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How Risk Sharing May Enhance E¢ ciency in English
Auctions

By Audrey Hu, Theo O¤erman, and Liang Zou

We investigate the possibility of enhancing e¢ ciency by awarding premiums to

a set of highest bidders in an English auction� in a setting that extends Maskin and

Riley (1984, Econometrica 52: 1473-1518) in three aspects: (i) the seller can be risk

averse, (ii) the bidders can have heterogeneous risk preferences, and (iii) the auction

can have a binding reserve price. Our analysis reveals that the premium has an intricate

joint e¤ect on risk sharing and expected revenue, which in general bene�ts risk averse

bidders. When the seller is more risk averse than the pivotal bidder �a condition often

veri�able by deduction prior to the auction �the premium also bene�ts the seller and

therefore leads to a Pareto improvement of the English auction. We discuss how this

�nding is related to the seller�s degree of risk aversion, the reserve price, the riskiness

of the object for sale, the degree of heterogeneity in risk preferences among the bidders,

and the number of the potential bidders.

Keywords: Risk sharing, Pareto e¢ ciency, Premium auction, English auction,

Reserve price, Ensuing risk, Heterogeneous risk preferences.

JEL classi�cation: D44
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1 Introduction

Most of the auctions literature assumes either the seller, or bidders, or both to be risk

neutral.1 In this paper we consider a more general situation in which both the seller and

bidders in an auction can be risk averse. This situation naturally arises when the seller

and bidders are consumers, business persons or small �rms with limited capital. For

instance, the seller of a unique painting may be as risk averse as the bidders competing

for it. When both the seller and bidders are risk averse, an important question arises

as to whether, given an ex post e¢ cient auction mechanism, the involved parties can

bene�t from a risk-sharing scheme that enhances ex ante e¢ ciency of the mechanism

without jeopardizing ex post e¢ ciency.2 ;3 Put di¤erently, can we make all players, i.e.,

the seller and all types of the prospective bidders, better o¤ by modifying the payment

rule of a mechanism while maintaining its allocation rule? The main contribution of

our paper is to provide a mechanism that practically achieves this goal.

We consider a single-object auction environment and take the English auction

(EA) as our benchmark auction model. The EA is one of the most widely practiced,

and most extensively studied, auction format. Its open ascending-bid procedure ensures

simplicity, transparency, optimal use of information,4 and under various conditions

1Exceptions that allow both the seller and buyers to be risk averse can be found in Hu, Matthews

and Zou (2010) and Hu (2011), where the focus is on the optimal reserve prices.

2We use the term �ex ante�to mean the pre-auction stage when the auction rule may be subject

to changes (by the seller, the auction designer, or as a result of bargaining). This may include the

�interim� stage when each potential bidder has received his private information but does not know

the others�information, as well as the stage when no bidder has received any private information (see,

e.g., Holmstrom and Myerson, 1983; Crawford, 1985).

3Ex ante risk sharing should be distinguished from a separate problem of sharing ensuing risk

between the seller and the winning bidder through joint ownership of the auctioned asset (e.g., the

security design problem studied in DeMarzo, Kremer and Skrzypacz, 2005).

4See, e.g., Milgrom and Weber (1982), McAfee and McMillan (1987), McMillan (1994), Klemperer

(2002), Ausubel (2004), and Perry and Reny (2005).
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leads to ex post e¢ cient outcomes.5 Therefore, when the EA is Pareto ine¢ cient ex

ante, it is of practical as well as theoretical importance to �nd out how the situation

can be improved.

We generalize the EA to a class of English premium auctions (EPA), which pro-

ceeds just like an EA except that the highest two bidders receive a �pro�t share�, or

�premium�, from the seller that is equal to a fraction � of the di¤erence between the

second and the third highest bids. This class of EPA includes EA as a special case

when � = 0 and it maintains the EA�s simple and �detail-free�(Wilson, 1987) feature

to the seller. In practice, premium auctions are regularly used in Europe to sell houses,

land, and machinery among others. Various premium auctions have been analyzed in

several previous studies.6 In particular, the existence of equilibrium for a related EPA

model has been established in our previous work (Hu, O¤erman and Zou, 2011), which

allows us to focus on the welfare analysis of risk sharing in the present study.7

The auction environment we consider extends the classical setting of Maskin

and Riley (1984) in three aspects: (i) the seller can be risk averse, (ii) the bidders

can exhibit heterogeneous risk preferences,8 and (iii) the seller can impose a binding

5See, e.g., Maskin (1992), Wilson (1998), Krishna (2002), Dubra Echenique and Manelli (2009),

Birulin and Izmalkov (2010), and Hu, Matthews and Zou (2013).

6For instance, see Goeree and O¤erman (2004), Milgrom (2004), Hu, O¤erman and Onderstal

(2011), and Hu, O¤erman and Zou (2011). Van Bochove, Boerner and Quint (2012) provide an

interesting historical account of the �Anglo-Dutch premium auctions�used in the secondary market

for �nancial securities in the eighteenth-century.

7In Hu, O¤erman and Zou (2011) we considered the EPA in a symmetric interdependent-values

setting of Milgrom and Weber (1982) with homogeneous bidders, �nding that when bidders are risk

averse, revenue maximization is unlikely to be a good reason for the seller to o¤er any premiums in

an EA.

8Apart from being commonly recognized as a stylized fact (e.g., Arrow, 1971), heterogeneity in risk

preferences has been con�rmed in many experimental studies following Cox, Smith and Walker (1982,

1988). For instance, Harrison, List and Towe (2007, p.437) reported that they �observe considerable

individual heterogeneity in risk attitudes, such that one should not readily assume homogeneous risk

preferences for the population.�
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reserve price.9 We also incorporate the possibility of ensuing risks in our model, e.g.,

where the auctioned object is, in essence, a risky asset. All these extensions are not

necessary for our results, but the generality is certainly worthy of the endeavor as

it provides more scope for potential applications. We do not seek optimal solutions

that maximize the seller�s expected utility, which typically involve ex post ine¢ ciency

(e.g., Myerson, 1981; Riley and Samuelson, 1981). As shown in Matthews (1983) and

Maskin and Riley (1984), even if the seller is risk neutral and bidders have the same

homogeneous utility function, the problem of �nding an optimal auction mechanism

is highly complicated. The existence of such an optimal mechanism requires strong

assumptions on the utility and distribution functions as well as detailed knowledge of

the seller about these functions. We therefore focus in this study on the detail-free

and ex post e¢ cient EPA with the objective of obtaining sharp and applicable results,

treating the reserve price and the premium rule as exogenously given.

The key result of our study is that in plausible situations, the EPA provides a

Pareto improvement on the EA. This result applies to situations in which it is reason-

able to expect that the seller is more risk averse than the buyers. For instance, when a

household sells an antique in an auction to wealthy collectors, an author his manuscript

to publishers, an inventor his patent to venture capitalists, or a small �rm its assets

to large corporations, the prospective buyers are typically wealthier and, by a simple

argument of decreasing absolute risk aversion (DARA), more risk tolerant than the

seller. In some situations, the seller can even check without a cost whether potential

buyers are more risk tolerant. For instance, consider a setting in which the auctioned

item is a risky asset whose value distribution is commonly known. Then as long as

the seller imposes a reserve price that makes him indi¤erent between selling and not

selling, the prospective buyer, by the very fact that he is willing to pay more than the

reserve price, can be inferred to be more risk tolerant than the seller.

9As we do not require that the seller imposes a reserve price strictly higher than his reservation

value, there is no commitment problem or loss of e¢ ciency that may arise in the event of no sale since

the seller will then be the one who values the object the most among all players.
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In Section 2, we present the general model and describe how the EPA works. We

introduce an e¤ective measure to tackle heterogeneous risk preferences, de�ned by a

function(al) Q in (2). We show in Lemma 1 that, in the paradigm of expected utility

theory, the quantity of Q has the same role of the Arrow-Pratt measure of absolute

risk aversion for ordering risk preferences. But this measure of Q involves weaker

assumptions and a broader scope of applications than the Arrow-Pratt measure.

In Section 3, we analyze the equilibrium properties of the EA and EPA, showing

that a binding reserve price causes the equilibrium bids in the EPA to exhibit a �jump�

at the reserve price (Theorem 1). An important consequence of this jump bidding, a

phenomenon similar to the one observed in Jehiel and Moldovanu (2000) for their

second-price auction equilibrium with externalities, is that at the interim stage the

same reserve price will induce the same subset of active bidders in either the EA or

the EPA. This property greatly simpli�es our comparative welfare analysis.

Section 4 contains the main �ndings from this study. We �rst show in Theorem

2 that for any number (> 2) of active bidders, the di¤erence in the seller�s expected

payo¤ between the EA and the EPA can be characterized by a functional of the utility

function of the seller and that of the pivotal bidder� the one who determines the

selling price in the EA. This result reveals an important role of the pivotal bidder for

assessing the relative advantage of risk sharing in the EPA. It suggests that the seller

will bene�t from the premium tactics whenever he is more risk averse than the pivotal

bidder. Although the utility function of the pivotal bidder may not be known, this

condition can often be assured to hold prior to the auction by deduction.

From the seller�s viewpoint, we consequently obtain the following predictions that

are direct implications of Theorem 2. Given any premium rule � 2 (0; 1=2) and reserve

price p0 � 0; the seller is better o¤ in the EPA compared to the EA in either of the

following scenarios.

Scenario 1: All active bidders are more risk tolerant than the seller (Proposition

1).

Scenario 2: The seller�s preference belongs to that of the population of the
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bidders, and p0 is no less than the seller�s reservation value (Proposition 2 and Corollary

1).

Scenario 3: There is a su¢ ciently large number of potential bidders (Proposition

3).

Without any further restriction on the players�risk preferences, Scenario 1 is a

signi�cant generalization of the auction environment studied in Waehrer et al. (1998)

and Eso and Futo (1999) in which the seller is risk averse and bidders are risk neutral.

Eso and Futo (1999) obtained an interesting result that among all incentive compatible

mechanisms, there is one that is deterministic to the seller and is therefore, by a simple

argument of revenue equivalence under risk neutrality, ex ante e¢ cient. As Eso and

Futo noted, however, their mechanism may involve large �gambles�among the bidders

and fail to hold as soon as some bidders are risk averse. For such a mechanism the

seller also needs to have accurate knowledge of how bidders�types are distributed.

In Scenario 2, the situation is akin to a business-to-business transaction in which

the seller imposes a reserve price to prevent losses from the sale. The seller is then

better o¤ using the EPA rather than the EA because of the deduced fact that the

prospective buyer will be more risk tolerant. In Scenario 3, there may or may not

be a binding reserve price. The prediction derives from the fact that as the bidder

number increases, the probability increases toward 1 that the pivotal bidder is more

risk tolerant than the seller. We obtain two more corollaries of Theorem 2 that when

bidders are risk neutral, the EPA revenue is less risky than that of the EA in term

of second-order stochastic dominance (Corollary 2); and that there exists an optimal

�� 2 (0; 1=2] that maximizes the seller�s expected utility among the class of EPAs

considered (Corollary 3).

From the bidders�viewpoint, we show that under plausible conditions the risk

averse bidders derive higher expected utilities in the EPA rather than the EA. The

intuition lies in the twofold bene�ts that the premium o¤ers to risk averse bidders: it

reduces the average payment (Hu, O¤erman and Zou, 2011) and it reduces the riski-

ness of the payment. This result extends Matthews�(1987) �nding that in independent
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private values settings, the DARA bidders prefer the second-price auction, or its strate-

gically equivalent format EA, to the �rst-price auction. Our result shows that as long

as bidders have nonincreasing absolute risk aversion, they further prefer the EPA to the

second-price auction.10 We establish this result �rst assuming that bidders have the

same utility function that exhibits constant absolute risk aversion (Theorem 3). The

case with heterogeneous bidders turns out to be surprisingly complicated and requires

additional, although plausible, assumptions and it is proved in Theorem 4.

In Section 4.2.2 we provide a numerical example that illustrates the main results

of the paper. Section 5 concludes the paper with remarks on future research. The

proofs of the lemmas and propositions are relegated to the Appendix.

2 Model and Preliminaries

We consider selling an indivisible object to N (> 2) potential bidders via an English

premium auction (EPA). The seller announces a reserve price for the object, p0; and

observes n (� N) active bidders. If n � 2; then the auction will be conducted as a

standard (button-) English auction (EA), in which case for n = 0, the auction results

in no sale, for n = 1, the only active bidder wins the object and pays the reserve price

p0, and for n = 2; the winner purchases the object for the price at which the other

bidder quits.

For n > 2; the EPA will be conducted in two stages. In the �rst stage, a clock

price rises from p0. At each price level, bidders decide to stay in the auction or to

exit. An exit decision is irrevocable. The �rst stage ends when only two bidders, or

�nalists, remain active. The price level X, or bottom price, at which the third-to-last

bidder quits will serve as a new reserve price onwards in the second stage, in which the

10Eso and White (2004) extends Matthews (1987) in another direction, showing that under a given

�rst-price, second-price, or English auction environment the symmetric DARA bidders prefer that

the object for sale entails higher ensuing risk. It can be shown that this observation extends to our

heterogeneous model under the EA. An interesting, yet unveri�ed, conjecture is that heterogeneous

bidders would prefer higher ensuing risk in the EPA as well.
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price rises from X until one of the �nalists quits. The remaining one wins the object

and pays the price p at which the other �nalist quits. Both �nalists also receive a

premium from the seller equal to �(p�X), where � 2 (0; 1=2] is publicly known prior

to the auction.11 Any ties are resolved randomly: in the second stage, if both �nalists

withdraw at the same price p, then both will receive a premium equal to �(p � X)

and one of them will be randomly chosen to receive the object and pay the price p; in

the �rst stage, if two or more bidders simultaneously withdraw at price X, with only

one (or no) bidder left, then the auction ends like an EA with the (randomly chosen)

highest bidder paying price X for the object and no one receiving any premium.

Each potential bidder i has a private type ti 2 [0; H] � R that a¤ects his prefer-

ence for the object. Ex ante, the types ti are independently distributed according to

the same distribution function F . The density function f = F 0 is strictly positive and

continuously di¤erentiable on (0; H].

The preference of a typical bidder with type t is represented by8<: w(x; t) if he wins the object and receives x

u(x; t) if he loses and receives x
(1)

We interpret function u(�; t) as type-t bidder�s status-quo utility for income. The bidder

with type t who drops out in the �rst stage will have utility u(0; t):

For ease of exposition, we refer to the special case where u(x; t) is independent

of t in (1) as the homogeneous-utility model (e.g., Maskin and Riley, 1984),12 and the

more general case as the heterogeneous-utility model in which u (�; t) and u(�; t0) can be

two di¤erent utility functions given any t 6= t0.

The functions u(x; t) and w(x; t) are assumed to satisfy the following mild con-

11Hu, O¤erman and Zou (2011) considered a more general premium rule that is an increasing, but

not necessarily linear, function of p�X. In this paper, we restrict attention to linear premium rules

for tractability, while noting that such simple rules are predominant in premium auction practices

(e.g., Goeree and O¤erman, 2004).

12The term �homogeneous utility� refers only to the fact that all losing bidders have the same

utility for income. The winning bidders�utility functions can still vary with their private types.
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ditions.13

A1. u and w are thrice di¤erentiable.

For all t 2 [0; H];

A2. w(�1; t) < u(0; t) < w(0; t):

A3. u1 > 0; w1 > 0; and w2 > 0:

A4. u(x; t)� u(z; t) is log-concave in x on (z;1); 8z:

Condition A2 implies that all types of bidders would be better o¤ receiving the

object for free (w(0; t) > u(0; t)), but no bidder is willing to pay too high a price for

the object (w(�1; t) < u(0; t)). A3 is the usual assumption that utilities increase in

income. A4 is commonly invoked to guarantee the existence of equilibria in �rst-price

sealed-bid auctions (e.g., Holt, 1980; Athey, 2001). It holds for risk averse bidders in

general, and to some extent for risk preferring bidders as well.

The next two conditions involve the properties of the ratio14

Q(x; y; t) � u(x; t)� w(x� y; t)

u1(x; t)
(2)

A5. For all x; y; Q(x; y; t) is decreasing in t.

A6. For all y; t; Q(x; y; t) is nonincreasing in x.

The economic interpretations of A5 and A6 will become more transparent by

considering some special cases of our model. We �rst present a lemma that will be

frequently used later on for interpretations of the main results of this paper. The

lemma can be seen as a corollary of Pratt (1964, Theorem 1), which helps connect the

expression in (2) to the Arrow-Pratt measure of absolute risk aversion.15

13Subscripts denote the argument with respect to which a partial derivative is taken.

14The notational dependence of Q on the functions u and w is suppressed.

15Similar results are presented in Hu, Matthews and Zou (2013) in a more general setting with

asymmetric interdependent-values and heterogeneous bidders.
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Lemma 1 Let u; û : R ! R be two increasing and twice continuously di¤erentiable

utility functions. Then the following conditions are equivalent, in either the strong form

(indicated in brackets), or the weak form (with the bracketed material omitted):

(i) �u00=u0 � �û00=û0 [and > for at least one x in every interval]:

(ii) For all x and y such that y 6= 0;

u(x)� u(x� y)

u0(x)
� [>] û(x)� û(x� y)

û0(x)
: (3)

(iii) For all x and y; and for all nondegenerate random variables ~v such that E~v exists;

u(x)� Eu(~v + x� y)

u0(x)
� [>] û(x)� Eû(~v + x� y)

û0(x)
: (4)

For the homogeneous-utility model, the following four special cases have been con-

sidered in Maskin and Riley (1984) where U is an increasing von Neumann-Morgenstern

utility function.

Case 1 w(x; t) = U(t+ x) and u(x; t) � U(x):

Case 2 w(x; t) = U(t +  (x)) and u(x; t) � U( (x)), where  0 > 0,  00 � 0; and

 (0) = 0:

Case 3 w(x; t) =
R
U(v + x)dK(vjt) and u(x; t) � U(x); where K(vjt) > K(vjt̂) for

all t < t̂:

Case 4 w(x; t) = (1 + t)U(t+ x) and u(x; t) � U(x); where U � 0.

Case 1 is the standard private-values model. Case 2 allows a bidder to assign

certain quality to the auctioned object, which may not have an equivalent monetary

value. Case 3 allows the object to entail ensuing risks, where the true value v remains

risky at the time when the auction concludes. In this case the conditional distribution

of v for a higher type exhibits �rst-order stochastic dominance over that for a lower

type. Case 4 provides an example in which winning the object gives the bidder a

greater ability to derive pleasure, crudely translated into a higher marginal utility as

well as utility for income.16

16See Maskin and Riley (1984) for more detailed discussions of these cases.
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It is easily seen that for Cases 1-4, conditions A1-A4 hold under proper assump-

tions on functions U and K.17 The following lemma relates U to A5 and A6.

Lemma 2 For Cases 1-4, U 0 > 0 implies A5. U exhibiting nonincreasing absolute risk

aversion implies A6 for Cases 1-3. If in addition U is nonnegative and is log-concave,

then A6 holds for Case 4.

For the heterogeneous-utility model, it is clear that each of the Cases 1-4 can be

generalized straightforwardly by replacing U(x) with U(x; t); so that u(x; t) = U(x; t)

(or u(x; t) = U( (x); t) for Case 2�).

Case 1�w(x; t) = U(v(t) + x; t) where v is twice continuously di¤erentiable with

v; v0 > 0:

Case 2�w(x; t) = U(v(t) +  (x); t) where  0 > 0,  00 � 0; and  (0) = 0:

Case 3�w(x; t) =
R
U(v + x; t)dK(vjt) with K(vjt) � K(vjt̂) for all t < t̂:

Case 4�w(x; t) = (1 + t)U(v(t) + x; t) where U � 0:

Cases 1�-4�generalize Cases 1-4 also in some other details. For instance, Case

3�allows the distribution K to be independent of t so that all bidders have the same

probability distribution over v: This can be a situation in which all available information

has been �priced�into the object for sale but because the bidders have di¤erent risk

attitudes they may still have di¤erent expected (utility) payo¤s upon winning. More

generally, Case 3�allows the bidders�types to a¤ect their risk preferences as well as

their expectations about the object�s uncertain value. For instance, t may be correlated

to a bidder�s wealth, a higher wealth level giving the bidder more favorable conditions

for using or deriving values from the object.

For Cases 1�-4�, conditions A1-A4 also easily hold with proper assumptions on

U(x; t) and K(vjt). The next lemma gives an interpretation of A5-A6 in terms of

U(x; t).

17For instance, for Case 2 u is log-concave as long as U is log-concave in the sense of A4, since  is

a (weakly) concave function.
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Lemma 3 Suppose A1-A4 hold. Further assume that U(�; t) exhibits nonincreasing

absolute risk aversion and that U(�; t) is more risk averse than U(�; t̂) whenever t < t̂:

Then A5-A6 hold for Cases 1�-4�.

Indeed, in all these cases the conditions A5-A6 can be replaced by the joint

condition that �u11(x; t)=u1(x; t) is nonincreasing in x and t: An important special

case is where u(x; t) exhibits CARA in x for all t; or that A6 holds with Q1 = 0: If

A6 holds with Q1 < 0; then by Lemma 1 it corresponds to the cases in which u(x; t)

exhibits DARA in x for all t: However, since these cases are just special examples of

our model and the function w(x; t) can be given other forms or interpretations (e.g.,

non-expected utility preferences), we maintain A5-A6 in this paper for generality.

3 Equilibrium

In both the EA and the EPA we assume that the seller chooses the same reserve price

p0. We begin with the EA equilibrium, which serves as a benchmark for analyzing the

EPA and welfare e¤ects of risk sharing in Section 4.

3.1 English auction

In the EA, it is routine to check that there exists a unique symmetric equilibrium in

our setting. In this equilibrium, it is a (weakly) dominant strategy for a type-t bidder

to stay in the auction until the price reaches �(t) such that

w(��(t); t) = u(0; t) (5)

By A1-A3 the bid function � is well de�ned on [0; H]; and it is increasing by A5.

If the reserve price p0 < �(0); it has no e¤ect and all bidders will participate in

the EA. If p0 > �(H) then no bidder will be interested in bidding. From now on we

assume that p0 2 [�(0); �(H)]: Then, there exists a screening level t0 2 [0; H] de�ned

by �(t0) = p0. A bidder will abstain from bidding in the EA if and only if his type is

lower than t0:

12



Given any vector of types (t1; :::; tN) ; we let t(1); t(2) and t(3) denote the highest,

second highest, and third highest types from among (t1; :::; tN). We call the bidder of

type t(2) the pivotal bidder, who determines the selling price in the EA equilibrium.

An important property of the EA equilibrium is that the object for sale will be

allocated to the one who has the highest willingness to pay for the object and therefore

the EA is ex post e¢ cient. It is important to note that as long as the absolute risk

aversion �u11(x; t)=u1(x; t) is nonincreasing in x and t; the winning bidder in the EA

should be also (weakly) more risk tolerant than all other bidders. This observation is

further strengthened when the object for sale entails ensuing risk.

3.2 English premium auction

According to the EPA rule, if the number of participating bidders n � 2, then the

auction reduces to the EA and the preceding analysis of equilibrium strategy �(t)

holds for this special case.

Now suppose n > 2. As in the EA, we focus on symmetric equilibria in which

bidders adopt the same bidding strategies. By backward induction, suppose that the

�rst stage ends with bottom price X � p0 and the two �nalists adopt strategy b(�; X) :

[r;H]! [X;1) with updated lower bound r of the opponent�s type distribution. We

say that b is a second-stage equilibrium if conditional on X, adopting b(�; X) maximizes

each �nalist�s expected utility given that the other �nalist adopts the same strategy b:

At the start of the second stage, a �nalist with type t who bids as though his

type is s (� r) derives a conditional expected utility equal to

U(t; sjr;X) =
1

1� F (r)

Z s

r

w (�(b(y;X)�X)� b(y;X); t) dF (y)

+
1� F (s)

1� F (r)
u (�(b(s;X)�X); t) (6)

Equilibrium requires U2(t; tjr;X) = 0; and it can be readily veri�ed that (see Hu,

O¤erman and Zou, 2011, Theorem 1), by A1-A6, there exists a second-stage equilibrium

that is the unique solution of the di¤erential equation in (7) under the boundary
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condition in (8):

b1(t;X) =
1

�

u (�(b(t;X)�X); t)� w (�(b(t;X)�X)� b; t)

u1 (�(b(t;X)�X); t)

f(t)

1� F (t)
(7)

b(H;X) = B(X) (8)

such that b1 > 0; where B(X) is the solution B that solves18

w(�(B �X)�B;H) = u(�(B �X); H): (9)

The following lemma shows how b is a¤ected by the bottom price.

Lemma 4 Assume A1-A6. Then, on its e¤ective domain,19 b(t;X) is continuously

di¤erentiable such that (i) b2 = 0 if Q1 = 0; and (ii) b2 < 0 if Q1 < 0:

The second-stage strategy b(t;X) now induces a �rst-stage strategy �; which is

given (implicitly) by

�(t) = b(t; �(t)) (10)

By Lemma 4 and the implicit function theorem, �(t) is well de�ned and is continuously

di¤erentiable, satisfying

�0(t) =
b1(t; �(t))

1� b2(t; �(t))
> 0 (11)

Because � is increasing, in equilibrium we haveX = �(t(3)) and that both �nalists

have types in [t(3); H].

Summarizing, the EPA strategy, denoted b�; can be fully described as follows.20

For all N potential bidders,

18Because the left side in (9) increases in B and the right side decreases in B; by A1-A3 the solution

B = B(X) is uniquely de�ned and di¤erentiable in X:

19By the EPA rules, the e¤ective domain of b(t;X) is


 = f(t;X) 2 [0;H]� [p0; B(H)] : X � b(t;X) � B(X)g:

20The dependence of b� on p0 and (�; �; b) is suppressed to ease notation.
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(I) their pre-auction strategy is

*
b�(t) � p0 if t � t0

b�(t) < p0 if t < t0
This means that bidders with types lower than t0 choose to abstain from bidding

and the rest choose to participate. Once the auction begins, the active number n

becomes common knowledge. Thus for the n active bidders,

(II) their �rst-stage strategy is

*
b�(t) = �(t) if n > 2

b�(t) = �(t) if n � 2
The case with n � 2 is straightforward. For n > 2; the �rst stage will end with

a bottom price X and for the two �nalists,

(III) their second-stage strategy is b�(t) = b(t;X):

We say that b� is an EPA equilibrium if (i) b(�; X) is a second-stage equilibrium

conditional on any bottom price X; (ii) in the �rst stage with n > 2 active bidders,

conditional on any updated information it is optimal for each bidder to adopt strategy

� providing the other bidders adopt �; and with n = 2 active bidders, it is a (weakly)

dominant strategy for each bidder to adopt strategy �; and (iii) prior to the auction,

a type-t bidder chooses to stay at price p0 if and only if his expected payo¤ from the

subsequent auction game is no less than u(0; t):

Our next theorem establishes that b� is indeed an EPA equilibrium.

Theorem 1 Suppose A1-A6 hold. Then the strategy b� constitutes an EPA equilib-

rium.

Proof. The proof that given n � 3 active bidders, (�; b) is an EPA equilibrium

follows similar (lengthy) arguments as in Hu, O¤erman and Zou (2011, Theorem 1);

hence is omitted. Because the e¤ect of a binding reserve price has not been considered

previously, to complete the proof we consider the pre-auction stage here assuming that

active bidders will follow strategy � in the �rst stage of the EPA.

First, suppose a potential bidder has type t < t0 so that �(t) < p0: Prior to the

auction, he is unsure about the number n of bidders who will choose to participate

at p0: We show that it is optimal for the bidder to abstain from bidding. If he stays

at p0; he faces three possible scenarios. (i) No other bidder stays at p0: In this case
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n = 1 and by (5) the bidder purchases the object at a loss. (ii) Only one other bidder

stays at p0. In this case n = 2 and the EA policy implies that the bidder will have no

expected pro�t to be made. He has to quit immediately or else face a potential loss

should he become the winner. (iii) There are n � 3 bidders staying at p0 (including

this one with type t < t0). Then, given that the other bidders will adopt strategy �

in the �rst stage, and given that these bidders have followed the pre-auction strategy

so that their types are no less than t0; the bidder with t < t0 will have no chance to

become a �nalist unless he deviates from strategy �: This is suboptimal, however, as

it is optimal to follow strategy � in the �rst-stage.

Consider next a bidder with type t � t0: It is clear that in all the above possible

scenarios (i)-(iii), he will have an expected payo¤ higher than (if t > t0) or equal to (if

t = t0) his status-quo utility u(0; t): Therefore, it is optimal for the bidder to participate

in the auction.

We conclude that b� is an EPA equilibrium.

Intuitively, with n > 2 active bidders the premium induces all types to bid higher

in the EPA than in the EA, i.e., �(t) > �(t) for all t � t0.21 By the pre-auction

strategy b�, this implies that observing n > 2 leads to a �jump� in bids at t0 in the

EPA, resulting in no bid in the price interval (p0; �(t0)): As shown in the proof of

Theorem 1, this jump bidding is caused by the uncertainty at the pre-auction stage

about the number n of active participants under reserve price p0.22

21This follows from (7) that for X = �(t); b1(t; �(t)) > 0 is equivalent to u (0; t) > w (��(t); t).

Comparing this with (5) gives �(t) > �(t) for all t 2 [t0;H).
22Jehiel and Moldovanu (2000) derive a similar jump-bidding property in their second-price auction

equilibrium with negative externalities. In their model with two bidders and a binding reserve price,

a subset of types with private values lower than the reserve price face the uncertainly whether the

opponent will bid higher or lower than the reserve price (similar to our n > 2 or n � 2 scenarios). By

deduction, under both scenarios these low-value types will not stand to gain and therefore will bid

zero. As the reserve price does not a¤ect the equilibrium bids by other types, which are higher than

their true values due to the externality, the jump bidding occurs at the level of the reserve price.

Milgrom and Weber (1982) also observe a similar �jump�property in their analysis of second-price
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The key implication of the jump bidding in the EPA is that when the seller

chooses the same reserve price p0 as in the EA, it will induce the same screening level

t0 so that the subsets of active types who are willing to participate in the EA and the

EPA are the same. This implication is essential for our main results in Section 4.

4 Main Results

We now turn to investigating the welfare implications of the premiums, from the seller�s

perspective �rst, and then from that of the bidders.

4.1 Seller�s perspective

Suppose the seller�s utility function, V; is twice di¤erentiable and that the seller has a

certainty equivalent value for the object equal to v0 � p0:
23

Let fN(2) denote the density function of the second-highest type t(2); with the

associated cumulative distribution FN(2): The seller�s expected utility in the EA can

then be written as

VN(p0jEA)

= V (v0)F (t0)
N + V (p0)NF (t0)

N�1(1� F (t0)) +

Z H

t0

V (�(y)) dFN(2)(y) (12)

where the �rst term in (12) comes from event t(1) � t0, the second term from event

t(2) � t0 < t(1); and the last term from event t0 < t(2):

Now let fN(2)(3) denote the joint density of the second- and the third-highest types.

equilibrium with interdependent values and a binding reserve price. For related analyses see also, e.g.,

Jehiel and Moldovanu (1996) and Caillaud and Jehiel (1998).

23In our setting, if the seller were able to choose the reserve price optimally for the EA, then p0 > v0

(e.g., Hu, Matthews and Zou, 2010).
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The seller�s expected utility in the EPA is then given by

VN(�; p0jEPA) = V (v0)F (t0)
N + V (p0)NF (t0)

N�1(1� F (t0))

+

Z t0

0

Z H

t0

V (�(y)) fN(2)(3)(y; z)dydz (13)

+

Z H

t0

Z H

z

V (R(y; �(z))) fN(2)(3)(y; z)dydz (14)

where the term in (13) comes from event t(3) < t0 < t(2), the term in (14) from event

t0 � t(3), and

R(y; �(z)) � b(y; �(z))� 2� (b(y; �(z))� �(z)) (15)

is the seller�s revenue conditional on t(2) = y and t(3) = z � t0.

The next theorem provides a key result concerning the lower bound for the dif-

ference between the seller�s expected payo¤s in the EPA and the EA. This bound is

�tight�in that it is reached under condition (i) in the theorem.

Theorem 2 Assume A1-A6, and that V 00 � 0. Then for all � 2 (0; 1=2];

VN(�; p0jEPA)� VN(p0jEA)

�
Z H

t0

�(t)

 
1�

�
F (t0)

F (t)

�N�2!
V 0 (�(t)) dFN(2)(t) (16)

where �(t) =
V (�(t))� V (�(t))

V 0 (�(t))
� u (0; t)� w (��(t); t)

u1 (0; t)
(17)

The inequality in (16) is (i) an equality if Q1 = 0 and either V 00 = 0 or � = 0:5; and

(ii) is a strict inequality if Q1 < 0, or if V 00 < 0 and � 2 (0; 1=2):

Proof. The di¤erence between the seller�s expected payo¤s in the EPA and the EA is

uniquely determined by their di¤erence in the event t0 � t(3): Therefore

VN(�; p0jEPA)� VN(p0jEA)

=

Z H

t0

Z H

z

[V (R(y; �(z)))� V (�(y))] fN(2)(3)(y; z)dydz

Substituting fN(2)(3)(y; z) = N(N � 1)(N � 2)F (z)N�3(1� F (y))f(z)f(y) gives

VN(�; p0jEPA)� VN(p0jEA)

= N(N � 1)
Z H

t0

�Z H

z

[V (R(y; �(z)))� V (�(y))] (1� F (y))dF (y)

�
dF (z)N�2
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Integrating by parts, and noting that R(z; �(z)) = �(z); we obtain

VN(�; p0jEPA)� VN(p0jEA)

= �N(N � 1)

�
Z H

t0

�
F (z)N�2 � F (t0)

N�2� @
@z

Z H

z

[V (R(y; �(z)))� V (�(y))] (1� F (y))dF (y)dz

= N(N � 1)
Z H

t0

�
F (z)N�2 � F (t0)

N�2� [V (�(z))� V (�(z))] (1� F (z))dF (z)

�N(N � 1)
Z H

t0

�
F (z)N�2 � F (t0)

N�2� Z H

z

@

@z
V (R(y; �(z))) (1� F (y))dF (y)dz(18)

The partial derivative

@

@z
V (R(y; �(z))) = V 0 (R(y; �(z)))R2(y; �(z))�

0(z)

By Lemma 4, we have b2 � 0. So,

R2 = 2�+ (1� 2�)b2 � 2� (19)

�0(z) =
b1(z; �(z))

1� b2(z; �(z))
� b1(z; �(z)) (20)

Since R1 = (1 � 2�)b1 � 0, R(y; �(z)) � R(z; �(z)) = �(z): So V 00 � 0 implies

V 0 (R(y; �(z))) � V 0 (�(z)) for all y � z: Consequently,

@

@z
V (R(y; �(z))) � V 0 (�(z)) 2�b1(z; �(z)) (21)

It follows that Z H

z

@

@z
V (R(y; �(z))) (1� F (y))dF (y)

� V 0 (�(z)) 2�b1(z; �(z))

�Z H

z

(1� F (y))dF (y)

�
= V 0 (�(z))�b1(z; �(z))(1� F (z))2

= V 0 (�(z))
u (0; z)� w (��(z); z)

u1 (0; z)
(1� F (z))f(z)

where we used (7) to obtain the last equation. Substituting this inequality into (18),

rearranging terms, and changing the notation of variable z to t, we obtain (16)-(17).

If Q1 = 0; then by Lemma 4(i) b2 = 0: This implies that both inequalities in (19)-

(20) hold as an equality. In this case either V 00 = 0 or � = 0:5 implies V 0 (R(y; �(z))) =
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V 0 (�(z)). So (21) holds as an equality. The same deduction will then yield (16) as an

equation.

If V 00 < 0 and � 2 (0; 0:5); then V 0 (R(y; �(z))) < V 0 (�(z)) by the fact that

R(y; �(z)) is an increasing function of y: So the inequality in (21) holds strictly. This

is also true with Q1 < 0, which implies, by Lemma 4(ii), b2 < 0 and therefore both

inequalities in (19)-(20) hold strictly. The subsequent deduction will then lead to a

strict inequality in (16).

By inspecting (16), we �nd that the relative performance of the EPA from the

seller�s perspective depends only on the distribution of the second-highest type FN(2);

where (u(�; t); w(�; t)) in (17) stands for the preference functions of the pivotal bidder in

the EA (i.e., t = t(2)): Therefore, a su¢ cient condition for the EPA to outperform the

EA is that the function �(t) in (17) is positive for all t 2 (t0; H]: In light of a result in

Hu, O¤erman and Zou (2011) that the premium lowers expected revenue when bidders

are risk averse (see also Lemma 5 in the next subsection), Theorem 2 suggests a strong

risk sharing e¤ect of the premium: even though the expected revenue is lower, the

seller may strictly prefer the EPA for the reduction of revenue risk.

It is instructive to use Case 1� (and thus Case 1) as an example and see how

the sign of �(t) can be determined. For Case 1�, w(x; t) = u(v(t) + x; t): So by (5),

w(��(t); t) = u(0; t) implies �(t) = v(t): Now assume that

� V 00(x)

V 0(x)
� �u11(y; t0)

u1(y; t0)
; 8x; y 2 R (22)

Then, by Lemma 1

V (�(t))� V (�(t))

V 0 (�(t))
� u (x+ �(t); t0)� u(x+ �(t); t0)

u1 (x+ �(t); t0)
; 8x

In particular, for x = ��(t) we have

V (�(t))� V (�(t))

V 0 (�(t))
� u (0; t0)� u(�(t)� �(t); t0)

u1 (0; t0)

>
u (0; t)� u(�(t)� �(t); t)

u1 (0; t)
; 8t > t0; by A5 and Lemma 1 (23)

=
u (0; t)� w(��(t); t)

u1 (0; t)
by �(t) = v(t)
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This shows �(t) > 0 and therefore VN(�; p0jEPA) > VN(p0jEA):

The condition (22) means that regardless of the respective income levels, the seller

is more risk averse than the type-t0 bidder. This condition removes the �wealth e¤ect�

that may cause ambiguity in comparing relative risk aversion between individuals at

di¤erent wealth levels. Indeed, in general, the bidders� degrees of risk aversion as

being modelled depend on how we �normalize�their status quo wealth. This has been

assumed to be zero in our model by convention. Such a normalization is innocuous if

the bidders exhibit CARA, but in the case of DARA it makes the bidders �appear�to

be more risk averse than they actually are �given the supposition that each bidder has

su¢ cient funds to purchase the object for sale. To avoid such ambiguities, we therefore

invoke the assumption Q1 = 0 for the following propositions. This assumption is akin

to the CARA assumption used elsewhere in auction theory (e.g., Milgrom and Weber,

1982; Matthews, 1983) as well as other �elds of studies.24

Our �rst proposition generalizes the preceding observation for Case 1�to Cases

2�- 4�.

Proposition 1 For Cases 1�- 4�(and therefore Cases 1-4), assume A1-A5, Q1 = 0,

and (22). Then a risk averse seller with reserve price p0 has a higher expected utility

in the EPA, given any premium rule � 2 (0; 1=2), than in the EA.

The next proposition highlights a �businessman�s case�in which the seller�s pref-

erence belongs to the same population of the bidders.

Proposition 2 Suppose A1-A5 hold and Q1 = 0: Suppose the seller�s preference is

the same as a bidder with type t0 2 [0; H), and he chooses reserve price p0 accord-

ing to u(p0; t0) = w(0; t0) (the seller�s status-quo utility if there is no sale). Suppose

u11(�; t0) � 0: Then VN(�; p0jEPA) > VN(p0jEA) for all � 2 (0; 1=2):

24We agree with Milgrom (2004, p. 93-94) that using CARA is an analytical technique, and it by

no means prejudges the importance of wealth e¤ects. Of course, alternatively, the conclusions of these

propositions can be arrived at by simply assuming that the bidders exhibit DARA and are su¢ ciently

wealthier than the seller. For instance, assume u(x; t) = U(c(t) + x; t) with c0 > 0 and c(t) >> 0: But

such �manipulations�will not add any new insight.
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Not con�ned to Cases 1�- 4�, this proposition illustrates why in some circum-

stances the expected sales above the reserve price logically imply that the seller is

better o¤ by employing the EPA rather than the EA.

The next proposition concerns the e¤ect of the number of bidders N prior to the

auction.

Proposition 3 Under the circumstances of either Proposition 1 or Proposition 2, ex-

cept that the seller does not impose a reserve price (i.e., reserve price equal to zero).

Then, for all � 2 (0; 1=2); there exists a number N� > 2 such that VN(�; 0jEPA) >

VN(0jEA) for all N > N�:

It is easily seen from the proof of this proposition that the result holds not just

for a reserve price equal to zero. The same prediction holds for any arbitrary reserve

price, with a higher reserve price likely to be associated with a lower threshold number

N� of the bidders.

An immediate corollary concerning the expected revenue of Propositions 1-3 is

as follows.

Corollary 1 Suppose the bidder population includes a risk neutral type, say, t0 2

[0; H): Then, under A1-A6, for arbitrary reserve price p, (i) p � �(t0) implies that the

expected revenue in the EPA is greater than that in the EA; and (ii) p < �(t0) implies

that for all � 2 (0; 1=2); there exists an N� > 2 such that the expected revenue in the

EPA is greater than that in the EA for all N > N�:

Proof. Because the corollary concerns expected revenues, it is consistent with a risk

neutral seller in our model. Assume that both the seller and the type-t0 bidder are

risk neutral. Then, applying the results of Propositions 1 or 2 for Part (i), and of

Proposition 3 for Part (ii) lead to the conclusions.

We conclude this subsection with two more corollaries that are of interest on their

own.
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Corollary 2 Suppose the bidders are risk neutral. Then the EA revenue is a mean-

preserving spread of that of the EPA for all � 2 (0; 1=2):

Proof. By the revenue equivalence theorem, under bidder risk neutrality the expected

revenue is the same in the EA and in the EPA. For risk neutral bidders A1-A5 and

Q1 = 0 hold trivially. Hence, by Theorem 2, the EPA revenue is preferred by all types

of risk averse sellers. Hence the conclusion (e.g., Rothschild and Stiglitz, 1970).

This corollary signi�cantly generalizes a result of Goeree and O¤erman (2004),

who showed that for uniformly distributed types the EPA revenue has a lower variance

than that of the EA.

All preceding results do not assume any knowledge of the seller (except knowledge

of his own preference). Now, if we assume that the seller knows the utility functional

forms of u and w; as well as the distribution function of the bidder types F; then we

have the next corollary.

Corollary 3 Under the assumptions of either Proposition 1 or Proposition 2, there

exists an optimal �� > 0 that maximizes VN(�; p0jEPA) on [0; 1=2]:

Proof. Obvious, given Propositions 1-2 and the fact that VN(�; p0jEPA) is continuous

in � on the closed interval [0; 1=2]:

4.2 Bidders�perspective

We now turn to bidders�preferences for the auction forms. Among n (> 2) active

bidders in the EPA under the reserve price p0, the �rst n � 2 bidders who drop out

are the same in either the EA or the EPA. As these losing bidders end up with their

status quo utility under either auction policy, it su¢ ces to focus on the second stage

EPA with any bottom price X = �(r) given. To ease notation, we �x r and denote

'(t) = �(b(t;X)�X) and h(t) = b(t;X)� '(t)

23



Hence, '(t) is the premium and h(t) is the e¤ective payment by the winner if the EPA

concludes at price b(t;X):

In the EA, when only two bidders remain, the expected utility of a type-t bidder

equals

U(tjEA) = 1

1� F (r)

Z t

r

w(��(y); t)dF (y) + 1� F (t)

1� F (r)
u(0; t) (24)

The same bidder in the EPA has an expected utility equal to

U(tjEPA) = 1

1� F (r)

Z t

r

w(�h(y); t)dF (y) + 1� F (t)

1� F (r)
u('(t); t) (25)

Therefore, in order to compare the bidders�preferences over the two auction forms

it su¢ ces to consider the sign of

�(s; t) �
Z s

r

(w (�h(y); t))� w(��(y); t)) dF (y) + (1� F (s)) (u('(s); t)� u(0; t))

(26)

and show that �(t; t) > 0 for all t 2 (r;H]:

4.2.1 Homogeneous utility

We �rst show a clear-cut result for the homogeneous-utility model.

Theorem 3 For the homogeneous-utility model, assume A1-A4, w2 > 0; and25

�w12(x; t)
w1(x; t)

� �(t); 8x 2 [��(t); 0)

Then, � > 0 implies U(tjEPA) > U(tjEA) for all t 2 (r;H]:

Proof. For the homogeneous-utility model, u2(x; t) � 0 so that by the envelope

theorem,

d

dt
�(t; t) = �2(t; t) =

Z s

r

(w2 (�h(y); t))� w2(��(y); t)) dF (y)

By the assumption �w12(x; t) = �(t)w1(x; t); integrating over x gives

w2 (x; t))� w2(y; t) = ��(t) (w (x; t))� w(y; t)) ; 8x; y 2 [��(t); 0)

25For Cases 1-4, this condition is implied by U exhibiting CARA.
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Therefore

�2(t; t) = ��(t)
Z t

r

(w (�h(y); t))� w(��(y); t)) dF (y) (27)

If �(t; t) � 0 for some t > r; then
R t
r
(w (�h(y); t))� w(��(y); t)) dF (y) < 0 as

u('(t); t) > u(0; t): But then (27) implies �2(t; t) > 0 for �(t) > 0:We know �(r; r) =

0: Thus �(t) > 0 implies �(t; t) > 0, or U(tjEPA) > U(tjEA); for all t 2 (r;H]:

Observe that, in the proof of this theorem, no assumption is made about risk aver-

sion of the status quo utility u (apart from A4 that u is log-concave). The conclusion

of the theorem depends only on risk aversion of bidders�utility w upon winning.

A straightforward implication of this theorem is that risk sharing in the EPA

makes all risk averse bidders better o¤ �at least when income e¤ects are negligible.

We provide a numerical example below to visualize the premium e¤ects on the seller�s,

bidders�, and total surplus of expected payo¤s.

4.2.2 Example

Consider Case 1. Suppose n = 3 and t is uniformly distributed on [0; 1]; and that the

seller does not impose a reserve price. Suppose that bidders�utility U exhibits CARA:

U(x) =
1� exp(��x)

�
; � 2 R:

In the EA, Case 1 implies the equilibrium condition w(��(t); t) = U(t��(t)) = 0

so that �(t) = t. In the EPA, the di¤erential equation (7) with boundary condition (8)

has an explicit solution

b�(t) = �
1

�
ln

 
1

�

Z 1

t

e��y

1� y

�
1� y

1� t

� 1
�

dy

!
(28)

where the bid function b�(t) is independent of the bottom price X: By (10), this implies

�(t) = b�(t) so that all bidders will adopt the same strategy b� in both the �rst and

second stages. Now suppose the seller also has a CARA utility function

V (x) =
1� exp(�
x)



; 
 > 0
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The density function fn(2)(3)(y; z) now equals 6(1 � y), so the seller�s expected

utility equals26

V (�) = 6

Z 1

0

Z 1

z

1� exp(�
 (b�(y) + 2� (b�(y)� b�(z))))



(1� y)dydz

From any bidder�s viewpoint, the density of the highest and second highest types

from among the other bidders is fn�1(1)(2)(y; z) (= 2). Thus, given the bidder�s type t; his

expected utility equals

U(tj�) = 2

Z t

0

Z t

z

1� exp(��(t� b�(y) + �(b�(y)� b�(z)))

�
dydz

+2

Z t

0

Z 1

t

1� exp(��(�(b�(t)� b�(z)))

�
dydz

Ex ante, the expected utility of an active bidder equals

U(�) =

Z 1

0

U(tj�)dt

Table 1 shows numerical results for the case with � = 1 and 
 = 2 under di¤erent

premium rules of �: The column with � = 0 corresponds to the EA. As can be seen, the

seller obtains maximum expected utility at about � = 0:3; and bidders prefer � = 0:5:

The total surplus is maximized at � = 0:5:

Table 1: predictions of speci�c example

Premium rule � 0 0:1 0:2 0:3 0:4 0:5

Seller expected utility V (�) 0:297 0:303 0:305 0:306� 0:305 0:304

Bidder expected utility U(�) 0:059 0:063 0:066 0:068 0:070 0:073�

Total surplus V (�) + 3U(�) 0:473 0:490 0:502 0:510 0:516 0:523�

4.2.3 Heterogeneous utility

We now extend the result of Theorem 3 to the heterogeneous-utility model. For con-

creteness, we will interpret t as a parameter that is positively associated with a bidder�s

wealth. A natural implication of this interpretation is that risk aversion is associated

26Without ambiguity, we use the same notation V (and U) to denote expected utility at each stage.
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X

b(t,X)

η(t)

h(t)

tτr H

ϕ(t)

Figure 1: There is a threshold point � at which the EA bid function �(t) crosses the

EPA e¤ective payment function h(t) from below.

with the property that u12 � 0; with u12 = 0 being a special case for homogeneous or

risk neutral bidders.

For generality, we allow u and w to exhibit nonincreasing absolute risk aversion.

As implied by the boundary condition (8) and (9), the e¤ective payment function h(t)

satis�es h(r) > �(r) and h(H) < �(H). Consequently, there is a crossing point � at

which �(t)� h(t) switches the sign from negative to positive. To simplify the analysis,

in what follows we assume that �(t)� h(t) has a single crossing property that for any

t 2 [r;H); �(t) � h(t) implies �(t̂) � h(t̂) for all t̂ 2 (t;H] (see Figure 1).27

27The crossing point � can be more generally de�ned by � = infft 2 [r;H) : �(t) � h(t)g. Su¢ cient

conditions for such a single crossing property to hold can be identi�ed for speci�c cases, which we do

not pursue here given the space limit.

27



To ease exposition, let xe and xp denote respectively the e¤ective income of a

�nalist in the EA and EPA, such that EtU(~xe; t) = U(tjEA) and EtU(~xp; t) = U(tjEPA)

as de�ned in (24) and (25).28 In general, the e¤ective income is a random variable

that depends on a bidder�s type t; the opponent�s type y and possibly the ensuing

risk. Because U1(x; t) > 0; the e¤ective income can be always well de�ned given any

speci�cation of w(x; t): For example, for Cases 1�and 2�, we de�ne for any function  

such that  0 > 0 (with  0 � 1 for Case 1�),

~xe(y; t) =

8<: v(t) +  (��(y)) for y � t

0 for y > t

~xp(y; t) =

8<: v(t) +  (�h(y)) for y � t

 ('(t)) for y > t

The following lemma shows that when bidders are risk averse, the premium in-

creases the expected e¤ective income for any type of a �nalist under various circum-

stances. The lemma generalizes our previous work (Hu, O¤erman and Zou, 2011) in

that bidders now exhibit heterogeneous risk preferences, and that the auctioned object

may carry ensuing risks.

Lemma 5 For Cases 1�-3�suppose A1�A3, A5-A6 hold, and U11(�; t) < 0 for all t 2

[0; H]. Suppose further for Case 3�that Q1 = 0. Then the expected e¤ective income by

any type of the bidders is higher in the EPA than in the EA.29

The analysis of the risk sharing e¤ects on bidders�expected utilities is complicated

by the fact that, although in the EA no bidder expects to end up with a loss, in the

28The expectation operator Et(�) indicates that the expectation may be taken conditional on t; such

as in Case 3 and Case 3�.

29The marginal utility in Case 4�exhibits a jump upon winning and consequently U11(x; t) < 0 does

not imply risk aversion �in the large.�In the homogeneous-utility model of Maskin and Riley (1984),

the absolute risk aversion in Case 4 is required to be greater than 2. In the more general Case 4�, it

can be shown that the result of this lemma holds if U is �su¢ ciently�risk averse. We drop this case

for clarity of the conclusions.
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ϕ(t)
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t < τ

r t y

t > τ

r τ

xp
ϕ(t)

xe

Figure 2: In situation t < � the type-t �nalist has the potential risk of losing money.

This will happen when the opponent has a type y < t that is su¢ ciently close to t: In

situation t > � the type-t �nalist is ensured to earn a positive surplus.

EPA this can happen to a subset of low-type bidders when t < � (see Figure 2). As

it turns out, the case with t < � requires some mild additional assumptions for an

unambiguous determination of the premium e¤ect. The situation with t > � does not

require these additional assumptions, and has a stronger implication that ~xp dominates

~xe by second-order stochastic dominance.

Our last theorem concerns the general result that risk averse bidders prefer the

EPA to the EA under various circumstances.

Theorem 4 For the heterogeneous-utility model, suppose A1-A6 hold and u11, w11 <

0. Then U(tjEPA) > U(tjEA)
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(i) for all t 2 (r; � ] if30

@

@t

w11(x; t)

w1(x; t)
� 0; 8x 2 [��(t); 0) and (29)

w12(x; t)

w1(x; t)
<

u12(y; t)

u1(y; t)
� 0; 8x; y : ��(t) � x < 0 � y: (30)

(ii) for all t 2 (� ;H] if �(t)� h(t) has the single crossing property on [r;H] and

Et(~x
p) � Et(~x

e) (e.g., Lemma 5).

Proof. (i) It can be readily veri�ed that condition (29) is equivalent to

@

@x

w12(x; t)

w1(x; t)
� 0; (31)

and by Lemma 1, (29) implies

@

@t

w(x; t)� w(y; t)

w1(x; t)
� 0; 8x; y 2 [��(t); 0)

Consequently, for all x; y 2 [��(t); 0);

w2 (y; t))� w2(x; t) � (w (y; t))� w(x; t))
w12(x; t)

w1(x; t)
(32)

Consider now �(s; t) given in (26). We have

�2(s; t) =

Z s

r

(w2 (�h(y); t))� w2(��(y); t)) dF (y)

+(1� F (s)) (u2('(s); t)� u2(0; t))

Substituting ��(y) for x and �h(y) for y in (32), we deduce

�2(s; t) �
Z s

r

(w (�h(y); t))� w(��(y); t)) w12(��(y); t)
w1(��(y); t)

dF (y)

+(1� F (s)) (u2('(s); t)� u2(0; t))

30The condition in (29) says that the absolute risk aversion of w(x; t) is nonincreasing in t. Condition

(30) could be interpreted as requiring that the rate of change in the marginal utility of w is relatively

lower than that of u as t increases. For the homogeneous-utility model, this is a natural consequence

of risk aversion as w12 < 0 � u12: For the heterogeneous-utility model, (30) holds for Cases 1�-3�

as long as u11 < 0 and �u11=u1 does not decrease �too fast� as income increases over the relevant

domain. This nests CARA as a special case. For Case 4�, the condition requires u to be �su¢ ciently�

risk averse.
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Because w (�h(y); t)) � w(��(y); t), by the (�rst) mean value theorem in integral

calculus, Z s

r

(w (�h(y); t))� w(��(y); t)) w12(��(y); t)
w1(��(y); t)

dF (y)

=
w12(��(�); t)
w1(��(�); t)

Z s

r

(w (�h(y); t))� w(��(y); t)) dF (y), � 2 [r; s] (33)

On the other hand, we have for s > r;

u2('(s); t)� u2(0; t)

= (u('(s); t)� u(0; t))
u2('(s); t)� u2(0; t)

u('(s); t)� u(0; t)

= (u('(s); t)� u(0; t))
u12(�; t)

u1(�; t)
, � 2 [0; '(s)]; (34)

where the last equation derives from the generalized mean value theorem.

Because
R s
r
(w (�h(y); t))� w(��(y); t)) dF (y) < 0, we have by (30), (33), and

(34) that

�2(s; t) � w12(��(�); t)
w1(��(�); t)

Z s

r

(w (�h(y); t))� w(��(y); t)) dF (y)

+ (u('(s); t)� u(0; t))
u12(�; t)

u1(�; t)

>
u12(�; t)

u1(�; t)

Z s

r

(w (�h(y); t))� w(��(y); t)) dF (y)

+ (u('(s); t)� u(0; t))
u12(�; t)

u1(�; t)

= �(s; t)
u12(�; t)

u1(�; t)
; 8s � t � � :

Because u12 � 0, it follows by the envelope theorem that �(t; t) � 0 implies d
dt
�(t; t) =

�2(t; t) > 0: We have �(r; r) = 0. Thus �(t; t) > 0 or U(tjEPA) > U(tjEA) for all

t 2 (r; � ].

(ii) We prove this part of the theorem by a simpler graphical argument. De�ne

the induced cumulative probability distributions of ~xe and ~xp by

Ge(xjt) � Pr(~xe � xjt) and Gp(xjt) � Pr(~xp � xjt) (35)
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It can be readily veri�ed by inspecting Figure 2 that the relations between Ge(xjt) and

Gp(xjt) can be depicted as in Figure 3. By assumption, we have

Et(~x
p) =

Z
xdGp(xjt) �

Z
xdGe(xjt) = Et(~x

e) (36)

and for t > � , Gp crosses Ge from below exactly once. We therefore conclude that

(e.g., Jewitt, 1987, Theorem 1) ~xp dominates ~xe in the sense of second-order stochastic

dominance,31 which implies U(tjEPA) > U(tjEA) for all t 2 (� ;H]:

Summarizing, this section has demonstrated a variety of circumstances in which

the EPA Pareto dominates the EA at the interim, and therefore also at the ex ante

stage of the auction game with incomplete information.

5 Summary and Conclusion

We have presented an analysis of risk sharing e¤ects in English premium auctions

(EPA) with risk averse seller and bidders.32 Our study reveals that when both the

seller and bidders are risk averse, the English auction is in general ine¢ cient at the

interim stage. By simple modi�cations of the payment rule of the English auction, the

auction designer can often make the auction more attractive to both the sellers and

buyers when they are risk averse. This �nding has signi�cant normative and positive

implications. Because of the overwhelming evidence that the majority of individuals

are risk averse and that people di¤er in their risk attitudes, the EPA format presented

in this paper could be of interest to designers of auctions in practice. On the positive

side, the result of our study provides a plausible risk-sharing motive that helps explain

why premium auctions have stood the test of time and remain a class of regularly

adopted auctions in Europe.

31Obviously, the same conclusion does not hold for t < � as the left end of the support of Gp is

lower than that of Ge:

32Hu, Matthews and Zou (2013) study a similar English auction model with ensuing risk and

heterogeneous bidders, allowing for a more general setting. Their focus is on the existence of ex post

e¢ cient equilibria and the e¤ects of ensuing risks.
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ϕ(t)

Gp(x|t)

x

t < τ

0

t > τ

Ge(x|t)

1

ϕ(t)

Gp(x|t)

x0

Ge(x|t)

1

Figure 3: Ge(xjt) and Gp(xjt) are the induced cumulative distributions of a �nalist�s

e¤ective income under the EA and the EPA, respectively. When t > �; Gp crosses Ge

only once from below and therefore dominatesGe in the sense of second-order stochastic

dominance given that the expected e¤ective income is higher under Gp rather than Ge:
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An important related issue not considered in this paper is how rewarding premi-

ums would a¤ect the potential bidders�entry decisions (e.g., Levin and Smith, 1994;

Smith and Levin, 1996; Bulow and Klemperer, 1996, 2009). We have assumed a �xed

number of potential bidders and showed that risk averse bidders will unanimously prefer

the EPA to the EA irrespective of the seller risk preference. Therefore, it is conceivable

that when potential bidders make entry decisions based on their expected payo¤s, and

acquire information at some costs after entry, the EPA will be more conducive to entry

than the English auction. From the seller�s viewpoint, this could increase revenue by

more than an optimally structured auction does with fewer bidders (e.g., Bulow and

Klemperer, 1996). So, even if the seller is risk neutral, the use of EPA could make

sense for attracting more bidders. With endogenous entry, risk sharing between the

seller and bidders in an EPA could improve ex post allocation e¢ ciency when more

bidders are attracted to the trade, while an auction format that is more attractive for

sellers could also encourage its actual usage.33

In light of the unambiguous bene�t of risk sharing among the players in the Eng-

lish premium auctions, one might also wish to know whether, and to what extent,

similar improvement in Pareto e¢ ciency can be found on other ex post e¢ cient auc-

tions34 when players are heterogeneous and risk averse. These will be interesting topics

for future research.

33For instance, Engelbrecht-Wiggans and Nonnenmacher (1999) documented how implementing a

�seller friendlier�auction design in early nineteenth-century New York attracted more imports to the

city and supported its subsequent economic growth. See van Bochove, Boerner and Quint (2013) for

a historic account about the use of premium tactics in Europe.

34For example, Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), Ausubel (2004), and

Perry and Reny (2002, 2005). Along the lines of the VCG mechanisms (Vickrey, 1961; Clark, 1971;

Groves, 1973), all these auction procedures were designed under the assumption that the players are

risk neutral or have quasilinear utility functions.

34



Appendix

Proofs of the lemmas

Proof of Lemma 1. (i))(ii) follows from Pratt (1964, Eqs. (21) and (22) for

y < 0 and y > 0; respectively). (ii))(iii) holds by replacing y in (3) by y � ~v; and

taking expectation over ~v: (iii))(i) holds by noting that if the weak [strong] form of

(i) does not hold, then the strong [weak] form of (i) holds on some interval with u and

û interchanged. Thus (iii) cannot hold true for all x; y; and ~v (Pratt, 1964; p. 129).

Proof of Lemma 2. Because u(x; t) (� U(x)) does not depend on t; Q3 < 0 if and

only if w2 > 0: Hence, U 0 > 0 is equivalent to A5 for Cases 1-3, and implies A5 for Case

4. Now suppose that U has nonincreasing absolute risk aversion. Then, by Lemma 1,

for Cases 1-3 Q(x; y; t) is nonincreasing in x and therefore A6 holds. To see that it is

also true with Case 4, note that in this case

Q(x; y; t) =
U(x)� (1 + t)U(t+ x� y)

U 0(x)

= (1 + t)
U(x)� U(t+ x� y)

U 0(x)
� t

U(x)

U 0(x)

By Lemma 1 the �rst part is nonincreasing in x. By log-concavity, U(x)
U 0(x) is nondecreasing

and therefore Q is nonincreasing in x:

Proof of Lemma 3. Fix any t; and assume that U(x; t) is nondecreasing in absolute

risk aversion as x increases. Then, as with Cases 1-4, A6 holds for Cases 1�-4�. Now

if in addition U(x; t) decreases in absolute risk aversion as t increases, then it can be

shown that Q(x; y; t) is a decreasing function of t and therefore condition A5 holds.

We check this for Case 3�, which is less obvious than the other cases. By Lemma 1,

the assumption that U(�; t) is more risk averse than U(�; t̂) for t < t̂ implies

U(x� (y � v) ; t̂)� U(x; t̂)

U1(x; t̂)
>
U(x� (y � v) ; t)� U(x; t)

U1(x; t)
; 8x; y; v (37)

BecauseK(vjt̂) exhibits �rst-order stochastic dominance overK(vjt), and because both
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sides of the above inequality increase in v; taking expectations maintains the inequality:R
U(x� (y � v) ; t̂)dK(vjt̂)� U(x; t̂)

U1(x; t̂)
>

R
U(x� (y � v) ; t)dK(vjt)� U(x; t)

U1(x; t)
(38)

This shows Q(x; y; t) > Q(x; y; t̂); verifying A5.

Proof of Lemma 4. The di¤erential equation in (7) can be more succinctly written

as

b1(t;X) =
1

�
Q(�(b(t;X)�X); b(t;X); t)

f(t)

1� F (t)

where Q is de�ned in (2). Because the right-hand side of (7) is continuously di¤eren-

tiable in b; t; and X, the solution b(t;X) is continuously di¤erentiable in t and X on

its e¤ective domain (e.g., Hale, 2009, Chapter 1, Theorem 3.3). Di¤erentiating w.r.t.

X gives

b12(t;X) = �(1� b2)Q1 +
1

�
Q2b2

f(t)

1� F (t)
(39)

where

Q1 = 1�
w1
u1
�Q

u11
u1

and Q2 =
w1
u1

(40)

By (8), substituting b(H;X) for B in (9) gives

u(�(b(H;X)�X); H) = w(�b(H;X) + �(b(H;X)�X); H); 8X

Di¤erentiating w.r.t. X yields, at t = H;

u1 � �(b2 � 1) = w1 � (�b2 + �(b2 � 1)) (41)

Part (i). Assume Q1 = 0 and �x an arbitrary X < B(H): Then from (40) we obtain

w1 = u1 whenever Q = 0: Consequently, (41) implies b2(H;X) = 0 as w1 > 0: Now

by (39), b2(t;X) � 0 implies b12(t;X) � 0: Hence b2 � 0 for all t � H such that

b(t;X) � X (see, e.g., Hu et al. 2011, Lemma 1). But this logic holds also for �b2:

Therefore, we must have b2(t;X) � 0 on the e¤ective domain of b:

Part (ii). Assume Q1 < 0: Then by (40), Q = 0 implies w1 > u1: Equation (41)

now implies w1b2 = (w1 � u1)�(b2 � 1) < (w1 � u1)�b2 and therefore b2(H;X) < 0:

We �rst show that b2(t;X) < 1 for all t 2 [r;H]: This follows because by (39),

b2(t;X) = 1 implies b12(t;X) > 0; which is impossible given b2(H;X) < 0:
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Now by (39), b2 = 0 implies b12(t;X) > 0: This implies that b2(t;X) < 0 for all

t � H such that b(t;X) � X (see, e.g., Hu et al. 2011, Lemma 1).

Proof of Lemma 5. For Cases 1�and 2�, it su¢ ces to show that

A(t) �
Z t

r

( (�h(y))�  (��(y))) dF (y) + (1� F (t)) ('(t)) > 0

Di¤erentiating yieldsA0(t) = ( (�h(t))�  (��(t))�  ('(t))) f(t)+(1�F (t))�b1(t;X).

Substituting (7), and noting that v(t) +  (��(t)) = 0; we have

A0(t) =

�
v(t) +  (�h(t))�  ('(t)) +  0('(t))

u ('(t); t)� w (�h(t); t)
u1 ('(t); t)

�
f(t)

=

�
U( ('(t)); t)� U(v(t) +  (�h(t)); t)

U1( ('(t)); t)
�  ('(t))� (v(t) +  (�h(t)))

1

�
f(t)

> 0

where the inequality holds because of U11 < 0 by Lemma 1.

For Case 3�, the e¤ective income also depends on the realization of the value of

v: So

~xe(v; y; t) =

8<: v � �(y) for y � t

0 for y > t

~xp(v; y; t) =

8<: v � h(y) for y � t

'(t) for y > t

If su¢ ces to show for this case that

A(t) �
Z t

r

(�(y)� h(y)) dF (y) + (1� F (t))'(t) > 0

Because h = b� '; we have

A0(t) =

�
u ('; t)� w (�b+ '; t)

u1 ('; t)
� (b� �)

�
f(t)

= [Q('; b; t)� (b� �)] f(t)

Now Q1 = 0 implies (by adding b� � � ' to the �rst argument of Q)

A0(t) =

�
u (b� �; t)� w (��; t)

u1 (b� �; t)
� (b� �)

�
f(t)

=

�
u (b� �; t)� u (0; t)

u1 (b� �; t)
� (b� �)

�
f(t) > 0
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where the inequality comes from u being risk averse. Since A(r) = 0, we have A(t) > 0

for all t 2 (r;H]:

Proofs of the propositions

Proof of Proposition 1. By Theorem 2, it su¢ ces to show that for all the cases

considered, the function �(t) de�ned in (17) is positive. The conclusion has been

established for Cases 1 and 1�in (23). For Cases 2�- 4�; Q1 = 0 and w(��(t); t) = u(0; t)

imply w(��(t); t) = u(�(t)� �(t); t). So by (23) �(t) > 0 for all t > t0 under (22).

Proof of Proposition 2. By Q1 = 0; the seller�s break even condition u(p0; t0) =

w(0; t0) holds i¤ u(0; t0) = w(�p0; t0): This implies that, in equilibrium, a sale occurs

at a price greater than p0 i¤ the pivotal bidder has a type t > t0. By the EA equi-

librium u (0; t) = w(��(t); t); the assumption Q1 = 0 also implies u (�(t)� �(t); t) =

w(��(t); t): Hence,

V (�(t))� V (�(t))

V 0 (�(t))
=

u (�(t); t0)� u (�(t); t0)

u1 (�(t); t0)
by assumption

=
u (0; t0)� u (�(t)� �(t); t0)

u1 (0; t0)
by Q1 = 0

>
u (0; t)� u (�(t)� �(t); t)

u1 (0; t)
for all t > t0; by A5

=
u (0; t)� w (��(t); t)

u1 (0; t)

This shows that �(t) > 0 so that by Theorem 2, VN(�; p0jEPA) > VN(p0jEA):

Proof of Proposition 3. When the reserve price is zero, by A2 all bidders participate

in the EA and hence in the EPA (Theorem 1). The inequality in (16) reduces to

VN(�; 0jEPA)� VN(0jEA) �
Z H

0

�(t)V 0 (�(t)) dFN(2)(t) (42)

as can be seen by replacing 0 for t0 in (16). We haveZ H

0

�(t)V 0 (�(t)) dFN(2)(t)

=

Z t0

0

�(t)V 0 (�(t)) dFN(2)(t) +

Z H

t0

�(t)V 0 (�(t)) dFN(2)(t)
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where the last term is positive because �(t) > 0 (by assumption that the seller is more

risk averse than all types t > t0). This term comes from event t(2) � t0, and the

probability of this event tends to 1 as N tends to in�nity. Hence, because the term

�(t)V 0 (�(t)) is independent of N; for all � 2 (0; 1=2) there exists an N� > 2 such thatR H
0
�(t)V 0 (�(t)) dFN(2)(t) > 0:

By A5, �(t)V 0 (�(t)) has a single crossing property that if �(t̂)V 0 ��(t̂)� � 0 for
any t̂ then �(t)V 0 (�(t)) > 0 for all t > t̂: Further notice that

fN+1(2) (t)

fN(2)(t)
=
(N + 1)F (t)

(N � 1)

is a positive and increasing function of t: Thus (e.g., by Persico, 2000, Lemma 1)Z H

0

�(t)V 0 (�(t)) dFN(2)(t) � 0

implies Z H

0

�(t)V 0 (�(t)) dFN+1(2) (t) =

Z H

0

�(t)V 0 (�(t))
fN+1(2) (t)

fN(2)(t)
dFN(2)(t) � 0

The conclusion of the proposition thus holds true.
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