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Abstract 

This paper analyses optimal coarse tolling of congestion under heterogeneous preferences, and 

especially the welfare and distributional effects. With coarse tolling, the toll equals a fixed value 

during the centre of the peak; outside this period, it is zero. This paper separately investigates three 

dimensions of heterogeneity. With the first, all values of time and schedule delay vary in fixed 

proportions, and this heterogeneity may stem from income differences. The second has differences 

in the flexibility of users when to arrive. The third captures differences in willingness to arrive 

before or after the preferred arrival time. The paper uses three models of coarse tolling: the “Laih”, 

“ADL”, and “Braking” model. 

All three dimensions affect the welfare gain of coarse tolling. In the Laih model, the generalised 

price with coarse tolling is always in between the no-toll and first-best one. In the other models, 

this is not the case and distributional effects may be non-monotonic and very different from the 

first-best toll’s effects. In the Braking model, the bottleneck capacity goes unused for some time 

during the tolled period; compared with in the Laih model, this raises total cost, and it is most 

harmful for users with low values and difficulty to arrive late: e.g. low-income users with a strict 

work start time or a trip to the doctor. 
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1. Introduction 

This paper studies step tolling in the bottleneck model with heterogeneous preferences, and 

especially the distributional effects. There is a large literature on fully-time-variant tolling, but in 

practice tolls are either constant over the day (e.g. London) or at most have a few steps in them 

(e.g. Singapore, Stockholm, the SR91 and Bay Bridge in California, and the SR520 and SR16 

bridges in Washington State). We focus on optimal single-step “coarse tolling” under three 

dimensions of preference heterogeneity, where we analyse each dimension separately. We only 

consider heterogeneity in values of time (α), schedule delay early (β) and/or schedule delay late 

(γ); all other user characteristics are homogeneous and demand is fixed.  

Preference heterogeneity is present in reality (e.g. Small et al., 2005), and affects the welfare 

gain of tolling and leads to distributional effects (e.g. Arnott et al., 1988, 1994). This paper finds 

that also with coarse tolling heterogeneity can have strong effects on the welfare effects and the 

relative performance of tolling schemes. Moreover, the distributional effects with coarse tolling 

may differ strongly from those with first-best tolling. Distributional effects are important. They are 

a major reason for the large resistance against congestion pricing, and if one would like to 

compensate the losers from congestion tolling, one needs to know which types of users lose by 

how much.  

“Proportional heterogeneity” was introduced by Vickrey (1973). Under his definition, all three 

values vary proportionally: αi=μ∙βi and γi=η∙βi, where μ and η are homogeneous ratios. Proportional 

heterogeneity could stem from income differences where a higher income increases all values 

proportionally, as all three values depend on the inverse of the marginal utility of income, which 

decreases with income. As Van den Berg and Verhoef (2011a) show, first-best (FB) tolling 

reduces the “generalised price” (i.e. toll plus travel costs, and henceforth “price” for brevity) for all 

users, except for those with the very lowest values who are unaffected. This also means that the 

gain of first-best tolling increases with the degree of proportional heterogeneity.  

Our second form of heterogeneity measures differences in the importance of travel time versus 

schedule delays, or alternatively how flexible users are in when to arrive. We denote such 

heterogeneity as “α heterogeneity”, as the value of time (α) varies relative to the values of 

schedule delay. It could result from differences in type of job, family status, or trip purpose. Travel 

time costs are reduced by α heterogeneity, and thus the gain of FB tolling decreases with the 

degree of α heterogeneity. Now, all users—except for those with the highest value—lose due to 

FB tolling. Arnott et al. (1988, 1994) and Lindsey (2004a) used this heterogeneity among others.  

Our final form of heterogeneity captures differences in the willingness to arrive after the 

preferred arrival time, and could stem from differences in job or trip type. We refer to it as “γ 

heterogeneity” as the value of schedule delay late (γ) varies relative to value of schedule delay 

early. Arnott et al. (1988, 1994) find that, both without tolling as with first-best tolling, low-γ users 
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arrive after the preferred arrival time, and a user arrives later the lower her γ is. This self-selection 

lowers the gain from first-best tolling, but leads to no distributional effects from it.  

We consider three behavioural models of coarse tolling that differ in how the price is equalised 

before and after the toll is turned off. The “Laih model” of Laih (1994, 2004) has separate queues 

for tolled and untolled users. The “ADL model” of Arnott et al. (1990, 1993) has a mass departure. 

The “Braking model” of Lindsey et al. (2012) and Xiao et al. (2012) takes into account that users 

who would pass the tolling point just before the toll is lifted have an incentive to “brake” and delay 

passage until the toll is turned off. The braking means that capacity goes unused for some time 

during the peak, and this raises costs and lowers the gain of tolling. 

 While with first-best tolling distributional effects are monotonic, with coarse tolling this is not 

always so and the effects can very different from the first-best ones. We find that with proportional 

heterogeneity in the braking model, coarse tolling raises the price most for users with intermediate 

values {αi, βi , γi}, where these users are indifferent between the tolled and untolled periods. Here, 

untolled users are better off, the lower their three values are; tolled users are better off the higher 

their three values are, and those with the higher values {αi, βi , γi} may gain. Xiao et al. (2011) 

study coarse tolling in the ADL model under proportional heterogeneity, and find that it lowers the 

price for all, and more so the higher a user’s values are. We find that with γ heterogeneity leads to 

very different distributional effects in the three coarse-toll models. In the Laih model, coarse 

tolling has no effect on prices; in the Braking model, prices increase; and, finally, in the ADL 

model, coarse tolling lowers all prices, but most for mass users and especially for those with an 

intermediate γ. With α heterogeneity, coarse tolling raises the price more the higher the value of 

time is: in the Laih model the price increases are half that of first-best tolling, the braking model 

has higher price increases, and the ADL model has lower increases.   

 The gain from tolling decreases with the degree of α and γ heterogeneity. Proportional 

heterogeneity raises the gain from tolling, and tends to make coarse tolling fare better compared to 

the first-best toll. In the ADL model, the gain is higher than in the Laih model, in the braking 

model, it is lower; but both differences decrease with the degree of proportional heterogeneity. For 

all three dimensions of heterogeneity it is the case that as the degree of heterogeneity increases the 

welfare gain from coarse tolling in ADL model approaches that in the Laih model. 

Table 1 summarises the welfare effect (from the no-toll case) and relative efficiency of coarse 

tolling under the 9 regimes, where the relative efficiency is the total cost reduction of a policy 

from the NT case divided by the FB reduction. Table 2 summarises the distributional effects. The 

next section introduces the notation and the no-toll and first-best equilibria. Section 3 turns to 

coarse tolling under homogeneity. The three following sections separately study coarse tolling 

under our three dimensions of heterogeneity. Section 7 discusses some caveats and directions for 

research. Section 8 concludes. 
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Table 1: Effect of the degree of heterogeneity on the welfare gain and relative efficiency of coarse 

tolling (in the numerical models) 

 Laih model ADL model Braking model 

Proportional heterogeneity 
Gain increases. 

Relative efficiency increases.  

Gain increases, but less 

than in the Laih model. 

Gain increases more than in  

the Laih model. 

α heterogeneity 
Gain decreases.  

Relative efficiency = 0.5. 

Gain decreases stronger 

than in the Laih model 

Decreases stronger than in  

the Laih model. 

γ heterogeneity 
Gain decreases. 

Relative efficiency decreases.  

Gain decreases stronger 

than in the Laih model. 

Gain decreases. 

Relative efficiency is non-monotonic. 

Table 2: Distributional effects in the three models and three forms of heterogeneity (in the 

numerical models) 

 Laih model ADL model Braking model 

Proportional heterogeneity 

Low-{α,β,γ} users are 

unaffected. 

High-{α,β,γ} users gain. 

All types gain, and  

more so the higher the 

values {α,β,γ} are. 

Low to intermediate- 

{α,β,γ} types lose. 

 High values types gain.  

α heterogeneity 
All types lose, and 

more so the higher α. 

Most types lose, but less 

than in the Laih model.  

The highest-α types gain. 

All types lose, and more 

than in the Laih model. 

γ heterogeneity Prices are unchanged. 

All prices decrease, 

but most for intermediately 

low values of γ. 

All prices increase. 

For untolled types, more so 

the lower γ. 

 

2. Set-up and the no-toll and first-best equilibria 

This section introduces the set-up and notation. It also shortly reintroduces the no-toll and first-

best equilibria, as these are well covered by earlier works such as Vickrey (1969, 1973) and Arnott 

et al. (1988, 1993, 1994), and textbooks such as Verhoef and Small (2007). Table 3 summarises 

the parameters
1
 and Table 4 the variables. We use the point-queue bottleneck model of Vickrey 

(1969). Without a queue and as long as the arrival rate of users at the bottleneck is not above 

capacity, s, travel time is zero (and thus free-flow travel time is zero). Otherwise, travel time 

equals the length (in vehicles) of the queue when joining it divided by capacity.  

A driver of type i faces two travel costs. The first, travel time cost, equals travel time multiplied 

by i’s value of time, αi. The second, schedule delay cost, equals the absolute difference between 

the arrival time, t, and the preferred arrival time, t
*
, multiplied by the value of schedule delay early 

(βi) or late (γi) depending on if she arrives before or after t
*
.
2
 The t

*
 is normalised to zero.  

  

                                                 
1 The means of α, β, and γ are the same as the values used in Van den Berg (2012). The ratio N/s=2.5 is also the same as there, and was also used, for 

instance, in Arnott et al. (1993). 
2 The value of time equals the marginal utility of travel time savings over the marginal utility of income; values of schedule delay early and late are 

defined similarly. It is assumed that αi>βi>0 and γi>0, as otherwise the standard no-toll equilibrium of the bottleneck model does not hold. This 

assumption is used in the entire bottleneck literature and is also needed in other congestion models. 
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Table 3: Parameter description and (mean) value in the numerical example 

Symbol Description (Mean) value in the example  

       Possibly heterogeneous preferences  
α Value of time 8 

β Value of schedule delay early 4 

γ Value of schedule delay late 15.6 

μ≡ α/β Relative size of the value of time to value of schedule delay early 2  

η≡ η/β Relative size of the values of schedule delay late to early 3.9 

       Parameters describing the distribution of the heterogeneous value x={α, β, y, η, μ} 

f[x] PDF of the heterogeneous value x={α, β, y, η, μ} 1/( )x x  

F[x] CDF of the heterogeneous value x={α, β, y, η, μ} ( /() )ix xx x   

nj≡f[xj]∙N Density of users with a xj - 

k
jn  Density of users with a xj in arrival period k, the sum over all periods is nj - 

x  Minimum of the heterogeneous value x={α, β, y, η, μ} - 

x  Maximum of the heterogeneous value x={α, β, y, η, μ} - 

E[x]  Mean of heterogeneous preference x={α, β, y, η, μ} - 

     Other parameters  

t* Preferred arrival time (which is normalised to 0)  0 (also in the analytical models) 

N Number of users  9000 

S Capacity of the bottleneck 3600 

 

Table 4: Variables 

Symbol Description 

 Timings 
T Arrival time 

ts Start of the peak 

te End of the peak 

t+ Start tolled period 

t− End tolled period 

tb Moment the braking starts 

Δt≡t−−tb Time-span during which the capacity goes unused in the braking model  

 Prices and tolls 

Ρ Level of the coarse toll 

τ[t] The level of the toll (either first-best or coarse) for an arrival at t  

Pi (Generalised) price for users with a value of xi 

 Aggregate measures and indicators 

V Number of untolled users  

M Number of users in the mass 

T Indicator for the Tolled period (i.e. from t+ to t− ) 

U Indicator for the Untolled periods 

UE Indicator for the Untolled period before t* (Untolled Early) 

UL Indicator for the Untolled period after t* (Untolled Late) 

[ ] [ ]j j

x
E P N jx

P f x dx   
 

Average generalised price 

[ ]TP N E P   Total price  

TR= ρ(N−V) Toll revenue 

TC=TP−TR Total cost 
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When a user of type i arrives at t, she has a generalised price (Pi and hereafter referred to as 

price) that is the sum of the travel time and schedule delay costs and possible toll, τ: 

 

 

* *

* *

           if
[ ] [ ] [ ] .

           if

i

i i

i

β t t t t
P t α TT t τ t

γ t t t t

   
    

  

 (1) 

This toll can be the first-best toll or the coarse toll. Square brackets indicate that something is a 

function of what is listed inside. Round parentheses are used for arithmetic. The peak starts at ts 

with a zero queue length, and ends at te when the queue has fully dissipated.  

2.1. Homogeneous preferences 

In user-equilibrium with homogeneous preferences the price is constant over time during the 

peak, as otherwise some drivers would want to change their arrival time. Without tolling this is 

achieved by a travel time that grows linearly over arrival time by β/α for arrivals before t
*
 and 

thereafter shrinks by –γ/α. The no-toll (NT) equilibrium price is: 

1

N N
P

s s


 


 


;  (2) 

where δ≡β∙η/(1+η) and η≡γ/β. Further, N is the total number of uses and s the capacity of the 

bottleneck. No-toll total cost is N times the price: TC= δ∙N
2
/s. 

 Travel time due to queuing is a pure loss: all queuing could be removed without increasing 

schedule delays if the departure rate would equal capacity. This can be attained by a toll that varies 

over time such that sum of toll and schedule delay cost is constant, which implies that the first-best 

(FB) toll equals the NT travel time costs. As the FB toll exactly replaces the NT travel-time cost at 

all t, prices remain the same, but total cost is halved as the toll is a transfer and not a cost.  

2.2. Proportional heterogeneity 

We now turn to the “proportional heterogeneity” of Vickrey (1973), which varies the values 

{αi, βi, γi} in fixed proportions: αi=μ∙βi and γi=η∙βi. We refer to a type as having a certain βi, where 

a type indicates all users with a certain set of values. The values follow a distribution function of 

f[βi], a CDF of F[βi], and minimum and maximum of respectively   and  . As discussed, this 

heterogeneity could stem from income differences. Although, income differences might also cause 

heterogeneity in the ratios of the values: rich people might be more flexible, and thus have low 

values of schedule delay relatively to their value of time (see Koster and Koster, 2013). Moreover, 

poor people may have tighter time budgets, and thus higher marginal utilities of time.  

Without tolling, travel times follow the same pattern as with homogeneity. The ratios α/β and 

α/γ are the same for all and these ratios determine the arrival order of users, because the ratios 
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measure how willing you are to reduce travel times by increasing schedule delays. With our other 

forms of heterogeneity, these ratios differ over types, and there is separation over time. 

Queuing is again a pure loss, and the first-best toll eliminates it. Types now arrive ordered on 

their βi. The type with the highest values arrives at t
*
, as it is most willing to pay a toll to attain a 

lower schedule delay. The lowest-β type arrives the furthest from t
*
 at the start (ts) and end (te) of 

the peak. The first-best (FB) toll thus fully separates the types, and not only removes the queuing 

but also reduces total schedule delay cost.  

The NT-equilibrium price is similar to with homogeneity:  

1
i i

N
P

s









. (3) 

FB tolling removes all queuing and now users self-select to an arrival time. This self-selection 

lowers total scheduling costs. The gain from this self-ordering increases with the degree of 

heterogeneity. We define such an increase in heterogeneity as an increase of the variance for a 

given mean and shape of the distribution. The FB price is (Van den Berg and Verhoef, 2011a):  

[ ]d [ ] d [ ]d [ ] d ;
1 1

β β β βj ji iFB i i
i j j j j j j j j j j j j

β β β β
i ii i

β ββ βη η
p n β β n β β N f β β f β β

s η β s η β

   
          

    
    (4) 

where jn ≡ jf N is the density of users with βj. FB tolling lowers the price for all but the lowest-β 

users, and more so the more heterogeneity there is. Accordingly, the gain of FB tolling increases 

with the degree of proportional heterogeneity. 

2.3. α heterogeneity 

Now the value of time, αi, varies while the other values are fixed. However, what really matters 

is that the implied ratio αi/β≡μi varies. Users with a high ratio are less willing to queue or 

alternatively more flexible when to arrive, as a higher travel time is relatively more costly for them 

than a lower schedule delay. Arnott et al. (1988, 1994) and Van den Berg and Verhoef (2011b) 

studied this heterogeneity. Arnott and Kraus (1995) and Van den Berg and Verhoef (2011a) 

combined proportional and α heterogeneity. Newell (1987), Lindsey (2004a), de Palma and 

Lindsey (2002) and Hall (2013) looked at heterogeneity that is more general. 

The higher a user’s αi is relative to the other values, the less queuing she causes and the lower 

her congestion externality. The NT price concavely increases with αi, and a highest-α user faces 

the same price as with homogeneity (Van den Berg and Verhoef, 2011b): 

   [ ]  ( [ ] / ) .
i

j
i

j j
NT

i SD TT j j i j jP C C N n d n d
s










      

    
 
   (5) 



Coarse tolling with heterogeneous preferences                                    7 

The α heterogeneity has no effect on the first-best (FB) equilibrium: queuing is still eliminated, 

and thus the values of travel time have no effect. The FB price is the sum of the schedule delay 

cost and toll: 

 .FB
i SDP C toll N

s


    (6) 

For all types this FB price equals the price for the highest-α type in the NT situation Hence, the 

price increases for all (but the highest-α type), and more so the lower αi is. This also implies that 

the FB gain decreases with the degree of α heterogeneity.  

Van den Berg and Verhoef (2011a) study combined α and proportional heterogeneity. They 

find that FB tolling can reduce the price for most users. Moreover, it is not the users with the 

lowest values who lose most, but those with intermediate values and strong inflexibility in when to 

arrive (i.e. a low μi=αi/βi). This could be median-income persons with strict work-starting times.  

2.4. γ heterogeneity 

Arnott et al. (1988, 1994) studied the no-toll and first-best equilibria under our third form of 

heterogeneity, where users differ in their value of schedule delay late γi, while the other values are 

the same for all. Again, what matters is not γi itself, but the ratio γi/β=ηi. Users with a high ηi (i.e. 

with a ηi above the indifferent *
1 ) arrive before t

*
. As the values of time and schedule delay early 

are the same for all, these high-η types travel jointly and the price is the same for all of them. 

Users with a low ηi arrive after t
*
. The lower a late-user’s ηi is, the further she arrives from t

*
. The 

price of late users increases concavely with γi=ηi∙β. The self-ordering lowers total scheduling cost, 

and does so equally in the NT and FB cases. The self-selection also lowers travel time cost. The 

FB toll exactly the replaces travel time cost, and thus prices are unaffected by FB tolling.  

It can be shown that NT and FB prices follow: 

 
*

* *
1

*

(1 [ ]),                                                                                            ,

1 [ ] [ ] ,                                             
i

i i

i j j i j

N
P F

s

N
P F f d

s





   

     

   

 
     

 


*
1      < .i 

 (7) 

For a general distribution, there is no closed-form solution for *
1 . But it is known that all types 

gain from γ heterogeneity: for each type i the self-ordering lowers the price compared to when all 

users would have the same value as i. Total cost is also lower (see Arnott et al., 1988).  

FB tolling removes all queuing, but does not affect the prices. Thus γ heterogeneity does not 

lead to distributional effects. It does tend to lower the FB gain by lowering total travel time, as this 
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FB gain equals the total NT travel time cost. The average NT travel time cost decreases with the 

degree of heterogeneity by making the travel time function after t
*
 more convex.

3
  

 
*2

* *[ ] 1 [ ] [ ] [ ] [ ] .
2

i

TT j j j i j
N N

E c F F f d f d
s s

 

 


       

  
      

  
   (8) 

3. Coarse tolling under homogeneous preferences 

With coarse tolling, the toll is on during the centre peak between t
+
 and t

−
, and equals the fixed 

ρ. Outside this period the toll is off and equals zero. We can divide the peak in 3 periods: (1) the 

Tolled (T) which is around t
*
, (2) the Untolled Early (UE) which is before the tolled period, and 

(3) the Untolled Late period (UL) which is after the tolled period. We focus on coarse tolling under 

heterogeneous preferences, and will only summarise the results under homogeneity here, while 

Appendix A gives a short derivation (for details see Arnott et al., 1990, 1993; Laih,1994, 2004; 

Lindsey et al., 2012).  

The coarse models only differ on what happens when the toll is lifted at t
−
. The models lead to 

different total costs under coarse tolling. In the Laih (1994, 2004) model,
4
 there are separate 

queues for toll payers and untolled-late users who will arrive after the tolled period. By 

assumption, these queues do not interact. The first untolled-late user waits before the tolling point 

for such a time that her waiting-time cost equals the toll paid by the last tolled user. In the Laih 

model, coarse tolling removes half of the total travel time that occurs without tolling, and thus has 

a relative efficiency of a half.  

The ADL model of Arnott et al. (1990, 1993) has a mass departure when the toll is lifted. The 

equilibrium mass size is such that the expected extra travel cost for a mass user equals the toll. The 

peak starts and ends later than in the Laih model, as otherwise the expected price in the mass 

would be below that for early untolled users. This in turn implies that the coarse tolling actually 

lowers the equilibrium price and has a relative efficiency above a half.
5
 To increase the benefit 

from the mass departure, the number of untolled users should be above that in the Laih model, 

which is achieved by setting a higher toll. 

Finally, in the braking model of Lindsey et al. (2012) and Xiao et al. (2012), users stop passing 

the tolling point a time Δt before the toll is lifted. The user-equilibrium Δt is such that the extra 

travel cost of (α+γ)∙Δt for the first braker equals the toll. The other two models only have the 

described equilibrium if this braking is impossible. Braking increases total cost, and thus the 

                                                 
3 There are changes to the shape of the distribution that keep the same mean and increase the variance by only changing the distribution for high values 

ηi>η*, this would then have no effect on the NT travel times and the FB gain. What is needed is that the distribution changes for low values. For a 

given shape and mean γ, an increase in the variance (i.e. an increase in the degree of heterogeneity) will lower the average travel time cost. 
4 Fosgerau (2011) uses the Laih model under general scheduling preferences instead of the time-invariant values used here.  
5 All this requires that α<γ. With α≥γ, a different outcome results where there is no shift in the peak and the ADL price is same as in the Laih model. 

Only the ADL model needs this α<γ assumption (Lindsey et al., 2012). 
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relative efficiency is now below a half. To limit the cost from braking, the number of untolled 

users should be below that in the Laih model, which is attained by setting a lower toll. 

4. Proportional heterogeneity and coarse tolling 

4.1. The coarse tolling under proportional heterogeneity 

We first present results that hold for any coarse toll model under proportional heterogeneity that 

varies all three values in fixed proportions. Total cost will be minimised w.r.t. the number of 

untolled users, V. The level of the coarse toll, ρ, is such that at the start, t
+
, and end, t

−
, of the 

tolled period the queue is zero.
6
 There are N−V tolled users 

 

Proposition 1: With coarse tolling and proportional heterogeneity, the N−V highest-values users 

(i.e. the users with the highest αi, βi and γi) travel when the road is tolled. The V lowest-values 

users travel before and after the tolled period. The type that is indifferent between travelling tolled 

or untolled has a value of schedule delay early of β
*
[V].  

 

Proposition 2: The price for a type is the same for any arrival time within a period (i.e. untolled 

and early (UE), tolled (T) or untolled and late (UL)), as long as this period does not have a mass 

departure. Therefore, types travel jointly within such a period. 

 

Proofs: Appendix B.1 gives the proofs. 

 

 In all three models, the equations for the timings of the tolled period are unaffected by the 

heterogeneity: t
+
=−η∙t

−
 and t

−
=(N−V)/((1+η)s). The start of the peak, ts, and end of the peak, te, 

follow different formulas. 

As without a mass the price is constant throughout a period, we only need to calculate it for one 

moment of a period. The price for an untolled user equals the schedule delay cost at ts of −βi∙ts: 

.U s
i iP t    (9) 

With a mass departure, the expected price should equal the above price. The price in the tolled 

period is: 

.T
i iP t      (10) 

Hence, prices are piece-wise linear in βi, and the function is kinked at β
*
.  

                                                 
6 A non-zero queue length would only raise costs (see also Xiao et al., 2011). This holds even if V is set suboptimally. 
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4.2. Laih model 

We start with the simplest coarse-toll model: the Laih model. The times the peak starts, ts, and 

ends, te, are independent of V, and are the same as in the NT and FB cases. Appendix B.3 shows 

that total cost is (where TP is the total price or average price times N and TR is the toll revenue):  

 

 
 2

[ ]= [ ] [ ] [ ] [ ] [ ]

[ ] [ ] ( ) .
1

s L H

H

TC V TP V TR V t V V t V V N V

E B N V V N V
s

 






        

    


 (11) 

The E[β] is the average of β. The β
L
 is the average for the low-β users who travel untolled, β

H 
is 

the average for the tolled period. In the last line of (11), the first term between parentheses 

measures the NT total cost, the second the total reduction in travel cost for the tolled users. Total 

cost decreases with the degree of proportional heterogeneity, as this increases the average β of the 

tolled period, which makes the travel cost saving of the tolled period more valuable.
7
  

Appendix B.3 derives the f.o.c. for V for a general distribution. It also shows that with a 

uniform distribution the relative efficiency depends only on the mean, E[β], and the range, d, of 

the distribution (i.e. maximum minus minimum): 

2 2

Laih

2 2 2 2 2

2

2 (8 [ ]    2 [ ]  4 [ ] )

9  (   6 [ ])

2 2 [ ] 2  [ ] 4 [ ]  2 [ ] 2 [ ] 2  [ ] 4 [ ]

             .
9  ( 6 [ ])

E d d E E

d d E

d E d d E E d E E d d E E

d d E

  



      



     
 



                
    




 (12) 

With a uniform distribution, the degree of heterogeneity only depends on the range d, and the 

relative efficiency increases with the range. When d is zero, the relative efficiency is ½; as d 

approaches 2∙E[β],
8
 the relative efficiency approaches 1/ 3 0.58 . Hence, the gain of coarse 

tolling increases faster with the range than the first-best gain. Fig. 1 illustrates the effect of the 

range and mean of β using the numerical example of Table 1. 

If there is no heterogeneity, a higher mean of β (and thus α and γ) has no effect on the 

percentage welfare gain or relative efficiency. Conversely, with proportional heterogeneity there is 

an effect. The gain from the reduction of travel times and schedule delay for the tolled users 

becomes higher with a larger E[β] (and thus ∆%TC becomes more negative), as their values of 

time and schedule delay become higher. Still, the effect of this higher E[β] is larger for the first-

best toll, and thus the relative efficiency decreases with this mean.   

  

                                                 
7 An increase in the degree of heterogeneity is defined as an increase of the variance for a given mean and distribution shape. There are changes in the 

shape that increase the variance by only changing the distribution for low values, this would have no effect. What is needed is that the βH increases.  
8 The d must be below 2∙E[β] as otherwise for some users the value of time would equal the value of schedule delay late 
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Fig. 1: The Laih toll’s percentage change in total cost from the NT case (left) and relative efficiency 

 over the mean and range of β 

       

4.3. The ADL model of coarse tolling with proportional heterogeneity 

Xiao et al. (2011) introduce proportional heterogeneity to the ADL model. This model needs the 

assumption αi<γi for all i, which the other models do not need. Total cost is (see Appendix B.2): 

 
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2
2

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]
[ ]

1 1 2

1 1
[ ] [ ] ( ) [ ] .
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s s s
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s s

 

   


   

    


     

         

   
    

   

 
     

     

 (13) 

Different from in the Laih model, in the ADL model the total cost in the last line of (13) contains a 

third term measuring the gain from the mass. As in the Laih model, more heterogeneity increases 

the gain from the lowered travel times and schedule delays in the tolled period. Yet, now there is 

also a second effect that more heterogeneity tends to lower the mean β of the untolled users (i.e. 

β
L
), and this lessens the gain from the lowered schedule delays due to the mass. 

Even with a uniform distribution, the formula for total cost with the equation for V inserted is 

extremely complex and hence omitted. Still, (13) shows that total cost decreases with the range. 

Coarse tolling in the ADL model performs worse relative to in the Laih model as the range d 

increases: a larger range increases the mean values during the tolled period, but also lowers the 

gain from the mass by lowering the mean β of the untolled users.  

4.4. Braking model 

We now turn to the braking model, which takes into account that drivers that would pass the 

tolling point just before the toll is lifted have an incentive to wait passing the tolling point until the 

toll is turned off. In equilibrium, the bottleneck capacity goes unused for a time Δt during the peak. 

Therefore, the peak is t  longer than in the other models, and this inefficiency raises costs.  

Appendix B.3 shows that total cost equals:  
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 
0

2
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 (14) 

In the last line, the first and second terms between parentheses are the same as in the Laih model. 

The new third term measures the extra costs due to braking. This loss is lower than without 

heterogeneity as β
L 

(the mean β for untolled users) is below the value with homogeneity: the extra 

schedule delays imposed on untolled users is less costly. Coarse tolling with braking tends to 

become more attractive compared to in the Laih model as the degree of proportional heterogeneity 

increases, as the cost of braking tends to decrease. It can be shown that with a uniform distribution 

the gain of coarse tolling increases with the range, and that coarse tolling in the braking model 

performs better against in the other models as the range increases.
9
 

4.5. Distributional effects 

Proportional heterogeneity has important implications for the overall effects of coarse tolling. 

Yet, for policy, these effects might be less important as coarse tolling always improves welfare 

and has a relative efficiency around 0.45 to 0.6. For policy, the distributional effects might be 

more relevant. Fig. 2 compares the prices (left panel) and prices changes from the NT case (right 

panel). It does so for the example as defined in Table 1 when β uniformly ranges between 1 and 7. 

Fig. 2: Generalised prices (left) and changes in generalised prices from the NT equilibrium (right) 

      

 Proportional heterogeneity leads to interesting distributional effects. All users gain from First-

Best (FB) tolling, and more so the higher their values are (except the lowest-β users, who are 

unaffected). In the Laih model, coarse tolling has no effect on untolled users. Yet, all types who 

strictly use the tolled period gain, and more so the higher their values are: the tolled period offers 

                                                 
9 Changing the E[β], or the ratios μ=E[α]/E[β] and η=E[γ]/E[β] would have some effects. The relative efficiency (i.e. welfare gain relative to the first-

best gain) from coarse tolling in the Laih model increases with  E[β], but is unaffected by changing μ or η. Conversely, the relatively efficiencies in 
the ADL and Braking models are affected by changes in η and μ, as these changes affect the number of users who are in the mass or who brake.  
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them a decrease in schedule delay and/or travel time for which they have to have a fixed toll, and 

higher values makes these savings more valuable.  

Conversely, in the ADL model, coarse tolling lowers the price for all, as untolled users also 

gain due to the mass departure. Still, FB tolling generally decreases prices more than ADL coarse 

tolling, only for drivers with very low values is coarse tolling better.   

The braking model has very different distributional effects. There coarse tolling raises the price 

for the untolled drivers, and more so the higher their values are. The β
* 

type, which is indifferent 

between travelling tolled and untolled, faces the highest price increase. For the tolled period, 

coarse tolling with braking is better for a user the higher her βi is: for low-β drivers the price 

increases, for high-β drivers it decreases. Unlike in the other models, now coarse tolling is not a 

Pareto improvement. The distributional effects in the braking model are similar as with second-

best pricing with an untolled alternative with static congestion and a heterogeneous value of time 

(see Verhoef and Small, 2004).  

The distributional effects are qualitatively robust to the used distribution of β. All tolling 

schemes are always Pareto improvements except in the braking model. In the Laih model, coarse 

tolling never affects untolled users. In the braking model, most users are always worse off. 

Therefore, for policy it is important to try to prevent braking, as was done in Singapore by 

introducing more steps to the step toll (Lindsey et al., 2012). First-best tolling always lowers the 

price for all users (except those with the very highest values). 

5. Coarse tolling and α heterogeneity 

We now turn to coarse tolling under α heterogeneity where the value of time varies and the 

values of schedule delay are fixed. It is not α heterogeneity in itself that matters, but the implied 

heterogeneity in μi≡αi/β (and μi/η=αi/γ). It is this heterogeneous ratio μi that also matters if there are 

multiple dimensions of heterogeneity (see Van den Berg and Verhoef, 2011a). The value of time is 

distributed with a maximum  , minimum  , distribution function f[α], and CDF F[α]. The 

numerical example will follow Table 1 plus an α uniformly distributed between 5 and 11. 

5.1. Coarse tolling under α heterogeneity 

We can divide the peak in 3 periods: (1) the Tolled (T), (2) the Untolled Early (UE) before t
*
, 

and (3) the Untolled Late period (UL) that is after t
*
. Without a mass departure, users arrive 

ordered on αi within a period, and arrive closer to t
*
 the higher αi is. The travel time when type i 

users travel has a slope αi/β before t
* 

and αi/γ thereafter. Hence, the travel time curve becomes 

steeper as one approaches t
*
, and lowest-α users of a period face the longest travel time. With 

continuous heterogeneity, a type can only use one arrival time during an untolled period and the 

two times t and t
’
=−η∙t during the tolled period. Still, the type may use multiple periods.  
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Prices are concavely increasing in α outside the mass, and the expected price increases linearly 

for mass users. A mass departure only occurs in the ADL model to equate the generalised price 

before and after the toll is lifted. The prices for non-mass users follow the same pattern as without 

tolling, as there still is queuing. The price equations are derived in Appendix C.1. The following 

propositions follow from the shapes of the price functions and that if a type uses multiple periods, 

its prices in them must be the same. 

 

Proposition 3. Mass users travel fully separated: for there to be a user-equilibrium, all types in the 

mass (but for those with an indifferent value) cannot also use another period. 

 

Proposition 4. If a type i uses multiple periods without a mass departure, then a type j with a 

higher value (i.e. αi<αj) either has: 1) no users in these periods or 2) j’s users are shared in fixed 

proportions. It can occur that type j uses all the periods i uses, but type k with a αk between αi and 

αj is absent from these periods.  

 

Example of proposition 4: Suppose that there are no mass departures, that types i and j use the 

tolled and both untolled periods and that αi<αj. Then, type j’s drivers are in equal numbers the 

early-tolled and early-untolled periods; the late-tolled and late-untolled periods have a fraction 1/η 

of the users in the corresponding early period. Thus, periods need not have the same number of 

users of a type: if a period is twice as long as another, then the types that use both should have 

twice as many users in the longer period.   

 

Proposition 5. If the highest-α type uses a period without a mass departure, it uses all periods 

without a mass. 

 

Proofs: Appendix C.1 proves these three propositions. 

 

The above discussion does not imply that low-α types have to use all periods. Indeed, in the 

ADL and Braking models they do not. Ignoring mass departures, the higher-α types have to travel 

in all periods, and of each type half of the users travel untolled and the remained of its users travel 

tolled. Then, if the tolled and untolled periods are not equally long, there is no room for the 

lowest-α users in the shorter period, and they only use the longer period. 

 

Proposition 6. If the early-untolled period is longer than the early-tolled, the users with the lowest 

values of time travel only untolled, and vice versa. Without a mass departure, the same holds for 

late arrivals. 
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5.2. Laih model of coarse tolling 

Using the pervious section, we need no further information to solve the Laih model.  Just as 

with homogeneity, the optimal V equals N/2, and thus the tolled and untolled periods are equally 

long. Setting a different V would not affect prices for the high-α types that continue to travel tolled 

and untolled, but would lower toll revenue. It would also increase prices for medium-α types that 

switch to using only one period, as they then use a period with relatively many low-α users, and 

these impose higher congestion externalities than high-α users (see also Lindsey (2004a)).   

 However, the α heterogeneity does mean that coarse tolling increase prices for all but the users 

with the highest αi. The equilibrium price is 

  ] ]
1

 [  ( [ / ) 
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s s
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   
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In the Laih model, coarse tolling increases the price for all types by exactly half that of the first-

best toll (where the price equals δ∙N/s for all). The toll revenue is also half of the first-best 

revenue. Hence, the relative efficiency of the coarse toll is ½, and is independent of the degree of α 

heterogeneity. 

5.3. ADL model of coarse tolling 

In the optimum of the ADL model, the tolled period is shorter than the untolled period, as 

having more users in the mass lowers costs (up to a point). Different from the Laih model, the 

ADL model does not have a closed-form solution for a general distribution, but we do know that 

the number of untolled users should be larger than half the total number of users so as to maximise 

the gain from the mass departure. With a uniform distribution, there is a closed-form solution. 

 

Proposition 7: With a uniform distribution, the lowest-α users cannot be in the mass. For them it 

would always be attractive to move to the untolled early period. 

 

Appendix C.3 proves proposition 7. The idea is that users with a low αi gain from the α 

heterogeneity when there is normal queuing (i.e. no mass). In a mass, they lose this advantage, and 

thus using a mass is not interesting. High-α users gain little or nothing from the heterogeneity. For 

other distributions, it seems likely that the proposition would also hold.  

Using a uniform distribution, it can also be shown that users with an intermediate α have most 

to gain from being in the mass. The question is whether the users with the highest values are also 

in the mass. This is an empirical question, where the answer depends on the exact distribution. In 

the numerical example, and indeed for all tried parameterisations with a uniform distribution, the 

highest-α users will not be in the mass; but there may be alternative distributions were they will. 
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Proposition 8: In the equilibrium of the ADL model (under a uniform distribution of α), the 

continuum of types is separated in 4 groups, which are characterised by the periods they travel in:  

- Group 1 with users with the lowest values of time (i.e. *
1i  ) only travel in the untolled early period.  

- The types in Group 2 with *
1 ≤ αi <

*
2  use the early-untolled and the tolled period (both early and 

late). 

- An intermediate mass group with *
2 < αi <

*
3  travels only in the mass, and are the only types who 

arrive after the toll is lifted.  

- Finally, Group 4 with *
3 i   again travels early untolled as well as tolled (in both tolled periods).  

Groups 1 and 4 may be of zero size. 

5.4. Braking model of coarse tolling 

In the Braking model, users start braking at t
b
 and do not pass the tolling point until the toll is 

lifted at t
−
. Since braking raises total cost and the braking time increases with the number of 

untolled users, it is optimal to have a longer tolled period than untolled period. Following 

proposition 6, this means that low-α users only travel tolled, as there is only room for them in the 

tolled period. The highest-α users travel in all periods and arrive at ts, t
+
, t

−
 and te.   

  

Proposition 9. In the braking model, the continuum of types is separated in three groups: 

- Group 1 with the lowest values ( *
1i    ) travels only tolled.  

- Group 2 with intermediate values ( *
1 ≤ αi <

*
2 ) travels tolled and early untolled.  

- Group 3 with the highest values ( *
2 i    ) uses all periods. 

Type *
2  users are the first to brake, the other brakers have higher values.  

 

Proof: See Appendix C.4.  

 

We can again calculate total costs by subtracting toll revenue from the total price. There is no 

closed-form solution for the optimal V even for a uniform distribution, although we do know that 

the optimal V will be below N/2 to limit the costs of braking.  

5.5. Comparison of the coarse-toll regimes under α heterogeneity 

Having established the equilibria of the coarse toll models, we now compare the effects in the 

numerical example. Fig. 3 depicts the prices (left panel) and price changes from the no-toll case 

(right panel) when α ranges between 5 and 11. In Laih model, coarse tolling causes exactly half the 

price increase as first-best (FB) tolling, and does so for any parameterisation. Braking raises prices 

by ensuring that the capacity goes unused during the peak, and harms all types of users in a similar 

way. Still, users with the lowest values of time (i.e. with αi<7.2 or 38% of all users) are better off 

with the Braking model’s coarse toll than with FB pricing, as FB pricing removes the entire price 

advantage they have without tolling due to α heterogeneity. In the ADL model, the mass departure 
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lowers costs, and users with αi>8.57 (about 40%) are better off than without tolling, while the 

others lose but less than in the other coarse-toll models.  

Fig. 3: Equilibrium prices (left) and price changes from the no-toll equilibrium (right) 

                  

Fig. 4 looks at the effects of the range of α (i.e. the degree of heterogeneity), while the other 

parameters are at the levels of Table 1. The range needs to be below 8, otherwise some users 

would have a αi equal to or below β. Consistent with the earlier discussion, a larger range of α 

lowers all average prices except the FB one. NT total cost decreases with the range, as this lowers 

congestion externalities. This also means that the gain of first-best pricing decreases with the range 

of α. The relative efficiency of coarse tolling in the Laih model is always a half. In the other 

models, the relative efficiency decreases with the range, but the effect is small. With Braking, 

coarse tolling always raises the average price, and more so the larger the range of α is. 

Fig. 4: The range of α and the relative efficiencies   

    

6. Coarse tolling under γ heterogeneity 

6.1. The generals of coarse tolling under γ heterogeneity 

Now we turn to heterogeneity in the value of schedule late (γi) with fixed values of time (α) and 

schedule delay early (β). The γ heterogeneity in itself is not important, the implied heterogeneity in 

the ratio γi/β≡ηi is. This ratio ηi determines the choice whether to arrive early or late.   
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As in the NT and FB case, with coarse tolling all users with a ηi below the indifferent ratio *
1  

arrive late, as for them schedule delays late are less costly. In the Laih model, this ratio is the same 

as in the NT and FB cases, in the other two models it is not. The types that arrive before t
*
 travel 

jointly, because γi only affects the price when arriving late. With coarse tolling, there is also a 

second indifferent ratio *
2 , which separates the tolled-late and untolled-late users.  

 

Proposition 10. Users with ηi≡γi/β< *
1  arrive after the preferred arrival time (t

*
), and arrive 

ordered on γi with the lowest value arriving the furthest from t
*
.  

 

Proposition 11. Types with ηi≥
*
1  arrive on or before t

*
 and travel jointly. Their price is 

independent of their value of schedule delay late, and constant over arrival time. 

 

Proofs: See appendix D. 

 

The price for the early-arriving users will be the same in all models given *
1 , although this 

ratio differs between the models. The price equation of these users follows the same eq. (7) as for 

the NT and FB cases, and their price is independent their ηi. The price for late-arriving toll payers 

also follows the same formula as before and concavely increases in ηi: 
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The price formula for the late-arriving no-toll payers differs over the three coarse toll models. 

There is no-closed form solution of *
1  and *

2  for a general distribution of ηi≡γi/β. Appendix D 

derives the conditions that determine the ratios. 

 6.2. Laih model of coarse tolling and γ heterogeneity 

The Laih price for users who arrive after the tolled period follows the same equation as in the NT 

and FB equilibria, and the price concavely increases with ηi: 
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However, the γ heterogeneity does affect the choice of ρ, and thereby the choice of the number of 

tolled users and the indifferent ratios. More γ heterogeneity reduces travel times when arriving 

late, and thus, for a given coarse toll, fewer users want to travel tolled. 
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6.3. ADL model of coarse tolling and γ heterogeneity  

The mass departure ensures that for the indifferent type *
2  the price in the tolled period is the 

same as the expected mass price.
10

 The expected price is linear in ηi: 
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6.4. Braking model of coarse tolling and γ heterogeneity  

In the equilibrium of the braking model, the bottleneck capacity goes unused for a period 

*
2/ (( ) )t       , where * *

2 2 /    is the ratio of the first braker. All users with a γi lower than *
2

also arrive during the late untolled period, and arrive later the lower their γi is. This self-ordering 

lowers the costs due to braking, as the extra schedule delays during the late period are imposed on 

users with a low γi. This then also implies that more γ heterogeneity tends to mean that the coarse 

toll in the braking model fares better compared to in the Laih model. 

For users who arrive after the tolled period, the price equation is the same as in the Laih model. 

But prices will be higher with braking due to the Δt period when capacity is idle.  

6.5. Numerical example 

There are no closed-form solutions for a general distribution of γ, but with the numerical 

example of Table 1 it is possible to gain further insight. Fig. 5 depicts the equilibrium prices (left 

panel) and the price changes from the NT equilibrium (right panel) when γ ranges uniformly 

between 8.8 and 22.2. For users with *
1i  , who arrive early, the price functions are flat. In the 

Laih and Braking models, the price is concavely increasing for late-arriving low-γ users; in the 

ADL model, the price is linear for mass users. As discussed, prices are substantially higher in the 

braking model than in the Laih model. The three coarse toll models also strongly differ in their 

distributional effects. 

With the Laih model’s coarse toll and FB tolling, prices are the same as without tolling, and 

thus there are no distributional effects. With braking, coarse tolling increases the price for all, and 

for a late-arriving user the price increase is higher, the lower her γi is. In the ADL model, the price 

decreases for all, but the distributional effect is non-monotonic: the mass users gain most, and the 

intermediate- γ mass users gain most of all. Similar distributional patterns occur if we increase the 

range of γ or use a different distribution shape.  

                                                 
10 For ADL tolling we assume that i  for all i which limits the degree of heterogeneity more than in the other models where we only need 0.i 

Note that this can be a very strict assumption, that may not hold in empirical studies. If i  for some types, then there will be normal queuing after 

the last mass user arrives. Still different from with homogeneity, the ADL model the need not have the same outcome as the Laih model, as the mass 

affects the prices of mass users, and thus the solution of  1
* . 
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Fig. 5: Generalised prices (left) and percentage changes in generalised price from the NT case (right) 

              

As Fig. 6 shows, the relative efficiency in the ADL model decreases with the range of γ, as a 

larger range lessens the beneficial effect from the mass departure. In the Laih model, there is 

almost no effect on the relative efficiency. In the braking model, the range has hardly an effect on 

the efficiency, and the effect is non-monotonic. As the gain from first-best tolling decreases with 

the range of γ, the welfare gains of coarse tolling in all models decreases with the range. Still, the 

FB gain is always 50% of the NT total cost, as also happens without heterogeneity, but total NT 

cost decrease with the range as the travel time and schedule delay cost decrease.  

Fig. 6: The effect of the range of γ on total cost (left) and the relative efficiency (right) 

     

7. Discussion 

This section discusses some caveats and directions for future research. It seems plausible that in 

reality, the effect of coarse tolling with a single bottleneck would be in between the models 

considered. The Braking model assumes that waiting motorists fully block the road, which is not 

what seem to have been observed in the real world. Nevertheless drivers could intentionally drive 

slower than needed when approaching the toll point, to prevent passing it just before the toll is 

lowered, and thus attain the same result. In reality, it has been observed that cars stop beside the 

road to prevent passing the tolling point before the toll is lowered. Singapore introduced extra 

steps in the toll schedule to prevent such behaviour (see Lindsey et al. (2012) for a review). In the 

Laih model, the drivers who stop beside the road do not impose any congestion on the other 



Coarse tolling with heterogeneous preferences                                    21 

drivers. This seems unlikely, if only because cars waiting on the shoulder, or on one of multiple 

lanes, may often hinder the other drivers. It is thus likely that the truth will be somewhere between 

these extremes. Finally, the ADL model needs a mass departure for equilibrium, for which there is 

little empirical evidence. 

We ignore price-sensitivity of demand, which is a common assumption in the literature on step-

tolling and/or heterogeneous preferences. With first-best tolling and α heterogeneity, Van den 

Berg and Verhoef (2011ab) find that low-α users lose due to FB tolling. But, as these users 

therefore demand less travel, overall congestion decreases and thus high-α users gain. With 

proportional heterogeneity, FB tolling increases the number of users as for most types the price 

decreases. This in turn increases congestion and thereby makes low-β users worse off.  

Price-sensitive demand also affects coarse tolling. With homogeneity, Arnott et al. (1993) show 

that the coarse part of the toll minimises social cost for a given number of users, while a time-

invariant addition to the toll optimises the number of users. Van den Berg (2012) finds that step 

tolling raises the price, but less the more steps the toll has. Therefore, with price-sensitive demand, 

all three of our step-toll models become akin to the Braking model, in that step tolling raises the 

price. With our forms of heterogeneity, the same set-up would probably be optimal, and step 

tolling would tend to increase prices.  

Another interesting extension is heterogeneity in multiple dimensions at the same time. With 

braking, one would expect that coarse tolling raises the price for all but perhaps those with very 

high values and low ratios αi/βi and βi/γi (e.g. high-income users who have flexible schedules). If 

we can prevent braking, coarse tolling may lower the price for most users if the degree of α 

heterogeneity is low enough compared to the other dimensions of heterogeneity. 

If a government would want to introduce coarse tolling, our models would be applicable for a 

road in isolation that (only) has bottleneck congestion. However, in reality, tolling occurs in a 

large road network, for which a point-queue congestion model is problematic. Analytical analysis 

of larger networks with heterogeneous preferences seems difficult. Hence, numerical analysis may 

be more promising. Lindsey (2004b) analyses tolling in a network of concentric ring roads using 

METROPOLIS, which combines bottleneck congestion with uncertainty. He has four types of 

drivers that differ in their values of time and schedule delay; for each type, the preferred arrival 

time is uniformly distributed. Börjesson and Kristoffersson (2012) study—using the mesoscopic 

“Silvester” model—the Stockholm step-toll system with proportional, α and γ heterogeneity. 

Zheng et al. (2012) study coarse tolling using heterogeneous agent-based modeling and a 

“Macroscopic Fundamental Diagram” to model the congestion on the network. Their toll is set to 

keep the density of traffic in the network below the critical density,
11

 and the period of coarse 

tolling is not optimised. Still, as long as congestion due to bottlenecks and/or traffic densities 

                                                 
11 For a higher density one would get hyper-congestion where speeds increase with the flow. The hyper-congested traffic state is also referred to as 

restricted or congested, while the congested state where speeds decrease with flow is also referred to as unrestricted, uncongested or free-flowing.  
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above the critical density form a substantial fraction of overall congestion, then the results of this 

paper may form a useful guide for what equilibria, and welfare and distributional effects, to expect 

in more complex settings. 

8. Conclusion 

This paper derived the equilibria, as well as total costs and toll revenues, under coarse tolling with 

preference heterogeneity. It also examined the distributional effects of such tolls and the effects of 

the degrees of heterogeneity. It used three models of coarse tolling.  

In the Laih model, the (generalised) price with coarse tolling is in between that in the no-toll 

equilibrium and with first-best fully-time-variant tolling. In the other two models, this is not the 

case and the distributional effects may be very different and non-monotonic. In the braking model 

with proportional heterogeneity, the higher a untolled user’s values are, the more harmful coarse 

tolling is, while a tolled user is better off the higher her values are. With the ADL model and γ 

heterogeneity, coarse tolling lowers all prices, but most for mass users and especially for those 

with an intermediate value. Users are always better off in the ADL model than in the Laih model 

as the mass departure lowers costs. Braking makes all users worse off than in the Laih model. 

Braking not only lowers the gain from tolling, but also affects the distributional effects. 

Compared with the Laih model, with braking, coarse tolling is most harmful for users with low 

values {α, β, γ} (under proportional heterogeneity), and for those with a relatively large value of 

schedule delay late: this could, for instance, be low-income users with strict work start times or on 

a trip to the doctor. With α heterogeneity, all types of users are harmed by the braking in a similar 

way. If braking can be prevented, coarse tolling may lower the price for all or most users if the 

degree of α heterogeneity is low enough compared to the other dimensions of heterogeneity and 

demand is fixed. Nevertheless, even with braking, coarse tolling is a potential Pareto 

improvement, as welfare increases and thus the toll revenue could be used to compensate losers. 

Proportional heterogeneity raises the welfare gain from tolling, and coarse tolling tends to fare 

better against the first-best toll the more heterogeneity there is. In the ADL model, the gain is 

higher than in the Laih model, and in the braking model the gain is lower. Both differences 

decrease with the degree of proportional heterogeneity. The gain from (coarse) tolling decreases 

with the degree of α and γ heterogeneity. With α heterogeneity, the Laih model’s coarse toll has 

half the gain of the FB toll; with γ heterogeneity, this “relative efficiency” is very close to a half in 

the numerical model.  
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Appendix A: Coarse tolling under homogeneous preferences 

A.1. Laih model of coarse tolling 

The coarse toll is turned on at t
+ 

and off at t
−
. Just as without tolling, the slope of the travel time 

over t is β/α before t
*
 and −γ/α thereafter. This ensures that the price is constant over t within a 

period (i.e. early and untolled, tolled or untolled and late). The first toll-payer to arrive at t
+
 has a 

zero travel time. The travel time of the last no-toll-payer to arrive before t
*
 is the highest of all and 

equals ρ/α, such that her travel time costs equals the coarse toll. The last toll-payer to arrive at t
−
 

has a zero travel time, while the first no-toll payer to arrive thereafter has the highest travel time. 

Hence, users who arrive after the toll is lifted start queuing during the tolled period, and only pass 

the tolling point, and then the bottleneck, after t
−
. 

Just as in the NT and FB cases, the start and end of the peak are such that the schedule delay 

costs then are the same, and thus these timings are the same as before. The number of no-toll 

payers is V. There are N−V toll-payers. The start and end times of the tolled period are found by 

equating the schedule delay costs then and by using N−V=s(t
−
− t

+
): 

[ ] ,
1

1
[ ] ;

1

N V
t V

s

N V
t V

s
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


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
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






 (19) 

Since the difference between schedule delay costs at ts and t
+ 

is β(t
+
−ts), while prices must be the 

same, the toll must equal this difference: 

[ ] .
1

V
V

s


 





 (20) 

 Because ts and te are the same as without tolling, the price still equals δ∙N/s, but travel cost is ρ 

lower during the tolled period. Total cost equals total price (i.e. price times N) minus the toll 

revenue of ρ(N−V)=ρ∙s(t
−
−t

+
): 

  2[ ] [ ] .
1

TC V TP TR V N V N V
s

 


    


 (21) 

Minimising (21) gives an optimal V that is equal to half the total number of users: / 2.V N  

Inserting this V into (21) and some algebra shows that total cost is a quarter lower than in the NT 

case, and thus the relative efficiency is 1/2. 

A.2. ADL coarse tolling under homogeneous preferences 

Now, there is a mass departure at t
−
. After the last mass user arrives, the peak ends and there is 

no more travel. The peak is shifted to later: otherwise, the expected price in the mass would be 
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below that in the other periods.
12

 There are V no-toll payers, and M of these use the mass. The 

expected price for a mass user equals the schedule delay cost at t− plus the travel time and 

schedule delay costs due to the expected time, M/(2∙s), it takes to pass the bottleneck. In user 

equilibrium, the M is such that the untolled early price equals the expected price in the mass. 

The timings of the tolled period still follow (19), but the formulas for ts and te are different. By 

equating the prices of the three periods and using N/s=te−ts, we get: 
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 (23) 

This makes total cost: 

 2 2
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Minimising total costs gives:  
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The gain of coarse tolling is now higher than in the Laih model, and the relative efficiency equals: 

1 1
1

2 (1 )( ) 2
ADL

 


  

 
   

  

. (26) 

A.3. Braking model of coarse tolling under homogeneous preferences 

The braking starts at t
b
, and the first braker waits a time Δt until the toll is lifted at t

−
. The peak 

now lasts N/s+Δt. As prices must be the same during all used arrival times, Δt will be such that the 

extra travel costs of the first braker equals the toll paid by the last toll-payer: Δt=ρ/(α+γ). The 

prices at ts and t
+
 must be equal, and thus ρ follows the same formula as earlier. The schedule 

delay costs at ts and te again have to be equal, and those at t
+
 and t

b 
must also be equal; this gives: 
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 (27) 

Combining al this gives a total cost of: 

                                                 
12 If α>γ there is normal queuing after the mass, and  the ADL and Laih models have the same total costs and optimal V (Lindsey et al., 2012) 
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Minimising total cost results in:  

+ ( + )

+ ( + ) 2 2

N N
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Together (28) and (29) imply that the relative efficiency is:  

1 1
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2 (1 )( ) 2
Braking




  

 
   

  
. (30) 

Appendix B: Coarse tolling under proportional heterogeneity 

B.1: All three models of coarse tolling 

Proof of proposition 1. The tolled period allows users to have a lower travel time and/or schedule 

delay, but for this, they have to pay the toll. Naturally, users with higher values are more willing to 

pay for this, and thus self-select to the tolled period. The type β
* 

is indifferent between travelling 

tolled or untolled and faces a price of β
*
∙(−ts) when travelling untolled and β

*
∙(−t

+
)+ρ when 

travelling tolled. All types with higher values strictly prefer the tolled period as −ts>−t
+
, and their 

βi is above β
*
. 

 

Proof of proposition 2. The reason for proposition 2 is the same as for the ordering without 

tolling. In equilibrium, the travel time function has a slope of βi/αi≡1/μ before t
* 

and −γi/αi ≡η/μ 

thereafter. These ratios are by assumption the same for all, and thus, within a period, the price for a 

type is constant and types travel jointly. For instance, a user arriving at ts has a travel time of zero 

and a schedule delay cost of –βi∙ts , the same user arriving x later (but before t
+
) has a travel time 

cost of αi∙μ∙x =βi∙x and while the schedule delay cost decreases by the same βi∙x. Hence, this set-up 

ensures that the price is constant within a period.  

B.2. ADL model 

For β
*
 users, the price in the untolled early period, the expected price in the mass and the tolled 

price need to be equal. This implies * *( ) ( ) ( ) / 2 .s et t t t t                The arrival period 

of the mass lasts 
et t =M/s, and the untolled early period 

st t  =(V−M)/s. Using this, we get: 
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The sum of the price over all users, or total price (TP), follows: 
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Using all this and a toll revenue of TR=ρ(N−V), we get the total cost eq. (13) in text.  

The first order condition for minimising total cost is:
13
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For a general distribution of β, there is no closed-form solution, as [ ]L V and *[ ]V  have no 

closed-form solution. Still, for a uniform distribution, with a mean of E[β] and range of d: 
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which is a simplification of eq. (68) in Xiao et al. (2011).  

B.3. Laih model 

The f.o.c. for total cost minimisation is: 
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which is a simpler than in the ADL model, but still does not have a closed-form solution. Yet, with 

a uniform distribution, it does, and again V is larger than with homogeneity:  
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  (36) 

Inserting this V into (34) and some algebra results in the relative efficiency (12) in text. 

B.4. Braking model 

The t  is determined by that for the β
*
 type the prices when arriving as the last tolled user and 

as the first untolled-late users must be the same, and thus ∆t(α
*
+γ

*
)≡∆t∙(μ+η)∙β

*
 should equal ρ. 

The timing t
s
 and t

e
 as well as t

+
 and t

−
 follow the same equations as homogeneity, although the 

equation for t  differs. Finally, the toll can be determined from the condition ρ=β
*∙

(t
+
−t

s
): 
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The condition for minimising total costs in (14) is: 
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Again, there is no closed-form solution for a general distribution. But for a uniform distribution: 
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Appendix C: Coarse tolling and α heterogeneity 

C.1. Generals of coarse tolling under α heterogeneity 

The price for period without a mass departure follows the same pattern as in the NT 

equilibrium. For the tolled period, the price is: 
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where T
jn is the density of users in tolled period T with αj. The sum of the densities of type j users 

travelling in the three periods equals the total density: T
jn + UE

jn + UL
jn = [ ]j j jn f N  . If a types 

uses the tolled period, a fraction η/(1+η) uses arrives early and tolled, the remainder late and 

tolled. The prices in the untolled periods without a mass departure are: 

 ( / ) ,
i

j
i

j j
UE UE UE
i j i jP t n d n d

s










      

     
 
   (40)

   ( / ) .
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j
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j j
UL UL UL
i j i jP t n d n d

s










      

    
 
                                                  (41) 

With a mass departure, the price follows:  

 ( ) ( )
2 2

mass
i i i

M M
P t t

s s
              

 
. (42) 

Proof of proposition 3: The mass-departure price is linear in αi, while in the other periods it is 

strictly concave. Hence, if, in contradiction of proposition 3, a group of types (e.g. all types with a 

αi between 4 and 8) used the mass and another period, the prices in those periods could not be the 

same for all of them. This proves that this contradiction is not in equilibrium.  
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Proof of proposition 4: Given (39)-(41), if the types j with αi<αj that use these multiple periods 

were not spilt in fixed proportions over them, then i’s prices could not be the same in all these 

periods, as i’s price in period k depends on the weighed mean of 1/αj over all types with αi<αj : 

( / ) 
i

k
j jjn d




  . Hence, if types were not split in fixed proportions then generalised prices are not 

the same for all types in all periods they use, which violates user equilibrium.  

 

Note that the ( / ) 
i

k
j jjn d




   effect is multiplied by δ in the tolled period, β in the untolled early 

period and γ in the untolled late period, and thus users need not be shared equally over periods. It 

is allowable that some types with αk>αi do not use these periods at all, as then they do not directly 

affect the periods’ prices.  

 

Proof of proposition 5: Again, we prove this by contradiction. Suppose that high-α users only 

drove tolled and faced the price in (39), and low-α users only drove in the untolled early period 

and had a price following (41). (However, an argument along the same line holds for any violation 

of proposition 5). Then, there would be an indifferent type with *
1  whose prices in these periods 

would be equal. In the untolled period, *
1  users would only face a schedule delay cost, as they 

would have the highest αi of all untolled types; in the tolled period, they would only face the toll 

and travel time costs and would have the lowest price of all tolled users. If a user with αi>
*
1  

would then move to the untolled early period, she would face the same zero travel time as a *
1  

user and thus the same price. Hence, this lowers the price of the user that moved, and proves that 

the violating set-up is not an equilibrium.  

 

The timings of the peak still follow the same conditions as with homogeneity and proportional 

heterogeneity. If, of the V no-toll payers, VL arrive late after t
*
, these timings follow 

,
1

;
1

L
s

L
e

V VN V
t

s s

VN V
t

s s










  




 



 (43) 

where VL is unknown up-front in the ADL model, but can be calculated in the other models. As 

with homogeneity, the toll is determined by equalising prices at ts and t
+
: 

.LV V

s
 


  (44) 
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C.2. Laih model under α heterogeneity 

Here, VL (the number of users who arrive untolled and late) equals V/(1+η) (as otherwise the 

prices of the early and late untolled periods would differ), and the coarse toll is the same as with 

homogeneity. The prices are found by filling in (39)-(41). 

C.3. ADL model under α heterogeneity 

Proof of proposition 7: If in contradiction of proposition 7 the lowest-α users where in the mass, 

their price from (42) would simplify to: 

 
1

= +
2 1

ass iM
M N V

s s
P   



 
 

 
 


. (45) 

Moving to the untolled early period and arrive at t
+
, gives an out-of-equilibrium price of: 

 

   

*
2

- - * ** * *
2 12 2 1

1
.

1

i
out of equilibrium i

N V
V M

N VN V
P Ln Ln

s s s


   

  
     


 

    
      

        
 (46) 

Here, *
1  indicates the type that in the candidate equilibrium is indifferent between using the mass 

and the early-untolled period. The *
2 -type is the type that is first to use both the tolled and the 

untolled early period, and these indifferent values follow  < *
1 ≤ *

2 < . Eq. (46) is found by 

replacing in the limits of the integrals of (40) the αi’s with *
1  (as this gives the schedule delay and 

travel time for a moving user) and simplifying using the uniform distribution.  

It is attractive for a type i mass user to move out of equilibrium if: 

   
*

* 2
1* *

2 1

2 1 2 ( 2 0Ln Ln


        
 

    
             
        

. (47) 

Using that, in the contradicting equilibrium, for the indifferent *
1  users the prices in the untolled 

early and mass periods should be the same, we get: 

 
      * * * * * * *

2 1 1 1 1 1 1*
1

1
2 2 2 4

2
iLn Ln Ln Ln              

  
                 
     

. (48) 

Inserting this condition into (47) gives that violating the candidate equilibrium is attractive for a 

mass user if: *
1i  . Hence, for all types who strictly use the mass in the candidate equilibrium (i.e. 

with *
1i  ) it is attractive to move out of the mass and thus destroy the candidate. This completes 

the proof  

The equilibrium price in the mass (for users with * *
2 3i    ) is:  
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 ( ) ( ) .
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M
i i i

M N V M
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s s s
      

      
 

 (49) 

We attain the prices for the other groups in proposition 8 by filling in (40) for the early-untolled 

period: 
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1 3

* *
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 (50) 

Just as in the Laih model, having a group that only uses the untolled period only raises total 

cost. Hence, in the numerical optimisation, the optimal size of Group 1 is zero. Nevertheless, 

Group 4 does have a positive size in the numerical example and the types in this group use the 

tolled and untolled early period and have higher values of time than the mass users. 

Define N
H
 as the number of users with *

3 .i  We then have 3 unknowns: V, M, and N
H
. We 

can calculate the indifferent values using the conditions *
3[ ] ,HF N N N   

* *
3 2( [ ] [ ])F F N M   

and *
1[ ] ( ) /(1 )F N V M N V         , but only if we define the distribution form. However, 

even then, there is not closed-form solution for the optimal V, M, and N
H
.  

C.4. Braking model under α heterogeneity 

Proof of proposition 9. That the types with the highest values use all periods follows from 

proposition 5. That the lowest-values types only travel tolled follows from proposition 6 and that 

in optimum the untolled early period is shorter than the tolled early period.  

The type that is first to brake at t
b
, also travels during the early-untolled period; we will call its 

arrival time in the early-untolled period t
w
. Travel time during any period k ={T,UE,UL} for type i 

is (with k
jn  being the density of type j in period k) 

*

*

              if ,

          if .
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








  (51) 

Following proposition 4, for types that travel untolled early and late, it must be the case that 

UE UL
j jn n  . Combining this with (51) implies that that the travel times at t

w
 and t

−
 are the same. 

Hence, for the prices at t
w
 and t

−
 to be equal, their schedule delays must be the same, and thus 



Coarse tolling with heterogeneous preferences                                    31 

t
w
=−η∙t

−
. The prices at t

+
 and t

b
 must also be identical, and this implies t

+
=−η∙t

b
. Using all this, we 

get t
w
=t

+
−Δt/η. Consequently, t

w
 is before the end of the untolled period: t

w
< t

+
<0. Accordingly, 

there are intermediate types that use the early-untolled period, but not the late-untolled period.  

 

We find the prices by filling in the general equation (39) for the tolled period, as all types use 

this period. Types that only travel tolled are indicated by superscript 1 and have a price: 
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For the intermediate 2 group, the price is: 
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and for the highest values it is:  
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Appendix D: Coarse tolling and γ heterogeneity 

D.1. All 3 models of coarse tolling  

Proof of proposition 10. The reason for this self-ordering is the same as without tolling. The 

lowest γ users arrive after t
*
, as for them doing so is least costly. They also arrive on order of 

decreasing γ with the lowest-γ type arriving at the end of the peak, again because arriving later, 

and thus incurring a larger schedule delay late, is less costly the lower the γ.  

 

Proof of proposition 11. For high-γ users arriving after t
*
 is more costly than for low-γ users, they 

therefore select to the early period before t
*
. For a high-γ user to be willing to arrive at some t after 

t
*
, the travel time at this t would need to be much lower than it is in equilibrium.  

 

 With γ heterogeneity, it easiest to minimize total cost to the level of the coarse toll, ρ, and thus 

now V is implied by ρ. Proposition 10 means that prices at ts and t
+
 should be equal. As travel 

times are zero at these arrival moments, this means: 

 *
11s

Nt F
s

   
 

, (55) 

 *
1/ 1 /s

Nt t F
s

           
 

. (56) 

The solution to *
2  follows the same condition in all three models: 
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 . (57) 

The type *
2  users are the last to arrive during the tolled period at t

−
. Formula (57) is found by 

equating the price for type *
2  following (16) with the sum of the toll and schedule delay cost at t

−
, 

which is ρ+  * * *
2 1 2

NF F
s

      
   

.  

D.2. The Laih model under γ heterogeneity 

In the Laih model, 1
*  can be found by equating, for the users with the lowest ηi=γi/β (i.e.  ), the 

price in (17) with their schedule delay costs for arrival on 1
* /et F N s  

 
: 

 
*
1*

11 [ ] [ ] .j j jF f d



       (58) 

This condition is the same as in the NT and FB equilibria and, accordingly, the *
1  is the same and 

the timings of the peak also remain the same as before. This in turn implies that coarse tolling 

leaves prices unchanged in the Laih model. Using constraints (57) and (58) to determine the 

indifferent ratios, one can then optimise the system by minimising total cost to ρ. 

D.3. The ADL model under γ heterogeneity 

Different from in the Laih model, the *
1  is now derived using that type *

2  should be indifferent 

between the tolled period and using the mass:  
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  



  
  

 (59) 

D.4. The Braking model under γ heterogeneity 

To find the indifferent ratios we use that for type   the price should equal the schedule delay 

cost when arriving at *
1 /et F N s  

 
 : 

   
*
1*

11 [ ] [ ] .j j j
s

t F f d
N




           (60) 

This is the same condition as in the Laih model but for the addition of the cost from braking. 
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