evaluated at α̃.

Appendix B

In order to proof Theorem 2 we check whether the general conditions of Meng en Rubin

(1993) hold. This amounts to proving that 1. the restrictions that we iteratively impose on

the vector z = (λ′,α′)′ in order to maximize p(λ,α|y;ψ) are “space filling” and 2. that each

iteration in Theorem 2 leads to a unique maximum. Under these conditions, the regularity
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conditions in Wu (1983) (equations 5-9), and the assumption that p(λ,α|y;ψ) is uni-modal

the iterations in Theorem 2 converge and lead to a unique maximum, which is an immediate

consequence of Theorem 3 and Corollary 3 in Meng en Rubin (1993)

Given z(s−1) = (λ(s−1)′ ,α(s−1)′)′, the optimization problem in iteration (s) for step (i) is

given by

max
α

log p(λ,α|y;ψ) given constraint g(i)(z) = g(i)(z
(s−1)),

where g(i)(z) = λ. We can denote the output from this first step by z(s−
1
2
) = (λ(s−1)′ ,αs

′
)′.

For step (ii) the problem is given by

max
λ

log p(λ,α|y;ψ) given constraint g(ii)(z) = g(ii)(z
(s− 1

2
)),

where g(ii)(z) = α. We denote the output corresponding by z(s) = (λ(s)′ ,αs
′
)′.

It follows

log p(z(s)|y;ψ) ≥ log p(z(s−
1
2
)|y;ψ) ≥ log p(z(s−1)|y;ψ)

If the sequence p(z(s)|y;ψ) is bounded from above then it converges monotonically to some

value, say p∗. The constraints are space filling whenever

J(z) = J(i)(z) ∩ J(ii)(z) = {0},

where J(i)(z) and J(ii)(z) are the column spaces of the scores,

J(i)(z) = {
∂g(i)(z)

∂z
γ = (ι′Nr,0

′
Tr)
′γ; γ ∈ R(N+T )r}

and

J(ii)(z) = {
∂g(i)(z)

∂z
γ = (0′Nr, ι

′
Tr)
′γ; γ ∈ R(N+T )r}.

Since J(i)(z) is orthogonal to J(ii)(z) for all λ and α it follows that our constraints are

space filling. Given either α = α(s−1), or λ = λ(s) the model (2) is equal to a linear

Gaussian model that is identified by under Assumption 1. It follows from the equality of

the mean and the mode for Gaussian models that the expectations E(λ|y;α = α(s),ψ) and

E(α|y;λ = λ(s−1),ψ) are the unique maximizers of the conditional maximization steps (i)
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and (ii).

Next, we discuss the implementation details for the fast computation of E(λ|y;α =

α(s),ψ) and E(α|y;λ = λ(s−1),ψ). Given λ = λ(s−1) model (2) is a linear Gaussian

state space model. Jungbacker en Koopman (2014) show that E(α|y;λ = λ(s−1),ψ) =

E(α|yL;λ = λ(s−1),ψ), where yL = (yL
′

1 , . . . , y
L′
T )′, with

yLt = C(s−1)′Λ(s−1)′Ω−1yt, with C(s−1)C(s−1)′ = (Λ(s−1)′Ω−1Λ(s−1))−1,

where C(s−1) is lower triangular. The model for the transformed r×1 observation vector yLt

is given by

yLt = (C(s−1))−1αt + et, et ∼ NID(0, Ir),

αt+1 = Hαt + ηt, ηt ∼ NID(0,Ση), t = 1, . . . , T.

The Kalman filter smoother can be applied to the model for yLt in order to compute

E(α|y;λ = λ(s−1),ψ). The transformation step collapses the large cross-section of the

original model and speeds up the evaluation of E(α|y;λ = λ(s−1),ψ) by a factor 10; see

Jungbacker en Koopman (2014) for additional details.

Given α = α(s) model (2) is a multivariate Gaussian regression model. We define the

Nr × 1 dimensional vector ȳL = (A(s)∗′(Ω∗)−1A(s)∗)−1A(s)∗′(Ω∗)−1y, where Ω∗ and A(s)∗

are given in Appendix A, with α replaced by α(s). Mesters en Koopman (2014) sow that

E(λ|y;α = α(s),ψ) = E(λ|ȳL;α = α(s),ψ), which can be calculated by standard methods

applied to the model given by

ȳL = λ+ ē, ē ∼ N(0, (A(s)∗′(Ω∗)−1A(s)∗)−1),

λ = (λ′1, . . . ,λ
′
N)′, λi ∼ NID(δ,Σλ),

When Ω is diagonal E(λ|y;α = α(s),ψ) can be computed separately for each λi; see Mesters

en Koopman (2014) for additional details.
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Appendix C

The conditional mean function f̄ = E(f(λ)|y;ψ) can be expressed in terms of the impor-

tance density g(λ|y;ψ), that is

f̄ =

∫
λ

f(λ)
p(λ|y;ψ)

g(λ|y;ψ)
g(λ|y;ψ) dλ.

By adopting the Bayes’ rule, we obtain

f̄ =
g(y;ψ)

p(y;ψ)

∫
λ

f(λ)wλ(y,λ;ψ)g(λ|y;ψ) dλ, (23)

where the “integrated” weights wλ(y,λ;ψ) are given by

wλ(y,λ;ψ) =
p(y|λ;ψ)

g(y|λ;ψ)
. (24)

When choosing f(λ) = 1 we obtain

1 =
g(y;ψ)

p(y;ψ)

∫
λ

wλ(y,λ;ψ)g(λ|y;ψ) dλ, (25)

and finally, when taking the ratio of (23) and (25) we obtain

f̄ =

∫
λ
f(λ)wλ(y,λ;ψ)g(λ|y;ψ) dλ∫
λ
wλ(y,λ;ψ)g(λ|y;ψ) dλ

. (26)

The expression in (26) only depends on the latent loading vectors. The latent factors are

implicitly integrated out. The Monte Carlo estimate based on (26) is given by (13).

Appendix D

Here we develop an importance sampling estimate of h̄ in 15, that is

h̄ =

∫
λ

E(h(α)|y,λ;ψ) p(λ|y;ψ) dλ.
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We choose an adequate importance density that avoids sampling from p(λ|y;ψ). For this

purpose, we can rewrite h̄ as

h̄ =

∫
λ

E(h(α)|y,λ;ψ)
p(λ|y;ψ)

g(λ|y;ψ)
g(λ|y;ψ) dλ

=
g(y;ψ)

p(y;ψ)

∫
λ

E(h(α)|y,λ;ψ)
p(y|λ;ψ)

g(y|λ;ψ)
g(λ|y;ψ) dλ

=
g(y;ψ)

p(y;ψ)

∫
λ

E(h(α)|y,λ;ψ) wλ(y,λ;ψ)g(λ|y;ψ) dλ, (27)

where the weights wλ(y,λ;ψ) are given in (24). When we choose h(α) = 1 we obtain

1 =
g(y;ψ)

p(y;ψ)

∫
λ

wλ(y,λ;ψ)g(λ|y;ψ) dλ. (28)

Finally, by taking the ratio of (27) and (28) we get

h̄ =

∫
λ

E(h(α)|y,λ;ψ) wλ(y,λ;ψ)g(λ|y;ψ) dλ∫
λ
wλ(y,λ;ψ)g(λ|y;ψ) dλ

, (29)

for which a Monte Carlo estimate is given by

h̄ =
M−1∑M

j=1 E(h(α)|y,λ(j);ψ) wλ(y,λ(j);ψ)

M−1
∑M

j=1 wλ(y,λ(j);ψ)
, M →∞,

where the samples λ(j) are drawn from g(λ|y;ψ).

Appendix E

In this appendix we summarize the modifications for the methods of Section 3 that occur

when a selection of observations is missing. The steps in the posterior mode algorithm in

Section 3 rely on multivariate regression methods and the Kalman filter smoother. These

methods can be adjusted to deal with missing values by using the methods in Wooldridge

(2010, Chapter 19) and Durbin en Koopman (2012, Section 4.10). The simulation methods

are adjusted similarly as discussed in Mesters en Koopman (2014, Section 4.4).
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