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Abstract

Generalized characteristic functions extend characteristic functions of ‘classical’ TU-games

by assigning a real number to every ordered coalition being a permutation of any subset of

the player set. Such generalized characteristic functions can be applied when the earnings or

costs of cooperation among a set of players depends on the order in which the players enter a

coalition.

In the literature, the two main solutions for generalized characteristic functions are the

one of Nowak and Radzik (1994), shortly called NR-value, and the one introduced by Sánchez

and Bergantiños (1997), shortly called SB-value. In this paper, we introduce the axiom of

order monotonicity with respect to the order of the players in a unanimity coalition, requiring

that players who enter earlier should get not more in the corresponding (ordered) unanimity

game than players who enter later. We propose several classes of order monotonic solutions

for generalized characteristic functions that contain the NR-value and SB-value as special

(extreme) cases. We also provide axiomatizations of these classes.
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1 Introduction

Generalized characteristic functions on a player set N , introduced by Nowak and Radzik (1994),

extend characteristic functions of ‘classical’ TU-games by assigning a real number to every ordered

coalition of N . Here an ordered coalition of N is a permutation of any subset of N . Classical

characteristic functions form the special class where the real number or worth assigned to any

ordered coalition only depends on the players that are part of this ordered coalition, i.e. it does

not matter in which order the players enter the coalition. Generalized characteristic functions

can be used in situations where the worth (or cost) that can be generated by a set of players

depends on the order in which the players enter.

Consider, for example, the airport games of Littlechild and Owen (1973) to allocate the

building and maintenance costs of airport landing strips, see also Littlechild and Thompson

(1977). An airport cost situation consists of a set of airplanes (being the players in the game) and

for each airplane a nonnegative cost of the airline strip that is necessary for this airplane to land.

Since the airplanes are different they need landing strips of different length. In the associated

airport game, the worth of a coalition (being a subset of the set of airplanes N) is the cost of

the airline strip needed for the largest airplane in this coalition (assuming that larger airplanes

need longer and more expensive landing strips).1 But this means that building a landing strip of

a certain size does not depend on the order in which the airplanes enter the coalition. The worth

(cost) of a coalition is always fully determined by the cost for the largest airplane in the coalition.

However, in real life construction industry it is usually more expensive to build a project in several

steps than to build it fully at once. For example, when one wants to extend an existing landing

strip then all the machinery has to be brought back to the airport, everything needs to be setup

again, maybe some reconstruction or preparation needs to be done before being able to extend

the existing landing strip. Then it would have been less costly to have built the longer landing

strip at once. Therefore, instead of modelling an airport cost problem on n airplanes by an n-

dimensional cost vector, it seems more realistic to model it by an n× n dimensional cost matrix,

which ijth component cij , i ∈ {1, . . . , n}, j ∈ {2, . . . , n}, is the cost of building (extending) an

airline strip suitable for airplane i when the landing strip is built already for airplane j − 1 (and

smaller airplanes), and the first column gives the cost for building the airline strip for i when

there is nothing built yet. So, we might consider the first column as a standard airport cost

problem.

Example 1.1 Suppose that there are three airplanes N = {1, 2, 3}, where the costs of building

an airline strip for airplane i ∈ N is c = (ci)i∈N = (1, 3, 4). However, it can be that extending

the airline strip for airplane 1 to one for airplane 2 costs 3 additional to the cost made to build

the already existing airline strip. If, further extending the airline strip for airplane 1 to one for

airplane 3 costs 3, and extending the airline strip for airplane 2 to one for airplane 3 costs 2, this

1Instead of airplanes, in an airport game every airplane landing is a player but for convenience we simply call

these airplanes.
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can be represented by cost matrix

c =

 1 0 0

3 3 0

4 3 2


2

Such an airport cost problem, where the cost of the landing strip depends on the order

in which airplanes announce that they want to use the landing strip, cannot be modelled by

a classical TU-game. Although the entrance of an airplane that is not larger than the largest

airplane in the coalition does not change the worth, when an airplane larger than the largest

airplane in the coalition enters, then the additional cost depends on which is the largest airplane

in the already existing coalition. Such generalized airport cost problems can be modeled by a

generalized characteristic function where the worth of an ordered coalition of airplanes is the cost

of the landing strip if it would be built sequentially, in each step being large enough to allow the

corresponding airplane to land.

In the literature, the two main solutions for generalized characteristic functions are the

one of Nowak and Radzik (1994), which we will call the NR-value, and the one introduced by

Sánchez and Bergantiños (1997), which we refer to as the SB-value. Both solutions extend the

Shapley value of classical TU-games in the sense that for a generalized characteristic function

that represents a classical characteristic function they yield the Shapley value of that classical

game.

Nowak and Radzik (1994) characterize their solution by efficiency, linearity and some null

player property, where the last property states that players who always contribute zero when they

enter an ordered coalition as last player, should get a zero payoff. Sánchez and Bergantiños (1997)

criticize this null player property by arguing that in this definition a player is a null player even

when it contributes to an ordered coalition in the sense that without participation of this player

the coalition loses its worth. Instead of only considering the contributions to ordered coalitions

when a player enters as last, Sánchez and Bergantiños (1997) consider the effect on the worth of

a coalition of a player leaving in any position in the ordered coalition. If for any position in any

ordered coalition this loss is zero, then Sánchez and Bergantiños (1997) call this a null player,

and in their corresponding null player property such a player should get a zero payoff. Since this

null player property is weaker than that of Nowak and Radzik (1994), Sánchez and Bergantiños

(1997) added a symmetry axiom, requiring that players who are symmetric earn the same payoff,

where two players are called symmetric if for every ordered coalition not containing both of them

they add the same contribution when entering at the same position. They characterized their

solution by efficiency, linearity, their (weak) null player property and symmetry.

Although we agree with the critique of Sánchez and Bergantiños (1997) on the null player

property of Nowak and Radzik (1994), we further criticize their symmetry property. The definition

of a symmetric player allows that two players i and j are symmetric, when for every permutation
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of any coalition not containing these two players, the marginal contribution of these players to

any position in that permutation is the same, but for any permutation of any coalition containing

these two players, exchanging their position yields a different worth.

Therefore, we introduce the axiom of order monotonicity with respect to the order of

the players in a unanimity coalition, requiring that players who enter earlier should get not

more in the corresponding unanimity game than players who enter later. This is weaker than

symmetry since in a unanimity game all players in the unanimity coalition are symmetric and

therefore earn the same payoff if symmetry is satisfied. Together with efficiency, linearity, the null

player property (of Sánchez and Bergantiños (1997)), anonymity and nonnegativity, this order

monotonicity characterizes a class of solutions, that is defined using games with a permission

structure as introduced in Gilles, Owen and van den Brink (1992), Gilles and Owen (1999), van

den Brink and Gilles (1996) and van den Brink (1997), containing the NR-value and SB-value as

extreme cases.

After introducing and characterizing this class, we give special attention to two subclasses

of these solutions, both containing the solutions of Nowak and Radzik (1994) and Sánchez and

Bergantiños (1997) as extreme cases. To motivate the first class note that, under efficiency,

the symmetry axiom of Sánchez and Bergantiños (1997) is incompatible with the null player

property of Nowak and Radzik (1997) since according to the last axiom, in the unanimity game

on an ordered coalition all players except the last one in this (ordered) coalition should get zero,

implying that the last player in the ordered unanimity coalition should get all the worth under

efficiency, while according to the symmetry axiom all players in the coalition should get the same.

We define compatible pairs of null player and symmetry axioms that, together with efficieny and

linearity, characterize a solution.

The second class is the so-called family of geometric solutions that are used in del Pozo,

Manuel, González-Arangüena and Owen (2011), to define centrality measures for directed net-

works. We characterize this class by extending and modifying the enemy players property and

null contributions for indifferent players, used by Manuel, González-Arangüena and van den Brink

(2013) to axiomatize the Shapley value for classical TU-games.

The paper is organized as follows. Section 2 contains preliminaries on games in generalized

characteristic function and games with a permission structure. In Section 3 we discuss order

monotonicity of solutions for games in generalized characteristic functions. In Sections 4 and 5

we discuss the two special classes of order monotonic solutions mentioned above.

2 Preliminaries

2.1 Games and Generalized Games

A situation in which a finite set of players N ⊂ IN can generate certain payoffs by cooperation can

be described by a cooperative game in characteristic function form (also known as cooperative

game with transferable utility or simply TU-game) being a pair (N, v̂) where the characteristic
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function v̂ : 2N → IR is a real function defined on 2N (the set of all subsets of N), that satisfies

v̂(∅) = 0. For each coalition S ∈ 2N , the worth v̂(S) represents the (transferable) utility that

players in S can obtain if they decide to cooperate. When there is no ambiguity with respect

to the players set N , we will identify the game (N, v̂) with its characteristic function v̂. In the

sequel we will denote the cardinality of coalitions S, T,R ∈ 2N by lower case s, t, r. We will

denote by GN the set of all characteristic functions with player set N . It is well-known that

GN is a 2n − 1 dimensional vector space, n = |N |, with the unanimity games {ûS}∅6=S⊂N as

basis. For every S ⊆ N , S 6= ∅, the unanimity game ûS is defined by ûS(T ) = 1 if S ⊆ T , and

ûS(T ) = 0, otherwise. For a given v̂ ∈ GN , the unanimity coefficients (i.e. the coordinates of v̂

in the unanimity basis) {∆v̂(T )}∅6=T⊂N are given by (see Harsanyi (1959))

∆v̂(T ) =
∑
R⊆T

(−1)t−rv̂(R), ∅ 6= T ⊆ N. (2.1)

A solution or value for TU-games is a function which assigns a payoff vector x ∈ IRN to

every TU-game in GN . One of the most famous solutions is the Shapley value (Shapley, 1953),

ϕSh, which is given by:

ϕShi (N, v̂) =
∑

S⊆N\{i}

(n− s− 1)!s!

n!
(v̂(S ∪ {i})− v̂(S)), for all i ∈ N.

Nowak and Radzik (1994) introduced the concept of game in generalized characteristic

function form where the order in which a coalition is formed influences the worth that can be

generated. For each S ∈ 2N \ {∅}, let Π(S) denote the set of all permutations or ordered

coalitions of the players in S and, for notational convenience, Π(∅) = {∅}. We denote Ω(N) =

{T ∈ Π(S) | S ⊆ N} as the set of all ordered coalitions with players in N . A game in generalized

characteristic function form is a pair (N, v), N being the player set and v : Ω(N) → IR a real

function (the generalized characteristic function), defined on Ω(N) and satisfying v(∅) = 0.

For each S ⊆ N , and for every ordered coalition T ∈ Π(S), v(T ) represents the economic

possibilities of the players in S if the coalition is formed following the order given by T .

Example 2.1 Consider the generalized airport cost problem of Example 1.1. The corresponding

generalized characteristic function is v(1) = 1, v(2) = v(21) = 3, v(3) = v(31) = v(32) =

v(312) = v(321) = 4, v(12) = 1 + 3 = 4, v(13) = v(132) = 1 + 3 = 4, v(23) = v(213) = v(231) =

3 + 2 = 5 and v(123) = 6. 2

We denote by GN the set of all generalized characteristic functions with player set N , and

G = {(N, v) | N ⊂ IN, v ∈ GN}. As in the case of games in GN , we will sometimes identify the

game with its characteristic function.

Given an ordered coalition T ∈ Ω(N), there exists S ⊆ N such that T ∈ Π(S). We will

denote by H(T ) = S the set of players in the ordered coalition T , and t = |H(T )|. Each ordered

coalition T = (i1, . . . , it) ∈ Ω(N) establishes a strict linear order ≺T in H(T ), defined as follows:
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for all i, j ∈ H(T ), i ≺T j (i precedes j in T ) if and only if there exist k, l ∈ {1, . . . , t}, k < l,

such that i = ik, j = il.

Given two ordered coalitions T,R ∈ Ω(N), we denote T ⊆̃R if and only if:

a) H(T ) ⊆ H(R), and

b) ∀ i, j ∈ H(T ), i ≺T j implies i ≺R j.
It is known that GN is a vector space with dimension |Ω(N)| − 1 where the generalized

unanimity games {wT }∅6=T∈Ω(N) form a basis of GN . For every T ∈ Ω(N), the generalized

unanimity game wT is defined by wT (R) = 1 if T ⊂̃R, and wT (R) = 0 otherwise.

For a given v ∈ GN , Sánchez and Bergantiños (1997) proved that the generalized unanimity

coefficients (i.e. the coordinates of v in the generalized unanimity basis) {∆∗v(T )}∅6=T∈Ω(N) are

given by

∆∗v(T ) =
∑
R⊂̃T

(−1)t−rv(R), T ∈ Ω(N) \ {∅}. (2.2)

Observe that there exists an isomorphism between the vector space GN and the subspace

of GN consisting of all games for which v(T ) = v(R) if H(T ) = H(R) holds, i.e. the order in

which the coalitions are formed is irrelevant. For v ∈ GN and S ⊂ N we define the subgame

(S, v|S) by v|S(T ) = v(T ) for all T ∈ Ω(S).

For ordered coalition T ∈ Ω(N) let j(T ) ∈ {1, . . . , t} be the position of player j ∈ H(T )

in T . So, for T = (i1, i2, . . . , it) we have ik(T ) = k for all k ∈ {1, . . . , t}. For player i ∈ N \H(T ),

let (T, il), l ∈ {1, . . . , t + 1}, be the ordered coalition that is obtained from T by putting i

on the lth position and moving all players on position l or higher one position backwards. So,

i(T, il) = l, j(T, il) = j(T ) for all j ∈ H(T ) with j(T ) ∈ {1, . . . , l − 1}, and j(T, il) = j(T ) + 1

for all j ∈ H(T ) with j(T ) ∈ {l, . . . , t}.
A solution for generalized characteristic functions is a function defined on G that assigns

to every (N, v) ∈ G a vector in IRN . In their seminal paper, Nowak and Radzik (1994) define

and characterize a solution for generalized characteristic functions. This solution, which we will

refer to as the Nowak-Radzik value, or shortly NR-value, is the solution ψNR assigning to every

generalized characteristic function (N, v) the payoffs

ψNRi (N, v) =
∑

T∈Ω(N\{i})

(n− t− 1)!

n!
(v(T, it+1)− v(T )), for all i ∈ N.

An alternative expression for this solution (based on the generalized unanimity coefficients of v)

is:

ψNRi (N, v) =
∑

T∈Ω(N)

i(T )=t

∆∗v(T )

t!
, for all i ∈ N.

Later, Sánchez and Bergantiños (1997) define and study another solution for generalized

characteristic functions, which we call the Sánchez-Bergantiños value or shortly SB-value. This
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solution assigns to every generalized characteristic function the payoffs ψSB(N, v) given by

ψSBi (N, v) =
∑

T∈Ω(N\{i})

(n− t− 1)!

n!(t+ 1)

t+1∑
l=1

(v(T, il)− v(T )), for all i ∈ N.

An alternative expression (based on the generalized unanimity coefficients of v) is:

ψSBi (N, v) =
∑

T∈Ω(N)

i∈H(T )

1

t!t
∆∗v(T ) for all i ∈ N.

Nowak and Radzik (1994) axiomatize their value by the following three axioms. First,

efficiency states that the sum of the payoffs allocated over the players should be equal to the

average worth of the ‘grand coalition’ N when every order or permutation in which N is formed

is equally likely.

Axiom 2.2 (Efficiency) For every (N, v) ∈ G, it holds that
∑

i∈N ψi(N, v) = 1
n!

∑
T∈Π(N) v(T ).

Second, linearity is standard.

Axiom 2.3 (Linearity) For every (N, v), (N,w) ∈ G and a, b ∈ IR it holds that ψ(N, av+bw) =

aψ(N, v) + bψ(N,w), where (N, av + bw) ∈ G is given by (av + bw)(T ) = a · v(T ) + b · w(T ) for

all T ∈ Ω(N).

Third, a player is a NR-null player in generalized characteristic function (N, v) ∈ G if it

always adds zero to any ordered coalition when it enters last in the coalition2, i.e. if v(T, it+1) =

v(T ) for all T ∈ Ω(N \ {i}).

Axiom 2.4 (NR-null player property) If i ∈ N is a NR-null player in (N, v) ∈ G then

ψi(N, v) = 0.

Nowak and Radzik (1994) show that their value is the unique solution satisfying these

three axioms.

Theorem 2.5 [Nowak and Radzik (1994), Theorem 1] A solution ψ satisfies efficiency, linearity

and the NR-null player property if and only if ψ = ψNR.

Sánchez and Bergantiños (1997) criticize the NR-null player property by arguing that a

player is a null player even when it contributes to an ordered coalition in the sense that without

participation of this player the coalition loses its worth. Instead of only considering the contri-

butions to a coalition when a player enters as last one, Sánchez and Bergantiños (1997) consider

the effect on the worth of a coalition of a player leaving in any position in the ordered coalition.

2Nowak and Radzik (1994) call such a player simply a null player, but since we will later use the null player

notion of Sánchez and Bergantiños (1997), we call this a NR-null player.

7



If for any position in any ordered coalition this loss is zero, then Sánchez and Bergantiños (1997)

call this a null player. Since we will use this weaker notion of a null player, we say the player i

in N is a null player in (N, v) ∈ G if v(T, il) = v(T ) for all T ∈ Ω(N \ {i}) and l ∈ {1, . . . , t+ 1}.
The null player property then states that such a player earns a zero payoff.

Axiom 2.6 (Null player property) If i ∈ N is a null player in (N, v) ∈ G then ψi(N, v) = 0.

Since this null player property is weaker than the NR-null player property, Sánchez and

Bergantiños (1997) added a symmetry axiom, requiring that symmetric players earn the same

payoff. Players i, j ∈ N are symmetric in (N, v) ∈ G if v(T, il) = v(T, jl) for all T ∈ Ω(N \ {i, j})
and l ∈ {1, . . . , t+ 1}.

Axiom 2.7 (Symmetry) If i, j ∈ N are symmetric players in (N, v) ∈ G then ψi(N, v) =

ψj(N, v).

Theorem 2.8 [Sánchez and Bergantiños (1997), Theorem 1] A solution ψ satisfies efficiency,

linearity, the null player property and symmetry if and only if ψ = ψSB.

In Section 3 we will further criticize the symmetry axiom.

2.2 Games with a permission structure

In a (cooperative) game with a permission structure, see Gilles, Owen and van den Brink (1992),

van den Brink and Gilles (1996), Gilles and Owen (1999) and van den Brink (1997), it is assumed

that players who participate in a cooperative TU-game (in characteristic function) are part of

a hierarchical organization in which there are players that need permission or approval from

certain other players before they are allowed to cooperate. For a finite set of players N such a

hierarchical organization is represented by a directed graph (N,D) with D ⊆ N × N , referred

to as a permission structure on N . The directed links (i, j) ∈ D are called arcs. The players in

FD(i) := {j ∈ N | (i, j) ∈ D} are called the followers or successors of player i, while the players

in PD(i) := {j ∈ N | (j, i) ∈ D} are called the predecessors of i in D.

In the conjunctive approach as developed in Gilles, Owen and van den Brink (1992) and

van den Brink and Gilles (1996), it is assumed that each player needs permission from all its

predecessors before it is allowed to cooperate. This implies that a coalition S ⊆ N is feasible

if and only if for every player in the coalition it holds that all its predecessors belong to the

coalition. The set of feasible coalitions in this approach thus is given by

Φc
D := {S ⊆ N | PD(i) ⊂ S for all i ∈ S} .

A triple (N, v̂,D) with v̂ : 2N → IR such that v(∅) = 0, and (N,D) a digraph is called a game with

a permission structure. An approach using restricted games similar to the approach of Myerson

(1977) for communication graph games assigns to every coalition in a game with a permission
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structure the worth of its largest feasible subset.3 Given a game with a permission structure

(N, v̂,D), the conjunctive restriction of v̂ on D is the characteristic function rcN,v̂,D : 2N → IR

given by rcN,v̂,D(S) = v̂(σcN,D(S)) for all S ⊆ N , where σcN,D(S) = ∪{T ∈ Φc
N,D | T ⊆ S} is

the largest conjunctive feasible subset of S refered to as its conjunctive sovereign part . The

conjunctive permission value ϕ is the solution that assigns to every game with a permission

structure the Shapley value of the conjunctive restricted game, i.e. ϕ(N, v̂,D) = ϕSh(N, rcN,v̂,D).

A special class of games with a permission structure are those (N, v̂,D) where v̂ is an

additive game (i.e. v̂(S) =
∑

i∈S v̂({i}) for all S ⊆ N), and (N,D) is a line graph meaning that

there is a permutation π of the players such that D = {(π(i), π(i+1)) | i ∈ {1, . . . , n−1}}. These

games are also known as line-graph peer group games, see Brânzei, Fragnelli and Tijs (2002).4

3 Order monotonic solutions

Although we agree with the critique of Sánchez and Bergantiños (1997) on the null player property

of Nowak and Radzik (1994), we further criticize their symmetry property. The definition of a

symmetric player allows that two players i and j are symmetric, when for every ordered coalition

not containing these two players, the marginal contribution of these players to any position in

that order is the same, but for any ordered coalition containing these two players, exchanging

their position yields a different worth. For example, considering the unanimity game of the order

(1, 2, 3) on N = {1, 2, 3}, according to the definition of Sánchez and Bergantiños (1997) all three

players are symmetric, and therefore the symmetry axiom requires them to get the same payoff.

Note that the null player property of Nowak and Radzik (1994) states that players 1 and 2 are

null players and therefore earn zero, so all payoff goes to player 3.

We consider both allocations to be extreme. We agree with Sánchez and Bergantiños (1997)

that players 1 and 2, although being null players in the sense that their marginal contribution as

last player to any ordered coalition is zero, they are still needed to earn a positive worth. Player

3 on its own earns only zero.5 However, we agree with Nowak and Radzik (1994) that player

3 should be rewarded for being the only player having a positive marginal contribution when

entering, and therefore we propose a class of solutions which to this unanimity game assigns

payoffs such that player 3 earns at least as much as player 2 who earns at least as much as

player 1. We define this class of solutions using cooperative games with a permission structure,

in particular with a line-graph structure.

Given ordered coalition T = (i1, . . . , it) ∈ Ω(N), define the directed line-graph DT =

{(ik, ik−1) | i ∈ {2, . . . , t}} with arcs going in the reverse direction of the order in the coalition. Let

3Every coalition having a unique largest feasible subset follows from the fact that Φc
D is union closed.

4For rooted trees, so also for line-graphs, the conjunctive approach coincides with the disjunctive approach to

games with a permission structure where it is assumed that each player (except the top-players) needs permission

from at least one of its predecessors, see Gilles and Owen (1999) and van den Brink (1997).
5Note the difference with null players in TU-games in characteristic function where all marginal contributions

of a player being zero indeed implies that without this player the other players earn the same whether this player

cooperates with them or not.
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A = {ak}k∈{1,...,n} with ak ∈ IRk be such that its l-th component (ak)l ≥ 0 for all l ∈ {1, . . . , k} and∑k
l=1(ak)l = 1. To any ordered unanimity game wT ∈ GN we assign a coalitional (characteristic

function) game ŵAT ∈ GN given by

ŵAT =
∑

i∈H(T )

(at)i(T )û{i}, (3.3)

where û{i} is the characteristic function of the (unordered) unanimity game on {i}. Then the

corresponding solution ψA on GN is given by

ψA(N, v) =
∑

T∈Ω(N)

∆∗v(T )

t!
ϕ(ŵAT , DT ), (3.4)

with ∆∗v(T ) the dividends for generalized characteristic functions as defined in Sánchez and

Bergantiños (1997), see Section 2. So, this solution assigns to every ordered coalition the permis-

sion value of a corresponding game with permission structure where the permission structure is

a directed line-graph in the reverse order of the coalition, and the game is a convex combination

of the unanimity games of the singletons in the coalition, i.e. a convex combination of additive

games. This solution also can be written as

ψAi (N, v) =
∑

T∈Ω(N)

∆∗v(T )

t!
ϕi(ŵ

A
T , DT )

=
∑

T∈Ω(N)

∆∗v(T )

t!
ϕi

 ∑
j∈H(T )

(at)j(T )û{j}, DT


=

∑
T∈Ω(N),i∈H(T )

j∈H(T ),j(T )≤i(T )

(at)j(T )

(t− j(T ) + 1)t!
∆∗v(T ) for all i ∈ N.

Some special cases are the following:

1. If (ak)k = 1 and (ak)l = 0 for all l ∈ {1, . . . , k − 1}, then we obtain the NR-value ψNR.

2. If (ak)1 = 1 and (ak)l = 0 for all l ∈ {2, . . . k}, then we obtain the SB-value ψSB.

3. If (ak)l = 1
k for all l ∈ {1, . . . , k}, then we obtain the linear solution determined by ψ̄(wT ) =

1
n!t

∑
j∈H(T ) P (j, T ) with P (j, T )i = 0 if i(T ) < j(T ) or i 6∈ H(T ), and P (j, T )i = 1

t−j(T )+1

if i(T ) ≥ j(T ).

Example 3.1 Consider the unanimity game (N,wT ) ∈ GN with N = {1, 2, 3, 4} and T =

(1, 2, 3). Then DT = {(3, 2), (2, 1)} and for all A such that a3 = ((a3)1, (a3)2, (a3)3) we con-

sider the coalitional (characteristic function) game v̂ = (a3)1û{1} + (a3)2û{2} + (a3)3û{3}.

1. If a3 = (0, 0, 1) then ψA(N,wT ) = 1
6ϕ(û{3}, DT ) = 1

6ϕ
Sh(N, û{3}) = 1

6(0, 0, 1, 0) = ψNR(N,wT ).

2. If a3 = (1, 0, 0) then ψA(N,wT ) = 1
6ϕ(û{1}, DT ) = 1

6ϕ
Sh(N, û{1,2,3}) = 1

6(1
3 ,

1
3 ,

1
3 , 0) =

ψSB(N,wT ).
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3. If a3 = (1
3 ,

1
3 ,

1
3) then ψA(N,wT ) = 1

6ϕ(1
3(û{1} + û{2} + û{3}), DT )

= 1
6·3
(
ϕSh(N, û{1,2,3}) + ϕSh(N, û{2,3}) + ϕSh(N, û{3})

)
= 1

18((1
3 ,

1
3 ,

1
3 , 0)+(0, 1

2 ,
1
2 , 0)+(0, 0, 1, 0)) =

1
18(1

3 ,
5
6 ,

11
6 , 0) = 1

108(2, 5, 11).

Next we provide an axiomatic characterization of this class of solutions. Besides axioms that are

already mentioned in Section 2, we use the following three. Although ψNR and ψSB are very

different, they have in common that in unanimity games, players at the end of the unanimity

coalition earn at least as much as players in the beginning of the unanimity coalition. In some

sense, ψSB is an extreme case where all players in the unanimity coalition get the same, while

ψNR is the other extreme case where all payoff goes to the last player. Although we consider

these two solutions as extreme, we require from a solution that it satisfies this monotonicity with

respect to the order of the players in the unanimity coalition. This will permit us to enlarge the

set of solutions for generalized TU-games obtaining the class of order monotonic solutions. We

will characterize this class, and in the next sections two particular subclasses.

Axiom 3.2 (Order monotonicity) If T ∈ Ω(N) and i, j ∈ H(T ) are such that i(T ) < j(T )

then ψi(N,wT ) ≤ ψj(N,wT ).

The next axiom is a standard anonymity, meaning that the labels of players do not matter for

their payoffs.

Axiom 3.3 (Anonymity) For every permutation π : N → N it holds that ψi(N, v) = ψπ(i)(N, πv).

Finally, we require that in monotone games all payoffs are nonnegative. A game (N, v) ∈ G is

monotone, if v(R) ≤ v(S) whenever R⊆̃S.

Axiom 3.4 (Nonnegativity) If (N, v) ∈ G is monotone, then ψi(N, v) ≥ 0 for all i ∈ N .

It turns out that these three axioms, together with efficiency, linearity and the null player property

(of Sánchez and Bergantiños (1997)) characterize the class of solutions defined above in (3.4).

Therefore we refer to this class as the class of order monotonic solutions.

Theorem 3.5 A solution ψ satisfies efficiency, linearity, the null player property, order mono-

tonicity, anonymity and nonnegativity if and only if there is an A = {ak}k∈{1,...,n}, with ak ∈ IRk

satisfying (ak)l ≥ 0 for all l ∈ {1, . . . , k} and
∑k

l=1(ak)l = 1, such that ψ = ψA.

Proof

It is straightforward to verify that all order monotonic solutions satisfy these properties. To show

that only order monotonic solutions satisfy these properties, suppose that solution ψ satisfies

efficiency, linearity, the null player property, order monotonicity, anonymity and nonnegativity.

We first prove uniqueness for unanimity games (N,wT ) by induction on t. Therefore, first consider

wT with t = 1, i.e. H(T ) = {j}. Since all i ∈ N \ {j} are null players in wT , the null player
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property implies that ψi(N,wT ) = 0 for all i ∈ N \{j}. Efficiency then requires that ψj(N,wT ) =
1
n! .

Proceeding by induction, suppose that there exists an A = {ak}k∈{1,...,n}, with ak ∈ IRk for all

k ∈ {1, . . . , n}, satisfying (ak)l ≥ 0 for all l ∈ {1, . . . , k} and
∑k

l=1(ak)l = 1, such that ψ(N,wT ′) =

ψA(N,wT ′) for all T ′ ∈ Ω(N) with t′ < t, and consider T ∈ Ω(N) with |H(T )| = t. Since all

i ∈ N \H(T ) are null players in (N,wT ), the null player property implies that ψi(N,wT ) = 0 for

all i ∈ N \ H(T ). Order monotonicity implies that ψi(N,wT ) ≤ ψj(N,wT ) for all i, j ∈ H(T )

with i(T ) ≤ j(T ). So, by efficiency, nonnegativity and order monotonicity there exist numbers

λt,k ≥ 0, λt,k ≥ λt,k−1 for all k ∈ {2, . . . , t} and
∑t

k=1 λt,k = 1 such that ψi(N,wT ) =
λt,i(T )

n!

for all i ∈ H(T ). Taking (at)1 = λt,1 and, recursively, (at)k = λt,k −
∑k−1

l=1 (at)l, we obtain that

ψ(N,wT ) = ψA(N,wT ).

Moreover, anonymity implies that ψi(N,wT ′) = ψAi (N,wT ′) = λt,i(T ′) for all i ∈ H(T ′) whenever

t′ = t and A = {ak}k∈{1,...,n} is as defined above.

Solution ψ being equal to ψA on the class of all generalized characteristic functions then follows

from linearity of ψ and (2.2). 2

Note that anonymity implies that ψik(N,w{i1,...,it}) = ψi′k(N,w{i′1,...,i′t}) for all k ∈ {1, . . . , t}. The

ratio (at)k
(at)k+1

can be different for different size t as long as order monotonicity is satisfied.

Substituting in the previous theorem the order monotonicity axiom by the following axiom of

rank monotonicity characterizes the so called arithmetic solution defined by:

ψarti (N, v) =
∑

T∈Ω(N)

i∈H(T )

∆∗v(T )
2i(T )

(t+ 1)!t
.

Axiom 3.6 (Rank monotonicity) For every N ⊂ IN, there exist numbers kt, t ∈ {1, . . . n},
such that for every T ∈ Ω(N) and i ∈ H(T ) holds ψi(N,wT ) = kti(T ).

Theorem 3.7 Solution ψ satisfies efficiency, linearity, the null player property, rank monotonic-

ity, anonymity and nonnegativity if and only if it is the arithmetic solution ψart.

The obvious proof is omitted.

We argued before that we consider the symmetry axiom of Sánchez and Bergantiños (1997)

to be too strong. A weaker symmetry requires equal payoffs for players that, besides being

symmetric in the sense of Sánchez and Bergantiños (1997), also are such that for any ordered

coalition containing both players, exchanging their position does not change the worth of the

coalition. So, we call two players i, j ∈ N fully symmetric in v if they are symmetric in v and,

moreover, v(T ) = v(Tij) for all T ∈ Ω(N) with i, j ∈ H(T ), where Tij is the ordered coalition

(permutation of T ) obtained by exchanging the positions of i and j, i.e. i(Tij) = j(T ), j(Tij) =

i(T ) and h(Tij) = h(T ) for all h ∈ H(T ) \ {i, j}.

Axiom 3.8 (Weak symmetry) If i and j are fully symmetric in (N, v) ∈ G then ψi(N, v) =

ψj(N, v).

12



All order monotonic solutions satisfy this weaker symmetry axiom which straightforward

result we state without proof.

Proposition 3.9 Every order monotonic solution satisfies weak symmetry.

4 The p-null player property and p-symmetry

As mentioned before, the null player property of Nowak and Radzik (1994) ignores the role of

players when players entering after them have a positive contribution but need those ‘null players’

to be present in order to make this contribution. In characterizing their solution this property

implies that in the unanimity game on an ordered coalition T = (i1, . . . , it), all players except

player it are null players. The null player property of Sánchez and Bergantiños (1997) is much

weaker and also takes account of the role that players have in making players that enter after

them productive, and thus none of the players in H(T ) is a null player in (N,wT ).

As criticized before, the symmetry axiom of Sánchez and Bergantiños (1997) does not take

account of possible asymmetries between players when they switch position in ordered coalitions

they both belong to. Consequently, in the unanimity game on an ordered coalition T = (i1, . . . , it),

all players in H(T ) = {i1, . . . , it} are symmetric and earn the same payoff.

Both these approaches yield an order monotonic solution. They both can be seen as

extreme cases, where the NR-value ψNR only rewards the last player in every ordered unanimity

coalition, while the SB-value ψSB treats all equal. In this and the next sections we introduce

classes of order monotonic solutions that contain the NR-value and SB-value as extreme cases.

As explained above, a major difference between the NR- and SB-values is what they consider

null players and symmetric players. The null player property of Nowak and Radzik (1994) is so

extreme that they even do not need a symmetry axiom for their axiomatization. The null player

property of Sánchez and Bergantiños (1997) is reasonable, but they need a strong symmetry

axiom. Note that, under efficiency, the symmetry axiom of Sánchez and Bergantiños (1997) is

incompatible with the null player property of Nowak and Radzik (1997) since according to the last

axiom, in the unanimity game on ordered coalition T all players except the last in order T should

get zero payoff, implying that the last player in T should get all the payoff that is distributed

according to efficiency, while according to the symmetry axiom of Sánchez and Bergantiños (1997)

all players in H(T ) should get the same payoff. Next, we define compatible pairs of null player

and symmetry axioms that, together with efficieny and linearity, characterize a solution.

Let p ∈ [0, 1]. Player i ∈ N is a p-null player in (N, v) ∈ G if for every ordered coalition

T = (i1, . . . it) ∈ Ω(N \ {i}), it holds that v(T, il) = v(T ) for all l ∈ {dp(t+ 1)e, . . . , t+ 1}, where

dze = min{x ∈ IN | z ≤ x}.6

Axiom 4.1 (p-null player property) Let p ∈ [0, 1]. If i ∈ N is a p-null player in (N, v) ∈ G
then ψi(N, v) = 0.

6We consider IN as the set of positive integers, so excluding 0.
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For p = 1, the 1-null player property only considers contributions to the last position and therefore

coincides with the null player property of Nowak and Radzik (1994). For p = 0, all positions are

considered, and the 0-null player property is the null player property of Sánchez and Bergantiños

(1997).

For p ∈ [0, 1], players i, j ∈ N are p-symmetric in (N, v) ∈ G if for every ordered coalition

T ∈ Ω(N \ {i, j}), it holds that v(T, il) = v(T, jl) for all l ∈ {dp(t+ 1)e, . . . , t+ 1}.

Axiom 4.2 (p-symmetry) Let p ∈ [0, 1]. If i, j ∈ N are p-symmetric in (N, v) ∈ G then

ψi(N, v) = ψj(N, v).

For p = 0, 0-symmetry compares the contributions of two players to any position in an ordered

coalition, and equals the symmetry axiom of Sánchez and Bergantiños (1997). For p = 1, it only

compares contributions to the last position. Although 1-symmetry is satisfied by the NR-value,

it is not necessary in the axiomatization in Theorem 2.5.

Theorem 4.3 Let p ∈ [0, 1]. A solution ψ satisfies efficiency, linearity, the p-null player property

and p-symmetry if and only if it is ψA given by (3.4) and (3.3) with (ak)l = 1 if l = dpke and

(ak)l = 0 otherwise.

Proof

It is straightforward to verify that the solutions given in the theorem satisfy efficiency, linearity

and the corresponding p-null player and p-symmetry axioms.

To show uniqueness, consider the generalized unanimity game (N,wT ) with T = (i1, . . . , it), and

p ∈ [0, 1]. By the p-null player property, ψi(N,wT ) = 0 for all i ∈ N \ {idpte, . . . , it}. By p-

symmetry all players in {idpte, . . . , it} earn the same payoff, and thus the payoffs are determined

by efficiency. Uniqueness on the class of all generalized characteristic functions then follows from

linearity of ψ. 2

Note that p = 1 yields the NR-value. The 1-null player property then only rewards the last

player that enters in a unanimity coalition, and 1-symmetry only compares contributions to the

last position. If p = 0 we have the SB-value where the 0-null player property allows to reward

all positions in a unanimity coalition, and symmetry requires that all players in the unanimity

coaliton earn the same.

Example 4.4 Consider the unanimity game (N,wT ) of Example 3.1. In Example 3.1 we already

gave the NR-value (p = 1) and SB-value (p = 0). For p = 1
2 , i.e. dpte = d3

2e = 2, the solution

yields ψα(N,wT ) = 1
6(0, 1

2 ,
1
2 , 0).

5 A class of geometric solutions

In del Pozo, Manuel, González-Arangüena and Owen (2011), the following parametric family

of geometric solutions for generalized characteristic functions is introduced (and used to define
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centrality measures for directed networks). Given α ∈ [0, 1], the solution ψα is given by

ψαi (N, v) =
∑

T∈Ω(N)

i∈H(T )

αt−i(T )

t!
∑t−1

l=0 α
l
∆∗v(T ) for all i ∈ N. (5.5)

This class contains the NR-value ψNR = ψ0 by taking α = 0, as well as the SB-value ψSB = ψ1

by taking α = 1 as extreme cases. All these solutions are order monotonic since ψαi(T )(N,wT ) =

αψαi(T )+1(N,wT ) for all i ∈ H(T ), T ∈ Ω(N), i(T ) 6= t. In this section we provide axiomatizations

for these geometric solutions.

We first generalize the enemy players property used in Manuel, González-Arangüena and

van den Brink (2013), to characterize the Shapley value for classical TU-games to the context

of generalized characteristic functions. We begin with defining what it means when players are

indifferent to each other in a generalized characteristic function.

Definition 5.1 Given (N, v) ∈ G, players i, j ∈ N are related in (N, v) if and only if i = j or

there exists a family of ordered coalitions in Ω(N), {Tl}ml=1, verifying

i) ∆∗v(Tl) 6= 0 for all l = 1, 2, ...,m.

ii) i ∈ H(T1), j ∈ H(Tm) and H(Tl) ∩H(Tl+1) 6= ∅ for l = 1, 2, ...,m− 1.

Player i is indifferent to cooperate with player j in (N, v) ∈ G if i and j are not related.

Similar as for classical TU-games, this property is symmetrical and we can say that i and

j are indifferent to mutual cooperation, or indifferent players for short. We say that an ordered

coalition is essential if it has a nonzero dividend. When two players decide not to cooperate

(for instance, because they become enemies), the dividends ∆∗v(T ) of all ordered coalitions to

which i and j both belong and enter consecutive and always in the same order (say i before j),

cannot be realized, and thus disappear when calculating the worth of these coalitions, yielding

a transformation of the game. Note that for classical games we do not have the requirement

that in every essential coalition the players enter consecutive and always in the same order, since

for classical TU-games the order does not matter in the generation of worth. The idea behind

two players becoming enemies in generalized characteristic functions is that it only affects their

cooperation when they enter consecutive. When other players enter between them, then the

fact that they become enemies is not effective. Also, the idea of players becoming enemies is

asymmetric in the sense that only dividends dissappear when one of them enters (immediately)

before the other.

We denote by E(i, j) = {T ∈ Ω(N) | {i, j} ⊆ H(T ) with j(T ) = i(T ) + 1} the collection

of all ordered coalitions to which i and j both belong and enter consecutive with i entering first.

Definition 5.2 Given (N, v) ∈ G and i, j ∈ N we define the game (N, vij) ∈ G as:

vij =
∑

T∈Ω(N)\E(i,j)

∆∗v(T )wT .
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Next, we generalize the enemy players property to generalized characteristic functions,

stating that, when two players become enemies, meaning that the game vij is played instead of

game v, the effect on their respective payoffs is the same.

Axiom 5.3 A solution ψ on G satisfies the enemy players property if, for all (N, v) ∈ G and

every pair of players i, j ∈ N which are not indifferent in generalized characteristic function v, it

holds that: ψi(N, v)− ψi(N, vij) = ψj(N, v)− ψj(N, vij).

Next, we generalize null contributions for indifferent players to the class of generalized

characteristic functions, stating that, if one player i is indifferent to cooperate with another

player j, then he is even indifferent to the fact that this player leaves the game.

Axiom 5.4 A solution ψ defined on G satisfies the null contributions for indifferent players

property if, for all (N, v) ∈ G and every pair i, j of indifferent players in generalized characteristic

function v, it holds that: ψi(N, v)− ψi(N \ {j}, v|N\{j}) = 0.

A solution ψ on G satisfies the balanced contributions property of Sánchez and Bergantiños

(1997) if, for all (N, v) ∈ G and all i, j ∈ N , ψi(N, v)−ψi(v|N\{j}) = ψj(N, v)−ψj(v|N\{i}). This

generalizes the balanced contributions property of Myerson (1980) for classical TU-games. The

null contributions for indifferent players property establishes that, for indifferent players, the

contributions must be balanced and, moreover, null. Therefore, in some sense it is more restric-

tive than balanced contributions of Sánchez and Bergantiños (1997) as it determines the value

of the contributions. But in another sense it is less demanding because it only restricts the

contributions for pairs of players that are indifferent. A similar remark was made in Manuel,

Gonzalez-Arangüena and van den Brink (2013) for classical TU-games on Myerson (1980)’s bal-

anced contributions.

Similar as for classical TU-games, by repeated application of the null contributions for

indifferent players property, this property can be straightforward extended to the case in which

a given player is indifferent to all the players in a group and so the proof is omitted.

Proposition 5.5 Let (N, v) ∈ G and T ∈ Ω(N). Suppose i ∈ N\H(T ) is indifferent to each

player in H(T ). If ψ is a solution defined on G satisfying the null contributions for indifferent

players property, then ψi(N, v) = ψi(N \H(T ), v|N\H(T )).

First, it turns out that these two axioms together with efficiency characterize the SB-value.

Theorem 5.6 A solution ψ defined on G satisfies efficiency, the enemy players property and null

contributions for indifferent players if and only if it is the SB-value ψSB.

Since this follows from the general Theorem 5.8, we postpone the proof.

Whereas the enemy players property seems reasonable for classical TU-games, for gener-

alized characteristic functions on ordered coalitions, we might consider that also the positions

of the players in the ordered coalitions have an effect on the change in their payoffs when they
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become enemies. Therefore, instead of having equal changes in payoff, we require that, when two

players that are not indifferent become enemies, the effect on the payoff of the player who always

enters first is some fraction α ∈ [0, 1] of the change in payoff of the other.

Axiom 5.7 Let α ∈ [0, 1]. A solution ψ on G satisfies the α-enemy players property if, for all

(N, v) ∈ G and every pair of players i, j ∈ N which are not indifferent in v, it holds:

ψi(N, v)− ψi(N, vij) = α(ψj(N, v)− ψj(N, vij)).

Replacing the enemy players property in Theorem 5.6 by any α-enemy players property,

α ∈ (0, 1], characterizes the corresponding geometric solution.

Theorem 5.8 Let α ∈ (0, 1]. A solution ψ defined on G satisfies efficiency, the α-enemy players

property and null contributions for indifferent players if and only if it is the geometric solution

ψα.

Proof

It is straightforward to verify that ψα, α ∈ (0, 1], satisfies efficiency, the α-enemy players property

and null contributions for indifferent players.

To prove uniqueness, take α ∈ (0, 1] and consider a solution ψ defined on G and satisfying

efficiency, the α-enemy players property and the null contributions for indifferent players property.

We prove uniqueness by induction on the number of essential coalitions. Let d(N, v) = |δ(N, v)|,
where

δ(N, v) = {T ∈ Ω(N) | ∆∗v(T ) 6= 0}.

If d(N, v) = 0, then (N, v) is the null game (i.e. v(T ) = 0 for all T ∈ Ω(N)), and thus every i ∈ N
is indifferent to each player in N\{i}. Therefore, by Proposition 5.5, ψi(N, v) = ψi({i}, v|{i}) for

all i ∈ N . As v|{i}({i}) = 0, by efficiency we have ψi(N, v) = ψi({i}, v|{i}) = 0, and thus ψ

coincides with ψα.

Suppose now, by the induction hypothesis, that ψ(N, v) is uniquely determined for all games

(N, v′) ∈ G with d(N, v′) = k, and consider a game (N, v) ∈ G with d(N, v) = k + 1. Let i ∈ N
and let C(i) be the set of players to whom i is not indifferent. If C(i) = {i}, then similar as in

the case d(N, v) = 0 above, player i is indifferent to each player in N\{i}, and using the same

reasoning as before, we have that ψi(N, v) is uniquely determined.

Alternatively, suppose that i ∈ N is such that |C(i)| > 1, and let j ∈ C(i), j 6= i. By the

definition of indifferent players, there exists a sequence of players (i1, i2, . . . , ir) with i1 = i, ir = j,

il ∈ C(i) for l = 1, 2, ..., r and such that, for each l = 1, 2, ..., r − 1, there is a Tl ∈ δ(N, v) with

{il, il+1} ⊆ H(Tl). Suppose that Tl = (h1, . . . , hk). As ψ satisfies the α-enemy players property,

for every p ∈ {1, . . . , k − 1} we have

ψhp(N, v)− ψhp(N, vhphp+1) = α(ψhp+1(N, v)− ψhp+1(N, vhphp+1)),

and thus:
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ψhp(N, v)− αψhp+1(N, v) = ψhp(N, vhphp+1)− αψhp+1(N, vhphp+1).

As d(N, vhphp+1) < d(N, v) = k+1, using the induction hypothesis ψhp(N, vhphp+1) and ψhp+1(N, vhphp+1)

are determined and thus there exist known numbers chphp+1 such that

ψhp(N, v)− αψhp+1(N, v) = chphp+1 .

Assuming, without loss of generality that il = hq and il+1 = hs, q < s, this yields that there

exists a known number cil,il+1 such that

ψil(N, v)− αs−qψil+1
(N, v) = cil,il+1 .

Since this holds for all Tl in the sequence above, using this previous reasoning iteratively, there

exist known numbers c̃ij > 0 and ĉij such that7

ψi(N, v)− c̃ijψj(N, v) = ĉij for j ∈ C(i). (5.6)

By the null contributions for indifferent players property:

ψj(N, v) = ψj(C(i), v|C(i)) for all j ∈ C(i),

and thus: ∑
j∈C(i)

ψj(N, v) =
∑
j∈C(i)

ψj(C(i), v|C(i)), (5.7)

where the right hand side is determined by efficiency. Therefore, we have |C(i)| linear independent

equations given by (5.6) and (5.7) in the |C(i)| unknown payoffs ψj(N, v), j ∈ C(i), which thus

are uniquely determined. 2

Although the NR-value satisfies efficiency, the 0-enemy players property and null contributions for

indifferent players, it is not characterized by these properties. However, strengthening null con-

tributions for indifferent players to null contributions for weakly indifferent players, characterizes

all geometric solutions ψα, α ∈ [0, 1], with the corresponding α-enemy players property.

Definition 5.9 Given (N, v) ∈ G, i, j ∈ N are weakly indifferent in (N, v) if and only if there is

no ordered coalition T with ∆∗v(T ) 6= 0 and {i, j} ⊆ H(T ).

As this property is obviously symmetrical, whenever it holds, we say that i and j are weakly

indifferent to mutual cooperation, or weakly indifferent players for short.

Axiom 5.10 A solution ψ defined on G satisfies the null contributions for weakly indifferent

players property if, for all (N, v) ∈ G and all pairs i, j of weakly indifferent players in (N, v), it

holds that: ψi(N, v)− ψi(v|N\{j}) = 0.

7Note that c̃ij = αz for some z ∈ IN.
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Since two players that are indifferent (see Definition 5.1) are obviously weakly indifferent (see

Definition 5.9), null contributions for weakly indifferent players implies null contributions for

indifferent players.

Theorem 5.11 Let α ∈ [0, 1]. A solution ψ defined on G satisfies efficiency, the α-enemy players

property and null contributions for weakly indifferent players if and only if it is the geometric

solution ψα.

Proof

From Theorem 5.8 it follows that all ψα, α ∈ (0, 1] satisfy efficiency and the corresponding α-

enemy players property. For α = 0 this is obvious. It is also obvious that ψα satisfies null

contributions for weakly indifferent players for all α ∈ [0, 1].

Uniqueness for α ∈ (0, 1] follows from Theorem 5.8 since null contributions for weakly indifferent

players implies null contributions for indifferent players.

So, we are left to show uniqueness for the case α = 0. We again prove this by induction on the

number of essential coalitions, but the proof goes different than the proof of uniqueness in Theorem

5.8. Consider a solution ψ defined on G and satisfying efficiency, the 0-enemy players property

and the null contributions for weakly indifferent players property. Again, let d(N, v) = |δ(N, v)|,
where δ(N, v) = {T ∈ Ω(N) | ∆∗v(T ) 6= 0}.
If d(N, v) = 0, then (N, v) is a null game (i.e. v(T ) = 0 for all T ∈ Ω(N)), and thus every i ∈ N
is weakly indifferent to each player in N\{i}. Therefore, similar as in the proof of Theorem 5.8,

by Proposition 5.5, ψi(N, v) = ψi(v|{i}) for all i ∈ N . Again, v|{i}({i}) = 0 and by efficiency,

ψi(N, v) = ψi({i}, v|{i}) = 0, and thus ψ coincides with ψ0 = ψNR.

Suppose now, by the induction hypothesis, that ψ(N, v) is uniquely determined for games (N, v′) ∈
G with d(N, v′) = k, and consider a game (N, v) ∈ G with d(N, v) = k + 1. We distinguish three

cases with respect to player i ∈ N .

First, if C(i) = {i} (where C(i) is again the set of players to whom i is not indifferent), then

similar as in the case d(N, v) = 0 above, player i is also weakly indifferent to each player in N\{i},
and using the same reasoning as before, we have that ψi(N, v) is uniquely determined.

Second8, if there is a T ∈ δ(N, v) with i ∈ T and i(T ) 6= t (so i is not the last player in T ) then

the 0-enemy players property implies that:

ψi(N, v)− ψi(N, vij) = 0,

where j(T ) = i(T ) + 1. Since d(N, vij) < k = d(N, v), ψi(N, v) = ψi(N, v
ij) is determined by the

induction hypothesis.

Third, suppose that T ∈ δ(N, v) and i ∈ T imply that i(T ) = t, i.e. in every essential coalition

player i belongs to it has the last position. Suppose there are two players i, j ∈ N , i 6= j, that

satisfy this condition. Then there is no T ∈ δ(N, v) such that {i, j} ⊆ H(T ) since they cannot

both have the last position in T . Defining Wi(N, v) = {j ∈ N | {i, j} ⊆ H(T ) for at least one

8From here the proof is different from that of Theorem 5.8.
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T ∈ δ(N, v)}, it holds that ψi(N, v) = ψi(Wi(N, v), v|Wi(N,v)) by null contributions for weakly

indifferent players. But since player i is the only player in (Wi(N, v), v|Wi(N,v)) for whom the

payoff in (Wi(N, v), v|Wi(N,v)) is not determined by the first or second case, the payoff of i in

(Wi(N, v), v|Wi(N,v)) is uniquely determined by efficiency. 2

Since the NR-value and the SB-value are geometric solutions, we obtain axiomatizations of these

solutions as a corollary.

Corollary 5.12 (i) A solution ψ defined on G satisfies efficiency, the 0-enemy players property

and null contributions for weakly indifferent players if and only if it is the NR-value ψNR.

(ii) A solution ψ satisfies efficiency, the 1-enemy players property and null contributions for

weakly indifferent players if and only if it is the SB-value ψSB.9

Note that for α = 0, the 0-enemy players property is some kind of independence axiom stating

that the payoff for the ‘lower ordered’ player does not change when two players become enemies.

This is also the reason why in the proof of Theorem 5.11 we have to treat uniqueness for the case

α = 0 separate.

We can make clear the distinction between players that are weakly indifferent and indif-

ferent by using (undirected) graphs. An (undirected) graph on player set N is a set L ⊆ {{i, j} |
i, j ∈ N, i 6= j} of coalitions of size two. These elements are called edges or links. For game

(N, v) ∈ G we can construct the graph Lv = {{i, j} | there is an ordered coalition T ∈ Ω(N) such

that ∆∗v(T ) 6= 0 and {i, j} ⊆ H(T )} where two players are linked to each other if and only if they

belong together to at least one ordered coalition that has a nonzero dividend. Then two players

are weakly indifferent if they are not linked, while they are indifferent if they belong to different

components or maximally connected coalitions, i.e. if there is no path connecting them.
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