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Abstract

Agents participating in different kind of organizations, usually take different positions in

some relational structure. The aim of this paper is to introduce a new framework taking

into account both communication and hierachical features derived from this participation.

In fact, this new set or network structure unifies and generalizes well-known models from

the literature, such as communication networks and hierarchies. We introduce and analyze

accessible union stable systems where union stability reflects the communication network

and accessibility describes the hierarchy. Particular cases of these new structures are the

sets of connected coalitions in a communication graph, antimatroids (and therefore also

sets of feasible coalitions in permission structures) and augmenting systems which have

numerous applications in the literature. We give special attention to the class of cycle-

free accessible union stable systems. We also consider cooperative games with restricted

cooperation where the set of feasible coalitions is an accessible union stable system, and

provide an axiomatization of an extension of the Shapley value to this class of games.
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1 Introduction

A cooperative game with transferable utility, or simply a TU-game, is a finite set of players

and for any subset (coalition) of players a worth representing the total payoff that the

coalition can obtain by cooperating. A (single-valued) solution is a function that assigns

to every game a payoff vector which components are the individual payoffs to each player.

A solution is efficient if it assigns to every game a payoff vector such that the sum of the

payoffs is equal to the worth of the ‘grand coalition’ consisting of all players. One of the

most applied efficient solutions for cooperative TU-games is the Shapley value (Shapley,

1953).

In its classical interpretation, a TU-game describes a situation in which every coali-

tion S (i.e subset) of N can be formed and earn its worth. In the literature various

restrictions on coalition formation have been developed. Two main forms of restricted

cooperation that have been studied are communication restrictions and hierarchies. Myer-

son (1977) introduced the well-known model of a communication graph game that consists

of a TU-game and an undirected (communication) graph where it is assumed that only

coalitions that are connected in the communication graph are feasible. A restricted game

is defined where the worth of every feasible (i.e. connected) coalition equals its worth

in the original game, while the worth of a nonconnected coalition equals the sum of the

worths of its maximally connected subsets (also known as components) of the coalition.

Further, he showed that the solution that assigns to every communication graph game the

Shapley value of the restricted game is the only solution that satisfies component efficiency

(meaning that every maximally connected subset of players earns its own worth) and fair-

ness (meaning that deleting a communication link between two players has the same effect

on the individual payoffs of these two players). Algaba, Bilbao, Borm and López (2001)

generalized this result to games on union stable systems being set systems that satisfy the

property that the union of every pair of nondisjoint coalitions is also feasible, a property

that is satisfied by the set of connected coalitions of any undirected graph.

A model that studies restrictions in cooperation arising from hierarchies is that of a

game with a permission structure. In those games it is assumed that the players are part of a

hierarchical organization, where some players might need permission or approval from other

players before they are allowed to cooperate. Two approaches to games with a permission

structure are considered. In the conjunctive approach as developed in Gilles, Owen and van

den Brink (1992) and van den Brink and Gilles (1996), it is assumed that each player needs

permission from all its predecessors before it is allowed to cooperate with other players.

This implies that a coalition is feasible if and only if for every player in the coalition it holds

that all its predecessors belong to the coalition. Alternatively, in the disjunctive approach

as developed in Gilles and Owen (1994) and van den Brink (1997), it is assumed that each
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player (except the top-players) needs permission from at least one of its predecessors before

it is allowed to cooperate. Consequently, a coalition is feasible if and only if every (non-

top) player in the coalition has at least one predecessor who also belongs to the coalition.

In Algaba, Bilbao, van den Brink and Jiménez-Losada (2004) it is shown that the sets

of feasible coalitions arising from these permission structures are antimatroids being well-

known combinatorial structures representing hierarchies, see Dilworth (1940) and Edelman

and Jamison (1985). A set of feasible coalitions is an antimatroid if it contains the empty

set, satisfies accessibility (meaning that every nonempty feasible coalition has at least one

player that can leave the coalition and the result is a feasible subcoalition) and is union

closed (meaning that the union of two feasible coalitions is also feasible).

In the field of restricted cooperation, van den Brink (2012) made clear the distinction

between hierarchies and communication networks by showing that the set systems that can

be the set of connected coalitions in some undirected graph are exactly those set systems

that, besides containing the empty set, satisfy the above mentioned union stability and

2-accessibility (meaning that every feasible coalition with two or more players has at least

two players that can leave the coalition such that the remaining set of players is still a

feasible coalition). So, compared to communication feasible sets (set systems that can be

obtained as the set of connected coalitions in some undirected graph), antimatroids satisfy

a stronger union property (since union closedness implies union stability) but a weaker

accessibility property (since 2-accessibility implies accessibility).

The goal of the underlying paper is to get a better understanding of organizations

that have hierarchical as well as communication features. Therefore, we study set systems

that satisfy the weaker union and accessibility properties, i.e. set systems that contain

the empty set and satisfy union stability and accessibility. We call these accessible union

stable systems . Obviously, all sets of connected coalitions of some (undirected) communi-

cation graph as well as all antimatroids fall into this class. We also show that augmenting

systems form a proper subclass of these new structures. After discussing some results on

these structures, we give special attention to the subclass of accessible union stable sys-

tems that are cycle-free and show that under accessibility and feasibility of the unitary

coalitions, cycle-free union stable systems are exactly those that can be obtained as the

set of connected coalitions in a cycle-free communication graph. Then, we consider co-

operative TU-games with restricted cooperation where the set of feasible coalitions is an

accessible union stable system. We consider the solution that assigns to every cooperative

game on an accessible union stable system the Shapley value of a restricted game where

the worths are generated only by feasible coalitions. Finally, we provide an axiomatization

of the Shapley value on the class of games on an accessible union stable system using a

balanced contributions axiom, and an axiomatization on the class of cycle-free accessible
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union stable systems using a fairness axiom.

The paper is organized as follows. Section 2 gives some preliminaries. In Section 3 we

introduce accessible union stable systems and study some of their properties. In Section

4 we analyze how the property of accessibility influences the basis of these structures. In

Section 5 we consider cycle-free accessible union stable systems. In Section 6 we extend

TU-games with a set of feasible coalitions that is an accessible union stable system, pre-

senting the Shapley value and providing axiomatizations. Finally, Section 7 contains some

concluding remarks.

2 Preliminaries: Communication and hierarchies in

cooperative games

2.1 Cooperative TU-games and restricted cooperation

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game, being

a pair (N, v), where N ⊆ IN is a finite set of players and v : 2N → IR is a characteristic

function on N satisfying v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition

S, meaning that the members of coalition S can obtain a total payoff of v(S) by agreeing

to cooperate. Since we take the player set to be fixed, we denote a TU-game (N, v) just

by its characteristic function v. We denote the collection of all TU-games on player set N

by GN .

A payoff vector of an n-player TU-game v ∈ GN is an n-dimensional vector x ∈ IRN

giving a payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for TU-games is a

mapping f that assigns to every game v ∈ GN a payoff vector f(v) ∈ IRN . One of the most

well-known solutions for TU-games is the Shapley value (Shapley (1953)) given by

Shi(v) =
∑

S⊆N

i∈S

(|N | − |S|)!(|S| − 1)!

|N |!
(v(S)− v(S \ {i})) for all i ∈ N.

In a TU-game any subset S ⊆ N is assumed to be able to form a coalition and earn

the worth v(S). However, in most economic and political organizations not every set of

participants can form a feasible coalition. Therefore, in cooperative game theory models

have been developed that take account of restrictions on coalition formation. This is

modelled by considering a set of feasible coalitions F ⊆ 2N that need not contain all

subsets of the player set N . For a finite set N , a set system over N is a pair (N,F)

where F ⊆ 2N is a family of subsets. The sets belonging to F are called feasible. A triple
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(N, v,F) with v ∈ GN and F ⊆ 2N is a game with restricted cooperation. Again, since we

take the player set to be fixed, we denote a game with restricted cooperation (N, v,F) by

(v,F).

2.2 Communication

One of the most well-known models of restricted cooperation are the games with com-

munication restrictions as introduced in Myerson (1977). In this model a communication

network on the set of players in a cooperative game is given, and a coalition S is feasible

if and only if the players in S are connected within this communication network. This

communication network is represented by an undirected graph on the set of players.

An undirected graph is a pair (N,L) whereN is the set of nodes and L ⊆ {{i, j}|i, j ∈

N, i �= j} is a collection of subsets of N such that each element of L contains precisely two

elements. The elements of L represent bilateral communication links and are refered to as

edges or links. Since in this paper the nodes in a graph represent the positions of players

in a communication network we refer to the nodes as players. If there is a link between

two players we call them neighbours. A sequence of k different players (i1, . . . , ik) is a path

in (N,L) if {ih, ih+1} ∈ L for h = 1, . . . , k − 1. Two distinct players i and j, i �= j, are

connected in graph (N,L) if there is a path (i1, . . . , ik) with i1 = i and ik = j. A coalition

S ⊆ N is connected in graph (N,L) if every pair of players in S is connected by a path

that only contains players from S, i.e. for every i, j ∈ S, i �= j, there is a path (i1, . . . , ik)

such that i1 = i, ik = j and {i1, . . . , ik} ⊆ S. A maximally connected subset of coalition

S in (N,L) is called a component of S in that graph, i.e. T ⊆ S is a component of S

in (N,L) if and only if (i) T is connected in (N,L(S)) and (ii) for every h ∈ S \ T the

coalition T ∪ {h} is not connected in (N,L(S)), where L(S) = {{i, j} ∈ L|{i, j} ⊆ S} is

the set of links between players in S.

A sequence of players (i1, . . . , ik, i1), k ≥ 2, is a cycle in (N,L) if (i1, . . . , ik) is a

path in (N,L) and {ik, i1} ∈ L. A graph (N,L) is cycle-free when it does not contain any

cycle.

Example 2.1 Consider the communication graph (N,L) on N = {1, . . . , 5} given by

L = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}}, see Figure 1. Players 1 and 5 are connected by

two paths: (1, 2, 4, 5) and (1, 3, 4, 5). Coalition {1, 4, 5} has two components: {1} and

{4, 5}. This communication graph has a cycle (1, 2, 4, 3, 1). �

A triple (N, v, L) with (N, v) a TU-game and (N,L) an undirected communication graph

is called a communication graph game. Since, again we take the player set to be fixed,
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Figure 1: Communication graph (N,L) of Example 2.1

we denote a communication graph game (N, v, L) just by (v, L). In the communication

graph game (v, L) players can cooperate if and only if they are able to communicate with

each other, i.e. a coalition S is feasible if and only if it is connected in (N,L). In other

words, the set of feasible coalitions in a communication graph game (N, v, L) is the set of

coalitions FL ⊆ 2N given by

FL = {S ⊆ N | S is connected in (N,L)}.

We refer to this set as the communication feasible set of communication graph (N,L).

Myerson (1977) introduced the restricted game of a communication graph game (v, L) as

the TU-game vL in which every feasible coalition S can earn its worth v(S). Whenever S

is not feasible it can earn the sum of the worths of its components in (N,L). Denoting the

set of components of S ⊆ N in (N,L) by CL(S), the restricted game vL corresponding to

communication graph game (v, L) is given by1

vL(S) =
∑

T∈CL(S)

v(T ) for all S ⊆ N. (2.1)

The solution given by Myerson (1977) is obtained by taking for every communication

graph game the Shapley value of the corresponding restricted game, a solution that was

later named the Myerson value µ for communication graph games, i.e. µ(v, L) = Sh(vL).

2.3 Hierarchies

A model that studies restrictions in coalition formation arising from hierarchies is that of

a game with a permission structure. In those games it is assumed that players are part

of a hierarchical organization in which there are players that need permission or approval

from certain other players before they are allowed to cooperate. In this case, for a finite

set of players N such a hierarchical organization is represented by an irreflexive directed

graph (N,D) with D ⊆ N × N such that (i, i) �∈ D for all i ∈ N , referred to as a

1Note that CL(S) is a partition of S.
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permission structure on N . Since, again we take the player set to be fixed, we denote a

permission structure (N,D) just by its binary relation D. The directed links (i, j) ∈ D

are called arcs. The players in FD(i) := {j ∈ N | (i, j) ∈ D} are called the successors

or followers of player i, while the players in PD(i) := {j ∈ N | (j, i) ∈ D} are called the

predecessors of i. A sequence of different players (i1, . . . , ik) is a directed path between

players i and j, i �= j, in a permission structure D if i1 = i, ik = j and (ih, ih+1) ∈ D for

all 1 ≤ h ≤ k − 1. A permission structure D is acyclic if there exists no directed path

(i1, . . . , ik) with (ik, i1) ∈ D. Note that in an acyclic permission structure there can be

more than one directed path from player i to player j �= i. Also note that in an acyclic

permission structure D there always exists at least one player with no predecessors, i.e.

TOP (D) := {i ∈ N | PD(i) = ∅} �= ∅. We refer to these players as the top-players in the

permission structure.

Two approaches to games with a permission structure have been considered. In

the conjunctive approach as developed in Gilles, Owen and van den Brink (1992) and van

den Brink and Gilles (1996), it is assumed that each player needs permission from all its

predecessors in order to cooperate. This implies that a coalition S ⊆ N is feasible if and

only if for every player S all its predecessors belong to S. The set of feasible coalitions in

this approach is therefore given by

ΦcD := {S ⊆ N | PD(i) ⊂ S for all i ∈ S} ,

which we refer to as the conjunctive feasible set of D.

Alternatively, in the disjunctive approach as developed in Gilles and Owen (1994)

and van den Brink (1997), it is assumed that each player (except the top-players) needs

permission from at least one of its predecessors before it is allowed to cooperate with other

players. Consequently, a coalition is feasible if and only if every player in the coalition

(except the top-players) has at least one predecessor who also belongs to the coalition.

Thus, the feasible coalitions are the ones in the set

ΦdD := {S ⊆ N | PD(i) ∩ S �= ∅ for all i ∈ S \ TOP (D)} ,

which we refer to as the disjunctive feasible set of D.

Example 2.2 Consider the permission structure D on N = {1, 2, 3, 4} given by D =

{(1, 2), (1, 3), (2, 4), (3, 4)}, see Figure 2. Then ΦcD = {{1}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}}

and ΦdD = ΦcD ∪ {{1, 2, 4}, {1, 3, 4}}. �

An approach using restricted games similar to the approach of Myerson (1977) for com-

munication graph games assigns to every coalition in a game with a permission structure

6
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Figure 2: Permission structure D of Example 2.2

the worth of its largest feasible subset.2

Algaba, Bilbao, van den Brink and Jiménez-Losada (2004) show that the conjunc-

tive and disjunctive feasible sets in acyclic permission structures are antimatroids. Antima-

troids were introduced by Dilworth (1940) as particular examples of semimodular lattices.

Since then, several authors have obtained the same concept by abstracting various com-

binatorial situations (see Korte, Lovász, and Schrader (1991) and Edelman and Jamison

(1985)).

Definition 2.3 A set system A ⊆ 2N is an antimatroid if it satisfies the following prop-

erties

(feasible empty set) ∅ ∈ A,

(union closedness) S, T ∈ A implies that S ∪ T ∈ A,

(accessibility) S ∈ A with S �= ∅, implies that there exists i ∈ S such that S \ {i} ∈ A.

Union closedness means that the union of two feasible coalitions is also feasible.

Accessibility means that every nonempty feasible coalition has at least one player that can

leave such that the set of remaining players is a feasible subcoalition. A player that can

leave a coalition S leaving behind another feasible coalition is called an extreme player.

Definition 2.4 A player i ∈ S, with S ∈ F , F ⊆ 2N , such that S \ {i} ∈ F is called an

extreme player of coalition S in F .

The set of extreme players of S ∈ F is denoted by ex(S) = {i ∈ S | S\{i} ∈ F} . By

accessibility every nonempty feasible coalition in an antimatroid has at least one extreme

player. A coalition that has exactly one extreme player is called a path .

2Whereas in communication graphs every coalition can be partitioned into feasible components, in a

conjunctive- or disjunctive permission structure every coalition has a unique largest feasible subset.
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Definition 2.5 A coalition S ∈ F , F ⊆ 2N is a path if |ex(S)| = 1. The path S ∈ F is

called an i-path if it has i ∈ S as unique extreme player.

Let (N,A) be an antimatroid and let S, T ∈ A be such that |S| < |T | . Accessibility

implies an ordering T = {i1, . . . , it} with {i1, . . . , ij} ∈ A for j = 1, . . . , t. Let k ∈

{1, . . . , t} be the minimum index with ik /∈ S. Then S ∪ {ik} = S ∪ {i1, . . . , ik} ∈ A by

union closedness. Therefore, the definition of antimatroid implies that for every S, T ∈ A

with |S| < |T | there exists i ∈ T \ S such that S ∪ {i} ∈ A. In particular, for S, T ∈ A

such that |T | = |S|+ 1 there is an element j ∈ T\S such that S ∪ {j} ∈ A.

Finally, a set system (N,F) is called normal if N =
⋃
S∈F S, i.e. if every player

belongs to at least one feasible coalition.3 Notice that if (N,A) is a normal antimatroid

then union closedness implies that N ∈ A.

2.4 Comparing communication and hierarchies

Let F ⊆ 2N be an arbitrary set of feasible coalitions. Since all singletons in a com-

munication graph are connected, it follows that communication feasible sets arising from

communication graphs contain the empty set and satisfy normality, i.e. every player be-

longs to at least one feasible coalition. Further, communication feasible sets also satisfy

accessibility. They even satisfy the stronger 2-accessibility meaning that every feasible

coalition with two or more players has at least two players that can leave the coalition

such that the set of remaining players is a feasible coalition. Communication feasible sets

are not union closed (as is illustrated by the two connected coalitions {1, 2} and {5} in

Example 2.1 whose union is not connected). However, as shown by Algaba, Bilbao, Borm

and López (2001), communication feasible sets satisfy the weaker union stability meaning

that the union of two feasible coalitions that have a nonempty intersection is also feasible.

In van den Brink (2012) it is shown that a set system is a communication feasible set if and

only if it contains the empty set and satisfies normality, union stability and 2-accessibility.

Theorem 2.6 [van den Brink (2012)] Let F ⊆ 2N be a normal set of feasible coalitions

on N ⊂ IN. Then F is the communication feasible set of some communication graph if and

only if it satisfies the following properties:

(feasible empty set) ∅ ∈ F ,

(union stability) S, T ∈ F with S ∩ T �= ∅ implies that S ∪ T ∈ F ,

3For results of games on antimatroids we refer to Algaba, Bilbao, van den Brink and Jiménez-Losada

(2003, 2004). For antimatroids that are not normal similar results can be stated restricted to the class of

players that belong to at least one feasible coalition.
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(2-accessibility) S ∈ F with |S| ≥ 2 implies that there exist i, j ∈ S, i �= j, such that

S \ {i} ∈ F and S \ {j} ∈ F .

Comparing Theorem 2.6 with Definition 2.3, we conclude that communication fea-

sible sets are characterized by properties similar to the ones used in defining antimatroids.

Besides normality and feasibility of the empty set, both satisfy an accessibility and a union

property. Obviously, 2-accessibility implies accessibility and therefore communication fea-

sible sets satisfy a stronger accessibility property. However, antimatroids satisfy union

closedness instead of union stability, and therefore antimatroids satisfy a stronger union

property.

Usually the set of links, being coalitions of size two, is considered as the basis of

a communication network. Note that by applying 2-accessibility, we can generate these

bilateral links from any communication feasible set.

Also note that given 2-accessibility, normality implies that {i} ∈ F for all i ∈ N as

is the case for communication feasible sets. Given union closedness, normality implies that

N ∈ F as is the case for antimatroids.

3 Accessible union stable systems

The goal of this paper is to get a better understanding of organizations that have hierarchi-

cal as well as communication features. Therefore, we study those set systems satisfying the

weaker union and accessibility properties discussed in the previous section. Note that both

are satisfied by all communication feasible sets and antimatroids. We formally introduce

accessible union stable systems as those set systems that contain the empty set and satisfy

union stability and accessibility.4

Definition 3.1 A set system F ⊆ 2N is an accessible union stable system if it satisfies

the following properties:

(feasible empty set) ∅ ∈ F ,

(union stability) S, T ∈ F with S ∩ T �= ∅, implies that S ∪ T ∈ F ,

(accessibility) S ∈ F with S �= ∅, implies that there exists i ∈ S such that S \ {i} ∈ F .

Obviously, antimatroids and communication feasible sets are accessible union stable

systems. Other examples of accessible union stable systems on N = {1, . . . , n} are F = 2N ,

F = {∅, {i}} for i ∈ N, and F = {∅, {1}, . . . , {n}}.

4For easy reading we repeat in every definition the set properties such as union stability, accessibility

etc., when they are used.
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Union stability has a natural and intuitive interpretation in the context of partial

cooperation since common players will be vital to establish communication in the union

coalition. But only requiring union stability it is not clear what is the hierarchical feature

of an organization. In the new structures, the hierarchy is reflected by accessibility. By

definition the following holds.

Proposition 3.2 (i) An accessible union stable system is an antimatroid if and only if it

is union closed. (ii) A normal accessible union stable system is a communication feasible

set if and only if it satisfies 2-accessibility.

Since accessible union stable systems generalize communication feasible sets as well

as antimatroids, they can help us to study organizations that have hierarchical as well as

communication features. Next, we will show how accessible union stable systems are related

to other structures in the literature. An already existing class that contains communication

feasible sets and antimatroids are the augmenting systems introduced by Bilbao (2003).

Definition 3.3 A set system F ⊆ 2N is an augmenting system if it satisfies the following

properties:

(feasible empty set) ∅ ∈ F ,

(union stability) S, T ∈ F with S ∩ T �= ∅, implies that S ∪ T ∈ F ,

(augmentation 1) S, T ∈ F with S ⊂ T, implies that there exists i ∈ T \ S such that

S ∪ {i} ∈ F .

Augmentation 1 establishes that whenever there are two feasible coalitions such that

one is contained in the other, we can keep adding players from the ‘bigger’ coalition to the

‘smaller’ coalition one by one, such that after each addition the new coalition is feasible.

This property can be used in defining solutions for games that are based on marginal

vectors (such as the Shapley value). Assuming that the ‘grand coalition’ N is feasible one

can, starting with the empty set and adding one player at each step, define a sequence of

feasible coalitions ending up in the ‘grand coalition’. This means that we can always define

a permutation π : N −→ N such that {π(1), . . . , π(k)} is a feasible coalition for every

k ∈ {1, . . . , n}. We will see later that the same cannot be done for arbitrary accessible

union stable systems.

Players who can be joined to a feasible coalition keeping feasibility are called aug-

mentation points.
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Definition 3.4 Let F ⊆ 2N be an accessible union stable system. A player i ∈ N \S, with

S ∈ F , such that S ∪ {i} ∈ F is called an augmentation point of coalition S in F .

Given S ∈ F , we denote by au(S) = {i ∈ N \ S | S ∪ {i} ∈ F} the set of augmen-

tation points of S. Note that augmentation 1 implies accessibility. Indeed, for T ∈ F with

T �= ∅, by the augmentation 1 property, we have that there exists a sequence of coalitions

T0, T1, . . . , Tt, with Th ∈ F , |Th| = h, 0 ≤ h ≤ t, such that ∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tt−1 ⊂

Tt = T . Therefore, there exists a player i ∈ T such that T \ {i} = Tt−1 ∈ F . This shows

that augmenting systems satisfy accessibility, and therefore they are accessible union stable

systems.

Proposition 3.5 If F ⊆ 2N is an augmenting system then F is an accessible union stable

system.

However, accessibility does not imply augmentation 1, and therefore the reverse is

not true, i.e. there are accessible union stable systems that are not augmenting systems.

The next example discusses an application of accessible union stable systems that are

neither an augmenting system nor an antimatroid nor a communication feasible set.

Example 3.6 (Exploring and careful societies) Consider two societies of players, say

N and M , N ∩M = ∅. Every subset of each society can form a feasible coalition. Further,

every subset of society N can form a coalition ‘outside’ N , but the players in M can only

form a feasible coalition with ‘outside’ players when they join together. Therefore, we can

consider society N as ‘explorers’ who each can go individually or with any group to the

‘outside world’, and society M as a ‘careful’ society who can only go out together.

The corresponding set of feasible coalitions is an accessible union stable system.

However, (i) it is not the set of connected coalitions of a communication graph (since it

does not satisfy 2-accessibility), (ii) it is not an antimatroid (since it is not union closed),

and (iii) it is not an augmenting system (since it does not satisfy augmentation 1).

This is illustrated by the following example with two societies. Let N = {1, 2}

be a society of explorers, and M = {3, 4, 5} a society of careful players. Assuming that

all coalitions within each society are feasible, but a coalition containing players from both

societies can only be formed if it contains all players of M (and any subset of N), the

resulting set of feasible coalitions is

F = {∅, {1}, {2}, {1, 2}, {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5},

{1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}
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(where the first row of F contains N , M and all their subsets, while in the second row are

the coalitions that contain players from both societies.)

This set system is union stable since (i) any union of two coalitions that are either

a subset of N or a subset of M are feasible, and (ii) the union of two nondisjoint feasible

coalitions containing players from N and M must contain all players from M (since one

of these two coalitions must contain players from N and M , it must contain all players

from M), and therefore is feasible.

The set system is accessible since (i) for each non-empty feasible coalition that is a

subset of N or M every player in this coalition is an extreme player (i.e., it can be deleted

keeping feasibility), and (ii) for every feasible coalition that contains players from both N

and M each player from N can be deleted. The resulting coalition still contains all players

from M , and therefore is feasible.

To show that the set system F is not a communication feasible set, consider for

example feasible coalition {2, 3, 4, 5}. This coalition contains one player from N , player 2,

and all players from M . But since none of the players of M can be deleted, player 2 is the

only extreme player, so the set system does not satisfy 2-accessibility.

To show that the set system F is not an antimatroid, consider for example coalitions

{1} and {3}. These are proper subsets of N , respectively M , so their union contains a

player from N and a player from M but does not contain all players from M , and therefore

is not feasible showing that F does not satisfy union closedness.

Finally, to show that the set system F is not an augmenting system, consider coali-

tions N = {1, 2} and N ∪M = {1, 2, 3, 4, 5}. Then no single player from M can be added

to N to get a feasible coalition since the players of M only join N as group, showing that

it does not satisfy augmentation 1.

In the next example, we illustrate the difference in coalition formation between accessible

union stable systems and augmenting systems. In fact, accessible union stable systems

provide flexibility to players who belong to the set of ‘starting players’ as well as the

possibility of choosing partners outside the set of starting players whereas in augmenting

systems the set of starting players can not be chosen freely in all cases nor can the partners

outside the set of starting players be incorporated one by one in the coalitional formation

process.

Example 3.7 Consider the set systems F1, F2 on N = {1, 2, 3, 4} given by

F1 = {∅, {2} , {4} , {1, 2} , {3, 4} , {1, 2, 3} , {2, 3, 4} ,N} .

F2 = {∅, {1} , {4} , {1, 2} , {3, 4} , {1, 2, 3} , {2, 3, 4} ,N} .

12



Both of them are accessible union stable systems but whereas F1 is not an augmenting

system the set system F2 is an augmenting system. Observe that the only difference between

F1 and F2 is the set of ‘starting players’ in the coalitional formation process.

Another interesting relation between accessible union stable systems and antima-

troids is that every set system such that the collection of feasible coalitions in this system

containing a particular player is an antimatroid, is an accessible union stable system.

Proposition 3.8 Let F ⊆ 2N be a set system containing the empty set. If Fi = {∅}∪{T ∈

F | i ∈ T} is an antimatroid for all i ∈ N , then F is an accessible union stable system.

Proof: Consider S, T ∈ F with S ∩T �= ∅. If j ∈ S ∩ T then S, T ∈ Fj . Since Fj is union

closed it holds that S ∪ T ∈ Fj and hence S ∪ T ∈ F , showing union stability of F .

To show accessibility of F , consider S ∈ F , S �= ∅. Then S ∈ Fj for some j ∈ S.

But then there exists an h ∈ S such that S \ {h} ∈ Fj by accessibility of Fj . Hence,

S \ {h} ∈ F , showing accessibility of F . �

The reverse is not true as shown in the following example.

Example 3.9 Consider set system F with N = {1, 2, 3} given by F = {∅, {1}, {2}, {2, 3}, N}.

This is an accessible union stable system but F1 = {{1},N} is not an antimatroid since it

fails accessibility (no single player can be deleted from N).

The dual structure of a set system F ⊆ 2N is the set system Fd given by

Fd = {S ⊆ N | N \ S ∈ F}.

It is known that convex geometries are the dual structures of antimatroids. Convex geome-

tries are a combinatorial abstraction of convex sets introduced by Edelman and Jamison

(1985).

Definition 3.10 A set system G ⊆ 2N is a convex geometry if it satisfies the following

properties:

(feasible empty set) ∅ ∈ G,

(intersection closed) S, T ∈ G implies that S ∩ T ∈ G,

(augmentation 2) S ∈ G with S �= N , implies that there exists i ∈ N \ S such that

S ∪ {i} ∈ G.
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So, a convex geometry is a set system that contains the empty set, is intersection

closed and satisfies an alternative augmentation property saying that for every feasible

coalition that is a proper subset of the ‘grand coalition’ N there is a player that can be

added resulting in a feasible coalition of higher cardinality.5 Note that this implies that

the ‘grand coalition’ is feasible, and thus convex geometries are normal set systems. Also,

note that an augmenting system that is intersection closed is a convex geometry.

If an accessible union stable system (N,F) is a convex geometry then F is closed

under intersection and N ∈ F . However, the reverse it is not true as the following example

illustrates.

Example 3.11 Let N = {1, 2, 3} and F = {∅, {1} , {2} , {3} , {1, 2} , N}. This is an

accessible union stable system that is closed under intersection with N ∈ F . But au({3}) =

∅, and therefore it does not satisfy augmentation 2 and it is not a convex geometry.

It turns out that the dual structures of accessible union stable systems form a class

of set systems that contain all convex geometries.

Definition 3.12 A set system F ⊆ 2N is an intersecting stable system with the augmen-

tation property if it satisfies the following properties:

(feasible empty set) ∅ ∈ F ,

(weak intersection closed) S, T ∈ F with S ∪ T �= N , implies that S ∩ T ∈ F

(augmentation 2) S ∈ F with S �= N , implies that there exists i ∈ N \ S such that

S ∪ {i} ∈ F .

Proposition 3.13 Let F ⊆ 2N be a set system with N ∈ F . Then F is an accessible

union stable system if and only if Fd is an intersecting stable system with the augmentation

property.

Proof: The sets ∅ and N belong to F , and thus also to Fd. Note that

(i) S, T ∈ F ⇔ (N\S) , (N\T ) ∈ Fd,

(ii) S ∩ T �= ∅ ⇔ (N\S) ∪ (N\T ) �= N , and

(iii) S ∪ T ∈ F ⇔ N\ (S ∪ T ) = (N\S) ∩ (N\T ) ∈ Fd.

5Edelman and Jamison (1985) showed that L is a connected block graph if and only if the collection of

subsets of N which induces connected subgraphs is a convex geometry.
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Therefore, union stability of F implies that Fd is weak intersection closed.

Finally, since for any S ⊆ N with i ∈ S, N\S �= N, i ∈ N\ (N\S) = S and,

(iv) S, S \ {i} ∈ F ⇔ N\S ∈ Fd, N\ (S\{i}) = (N\S) ∪ {i} ∈ Fd,

accessibility of F implies that Fd satisfies augmentation 2. �

We refer to set systems that satisfy the properties of the above theorem (i.e. whose dual

structure is an accessible union stable system) as an intersecting stable system with the

augmentation property . Note that every convex geometry is such an intersecting stable

system with the augmentation property since it satisfies a stronger intersection closedness.

However, not every intersecting stable system with the augmentation property is a convex

geometry as shown by the next example.

Example 3.14 Consider the digraph (N,D) with N = {1, 2, 3} and D = {(1, 3), (2, 3)}.

Suppose that the feasible coalitions are those that are connected6 and disjunctive feasible,

i.e. whenever player 3 is in a coalition either player 1 or player 2 (or both) should be in

the coalition. (So, they are the disjunctive feasible coalitions except {1, 2}.) The resulting

set system is

Fd = {∅, {1}, {2}, {1, 3}, {2, 3}, {1, 2, 3}}.

This set system is weak intersection closed and satisfies augmentation 2. However, since

the intersection of the two feasible coalition {1, 3} and {2, 3} (being singleton {3}) is not

feasible, this set system is not intersection closed and thus not a convex geometry.

Using the definition of convex geometries and intersecting stable systems with the

augmentation property, the following proposition follows straightforwardly.

Proposition 3.15 An intersecting stable system with the augmentation property F ⊆ 2N

is a convex geometry if and only if F is closed under intersection.

Given an intersecting stable system with the augmentation property F ⊆ 2N , by augmen-

tation 2 the sets au(S) �= ∅, for all S ∈ F , S �= N . However, the set of extreme points of

some coalitions can be empty.

6A coalition S is connected in digraph D if for every i, j ∈ S, i �= j, there is a sequence of players

(i1, . . . , ik) such that {i1, . . . , ik} ⊆ S, i1 = i, ik = j, and {(ih, ih+1), (ih+1, ih)} ∩ D �= ∅ for h =

1, . . . , k − 1.
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Example 3.16 Consider the set system Fd = {∅, {1} , {1, 3} , {2, 3} , N} on N = {1, 2, 3}.

This is an intersecting stable system with the augmentation point property and ex ({2, 3}) =

∅.

Notice that if an intersecting stable system with the augmentation property is an

antimatroid then it is closed under union. The reverse it is not true as the following

example shows.

Example 3.17 Consider the set system F = {∅, {3} , {1, 2} , {1, 3} , {2, 3} , N} on N =

{1, 2, 3}. This set system is closed under union, and it is an intersecting stable system

with the augmentation property but, since ex({1, 2}) = ∅, it does not satisfy accessibility

and therefore it is not an antimatroid.

4 The supports of an accessible union stable system

Let (N,F) be an accessible union stable system and G ⊆ F . Since F is union stable, we

can inductively define the following families G(m), m = 0, 1, . . . , in the same way as Algaba

et al. (2000) did for arbitrary union stable systems, i.e.,

G(0) = G, G(m) =
{
S ∪ T | S, T ∈ G(m−1), S ∩ T �= ∅

}
, (m = 1, 2, . . . )

Notice that G(0) ⊆ G(m−1) ⊆ G(m) ⊆ F , since G ⊆ F and F is union stable. The inductive

process is finite because F is finite.

Let (N,F) be an accessible union stable system and let G ⊆ F . The closure G is

given by G = G(k), where k is defined as the smallest integer such that G(k+1) = G(k).

Example 4.1 Consider the accessible union stable system F on N = {1, 2, 3, 4, 5} given

by:

F =

{
∅, {1} , {2} , {4} , {5} , {1, 2} , {3, 4} , {4, 5} , {2, 3, 4} ,

{3, 4, 5} , {1, 2, 3, 4} , {2, 3, 4, 5} , N

}

.

For the family G = {∅, {1} , {4} , {1, 2} , {3, 4, 5} , {1, 2, 3, 4}}, note that

G(0) = G,

G(1) = G ∪ {{1, 2, 3, 4, 5}} ,

G(2) = G(1) and G(1) = G = F .

Let (N,F) be an accessible union stable system. Then there can be feasible coalitions

which can be written as the union of two feasible coalitions with a nonempty intersection.

We consider the set

R (F) = {R ∈ F | R = S ∪ T, S �= R, T �= R, S, T ∈ F , S ∩ T �= ∅}
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consisting of those feasible coalitions which can be written as the union of two distinct

feasible coalitions with a nonempty intersection. The basis of an accessible union stable

system consists of those coalitions that cannot be written as the union of two feasible

coalitions with a nonempty intersection.7

Definition 4.2 Let F ⊆ 2N be an accessible union stable system. The elements of the set

B (F) = F \R (F) are called the supports of F .

By construction, the set B (F) is unique, nonempty if F is nonempty, and satisfies

the following properties:

1. If ∅ ∈ F , then ∅ ∈ B (F).

2. If S ∈ F is a minimal element in (F ,⊆), then S ∈ B (F).

3. If S ∈ F and |S| ≤ 2, then S ∈ B (F).

Next, the following characterization of the set of supports can be obtained in the

same way as for union stable systems (see Algaba, Bilbao, Borm and López (2001)) and

follows directly from the definition of B(F).

Proposition 4.3 Let F ⊆ 2N be an accessible union stable system and B (F) the set of

its supports. Then B (F) is the minimal subset of F such that B (F) = F .

Example 4.4 Consider the accessible union stable system F on N = {1, 2, 3, 4, 5} given

by

F =

{
∅, {1}, {2}, {4} , {5} , {1, 2} , {3, 4} , {4, 5} , {2, 3, 4} ,

{3, 4, 5} , {1, 2, 3, 4} , {2, 3, 4, 5} , N

}

.

The supports of F are given by

B (F) = {∅, {1} , {2} , {4} , {5} , {1, 2} , {3, 4} , {4, 5} , {2, 3, 4}} .

We introduced accessible union stable systems as a model that generalizes commu-

nication feasible sets as well as antimatroids in such a way that two defining properties

reflect communication (union stability) and hierarchy (accessibility). Next, we want to see

how these features influence the basis of the system. It is known that the supports of a

communication feasible set are exactly those elements that have cardinality one or two,

the first type being the singletons and the second type being the links or edges of the

communication graph. The supports of an antimatroid are the paths being those feasible

coalitions that have exactly one extreme player.

7In fact, such a basis can be defined for every union stable system.
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Example 4.5 Consider the permission structure of Example 2.2. The paths in the con-

junctive feasible set are {1}, {1, 2}, {1, 3} and {1, 2, 3, 4}, and every player is extreme in

one path.8 The paths in the disjunctive feasible set are {1}, {1, 2}, {1, 3}, {1, 2, 4} and

{1, 3, 4}. Note that these paths coincide with the directed paths in a permission structure

as defined in the preliminaries.

Applying accessibility, it holds that ex (S) �= ∅, for any nonempty S ∈ F , where

ex(S) is the set of extreme players of S in F . For accessible union stable systems it turns

out that every support either has cardinality at most two or is a path. (In the accessible

union stable system of Example 4.4, the supports with cardinality at most two are those

in B(F) \ {{2, 3, 4}}, while support {2, 3, 4} is a path.)

Proposition 4.6 Let F ⊆ 2N be an accessible union stable system. If B ∈ B (F) with

|B| > 2 then |ex (B)| = 1, i.e., B is a path.

Proof: Suppose that B ∈ B (F) is a support of F such that |B| > 2 and |ex (B)| > 1,

i.e., B has at least two extreme points. Then there exists i, j ∈ B, with i �= j, such that

B \ {i} ∈ F and B \ {j} ∈ F . Therefore

(B \ {i}) ∪ (B \ {j}) = B and (B \ {i}) ∩ (B \ {j}) = B \ {i, j} �= ∅,

which contradicts the fact that B is a support of F . �

The reverse is not true, i.e., not every path with more than two players is a support.

Example 4.7 Consider the set N = {1, 2, 3, 4} and the accessible union stable system

given by F = {{1} , {2} , {4} , {1, 2} , {3, 4} , {2, 3, 4} , N}.

Its basis is B(F) = {{1} , {2} , {4} , {1, 2} , {3, 4} , {2, 3, 4}} . Since the only extreme

player of the ‘grand coalition’ N is player 1, the grand coalition is a path but it is not a

support.

5 Cycle-free accessible union stable systems

Algaba, Bilbao, Borm and López (2001) considered the subclass of union stable systems

that are intersection closed (if the intersection contains at least two elements) and such

that every non-unitary feasible coalition can be written in a unique way as a union of

non-unitary supports. A coalition S is non-unitary if |S| �= 1 (i.e. S is not a singleton).

Note that for set systems F in this class, if S, T ∈ B(F), |S| ≥ 2, then S �⊂ T (since

otherwise T could be written as T ∪ ∅ as well as T ∪ S, and then the representation would

not be unique.)

8In fact, the poset antimatroids are characterized as those antimatroids such that every player has

exactly one path, see Algaba, Bilbao, van den Brink and Jiménez-Losada (2004).
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Definition 5.1 A union stable system F ⊆ 2N belongs to the subclass of union stable

systems USIN if the following two conditions are satisfied:

(2-intersection closed) S, T ∈ F with |S ∩ T | ≥ 2 implies that S ∩ T ∈ F ,

(cycle-free) every non-unitary feasible coalition can be written in a unique way as a union

of non-unitary supports.

Algaba, Bilbao, Borm and López (2001) introduce this class as a generalization of cycle-free

undirected graphs in the sense that the set of connected coalitions in any cycle-free graph

satisfies these properties. This subclass of accessible union stable cooperation systems

contains the important class of connected coalitions in a cycle-free communication graph,

see e.g. Le Breton, Owen and Weber (1992) and Demange (1994, 2004),9 respectively a

tree.

Next we motivate why we call the second property cycle-freeness of a set system.

In van den Brink (2012) it is shown that adding intersection closedness to the properties

mentioned in Theorem 2.6 characterizes the sets of coalitions that can be the set of con-

nected coalitions in a cycle-complete graph. A graph is cycle-complete if, whenever there

is a cycle, the subgraph on that cycle is complete.10

Proposition 5.2 [van den Brink (2012)] Let F ⊆ 2N be a set of feasible coalitions. Then

F satisfies normality, 2-accessibility, union stability and intersection closedness if and only

if there is a cycle-complete graph L such that F = FL.

Note that every cycle-free communication graph is cycle-complete. Cycle-complete struc-

tures are often encountered in the economic literature, for example, cycle-free structures

in, e.g. auction situations (see Graham, Marshall and Richard (1990)), airport games (see

Littlechild and Owen (1973)), sequencing games (see Curiel, Potters, Rajendra Prasad, Tijs

and Veltman (1993, 1994)), water distribution problems (see Ambec and Sprumont (2002))

9Le Breton, Owen and Weber (1992) and Demange (1994, 2004), consider a restricted Core concept

where coalitional stability is required only for feasible (i.e. connected) coalitions, i.e. they consider the

solution C(N, v, L) = {x ∈ IRN |
∑
i∈T xi = v(T ) for all T ∈ CL(N), and

∑
i∈S xi ≥ v(S) for all

S ∈ FL}. They show that this set of Core payoff vectors is nonempty if the game is superadditive and the

communication graph is cycle-free. Under these conditions this solution coincides with the (unrestricted)

Core of the restricted game (N, vL), see also Kaneko and Wooders (1982). Demange (2004) also shows

that in case the communication graph contains a cycle, one can always find a superadditive game such

that the corresponding set of Core payoff vectors is empty. This is interesting since, as mentioned before,

superadditivity of a game v does not guarantee the existence of a Core-stable payoff vector for v.
10In Algaba, Bilbao, van den Brink and Jiménez-Losada (2004) it is shown that the class of antimatroids

that are intersection closed are exactly the poset antimatroids, that is, the antimatroids that can be the

conjunctive feasible set of some acyclic permission structure.
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or polluted river problems (see Ni and Wang (2007)), and other cycle-complete structures

are encountered in, e.g. favor exchange networks (see Jackson, Rodŕıguez Barraquer and

Tan (2012)).

Since under the properties of Theorem 2.6 all singletons are feasible, Proposition 5.2

also holds if we use the weaker 2-intersection closedness instead of intersection closedness.

It turns out that adding the second property of Definition 5.1 to those of Theorem 2.6

characterizes the sets of coalitions that can be the set of connected coalitions in a cycle-

free graph. Therefore we refer to this property of a union stable system as cycle-freeness.

Proposition 5.3 Let F ⊆ 2N be a communication feasible set, i.e. there is an undirected

graph L such that F = FL. Then L is cycle-free if and only if every non-unitary feasible

coalition in F can be written in a unique way as a union of non-unitary supports.

Proof: Let F ⊆ 2N be such that there is an undirected graph L with F = FL. (Only

if) Suppose that L is cycle-free. Then for every connected coalition S ∈ F the unique way

to write S as union of non-unitary supports is S =
⋃
l∈L(S) l. (If) Suppose that L is not

cycle-free. Let (i1, i2, . . . , ik), k ≥ 3, be a cycle in L. Then S =
⋃
t∈{1,... ,k−1}{it, it+1} =

{ik, i1} ∪
(⋃

t∈{2,... ,k−1}{it, it+1}
)
, and thus S can be written as a union of non-unitary

supports in at least two ways. �

Since every cycle-free graph is cycle-complete, from Propositions 5.2 and 5.3 it

follows that, under the properties of Theorem 2.6, cycle-freeness of F ⊆ 2N implies inter-

section closedness of F but not the other way around. For example, F = 2N is intersection

closed, but not cycle-free. So, for accessible union stable systems, 2-intersection closedness

is superfluous when we want to consider a generalization of cycle-free undirected graphs

as in the class USIN . For arbitrary union stable systems cycle-freeness does not imply

2-intersection closedness (and thus not intersection closedness), as shown in the following

example.

Example 5.4 Consider a market with one buyer (player 1), two sellers (players 2 and

3) and one intermediary (player 4). Suppose that a nonempty coalition S ⊆ 2N , N =

{1, 2, 3, 4}, is feasible if and only if it contains the buyer, the intermediary and at least

one of the two sellers, i.e. F = {∅, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}} with basis B(F) =

{∅, {1, 2, 4}, {1, 3, 4}}. This is a union stable set system that is cycle-free, but not 2-

intersection closed (since {1, 2, 4} ∩ {1, 3, 4} = {1, 4} which is not feasible).

In Proposition 4.6 we saw that the supports of an accessible union stable system

are either of cardinality at most equal to 2 (and thus are singletons or links) or are a path.

For arbitrary accessible union stable systems, cycle-freeness implies that every nonempty

support contains at most two players, and thus is a link or singleton.
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Proposition 5.5 Let F ⊆ 2N be an accessible union stable system that is cycle-free (i.e.

all non-unitary feasible coalitions can be written in a unique way as a union of non-unitary

supports). If S ∈ B(F) then |S| ≤ 2.

Proof: Let F ⊆ 2N be an accessible union stable system that is cycle-free. Suppose there

is an S ∈ B(F) such that |S| > 2. By accessibility of F there is a T ∈ F such that

T = S \ {i} for some i ∈ S. By cycle-freeness and T ⊂ S, it holds that T �∈ B(F). But

then, there exist nondisjoint supports T1, T2, . . . , Tk ∈ B(F), k ≥ 2 with Tl ∩Tp �= ∅ for all

l, p ∈ {1, . . . , k}, such that T =
⋃k

p=1 Tp. But then, the supports T1, . . . , Tk are subsets of

S which contradicts cycle-freeness of F . �

Proposition 5.5 implies that a cycle-free accessible union stable system in which

all singletons are feasible is the set of connected coalitions in some cycle-free graph, and

thus for accessible union stable systems with all singletons feasible, cycle-freeness implies

intersection closedness. Without the requirement that all singletons are feasible, the set

system still is 2-intersection closed.

Corollary 5.6 (i) Set system F ⊆ 2N is a cycle-free accessible union stable system such

that {i} ∈ F for all i ∈ N if and only if there is a cycle-free graph L such that F = FL.

(ii) If set system F ⊆ 2N is a cycle-free accessible union stable system such that

{i} ∈ F for all i ∈ N then F is intersection closed (and thus 2-intersection closed).

(iii) A set system F ⊆ 2N is a cycle-free accessible union stable system if and only

if F ∈ AUSN ∩ USIN .

It is interesting to point out that, however, that a cycle-free accessible union stable

system does not necessarily satisfy intersection closedness as illustrated by the set system

F = {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} which is a cycle-free accessible union stable system

but is not intersection closed since {1, 2} ∩ {2, 3} = {2} /∈ F .

Example 3.6 provides an accessible union stable system with all singletons feasible,

but which is not cycle-free (since that {1, 2, 3, 4, 5} = {1, 3, 4, 5} ∪ {1, 2} = {2, 3, 4, 5} ∪

{1, 2}).

It is known from Algaba, Bilbao and Slikker (2010) that within the class of aug-

menting systems requiring all singletons to be feasible characterizes the class of augmenting

systems that can be the set of connected coalitions in some undirected graph.

Proposition 5.7 [Algaba, Bilbao and Slikker (2010)] Let F ⊆ 2N be an augmenting sys-

tem. Then {i} ∈ F for all i ∈ N if and only if there is an undirected graph L such that

F = FL.
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From Proposition 5.7 and 3.5 (respectively Theorem 2.6) it follows that we obtain

connected coalitions from cycle-free graphs as augmenting systems that are cycle-free and

contain all singletons.

Corollary 5.8 (i) Set system F ⊆ 2N is a cycle-free augmenting system with {i} ∈ F for

all i ∈ N if and only if F = FL for some cycle-free graph L.

(ii) Let F ⊆ 2N be a normal set system. Set system F is an augmenting system

with {i} ∈ F for all i ∈ N if and only if F is a 2-accessible union stable system.

6 Cooperative games on accessible union stable sys-

tems

Let F ⊆ 2N be a set system and let S ⊆ N . The maximal nonempty feasible subsets of S

are called components of S, i.e. a coalition S ∈ F is a component in F if there is no T ∈ F

with S ⊂ T . We denote by CF(S) the set of the components of a subset S ⊆ N . Observe

that the set CF(S) may be the empty set. As shown in Algaba, Bilbao, Borm and López

(2000) a set system F ⊆ 2N is union stable if and only if for any S ⊆ N with CF(S) �= ∅,

the components of S form a partition of a subset of S.

Definition 6.1 Let v : 2N → IR be a cooperative game and let F ⊆ 2N be an accessible

union stable system. The restricted game vF : 2N → IR, is defined by

vF(S) =
∑

T∈CF (S)

v(T ) for all S ⊆ N.

Notice that for any S ⊆ N such that CF(S) = ∅, we have vF(S) = 0. If (N,F) is

the accessible union stable system given by the connected coalitions in some graph (N,L),

then the game vF is the graph-restricted game of Myerson (1977) and Owen (1986). Since

an antimatroid A is union closed, any subset S ⊆ N has a unique component given by

the interior operator int (S) =
⋃
{C ∈ A | C ⊆ S} . The restricted game vA : 2N → IR, is

the game defined by vA (S) = v (int(S)) , see Algaba, Bilbao, van den Brink and Jimenez-

Lósada (2003, 2004).

A game on an accessible union stable system is a triple (N, v,F) where v : 2N → IR

with v(∅) = 0, and F ⊆ 2N is an accessible union stable system. Since, again we take the

player set to be fixed, we denote a game on an accessible union stable system (N, v,F)

by (v,F). The set of all games on an accessible union stable system with player set N is

denoted by GAUSN .

Next, denote by S+ = S ∪ au(S) = {i ∈ N | S ∪ {i} ∈ F} the set S together with

all its augmentation points.11

11From its proof it follows that the following proposition holds for every union stable system.
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Proposition 6.2 Let F ⊆ 2N be an accessible union stable system. Then the interval

[
T, T+

]
F
=
{
S ∈ F | T ⊆ S ⊆ T+

}

is a Boolean algebra for every nonempty T ∈ F .

Proof: We will prove that

{
S ∈ F | T ⊆ S ⊆ T+

}
=
{
S ⊆ N | T ⊆ S ⊆ T+

}
,

i.e., for each S ⊆ N such that T ⊆ S ⊆ T+ it holds that S ∈ F . We distinguish two cases.

1. If the set au (T ) = ∅ then [T, T+]F = {T}.

2. Suppose that au (T ) �= ∅. Since T ⊆ S ⊆ T+, suppose without loss of generality

that there exist {i1, . . . , iq} such that au(T ) = {i1, . . . , iq} and S = T ∪ {i1, . . . , ip}

where 1 ≤ p ≤ q. In order to prove that S ∈ F , we use induction on p. For p = 1,

i1 ∈ au (T ), and therefore T ∪ {i1} ∈ F . By induction, for 2 ≤ k ≤ q − 1, we assume that

T∪{i1, . . . , ik} ∈ F . Since ik+1 is an augmentation point of T , it holds that T∪{ik+1} ∈ F .

As (T ∪ {i1, . . . , ik}) ∩ (T ∪ {ik+1}) = T �= ∅, by applying union stability we have

(T ∪ {i1, . . . , ik}) ∪ (T ∪ {ik+1}) = T ∪ {i1, . . . , ik, ik+1} ∈ F .

�

An allocation rule or value for a class of games with restricted cooperation C ⊆ GAUSN is a

function f : C → IRN such that f(v,F) ∈ IRN for all (v,F) ∈ C, that assigns a payoff vector

to every game in this class. We consider the allocation rule that assigns to every game on

an accessible union stable system the Shapley value of the corresponding restricted game.

Definition 6.3 The value ϕ : GAUSN → IRN is the allocation rule for games on accessible

union stable systems defined by ϕ (v,F) = Sh(vF) for every (v,F) ∈ GAUSN , where Sh

denotes the Shapley value.

For games on accessible union stable systems, the value ϕ generalizes the Myerson value

for games restricted by communication graphs and the (conjunctive and disjunctive) per-

mission value for games with a permission structure.

As mentioned before, if F is a union stable system then the components of N in F

form a partition of a subset of N . (If F is, moreover, normal then the components form a

partition of N). Component efficiency of an allocation rule on a class of games on union

stable systems states that for every game with restricted cooperation in this class, the total

payoff to every component equals its worth. We denote by USN the class of all union stable

systems on N , and by GUSN the class of all games on union stable systems on N .
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Definition 6.4 Let C ⊆ GUSN be a class of games on union stable systems. An allocation

rule f on C satisfies component efficiency if
∑

i∈M fi (v,F) = v(M), for all (v,F) ∈ C and

M ∈ CF (N) .

A player i ∈ N is called a component dummy in F ∈ USN if this player does not belong to

any maximal component of the grand coalition, i.e., i /∈
⋃
{M ∈ F :M ∈ CF (N)}.

Note that a component dummy in F is a null player in any vF that is derived from

some v ∈ GN .

Definition 6.5 Let C ⊆ GUSN be a class of games on union stable systems. An allocation

rule f on C satisfies component dummy if for any component dummy i in F , we have

fi (v,F) = 0, for all (v,F) ∈ C.

Algaba, Bilbao, Borm and López (2001) show that the Shapley value satisfies com-

ponent efficiency and component dummy on USN , and therefore on every C ⊆ USN . Next,

we provide an axiomatic characterization of the Shapley value for games on the class of

all accessible union stable systems that uses a balanced contribution axiom. Inspired by

Myerson (1980), we will compare the effect of deleting players of the accessible union stable

system on each others payoff. Given a set system F ⊆ 2N and a player i ∈ N, the set

system

F−i = {S ∈ F | i /∈ S}

is given by all those feasible coalitions in F which do not contain player i.

Proposition 6.6 If F ⊆ 2N is an accessible union stable system and i ∈ N, then F−i is

an accessible union stable system.

Proof: If S, T ∈ F−i with S ∩ T �= ∅ then by union stability S ∪ T ∈ F . Since i /∈ S ∪ T,

it holds that S ∪ T ∈ F−i.

Moreover, if S ∈ F−i then S ∈ F , and applying accessibility there exists a j ∈ S

such that S\{j} ∈ F . Since j �= i, it holds that S\{j} ∈ F−i. �

Observe that if F ⊆ 2N is an accessible union stable system and i ∈ N, then i is a

component dummy for the accessible union stable system F−i .

Definition 6.7 An allocation rule f on GAUSN has balanced contributions if for every

(v,F) ∈ GAUSN and any two players i, j ∈ N with i �= j, we have

fi (v,F)− fi (v,F−j) = fj (v,F)− fj (v,F−i) .
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Proposition 6.8 For all (v,F) ∈ GAUSN and all i, j ∈ N with i �= j, the Shapley value

has balanced contributions.

Proof: It is well-known that the Shapley value can be written, for every v ∈ GN , as

Shi (v) =
∑

{T∈F | i∈T}

∆v(T )

|T |
for all i ∈ N,

where ∆v(T ) is the Harsanyi dividends of coalition ∅ �= T ⊆ N , see Harsanyi (1959).12

Consider i ∈ N , j ∈ N \ {i}, and denote by Fi = {S ∈ F | i ∈ S} the set system

formed by those feasible coalitions containing player i.

If T ∈ F−i then every S ∈ F such that S ⊆ T satisfies i /∈ S and hence, S ∈ F−i

and S \ {i} = S. Since CF−i(S) = CF(S \ {i}) for all S ⊆ N, for T ∈ F−i, we have

∆vF−i (T ) =
∑

S⊆T

(−1)|T |−|S|vF−i(S) =
∑

S⊆T

(−1)|T |−|S|vF(S \ {i})

=
∑

S⊆T

(−1)|T |−|S|vF(S) = ∆vF (T ).

Therefore, it holds that

ϕi (v,F)− ϕi (v,F−j) = Shi
(
vF
)
− Shi

(
vF−j

)

=
∑

{T∈F | i∈T}

∆vF (T )

|T |
−

∑

{T∈F−j | i∈T}

∆
v
F−j (T )

|T |

=
∑

{T∈F | i,j∈T}

∆vF (T )

|T |

=
∑

{T∈F | j∈T}

∆vF (T )

|T |
−

∑

{T∈F−i | j∈T}

∆vF−i (T )

|T |

= Shj
(
vF
)
− Shj

(
vF−i

)
= ϕj (v,F)− ϕj (v,F−i) ,

where the third equality follows from the fact that ∆vF (T ) = ∆
v
F−j (T ) for all T ∈ F−j.

�

The following theorem provides a characterization of the Shapley value on the class

of games on accessible union stable systems.

Theorem 6.9 The Shapley value is the unique value on the class GAUSN that satisfies

component efficiency, component dummy, and has balanced contributions.

12For each T ⊆ N , the unanimity game (N,uT ) is given by uT (S) = 1 if T ⊆ S, and uT (S) = 0

otherwise. It is well-known that the unanimity games uT , T ⊆ N , T �= ∅, form a basis of the vectorial

space of TU-games on N . Each game v ∈ GN can be written as a linear combination of unanimity games

in a unique way as v =
∑
T⊆N, T �=∅∆v(T )uT . By applying the Möbius transformation we obtain that

∆v(S) =
∑
T⊆S(−1)|S|−|T |v(T ), S ⊆ N .
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Proof: Since the Shapley value satisfies the three axioms, we only need to show uniqueness.13

Consider an allocation rule f on GAUSN satisfying component efficiency, component

dummy and has balanced contributions. We will prove that f (v,F) = ϕ (v,F) for all

(v,F) ∈ GAUSN , by induction on the number of feasible coalitions.

If |F| = 1 then F = {∅} and hence every player i ∈ N is a component dummy. By

the component dummy property, fi (v,F) = 0 = ϕi (v,F) for all i ∈ N.

Consider k > 1 and suppose that f (v,F) = ϕ (v,F) for all (v,F) ∈ GAUSN such

that |F| ≤ k − 1. Let (v,F) ∈ GAUSN with |F| = k. Observe that the grand coalition

N is the union of the set of disjoint dummy players and the components of N . Therefore,

it suffices to check that for every M ∈ CF (N) it holds that fi (v,F) = ϕi (v,F) for all

i ∈ M. Let M ∈ CF(N). If |M | = 1 then component efficiency determines the payoff for

i ∈M . Otherwise, if |M | > 1, take i ∈M . For every j ∈M \ {i}, we can repeatedly apply

balanced contributions yielding

fi (v,F)− fi (v,F−j) = fj (v,F)− fj (v,F−i) , for all j ∈M \ {i}. (6.2)

This yields |M | − 1 linear independent equations. Component efficiency requires that

∑

i∈M

fi (v,F) = v(M). (6.3)

Since the values f(v,F−i) and f(v,F−j) are known by the induction hypothesis,

(6.3) together with the equations (6.2) yields |M | linear independent equations in the |M |

unknown payoffs fh(F , v), h ∈M , which are therefore uniquely determined. �

Above, using balanced contributions, we considered the effects of deleting all coali-

tions containing a particular player from the set of feasible coalitions on the payoffs of

another player. Comparing payoffs of two players in this way, we can also consider the

effect on their payoffs when we delete all coalitions containing both players. So, for an

accessible union stable system F and two players i, j ∈ N , we consider the set system

F−ij = {S ∈ F | {i, j} �⊆ S}

being the collection of feasible coalitions in F that do not contain both players i and

j. Myerson (1977) characterized the Myerson value for communication graph games by

component efficiency and fairness, the last property stating that deleting a link from the

undirected communication graph has the same effect on the payoffs of the two players

13Note that from this proof it follows that this proposition holds for all classes of set systems such that

F−i is in the class for all i ∈ N . Although this follows from a more general result in Katsev (2013), we

provided the proof for completeness and to get a better insight in the structural properties.

26



connected by that link. This is generalized by Algaba, Bilbao, Borm and López (2001)

to games on union stable systems by saying that deleting a non-unitary support from the

basis of a union stable system and considering the new system generated under union

stability, has the same effect on the payoff of the players in the deleted support. (Note

that the supports of the set of connected coalitions in an undirected communication graph

are exactly the singletons and the links.) In both cases, all coalitions that are deleted from

the set of feasible coalitions contain all players in the support that is deleted. Next, we

define a version of fairness where we delete all coalitions containing two particular players,

and require the payoffs of these two players to change by the same amount.14

Definition 6.10 Let C be a class of games on union stable systems. An allocation rule f

on C satisfies fairness on C if

fi(v,F)− fi(v,F−ij) = fj(v,F)− fj(v,F−ij)

for all (v,F) ∈ C and i, j ∈ N such that F−ij ∈ C.

The restriction that F−ij ∈ C implies that not all feasible coalitions can be deleted.15

It turns out that F being accessible implies that F−ij is accessible.

Proposition 6.11 If F ⊆ 2N is an accessible set system then F−ij is accessible.

Proof: Let F ⊆ 2N be an accessible set system. Then S ∈ F−ij implies that S ∈ F ,

and thus there is an h ∈ S such that S \ {h} ∈ F . Since {i, j} �⊆ S ∈ F−ij it holds that

S \ {h} ∈ F−ij. So, F−ij is accessible. �

However, for an arbitrary accessible union stable system F the set system F−ij need

not be union stable as the following example shows.

Example 6.12 Consider the accessible union stable system F of Example 3.6. Take a

player from N and one from M , for example players 2 and 4.

Then F−24 = F \ {{2, 3, 4, 5}, {1, 2, 3, 4, 5}}, which is not union stable since {1, 2}

and {1, 3, 4, 5} both belong to F−24 but their union does not.

14Note that if F = FL for some communication graph L then F−ij , in general, is not the set of connected

coalitions in L \ {{i, j}}. Consider, for example, the communication graph L on N = {1, 2, 3, 4} given

by L = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}. Then {1, 2, 3, 4} ∈ FL\{{1,2}} \ (FL)−12. Therefore, on the class of

communication graph games this axiom is not the same as Myerson’s fairness.
15So, we should call this axiom fairness with respect to a certain class of games with restricted cooper-

ation. When it does not lead to confusion we will simply refer to this axiom as fairness.
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Before we mentioned that fairness as defined in Definition 6.10 for the class of

accessible union stable systems is not the same as Myerson’s fairness. However, for (sets

of connected coalitions in) cycle-free graphs it is the same. Therefore, it is known that for

these set systems, fairness and component efficiency characterize the Shapley value. Similar

it follows that for the class games on cycle-free accessible union stable systems, the Shapley

value is characterized by component efficiency, component dummy and fairness. We give

an alternative proof considering this as a subclass of games on acccessible union stable

systems and applying the results obtained for cycle-free accessible union stable systems

resulting in a much better understanding of these structures.

Next, we denote the class of games on cycle-free accessible union stable systems by

GCFN . It turns out that union stability of the set system F−ij is kept if the accessible

union stable system belongs to CFN = AUSN ∩ USIN and players i and j belong to a

support together.

Proposition 6.13 If F ∈ CFN and {i, j} ∈ B(F), then F−ij is union stable.

Proof: Suppose that (i) and (ii) are satisfied. Take S, T ∈ F−ij with S ∩ T �= ∅. We have

to prove that S ∪ T ∈ F−ij. We distinguish the following two cases.

Case 1: Suppose that {i, j} �⊆ S ∪ T . Since S ∪ T ∈ F (by union stability of F) it

holds that S ∪ T ∈ F−ij .

Case 2: Suppose that {i, j} ⊆ S ∪ T . Since S, T ∈ F−ij it holds that |S ∩ {i, j}| =

|T ∩ {i, j}| = 1 with S ∩ {i, j} �= T ∩ {i, j}. Suppose without loss of generality that i ∈ S

and j ∈ T . Since there is an H ∈ B(F) with {i, j} ⊆ H, |H∩(S∪T )| ≥ 2. Since F satisfies

condition 1 of Definition 5.1 (2-intersection closedness), it holds that H ∩ (S ∪ T ) ∈ F .

But then (H ∩ (S ∪ T )) ∪ (S ∪ T ) = S ∪ T , H ∩ (S ∪ T ) �= S and H ∩ (S ∪ T ) �= T (since

{i, j} ⊆ H, {i, j} ⊆ S ∪ T , i �∈ T and j �∈ S). This is a contradiction with F ∈ CFN since

S ∪ T can be written as union of non-unitary supports in more than one way. �

When we restrict ourselves to the class CFN we also need to verify if deleting all coalitions

that contain two particular players, we still have a set system from CFN .

Proposition 6.14 If F ∈ CFN and {i, j} ∈ B(F) then F−ij ∈ CFN .

Proof From Propositions 6.11, 6.13 and Corollary ?? it follows that we only need to verify

the extra condition 2 of Definition 5.1 defining the class CFN

Since every S ∈ F can be written as a union of non-unitary supports in a unique

way, this obviously holds for every S ∈ F ′ ⊆ F , in particular for F ′ = F−ij.

�

Now we can state the following axiomatization.
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Theorem 6.15 The Shapley value is the unique value on GCFN that satisfies component

efficiency, component dummy and fairness.

Proof The Shapley value satisfying component efficiency, component dummy and fairness

can be shown in a similar way as shown in Algaba, Bilbao, Borm and López (2001). To

show uniqueness, suppose that an allocation rule f satisfies component efficiency, com-

ponent dummy and fairness. We prove uniqueness (in a similar way to Myerson (1977)

and Algaba, Bilbao, Borm and López (2001) but) by induction on the number of non-

unitary coalitions in F . If |{S ∈ F | |S| ≥ 2}| = 0 then every singleton is a component

or a dummy, and then component efficiency or component dummy, respectively, deter-

mines the payoffs. Proceeding by induction, assume that f(v,F) is determined whenever

|{S ∈ F | |S| ≥ 2}| < k, and suppose that |{S ∈ F | |S| ≥ 2}| = k. Observe that the grand

coalition N is the union of the set of disjoint dummy players and the components of N .

Therefore, it suffices to check that for every M ∈ CF (N) it holds that fi (v,F) = ϕi (v,F)

for all i ∈M. LetM ∈ CF(N). If |M | = 1 then component efficiency determines the payoff

for i ∈ M . Otherwise, if |M | > 1, we know from Algaba, Bilbao, Borm and López (2001)

that we can label the players in M = {i1, . . . , im} such that for every k ∈ {1, . . . ,m− 1}

there is a support H = {ik, ik+1}. Since F−ikik+1 ∈ CF
N by Proposition 6.14, we can

repeatedly apply fairness yielding

fik(v,F)− fik(v,F−ikik+1) = fik+1(v,F)− fik+1(v,F−ikik+1), k ∈ {1, . . . ,m− 1}.

(6.4)

This yields |M | − 1 linear independent equations. Component efficency requires that

∑

i∈M

fi (v,F) = v(M).

Since the values f(N, v,F−ikik+1) are known by the induction hypothesis, together with the

equations (6.4) this yields |M | linear independent equations in the |M | unknown payoffs

fh(N,F , v), h ∈M , which are therefore uniquely determined. �

7 Concluding remarks

Some future research questions are the following. First, there are several models of re-

stricted cooperation in the literature. It is important to compare them and see the relations

between these models: What can they ‘learn’ from each other?

When deleting coalitions from a set of feasible coalitions that satisfies certain prop-

erties we need to take care that the resulting set of feasible coalitions still satisfies these
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properties. For example, in a union stable system only supports can be deleted (since other

coalitions are the union of two nondisjoint coalitions and deleting them violates union sta-

bility) while for antimatroids only paths (since otherwise union closedness is violated) that

are not covered by a path16 can be deleted (since deleting a coalition that is covered by

a path violates accessibility). Note that when coalition S ∈ F is covered by T ∈ F then

there is an i ∈ T such that T is an i-path and S = T \{i}. Algaba, Bilbao, Borm and López

(2001) showed that Myerson (1977)’s axiomatization for communication graph games by

component efficiency and fairness17 also holds for games on union stable systems, i.e. the

Shapley value is the unique allocation rule for games on union stable systems that satisfies

component efficiency, component dummy and fairness. The fact that not all supports can

be deleted from an accessible union stable system creates problems when axiomatizating

the Shapley value for games on these systems. For example, van den Brink (1997) and

Algaba, Bilbao, van den Brink and Jimenez-Lósada (2003) show that such axioms do not

characterize the Shapley value for games with a permission structure, respectively games

on (normal) antimatroids. A main question then is whether the Shapley value for acces-

sible union stable systems is characterized by component efficiency, component dummy

and fairness. This is an important question since our motivation to study accessible union

stable systems is that they have a characterizing property from communication networks

(union stability) as well as hierarchies (accessibility).

A related question is on what union stable systems the Shapley value is character-

ized by component efficiency and fairness (of course, fairness defined with respect to the

appropriate class of set systems). Characterizing set systems by axiomatizations of game

solutions is done in, e.g., Algaba, Bilbao, van den Brink and Jiménez-Losada (2003) for

the class of games on antimatroids. They show that on a class of antimatroids the Shapley

value is characterized by efficiency, additivity, the inessential player property, the neces-

sary player property and structural monotonicity, if and only if this is the class of poset

antimatroids.

Finally, in the network formation and stability model of Jackson and Wolinsky

(1996), worths are not assigned to coalitions of players, but to the network structures

themselves. For example, in the two network structures L = {{1, 2}, {1, 3}} respectively

L′ = L∪{{2, 3}} on N = {1, 2, 3} (see Figure 3) the ‘grand coalition’ N can have a different

value, although in a restricted game in the sense of Myerson (1977) coalition N should have

the same worth in both restricted games. Since in this paper we studied more rich network

structures than the bilateral communication networks, it makes sense to consider network

value functions similar to those in Jackson and Wolinsky (1996), only now for accessible

16Coalition S ∈ F is covered by a path if there is a path T ∈ F such that S ⊂ T and |T | = |S|+ 1.
17For communication graph games component dummy is not relevant since every singleton is feasible

and thus there are no dummies in the set of connected coalitions.
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Figure 3: Two connected communication graphs on N = {1, 2, 3}

union stable systems and other structures.
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