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A simple model of group selection that
cannot be analyzed with inclusive fitness

Matthijs van Veelen1, Shishi Luo2 and Burton Simon3

Abstract

A widespread claim in evolutionary theory is that every group se-

lection model can be recast in terms of inclusive fitness. Although

there are interesting classes of group selection models for which

this is possible, we show that it is not true in general. With a sim-

ple set of group selection models, we show two distinct limitations

that prevent recasting in terms of inclusive fitness. The first is a

limitation across models. We show that if inclusive fitness is to al-

ways give the correct prediction, the definition of relatedness needs

to change, continuously, along with changes in the parameters of

the model. This results in infinitely many different definitions of

relatedness - one for every parameter value - which strips related-

ness of its meaning. The second limitation is across time. We show

that one can find the trajectory for the group selection model by

solving a partial differential equation, and that it is mathematically

impossible to do this using inclusive fitness.
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Group selection has always been a controversial issue. It is both advocated

as an essential ingredient of human evolution (1-2), and described as a su-

perfluous concept, that does not explain any phenomenon we do not already

understand with other models (3-5). While there is disagreement concerning

the relevance, both sides of the debate have come to agree that group selec-

tion models can always be reformulated in terms of inclusive fitness (6-13).

The agreement on the equivalence still leaves room to disagree which one of

the two is more valuable for understanding how group selection works. One

position is that, since both are equivalent, there is no reason to look at group

selection models other than through the lens of inclusive fitness (4, 7, 9, 11-

13). Another position is that, even though the two are equivalent, there is

value in the alternative way of looking at models, that stresses a balance of

within-group selection and between-group selection (1, 2, 8, 10).

Because the “mathematical equivalence” is such a central point of con-

sensus, one would expect it to be a well-defined mathematical statement with

a mathematical proof. There is, however, no such theorem in the literature

(see also 6, 14). As a consequence it remains unclear what “mathematical

equivalence”means here, and if the claim is correct. In this paper, we will

present a class of group selection models that allows us to explore what it

could mean for group selection models and inclusive fitness to be equivalent.

It also uncovers two different kinds of limitations. The limitations imply

that group selection and inclusive fitness are not equivalent in general, even

though they can be under certain assumptions.

The model is a generalization of (15). Individuals find themselves in

groups of equal size, and can be one of two types; defectors and cooperators.

Individual reproduction happens at different rates; cooperators reproduce at

rate 1, defectors reproduce at rate 1+s. Every individual reproduction event

induces a death event; if one individual reproduces, one random individual

from the same group is chosen for elimination, thereby keeping group sizes
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constant. Entire groups also reproduce, and when they do, they produce a

daughter group with the exact same proportion of cooperator and defectors.

The rate at which this occurs depends on the fraction of cooperators in the

group; a group of size n with i cooperators in it reproduces at rate 1+u
(
i
n

)α
.

That implies that all-defector groups reproduce at rate 1, and all-cooperator

groups reproduce at rate 1 + u. Every group reproduction event induces

a group death event; if a group reproduces, a random group is chosen for

elimination (see Figure 1).

Being a cooperator therefore comes at a cost - it reduces the reproduction

rate of the individual by s - but it has a benefit for all group members,

including itself, through an increase in the rate at which the group as a whole

reproduces. The baseline reproductive rates for individuals and groups are

set to unity for simplicity. The Appendix also covers the more general case

where the baseline reproduction rates of individuals and groups are allowed

to differ. A setup that allows for groups of different sizes and a variety of

group level events, is also possible (16-18).

If we take a limit, where group size and number of groups go to infinity,

then the dynamics simplify to a partial differential equation (PDE). In the

limit, the fraction of cooperators in the group becomes a continuous variable,

x, which ranges from 0 to 1. A population at time t is a density µt (x) that

reflects the relative frequencies of groups with different shares of cooperators.

The PDE describes how this density changes over time due to the process of

group selection (see Figure 2).

d

dt
µt (x) = s

d

dx
[x (1− x)µt (x)] + uµt (x)

xα − 1∫
0

yαµt (y) dy


The first term on the right hand side describes how individual groups see

their fraction of cooperators x go down. The second term describes how
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high-x-groups increase and low-x-groups decrease in frequency. Between the

square brackets, the term xα reflects the increase in group reproduction rate

of an x-group that is caused by the cooperators in that group. The integral∫ 1
0
yαµt (y) dy does not depend on x; it reflects a uniform increase in group

death rate that is caused by the fact that cooperators in the entire population

increase the growth rates of their groups. Group reproduction events are

balanced by group deaths, so the increase in group death intensity must

match the average increase in group reproduction - which is
∫ 1
0
yαµt (y) dy.

The PDE is derived in the Appendix.

In order to illustrate how inclusive fitness can match the prediction of a

group selection model, we first consider the case where α = 1. Let Mk (t) =∫ 1
0
xkµt (x) dx be the kth moment of the density µt. We are interested in the

the rate of change of the first moment, which is the fraction of cooperators

in the overall population. The formula is obtained by integrating the right

hand side of the PDE (see the Appendix). For conciseness we will suppress

the dependence on t in the notation, assuming that it is clear that M1 and

M2 change with t.

d

dt
M1 = s (M2 −M1) + u

(
M2 − (M1)

2) (1)

If the time derivative d
dt
M1 is larger than 0, then the frequency of cooperators

is increasing; if it is smaller than 0, the frequency is decreasing. The right

hand side of the equation is composed of two terms. The first term is negative,

or 0, and measures the effect of within group selection, which works against

cooperators. If all groups are at x = 0.5, this term is at its minimum - the

frequency of cooperators goes down the fastest - and if all groups are either

close to x = 0 or close to x = 1, then this term is almost 0, and the frequency

of cooperators hardly changes. The second term is u times the variance of

the density µt. This term is positive, or 0, and measures the effect of between
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group selection, which works against defectors. This formula thereby reflects

an intuition that many have for group selection models; whether or not the

share of cooperators increases depends on which of the two is larger.

If we rewrite this formula, we arrive at an equally insightful and intuitive

expression, this one in terms of inclusive fitness.

d

dt
M1 = M1 (1−M1)

[(
M2 − (M1)

2

M1 − (M1)
2

)
(s+ u)− s

]
= M1 (1−M1) (rb− c)

The M1 (1−M1) term scales the speed of selection, and rb − c is the most
natural definition of inclusive fitness in this setting. Whether or not the

frequency of cooperators goes up is determined by whether or not inclusive

fitness is larger than 0. Defining relatedness as r = M2−(M1)
2

M1−(M1)
2 is in line with

standard definitions in the literature (12, 13, 19-21; see also the Appendix).

Moreover, s is indeed the cost of cooperating to the individual; it is the re-

duction in individual reproduction rate that results from being a cooperator

instead of a defector. The aggregate benefits to all other group members

together are b = s + u. Reducing individual reproduction by s implies re-

ducing the aggregate death rate of the other group members by the same

amount, because every individual reproduction is balanced by another in-

dividual being eliminated. Moreover, in a group of size n, the contribution

of one individual cooperator to the group reproduction rate is u times 1/n.

Since this increase is enjoyed by all n−1 other group members, the aggregate
benefits to all other group members is u · n−1

n
, which, in the limit of infinitely

large groups, is u. Hence total aggregate benefits are s + u. The benefit to

the individual itself through increased group reproduction is 0 in infinitely

large groups.
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How does this change if we allow for general α > 0? First we compute

the overall change in the frequency of cooperators (see the Appendix).

d

dt
M1 = s (M2 −M1) + u (Mα+1 −M1Mα)

If we take α = 1, we recover equation (1).

Trying to recast this in terms of inclusive fitness, we first observe that

with α 6= 1 it is possible that two different population states have the same
relatedness, and yet in one of them the frequency of cooperators is going

up, and in the other the frequency of cooperators is going down (see Figure

3). That implies that there are no fixed parameters b and c such that the

frequency of cooperators goes up if, and only if, rb > c. But also if we

allow benefits and costs to depend on the current population state, it is

still not the case that inclusive fitness accurately matches the direction of

selection. In this model, the costs of cooperation are independent of the

population state, and should therefore be constant; changing from a defector

to a cooperator always means reducing individual reproduction rate by s.

The benefits, however, depend on the composition of the group an individual

is in. Therefore, also the average benefits dispensed by cooperators will

no longer be constant, as it will depend on the current distribution. The

Appendix contains a derivation, from which it follows that average benefits

are s+uαMα

M1
, which depends on the current population density through Mα

and M1. However, even if we use the average costs and benefits, it remains

the case that the signs of rb− c and the change in cooperator frequency are
sometimes opposing (see the Appendix).

It has been argued that the appropriate approach is then to adjust the

definition of relatedness, such that inclusive fitness does give the right pre-

diction (22-25). If we follow this approach, as we do in the Appendix, then

we find that the relatedness that would be needed is:
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r =
Mα+1 −M1Mα

M1 −M2 +Mα+1 −M1Mα

s+ u

s+ uαMα

M1

With this approach, the formula for relatedness comes to depend, not only

on the current population structure, but also on all parameters that describe

the fitness effects. This implies that every other choice for s, u and α would

require a different definition of relatedness. Relatedness then ceases to be a

property of the population structure that has an interpretation of its own,

and that can be measured independent of the fitness effects in the model.

With the definition of relatedness continuously changing, every case gets its

own “rule”, which disqualifies it from being one (26).

For the second limitation, we return to the case where α = 1. For that

case, we have already shown that at any point in time, the direction of se-

lection matches the sign of inclusive fitness. However, if we focus on the tra-

jectory as a whole, we see that relatedness is not constant. As the trajectory

unfolds, the density changes, and, since both the frequency of cooperators

M1 and relatedness r are characteristics of that density, they change too (see

Figure 4). If we have the solution to the PDE, then we also know how r, and

M1, change over time. Without already having the solution, however, this is

not possible. Relatedness r is a function ofM1 andM2 - the first and second

moment of the density function - but in order to determine how r changes

over the trajectory, we need all moments of the distribution; relatedness alone

does not contain enough information. Only once we already have the entire

solution, can we compute r and M1 along the trajectory, and conclude that
d
dt
M1 is positive if and only if rb − c > 0. Inclusive fitness therefore does

not offer an alternative way to find the solution; we need to already have the

solution in order to determine what inclusive fitness is along the trajectory.

Both these limitations imply that it is not the case that everything one can

do with a group selection model can also be done with inclusive fitness. That,
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however, does not mean that there are no assumptions under which there is

in fact equivalence. A combination of conditions under which group selec-

tion and inclusive fitness are equivalent is that 1) relatedness is exogenously

given, and constant, and 2) groups play a public goods game with additive

fitness, or “generalized equal gains from switching”(27). Assuming a process

where mutations cause small changes in phenotype, in combination with a

fitness function that is differentiable is one way to get both a fixed related-

ness and equal gains from switching (9). Whether or not such assumptions

are realistic is an empirical question, which our theoretical findings cannot

answer. They do however show that group selection and inclusive fitness are

not mathematically equivalent. This implies that there can be value in ex-

ploring group selection models beyond what one can do with inclusive fitness.

Richer models of group selection (15-18) might for instance describe under

what circumstances we should expect selection to move up one level entirely

and when it remains a balance between two levels. They might also identify

conditions under which a diversity of social attitudes is stable, as it is in this

model, where the stable steady state is a distribution in which both types

are present (see the Appendix). In many applications the goal is also not

just to find out whether the fraction of cooperators will increase at a single

point in time, but to know what the ultimate fraction cooperators will be, or

the change of the fraction of cooperators over a period of time. Models that

feature both group and individual level events explicitly, like the ones here

and in (ref 14-18) can tell us what we need to know about the evolutionary

dynamics. The fact that not every group selection model can be analyzed

with inclusive fitness therefore opens up a range of possibilities that need to

be explored, and allows us to pose and answer questions that do not fit the

format of inclusive fitness.
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a

0 1 2 3

0 1 2 3

b

20 1 3

0 1 2 3

Fig. 1. Panel (a) depicts an individual level event, panel (b) a group level

event. Cooperators (blue) reproduce individually at intensity 1, defectors

(red) at intensity 1+s. When an individual reproduces, a random individual

is chosen to die. Groups reproduce at intensity 1 + u
(
i
n

)α
, where i is the

number of cooperators in a group, and n the group size. When a group

reproduces, a random group is chosen to die. The effect of the events on the

composition of the population is visualized below each panel; they change

how many groups there are with 0, 1, 2 and 3 cooperators, respectively.

In the limit of the group size going to infinity, groups are characterized by

the fraction x of cooperators, and as the number of groups goes to infinity,

the population state becomes a density over (0, 1), that describes how many

groups there are for different cooperator frequencies x.
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Fig. 2. A density describes the relative frequencies of groups with different

fractions x of cooperators, where x varies between 0 and 1. The PDE de-

scribes how these densities change over time. The changes are caused by two

effects. The first is that individual reproduction makes all groups become

less cooperative - which makes the "humps" in the distributions move to the

left in both examples. The second is that cooperative groups as a whole

reproduce faster - which results in the right end of the distributions being

lifted up. As time elapses, the densities change, until the two effects balance

at a stable steady state, described by the equilibrium distribution. The up-

per series (a) has α = 3, s = 1 and u = 4, the lower series (b) has α = 1,

s = 1 and u = 1.5. For both the initial distribution is proportional to a trun-

cated normal distribution with mean 0.5 and variance 0.035. In both cases

the densities converge to a steady state density in which all group types are

represented, but in the first case there are more cooperators than defectors,

overall, and in the second there are more defectors than cooperators.
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Fig. 3. The blue line tracks the fraction of cooperators in the population,

and the green line tracks relatedness, when α = 4, s = 1, u = 3 and initial

distribution µ0 (x) = 5e−5x/ (1− e−5). Relatedness is the same at the two
points in time indicated by the arrows. Yet at the first one the fraction

of cooperators decreases, and at the other it increases. This discrepancy

remains if we correct for average costs and benefits not being the same at

different moments in time. If we allow costs and benefits to depend on the

current density, and use average costs for c and average benefits for b, then

the direction of selection is still not described by the sign of rb − c (see the
Appendix). Also, the steady state that the population converges to does not

satisfy rb− c = 0, with average benefits b and average costs c.
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Fig. 4. The blue line tracks the fraction of cooperators in the population,

and the green line tracks relatedness, when α = 1, s = 1, u = 4 and the

initial distribution µ0 (x) is proportional to a truncated normal distribution

with mean 0.3 and variance 0.0225. With α = 1, the direction of selection

is accurately described by the sign of rb − c. The benefits-to-costs ratio is
constant at b/c = s/(s + u) = 0.2. The fraction of cooperators increases

whenever r > 0.2, and decreases when r < 0.2. However, knowing the

relatedness at time t = 0 is not enough to determine what relatedness will

be at t > 0. For that we need to solve the partial differential equation first.

Since the solution itself already describes how the frequency of cooperators

changes over time, inclusive fitness does not offer a route to finding the

answer; determining what the inclusive fitness is requires that we already

have the answer.
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Appendix to:

A simple model of group selection that cannot be

analyzed with inclusive fitness

Matthijs van Veelen1,2, Shishi Luo3, Burton Simon4

1Department of Economics and Business, University of Amsterdam, Roetersstraat

11, 1018 WB Amsterdam, The Netherlands, 2Program for Evolutionary Dynamics,

Harvard University, Cambridge, Massachusetts, 02138, USA. 3Theoretical Biology

and Biophysics (T-6) and Center for Nonlinear Studies, MS B258, Los Alamos Na-

tional Laboratory, Los Alamos, New Mexico 87545, USA. 4Department of Mathe-

matical and Statistical Sciences, University of Colorado Denver, Denver, Colorado

80202, USA.

1 Introduction

The appendix begins with the technical results. In Section 2 the partial

differential equation is derived. This is the most technical section. Later

sections use the PDE, and can also be understood without understanding the

details of its derivation. In Section 3 we show that inclusive fitness matches

the direction of selection for α = 1. In Section 4 we derive that, if inclusive

fitness is to match the direction of selection for α > 0, relatedness will have

to depend on all parameters that describe the fitness effects of cooperation.

In Section 5 we show why relatedness only is not enough information about

the current population state for finding a trajectory. In Section 6 we allow

for individual and group baseline reproduction rates to differ and we find

stable steady states. After the technical results, in Section 7, we discuss

the results in some more detail than in the main text, which will be useful

because of the polarized nature of the debate and the sensitivity of both

group selection and inclusive fitness.
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2 Derivation of the equation for the dynamcs

The stochastic model described in the main text is similar to the ball-and-

urn process described in Luo (2013). Let n be the number of individuals

in each group and m the number of groups in the population. The main

differences between Luo (2013) and the derivation here are that in the model

of the main text, a group’s reproductive rate is of a more general form,

1 + u · ( in)α, and w is fixed at w = 1. In fact, here in the SI we will assume

an even more general form, 1 + f( in) for some function f , to demonstrate

the full generality of this model. Letting µm,nt denote the stochastic model

described in the main text, we can take the limit as m,n→∞ in a similar

manner to the limit in Luo (2013). This gives a law of large numbers, or a

fluid limit, for the dynamics. The calculations also bear close resemblance to

standard derivations of diffusion limits for standard Moran processes (Karlin

and Taylor, 1981, Durrett, 2008).

To calculate the infinitesimal mean, or drift, of µm,nt , note that:

E[µm,nt+∆t(
i
n)− µm,nt ( in)]

=− 1
m

{
mµm,nt ( in)i

(
1− i

n

)
(2 + s) +mµm,nt ( in)

∑
j 6=i

µm,nt ( jn)(1 + f( jn))
}

∆t

+ 1
m

{
mµm,nt ( i+1

n ) (n− (i+ 1)) (1 + s)( i+1
n ) +mµm,nt ( i−1

n )(i− 1)
(
1− i−1

n

)
(1)

+mµm,nt ( in)(1 + f( in))(1− µm,nt ( in))
}

∆t+ o(∆t)

The first bracketed term represents the events that decrease the fraction of

groups with i cooperators by 1/m. This can happen if, in a group with i

cooperators, a cooperator replicates and a defector dies or a defector dies and

a cooperator replicates (first term, inside the brackets). Or, if a group with

i cooperators is selected to die when another group, with a different number
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of cooperators, replicates (second term, inside the brackets). The second

bracketed term analogously represents the events that increase the fraction

of groups with i cooperators by 1/m. A detailed explanation of these terms

can be found in Luo (2013). This standard approach for deriving a diffusion

limit uses the fact that the probability of an event occurring in a small time

interval, ∆t, is equal to the rate that the event occurs multiplied by ∆t.

The o(∆t) term represents higher order terms corresponding to compound

events (more than one event occurring in the interval ∆t), which can be

ignored in the limit as ∆t→ 0. Thus, after some rearranging of (1), we find

lim
∆t→0

1
∆tE

[
µm,nt+∆t

(
i
n

)
− µm,nt

(
i
n

)]
=

= 1
nD2

(
µm,nt

(
i
n

)
i
n

(
1− i

n

))
+ sD+

1

(
µm,nt

(
i
n

)
i
n

(
1− i

n

))
+ µm,nt

(
i
n

)f ( in)− n∑
j=0

µm,nt

(
j
n

)
f
(
j
n

)
where

D+
1

(
g
(
j
n

))
=
g
(
j+1
n

)
− g

(
j
n

)
1/n

j < n

is a first-order difference quotient and

D2

(
g
(
j
n

))
=
g
(
j+1
n

)
− 2g

(
j
n

)
+ g

(
j−1
n

)
1/n2

0 < j < n

is the second-order difference quotient. On calculation of the infinitesimal

variance, we find that:
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E
[
µm,nt+∆t

(
i
n

)
− µm,nt

(
i
n

)]2
= 1

m2

{
mµm,nt

(
i
n

)
i
n

(
1− i

n

)
(2 + s) +mµm,nt

(
1
n

)∑
j 6=i

µm,nt

(
i
n

)
i
n

(
1 + f

(
i
n

))
+mµm,nt

(
i+1
n

) (
i+1
n

) (
1− i+1

n

)
(1 + s) +mµm,nt

(
i−1
n

) (
i−1
n

) (
1− i−1

n

)
+mµm,nt

(
i
n

) (
1 + f

(
i
n

)) (
1− µm,nt

(
i
n

))}
∆t+ o (∆t)

Thus:

lim
m→∞,∆t→0

1
∆tE

[
µm,nt+∆t

(
i
n

)
− µm,nt

(
i
n

)]2
= 0 for i = 0, . . . , n

Since the infinitesimal variance is zero, in the infinite population limit, the

time evolution of the population is described deterministically by the equa-

tion for the infinitesimal mean (1). Taking the limit as n,m → ∞, we
obtain

∂
∂tµt (x) = s ∂∂x [x(1− x)µt] + µt(x)

[
f (x)−

∫ 1

0
f (y)µt (y) dy

]

Taking f (x) = u · xα, we obtain the PDE for the system described in the

main text.
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3 Inclusive fitness with α = 1

If we take f (x) = ux for the function that describes the increase in group

reproduction due to cooperators, then the PDE is:

d

dt
µt (x) = s

d

dx
[x (1− x)µt (x)] + uµt (x)

[
x−

∫ 1

0
yµt (x) dy

]

We now want to describe how the frequency of cooperators in the population

as a whole changes. The frequency of cooperators at time t is
∫ 1

0 xµt (x) dx,

the first moment of the density µt, also denoted as M1. We are interested

in the time derivative d
dt

∫ 1
0 xµt (x) dx = d

dtM1 of the first moment. Since

the PDE holds for all x, we can multiply left and right by x and integrate

from 0 to 1. This will give us an expression for d
dtM1 since d

dt

∫ 1
0 xµt (x) dx =∫ 1

0 x
d
dtµt (x) dx.

First we consider the first term of the right hand side of the PDE, and

use integration by parts.

s

∫ 1

0
x
d

dx
[x (1− x)µt (x)] dx = s

([
x2 (1− x)µt (x)

]1
0
−
∫ 1

0
[x (1− x)µt (x)] dx

)
=

= −s
∫ 1

0
[x (1− x)µt (x)] dx =

= s

(∫ 1

0
x2µt (x) dx−

∫ 1

0
xµt (x) dx

)

Then we integrate the second term.

u

∫ 1

0
xµt (x)

[
x−

∫ 1

0
yµt (y) dy

]
dx = u

(∫ 1

0
x2µt (x) dx−

(∫ 1

0
xµt (x) dx

)2
)
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Together that makes:

d

dt

∫ 1

0
xµt (x) dx = s

(∫ 1

0
x2µt (x) dx−

∫ 1

0
xµt (x) dx

)
+u

(∫ 1

0
x2µt (x) dx−

(∫ 1

0
xµt (x) dx

)2
)

This can be written in more concise notation as

d

dt
M1 = s (M2 −M1) + u

(
M2 − (M1)2

)
,

where M1 and M2 are short for the first and second moment of µt (x). Note

that M2 −M1 ≤ 0 and M2 − (M1)2 ≥ 0.

If we rearrange the derivative of the first moment, we get the following:

d

dt
M1 = s (M2 −M1) + u

(
M2 − (M1)2

)
= sM1 (M1 − 1) + (s+ u)

(
M2 − (M1)2

)
= M1 (1−M1)

[(
M2 − (M1)2

M1 − (M1)2

)
(s+ u)− s

]

With r = M2−(M1)2

M1−(M1)2
, c = s and b = s + u, this becomes an expression that

implies that the direction of selection follows from the sign of rb − c, and
that the speed of selection is scaled by M1 (1−M1).

d

dt
M1 = M1 (1−M1) (rb− c)

Below we will verify that r, c and b are indeed the proper relatedness, costs

and benefits.
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3.1 Relatedness

The first term between square brackets matches the most common defini-

tions of relatedness. One definition, which serves as a measure of assortment

in general, is r = P (C|C) − P (C|D). In this setting, with infinitely large

groups, these probabilities can be described with the following chance ex-

periment. First draw a group, where the probabilities for the type of group

that is drawn are described by the density µt. Then draw two individuals

from that group; both times a cooperator is drawn with probability x. Re-

latedness is then defined as a difference in conditional probabilities, where

P (C|C) is the probability that the second is a cooperator, given that the

first is a cooperator, and P (C|D) is the probability that the second is a

cooperator, given that the first is a defector (see for instance Bergstrom,

2003, Van Veelen 2009, 2011a,b and Bowles & Gintis, 2011). This is also

consistent with the definition of assortment in Eshel & Cavalli-Sforza (1982)

and of relatedness in Grafen (1985).

With this definition, we find:

r = P (C|C)− P (C|D) =

∫ 1
0 x

2µt (x) dx∫ 1
0 xµt (x) dx

−
∫ 1

0 (1− x)xµt (x) dx∫ 1
0 (1− x)µt (x) dx

=

∫ 1
0 x

2µt (x) dx∫ 1
0 xµt (x) dx

−
∫ 1

0 xµt (x) dx−
∫ 1

0 x
2µt (x) dx

1−
∫ 1

0 xµt (x) dx

=
M2

M1
− M1 −M2

1−M1
=
M2 − (M1)2

M1 − (M1)2

An equivalent definition of relatedness is r = Cov(X,Y )
V ar(X) ; see for instance

Orlove & Wood (1978), Queller (1992) and Gardner, West & Wild (2011).

If we think of the same experiment as described above, we can define random

variable X to be 1 if the first individual drawn is a cooperator and 0 if it

is a defector, and random variable Y to be 1 if the second individual is

a cooperator and 0 if it is a defector. This definition of relatedness then

amounts to the same:
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r =
Cov (X,Y )

V ar (X)
=
E [XY ]− E [X]E [Y ]

E [X2]− E2 [X]
=
M2 − (M1)2

M1 − (M1)2

The reason why E [XY ] = M2 is that X times Y is 1 only if both X and Y

are 1, and 0 if not. In an x-group, X is 1 with probability x and Y is too,

so E [XY ] =
∫ 1

0 (x · x)µt (x) dx = M2.

The reason why E
[
X2
]

= M1 is thatX2 is only 1 ifX is 1, and 0 if not. In an

x-group, that happens with probability x, so E
[
X2
]

=
∫ 1

0 xµt (x) dx = M1.

3.2 Costs and benefits

The difference between the individual reproduction rates of cooperators and

defectors is s, which therefore is indeed the cost of cooperating to the indi-

vidual. For every individual reproduction, another individual in the same

group is eliminated, hence reducing individual reproduction by s implies

reducing the aggregate death rate of the other group members by the same

amount.

In finite groups, the marginal effect on the group reproduction rate is u

times one over the group size, but the benefits are shared by everyone in the

group, and therefore the aggregate benefits to everyone else in the group is
n−1
n · u, where n is the group size, and the group benefits to itself are

1
n · u.

With n→∞, the benefits to self go to 0, and the aggregate benefits to the

other group members go to u. Total aggregate benefits therefore are s+ u.
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4 Inclusive fitness with general α > 0

If we take f (x) = uxα for the function that describes the increase in group

reproduction due to cooperators, then the PDE becomes:

d

dt
µt (x) = s

d

dx
[x (1− x)µt (x)] + uµt (x)

[
xα −

∫ 1

0
yαµt (y) dy

]
(2)

We still are interested in the change in the frequency of cooperators, and

therefore we compute d
dt

∫ 1
0 xµt (x) dx = d

dtM1, the time derivative of the

first moment, also for the general case. The first term on the right hand

side of the PDE is still the same. The integral for the first term therefore

remains

s

∫ 1

0
x
d

dx
[x (1− x)µt (x)] dx = s

(∫ 1

0
x2µt (x) dx−

∫ 1

0
xµt (x) dx

)

The integral over the second term becomes

u

∫ 1

0
xµt (x)

[
xα −

∫ 1

0
yαµt (y) dy

]
dx = u

(∫ 1

0
xα+1µt (x) dx−

(∫ 1

0
xµt (x) dx

)(∫ 1

0
xαµt (x) dx

))

Together that makes

d

dt

∫ 1

0
xµt (x) dx = s

(∫ 1

0
x2µt (x) dx−

∫ 1

0
xµt (x) dx

)
+

u

(∫ 1

0
xα+1µt (x) dx−

(∫ 1

0
xµt (x) dx

)(∫ 1

0
xαµt (x) dx

))
d

dt
M1 = s (M2 −M1) + u (Mα+1 −M1Mα)
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Here we use the shorthand notation Mk = Mk (t) =
∫ 1

0 x
kµt (x) dx. If we

now naively repeat the calculations we did in Section 2, we find the following:

d

dt
M1 = s (M2 −M1) + u (Mα+1 −M1Mα)

= s (M2 −M1 − (Mα+1 −M1Mα)) + (Mα+1 −M1Mα) (s+ u)

= (M1 −M2 +Mα+1 −M1Mα)

[(
Mα+1 −M1Mα

M1 −M2 +Mα+1 −M1Mα

)
(s+ u)− s

]
However, Mα+1−M1Mα

M1−M2+Mα+1−M1Mα
is not relatedness if α 6= 1. Moreover, if

α 6= 1, then also s and s+ u do not describe average costs and benefits for

all densities µt. Therefore we first compute the correct average costs and

benefits, which will be frequency dependent.

4.1 Costs and benefits

Costs are still constant; whatever the density µt is, being a cooperator im-

plies giving up s in individual growth rate. The part of the benefits that

is the result of the reduced individual growth rate is also constant. Bene-

fits as a result of increased group reproduction, however, do depend on the

group a cooperator is in. Average benefits therefore should be computed as

a weighted average over all the types of groups a cooperator can be in.

In the limit of n → ∞, the aggregate marginal change from being a

cooperator rather than a defector is duxα

dx = uαxα−1 (note that for α = 1

this equals u, which is independent of x). At a given density µt, that implies

that the average aggregate benefit dispensed by being a cooperator instead

of a defector through increased group growt rate equals:

∫ 1
0 xuαx

α−1µt (x) dx∫ 1
0 xµt (x) dx

= uα
Mα

M1

For α = 1 this equals u, as we would expect.
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4.2 Inclusive fitness with the standard definition of r

If we combine this with the standard r, then Hamilton’s rule would have to

be:

d

dt
M1 > 0⇔ rb > c

d

dt
M1 > 0⇔ M2 − (M1)2

M1 − (M1)2

(
s+ uα

Mα

M1

)
> s

However, above we have derived that the correct condition is:

d

dt
M1 > 0⇔

(
Mα+1 −M1Mα

M1 −M2 +Mα+1 −M1Mα

)
(s+ u) > s

These conditions are the same if α = 1, but in general they are not.

4.3 Inclusive fitness if r is allowed to vary

If we leave the definition of r open, and choose it such that d
dtM1 > 0

coincides with rb > c, we should start with the equation that gives the

correct prediction.

d

dt
M1 > 0⇔

(
Mα+1 −M1Mα

M1 −M2 +Mα+1 −M1Mα

)
(s+ u) > s

This can be rewritten as

d

dt
M1 > 0⇔

(
Mα+1 −M1Mα

M1 −M2 +Mα+1 −M1Mα

s+ u

s+ uαMα
M1

)(
s+ uα

Mα

M1

)
> s
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The costs are indeed s and the average benefits are indeed s+uαMα
M1
. Hence

the r that “makes Hamilton’s rule work”is:

r =
Mα+1 −M1Mα

M1 −M2 +Mα+1 −M1Mα

s+ u

s+ uαMα
M1

This does however depend on α, s and u.

4.4 Interpretation

In the previous subsection, we rewrote the condition for d
dtM1 to be positive.

The condition we arrived at is

(
Mα+1 −M1Mα

M1 −M2 +Mα+1 −M1Mα

s+ u

s+ uαMα
M1

)(
s+ uα

Mα

M1

)
> s

It is a Procrustean stretch though to refer to this as “Hamilton’s rule”. Both

r and the c/b ratio now depend on everything - both depend on α, s, u and

the current density µt - and relatedness is therefore no longer a quantity

that can be interpreted as a property of a population structure, as it varies

with all parameters that describe the fitness effects. Therefore the “rule”

itself changes along with every change in the case it is applied to, and r

just serves as a remainder term to make up for whatever differences there

are between what Hamilton’s rule would have to be with normal relatedness

and the correct prediction.
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5 Finding the trajectory with inclusive fitness

If we return to the case with α = 1, then the time derivative of the first

moment is positive if and only if rb > c, with r relatedness, and c and b

costs and benefits;

d

dt
M1 = M1 (1−M1) (rb− c)

Even though c and b do not depend on the density µt, and therefore will

be constant along the trajectory, for finding a solution of the PDE it is not

enough to know relatedness at time t = 0. Knowing r at time t = 0 will tell

us the direction of selection at time t = 0, but not at t > 0, because also r

will change over time.

Here we compute the time derivative of r. This will also require that

we compute d
dt

∫ 1
0 x

2µt (x) dx = d
dtM2, the time derivative of the second

moment. With d
dt

∫ 1
0 x

2µt (x) dx =
∫ 1

0 x
2 d
dtµt (x) dx we again exploit the

PDE

d

dt
µt (x) = s

d

dx
[x (1− x)µt (x)] + uµt (x)

[
x−

∫ 1

0
yµt (x) dy

]

This is multiplied by x2 and integrated from 0 to 1. The first term of the

right hand side is then

s

∫ 1

0
x2 d

dx
[x (1− x)µt (x)] dx = s

([
x3 (1− x)µt (x)

]1
0
−
∫ 1

0

[
2x2 (1− x)µt (x)

]
dx

)
=

= −2s

∫ 1

0

[
x2 (1− x)µt (x)

]
dx =

= 2s

(∫ 1

0
x3µt (x) dx−

∫ 1

0
x2µt (x) dx

)
= 2s (M3 −M2)
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The second term is:

u

∫ 1

0
x2µt (x)

[
x−

∫ 1

0
yµt (y) dy

]
dx = u

(∫ 1

0
x3µt (x) dx−

(∫ 1

0
x2µt (x) dx

)(∫ 1

0
xµt (x) dx

))
= u (M3 −M2M1)

Together that implies

d

dt

∫ 1

0
x2µt (x) dx =

d

dt
M2 = 2s (M3 −M2) + u (M3 −M2M1)

If we now take the time derivative of r = M2
M1
− M1−M2

1−M1
, it is clear that

this requires the time derivative of M2, which requires that we know M3.

Similarly, the second derivative of r requires that we know M4, and so on.

Therefore one needs to know all the moments of µ0 to find the trajectory.
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6 General baseline reproduction rates and steady

states

If the baseline reproduction rates of groups and individuals are not the

same, we include a parameter w > 0 that reflects the benchmark number

of group events per individual event. The group reproduction rate as a

function of the number of cooperators then becomes w
(
1 + u

(
i
n

)α)
. With

this generalization, one can derive the PDE again, where the dynamics are

determined by the value of ρ = w · us .

d

dt
µt (x) = s

(
d

dx
[x (1− x)µt (x)] + ρµt (x)

[
xα −

∫ 1

0
yαµt (y) dy

])

6.1 Steady states for α = 1

A density µ is a steady state if

d

dt
µ (x) = 0 for all x ∈ (0, 1)

This implies that for all x ∈ (0, 1)

d

dx
[x (1− x)µ (x)] + ρµ (x)

[
x−

∫ 1

0
yµ (y) dy

]
= 0

m

µ (x) (1− 2x) + µ′ (x)
(
x− x2

)
+ ρµ (x) [x−M1] = 0

If we define µ (1) = limx→1 µ (x), then also the following must hold

15



−µ (1) + ρµ (1) [1−M1] = 0

µ (1) (ρ− 1− ρM1) = 0

µ (1) = 0 or M1 =
ρ− 1

ρ

If we takeM1 = ρ−1
ρ and fill that in in the PDE, we find that for all x ∈ (0, 1):

µ (x) (1− 2x) + µ′ (x)
(
x− x2

)
+ ρµ (x)

[
x− ρ− 1

ρ

]
= 0 ⇔

µ (x) (1 + (ρ− 2)x− (ρ− 1)) + µ′ (x)
(
x− x2

)
= 0 ⇔

µ (x) (ρ− 2) (x− 1) + µ′ (x)
(
x− x2

)
= 0 ⇔

µ (x) (ρ− 2)− µ′ (x)x = 0

Any Cxρ−2 is a solution of this differential equation, but we also need∫ 1
0 Cx

ρ−2dx = 1

∫ 1

0
Cxρ−2dx = 1 ⇔ C =

1∫ 1
0 x

ρ−2dx
=

1[
1
ρ−1x

ρ−1
]1

0

= ρ− 1

Therefore the following density is a steady state.

µ (x) = (ρ− 1)xρ−2

The second moment and the r of the steady state are:
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M2 = (ρ− 1)

∫ 1

0
x2xρ−2dx = (ρ− 1)

∫ 1

0
xρdx

= (ρ− 1)

[
1

ρ+ 1
xρ+1

]1

0

=
ρ− 1

ρ+ 1

r =
M2

M1
− M1 −M2

1−M1
=

ρ−1
ρ+1
ρ−1
ρ

−
ρ−1
ρ −

ρ−1
ρ+1

1− ρ−1
ρ

=
ρ

ρ+ 1
− ρ− 1

ρ+ 1
=

1

ρ+ 1

The latter is quite intuitive, because according to Hamilton’s rule - which

points to the direction of selection correctly if α = 1 - a steady state must

satisfy r = c
b = 1

1+ρ . Note however that this is a necessary, but not a

suffi cient condition for it to be a steady state; there are many densities with

r = 1
1+ρ , for which therefore

d
dtM1 = 0, but which are not steady states

(for instance all those for which M1 6= ρ−1
ρ ). Moreover, this steady state is

stable.

6.2 Steady states if α > 0

A density µ is a steady state if

d

dt
µ (x) = 0 for all x ∈ (0, 1)

This implies that for all x ∈ (0, 1)

d

dx
[x (1− x)µ (x)] + ρµ (x)

[
xα −

∫ 1

0
yαµ (y) dy

]
= 0

m

µ (x) (1− 2x) + µ′ (x)
(
x− x2

)
+ ρµ (x) [x−Mα] = 0
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As before, Mα = Mα (t) =
∫ 1

0 x
αµt (x) dx.

If we define µ (1) = limx→1 µ (x), then also the following must hold

−µ (1) + ρµ (1) [1−Mα] = 0

µ (1) (ρ− 1− ρMα) = 0

µ (1) = 0 or Mα =
ρ− 1

ρ

If we takeMα = ρ−1
ρ and fill that in in the PDE, we find that for all x ∈ (0, 1)

µ (x) (1− 2x) + µ′ (x)
(
x− x2

)
+ ρµ (x)

[
xα − ρ− 1

ρ

]
= 0 ⇔

µ (x) (1− 2x+ ρxα − (ρ− 1)) + µ′ (x)
(
x− x2

)
= 0 ⇔

µ (x) (2− 2x+ ρxα − ρ) + µ′ (x)
(
x− x2

)
= 0

This is a first order linear homogeneous equation which has the solution

µ (x) = Ce

∫ x

0
p(y)dy

, where, in this case, p (y) = 2−2y+ρyα−ρ
y(1−y) . The constant

C is found by setting
∫ 1

0
µ (x) dx = 1, which results in the solution

µ (x) =
e

∫ x

0

2−2y+ρyα−ρ
y(1−y) dy

∫ 1
0 e

∫ x

0

2−2y+ρyα−ρ
y(1−y) dy

dx
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This does not always result in short expressions for all α, but some examples

are:

α = 0.5 : µ (x) =

xρ−2

(1+
√
x)
ρ∫ 1

0
xρ−2

(1+
√
x)
ρdx

From 6.1 α = 1 : µ (x) = (ρ− 1)xρ−2

α = 2 : µ (x) =
xρ−2eρx∫ 1

0 x
ρ−2eρxdx

α = 3 : µ (x) =
xρ−2e

1
2
ρx(x+2)∫ 1

0 x
ρ−2e

1
2
ρx(x+2)dx

This allows us to draw a few examples of steady states.

Figure 1 (next page). Stable steady states for different values of α and

ρ. The shapes fit what we would intuitively expect; for higher α the stable

steady densities are more curved, as the benefits of cooperation are more

concentrated in the high fraction groups, while a higher ρ gives more coop-

erators in general.
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7 Related literature

7.1 Group selection, kin selection and inclusive fitness

There are many papers that comment on how group selection, kin selection

and inclusive fitness relate. Our paper is about the relation between group

selection and inclusive fitness. In the literature, however, the equivalence

is referred to in different, seemingly interchangeable ways. Sometimes it is

described as an equivalence of group selection and kin selection (Wade et

al., 2010, Marshall, 2011). Other times the equivalence is described as a

claim that any group selection models can always be reformulated in term

of inclusive fitness. The second claim is explored in this paper. Even though

kin selection and inclusive fitness are intimately related, these two “equiv-

alences” are not the exact same claim. In general, the claims in the lit-

erature tend towards being somewhat verbal, rather than being exact and

unambiguous mathematical claims. Therefore, in order to avoid all possible

misunderstanding, and in order to delineate what our claims are, and what

they are not about, we would like to include a description of how all three

- group selection, kin selection and inclusive fitness - relate, or might relate,

and we will very briefly touch upon some of the existing literature. Also

we should stress here that this only describes theoretical possibilities, and

as such it is not about whether or not there is empirical support that these

possibilities describe actual processes that have shaped social evolution in

one species or the other.

As a point of departure, we take Hamilton (1975). On page 336 of

Hamilton (1975), he writes:

The usefulness of the ‘inclusive fitness’approach to social behaviour (i.e. an

approach using criteria like (bABK − k) > 0) is that it is more general than

‘group selection’, ‘kin selection’, or ‘reciprocal altruism’ approaches and so

provides an overview even where regression coeffi cients and fitness effects

are not easy to estimate or specify.
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This can safely be taken to imply that both group selection and kin selection

models are thought of as being included in the set of all models that can

be described in terms of inclusive fitness. The paper by Hamilton (1975) is

not about how group selection and kin selection relate, but contains some

cues that suggest that neither one needs to be contained in the other. This

is illustrated in Figure 2.

GS KS

IF

Figure 2. An illustration for Hamilton (1975)

To describe more in general how the three could relate, we draw a second

figure (Figure 3). We have three sets of models; group selection models, kin

selection models and models that can be analyzed with inclusive fitness.

Any way in which those relate can be reduced to statements about subsets

1 to 7 in the figure.
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Figure 3. Possible ways in which group selection, kin selection and

inclusive fitness relate are statements about these 7 subsets.

The quote from Hamilton (1975), depicted in Figure 1, basically suggests

that subsets 1, 2 and 3 are empty, and that subset 7 is not. Our results

disagree with the first part of that suggestion. We have shown that not all

group selection models can be analyzed with inclusive fitness, and therefore

that the union of sets 1 and 2 is not empty.

Before we will go over all the subsets, we should make two remarks. The

first is about assortment and kin selection.

One of the key insights, or maybe the key insight in the theory of kin

selection, is that the recipients of the benefits that cooperation brings might

not be just anyone. Others that share a gene for altruism, or cooperation,

might be overrepresented on the receiving end. For a selfish gene, making

its bearer be an altruist might therefore be in its own genetic interest, if

the recipient of that altruism is relatively likely to also be a carrier of that

gene. Moreover, if a trait is truly altruistic - that is, if it involves an actual

net cost; this is sometimes referred to as strong altruism - then the flip side

of the same coin is that it will not be selected, unless there is some way in
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which the average altruist faces a different set of recipients than the average

non-altruist.

Here one can properly say, almost trivially, that assortment is more

general than genetic assortment. If there is some mechanism that assorts

altruistic behaviors, then those can be selected, even if there is no genetic

assortment.1 While Doebeli & Fletcher (2009) suggest to reserve the word

kin selection for assortment that is genetic, Gardner, West & Wild (2011)

include all sources of common descent when the word kin selection is used.

Whichever choice is made is inconsequential for our findings, which concern

inclusive fitness, not kin selection. For this overview we however choose to

reserve the word kin selection for cases where assortment is genetic. If we

do, then that implies that the union of 1 and 4 is non-empty - we allow for

assortment in groups to be non-genetic.

What should be included in the set of group selection models is another

question. Here the aim is not to determine the exact boundaries of that set.

We do however want to exclude models that feature groups, but that are

not group selection models, and in which the properties of individuals in

the group are just the result of individual selection. One possible definition

we could use to exclude those is the definition from Simon et al. (2013).

That definition states that “if a trait establishes itself in a model of two-

level population dynamics when group-level events are present, and does not

establish itself in the same model when they are absent, then the trait evolves

by group selection.” The model from the main text clearly satisfies that

definition. There are also other models, in which group level events are not

explicitly modeled. For those this definition is hard to check, as it is unclear

how to take the group level events out. Yet they may very well qualify for

being a group selection model. In the discussion below, we will argue that

1A mechanism that picks phenotypes and makes them interact preferentially could

induce some genetic assortment, but if there are multiple genes in the population that code

for the same behaviour, the genetic assortment is less than the phenotypic assortment,

and with such a mechanism the latter is relevant for selection.
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all subsets are non-empty. For the purpose of this discussion, therefore, it is

enough to point to models that surely should be included according to any

definition of group selection. Which other models should also be alotted to

those sets is also interesting, but not the aim of this exercise.

Subset 5. We would like to begin the overview with subset 5. This set

contains models that fall both under group and kin selection, and moreover

can be analyzed with inclusive fitness. The current consensus is that all

group selection models can be analyzed with inclusive fitness. Given that

this equivalence is regularly also referred to as the equivalence of group

and kin selection, it is completely uncontroversial to say that this set is

not empty. An actual theorem that shows that this is indeed not empty is

Theorem 5 in Van Veelen (2011a). If relatedness is exogenously fixed, and

the interactions have fitness effects that imply “generalized equal gains from

switching” (Nowak & Sigmund, 1990, Van Veelen 2009, 2011a), then the

theorem shows that inclusive fitness actually determines the entire dynamics.

If assortment is furthermore genetic, that puts us into subset 5.

Subset 4. If assortment is not genetic, but the fitness effects imply

generalized equal gains from switching, then the same theorem applies, but

the model finds itself in subset 4. This subset therefore is not empty either.

Again, whether or not this possibility is relevant depends on whether or not

there are interesting examples of non-genetic assortment in groups.

Subsets 1 and 2. The results in this paper imply that the union of

sets 1 and 2 is not empty; there are group selection models that can not be

recast in terms of inclusive fitness. If we allow for assortment of phenotypes

as well as genotypes, that means that both 1 and 2 individually are not

empty either.

Subsets 6 and 7. Subset 6 is generally accepted not to be empty. Lion,

Jansen & Day (2011) point out that with local interaction models - which

are not group selection models - inclusive fitness can work, which implies

that the union of 6 and 7 is not empty. If the local interaction dynamics
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reflect physical reproduction, then the model is in subset 6, if it reflects

social learning or imitation, then the model is in subset 7.

Subset 3. Whether subset 3 is non-empty is perhaps more of an open

question. If replication in local interaction structures is physical, then Part

A of the SI of Nowak, Tarnita & Wilson (2010) - which is about symmetric

interactions in structured populations, and not about eusociality - can be

interpreted as to imply that subset 3 is not empty. Their setup typically

also allows for an interpretation in terms of social learning, so that claim can

also be interpreted as a statement that there are models that are in none of

the three sets; neither group selection, nor kin selection, nor allowing for an

inclusive fitness analysis.

7.2 Empirics

There is no consensus about whether or not group selection is helpful, or

needed, for explaining any observed phenomenon in the living world, and

especially in humans. Positions range from Sober & Wilson (1998) and

Wilson & Wilson (2007), who claim that group selection is an essential

ingredient in explaining many cooperative behaviours, including in humans,

to Dawkins (1989) and Pinker (2012), who claim it contributes nothing to

our understanding of them. Although there are obviously links with theory,

this is mainly an empirical question. Answering it would involve estimates

of parameters that feature in theoretical group selection models in order to

see if the circumstances in the real world are comparable, or even anywhere

close to those that are required to make the theoretical model work. Also the

predictions that group selection models make, for instance about behaviour,

should be tested with data, and this should be compared to how well these

data are in line with alternative explanations. This paper is not about

that empirical question. Our paper is only an investigation whether or not

any group selection model can always be reformulated in terms of inclusive

fitness. We claim that this is true in some settings, but not in others.
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