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Abstract

This paper proposes the use of a double correlation coefficient as a nonpara-
metric measure of phase-dependence in time-varying correlations. An asymp-
totically Gaussian test statistic for the null hypothesis of no phase-dependence
is derived from the proposed measure. Finite-sample distributions, power and
size are analyzed in a Monte-Carlo exercise. An application of this test provides
evidence that correlation strength between major macroeconomic aggregates is
both time-varying and phase dependent in the business cycle.
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1 Introduction

Many economic time-series exhibit correlation strengths that change over time. Para-

metric state-space models like the dynamic conditional correlation (DCC) model of

Engle (2000) attempt to capture these time-variations in correlation strength be-

tween financial time-series. Structural parametric models with nonlinearities and

time-varying parameters in macroeconomics and microeconomics are also capable of
∗The author is thankful to Andre Lucas and Siem Jan Koopman for helpful comments and sugges-

tions and thankful to the Dutch Science Foundation (NWO) for financial support. Correspondence
address: Francisco Blasques, VU University Amsterdam, FEWEB/FIN, de Boelelaan 1105, 1081
HV Amsterdam, Netherlands. Email: f.blasques@vu.nl.
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generating time-varying correlations. Nonparametric methods are however desirable

in cases where the researcher does not wish to impose a potentially restrictive para-

metric model structure on the data. Evidence of model misspecification in certain

applications is thus a possible reason to adopt, or at least complement, econometric

analysis with nonparametric methods. Nonparametric methods are also appealing

when searching for ‘descriptive statistics’ that reflect simple and agnostic ‘stylized

facts’. For example, in empirical macroeconomics, considerable effort has been in-

vested since Kydland and Prescott (1982) in the design and estimation of structural

macroeconomic models capable of describing the correlation structure of the data.

Even estimated macroeconomic structural models are usually evaluated by their abil-

ity to accurately describe a matrix of correlations between contemporaneous macroe-

conomic variables and their lags; see e.g. Dave and Dejong (2007).

This paper proposes the use of a double correlation coefficient as a nonparametric

measure of phase-dependence in the correlation between two time-series. Under ap-

propriate regularity conditions the proposed statistic is easily shown to be consistent

a asymptotically normal. The asymptotic distribution of a derived test statistic is also

obtained. The small sample distributions, power and sizes of the phase-dependence

measure and associated test statistic are obtained by means of a Monte Carlo exercise.

In an application, the proposed test is used to provide evidence that the autocorre-

lation structure of macroeconomic aggregates for the US economy evolves over time,

and most importantly, that these time-varying correlations are systematically linked

to the phase of the business cycle, i.e. that they are phase-dependent. In particular,

the data reveals that correlations between aggregate output and aggregate investment

in the US are significantly stronger during recessions and weaker during expansions.

Section 2 motivates the problem by analyzing some stylized evidence of time-

varying correlation and phase-dependence in US macroeconomic aggregates. Sec-
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tion 3 proposes the nonparametric measure of phase-dependence and related test of

no phase-dependence and obtains their asymptotic properties. Section 4 provides a

Monte Carlo description of their small sample behavior. Finally, Section 5 assesses

the existence of phase-dependence in correlations between macroeconomic aggregates.

2 Time-Varying and Phase-Dependent Correlations

in Macroeonomic Aggregates

Since Kydland and Prescott (1982) the characterization of the business cycle in

macroeconomics has been typically restricted to the second-order unconditional mo-

ments of filtered data. The following table contains a standard characterization of the

business cycle for US quaterly data (1947 Q1 - 2012 Q1) based on the variance and

cross-autocorrelation between HP-filtered logarithms of three macroeconomic aggre-

gates: real private investment (it), rel private consumption (ct) and real gross domestic

product (yt).1

σ/σy ry rc ri ry−1 rc−1 ri−1

yt 1.00 - 0.69 0.78 0.82 0.62 0.66
ct 1.18 0.69 - 0.55 0.69 0.91 0.54
it 3.20 0.78 0.55 - 0.62 0.52 0.81

Table 1: Log US HP-filtered business cycle characterization of auto-correlation structure. Col-
umn σ/σy shows ratio of estimated variance with output’s estimated variance, rx shows estimated
correlation with variable x, and rx−1 shows estimated correlation with the lag of x.

Table 1 provides however a rather incomplete picture of the correlation between

these aggregates. In particular, it ignores the rich time-variation that occurs in the

correlation structure, and most importantly, the fact that this time-variation depends
1Data obtained from the Federal Reserve Bank of Saint Louis in billions of chained 2005 dollars.
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itself on the business cycle; i.e. that correlations are phase-dependent w.r.t. the busi-

ness cycle. For example, Figure 1 reveals the striking fact that the correlation strength

between output and investment is phase-dependent in NBER cycles. In particular,

NBER recession periods are marked by very high correlations and large drops in

correlation strength seem to occur only during NBER expansions.

−0.04

0

0.04

1949 1979 2009

0

0.5

1

Figure 1: Time series of HP-filtered log US output {yt} (above) and an estimated s-shifted w-
window correlation series {ρ̂w,s

t } between aggregate output {yt} and aggregate investment {it} (be-
low) with NBER recession indicator in shaded areas.2

A careful inspection of the data shows that correlations between output and in-

vestment never dropped below 0.5 in recession periods. Even correlations below 0.8

are rare during recessions. In contrast, in expansion periods, drops of correlation be-

low 0.5 do occur, and correlations below 0.8 are quite frequent. This apparent relation

can however be spurious and requires statistical verification. It is thus important to

assess the statistical significance of such findings. In particular, it is crucial to un-

derstand the properties of the estimated correlation series and to find a statistically

sound method of evaluating the presence of phase-dependence. We now address this

issue.
2The series plotted in Figure 1 make use of the s-shifted w-window uniformly weighted rolling

window defined in (1) with a small positive shift to guarantee centering s = 2. The span of the
kernel w = 4 was selected to be no larger than the average length of the NBER output cycle.
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3 A Measure of Phase-Dependence

The estimated time-varying correlation series {ρ̂w,st } in Figure 1 are Pearson cor-

relations calculated over a rolling window. In its simplest form, given a bivariate

time-series {(yt, xt)}, the sequence {ρ̂w,st } of s-shifted w-window correlations between

y and x is defined, for every t, as the sample Pearson correlation Corr
(
yw,st ,xw,st

)
between yw,st = (yt−w+s, ..., yt+s) and xw,st = (xt−w+s, ..., xt+s) where s is a shift index

that defines the centering of the window over the time period of interest,

ρ̂w,st :=
∑j=t+s
j=t−w+s(xj − x̄

w,s
j )(yj − ȳw,sj )√∑j=t+s

j=t−w+s(xj − x̄
w,s
j )2

√∑j=t+s
j=t−w+s(yt − ȳ

w,s
j )2

(1)

where x̄w,sj = ∑j=t+s
j=t−w+s xj/w and ȳw,sj = ∑j=t+s

j=t−w+s yj/w.

Figure 2 (right) illustrates various window sizes with shift parameter s = 0 (dash-

dotted line), s > 0 (dashed line), and s = w/2 (solid line) centering the window at

t and including ±n observations around (xt, yt) so that w = 2n. In a more general

form, Figure 2 (left) shows how different data points can be weighted by using an

appropriate kernel and shift parameter.

t−2n t−n t t+n t+2n t−2n t−n t t+n t+2n

Figure 2: Alternative weighing Kernels for estimation of local window correlations.

As a measure of phase-dependence for time-varying correlations, we propose the

calculation of a double correlation coefficient: the Pearson correlation coefficient be-

tween the sequence of estimated local s-shifted w-window correlations {ρ̂w,st } and an
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appropriate indicator of the business cycle {zt}. This correlation coefficient summa-

rizes the strength of agreement and linear co-movement between the business cycle

indicator z and the correlation strength between the macroeconomic aggregates x and

y. This allows us to conduct statistical inference on the relation between ρ̂w,st and zt.

Proposition 1 below reveals the statistical soundness of such a measure. In particular,

it shows that the consistency and asymptotic normality of the estimator ρ̂w,s,zT of the

double correlation coefficient ρzw,s = Corr(ρ̂w,st , zt) follows easily under standard regu-

larity conditions. Proposition 1 proposes also a test statistic with known asymptotic

distribution under the null hypothesis of no phase-dependence in {ρ̂w,st }.3

Proposition 1. Let {xt}t∈Z, {yt}t∈Z and {zt}t∈Z be strictly stationary and ergodic

(SE) stochastic sequences. Then {ρ̂w,st }t=T−st=w−s with elements defined in (1) is a subset

of an SE random sequence satisfying E|ρ̂w,st |k < ∞ ∀ (k, w, s) ∈ N × {1, ..., T} ×

{1, ..., w − 1}. Suppose furthermore that E|zt|2 <∞ and define

ρ̂w,s,zT :=
∑t=T−s
t=w−s(ρ̂

w,s
t − ¯̂ρw,s)(zt − z̄)√∑t=T−s

t=w−s(ρ̂
w,s
t − ¯̂ρw,st )2

√∑t=T−s
t=w−s(zt − z̄)2

and ρzw,s := Corr(ρ̂w,s,zT , zt)

where ¯̂ρw,s = ∑t=T−s
t=w−s ρ̂

w,s
t /(T −w) and z̄w,st = ∑t=T−s

t=w−s zt/(T −w). Then ∃ σ2
ρ > 0 such

that ρ̂w,s,zT
a.s.→ ρzw,s and

√
T (ρ̂w,s,zT − ρzw,s)

d→ N(0, σ2
ρ) ∀ (w, s) ∈ N × {1, ..., w − 1} as

T →∞. Finally, define the test statistic,4

ρ̃w,s,zT :=
(
t=T−s∑
t=w−s

(zt − z̄)2
) 1

2
(
t=T−s∑
t=w−s

(ρ̂w,st − ¯̂ρw,st )2
) 1

2

×
√
T − w ρ̂w,s,zT

3Note that while for Gaussian data the finite sample distribution of the Pearson correlation
coefficient is known since Fisher (1925), this well known result will not extend to the double cor-
relation considered here as the Gaussianity assumption cannot hold for the sequence {ρ̂w,s

t } with
elements in [0, 1]. The same is true for the approximate variance stabilizing Fisher’s z transfor-
mation F (ρ̂w,s,z

T ) = tanh−1(ρ̂w,s,z
T ) whose finite sample distribution is known to be approximately

N(tanh−1(ρz
w,s, 1/(T − 3)) but only under a Gaussianity assumption; see Pearson (1931), Rider

(1932), Kowalski (1972) and Duncan and Layard (1973).
4Normalization by T−w instead of T is asymptotically equivalent but preferable on finite samples.
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Then ρ̃w,s,zT
d→ N(0, 1) ∀ (w, s) ∈ N×{1, ..., w−1} as T →∞ under the null hypothesis

of no phase-dependence H0 : ρzw,s = 0 and ρ̃w,s,zT → ∞ ∀ (w, s) ∈ N × {1, ..., w − 1}

as T →∞ under the alternative H1 : ρzw,s 6= 0.

Proposition 1 defines implicitly a ‘two-sided’ size α test that rejects the null hy-

pothesis H0 : ρzw,s = 0 against the alternative H1 : ρzw,s 6= 0 if |ρ̃w,s,zT | > z∗α/2 where

z∗α/2 is taken from the standard normal table. The ‘one-sided’ size α tests for H0 :

ρzw,s > 0 or H0 : ρzw,s < 0 against H1 : ρzw,s ≤ 0 or H1 : ρzw,s ≥ 0 are naturally rejected

if ρ̃w,s,zT > z∗α or ρ̃w,s,zT < −z∗α respectively.

Proposition 1 above is limited in that (i) it does not provide guidance on the

selection of window-size w; (ii) it is silent about the small sample behavior of ρ̂w,s,zT

and ρ̃w,s,zT , and (iii) it does not convey a structural interpretation to the correlation

Corr(ρ̂w,st , zt) = ρzw,s between {zt} and the constructed rolling-window correlation

series. The following Monte Carlo exercise reveals that (i) the optimal window size

may depend on the average cycle length, (ii) the asymptotic results derived above

constitute a reasonable approximation to the finite sample distribution of ρ̂w,s,zT and

ρ̃w,s,zT ; and (iii) the proposed test statistic can be used as a test of no phase-dependence

in the unobserved sequence {ρt} of ‘true correlations’ between {yt} and {xt}.

4 Monte Carlo Evidence of Small Sample Behavior

Let {yt} and {xt} be sequences with time-varying correlation
{
ρt = Corr(yt, xt)

}
between them that is phase dependent (i.e. correlated with some sequence {zt}).

The following Monte Carlo shows that estimates of ρzw,s = Corr(ρ̂w,st , zt) approximate

ρz = Corr(ρt, zt). In other words, despite ρzw,s being a measure of phase-dependence in

the approximate constructed sequence {ρ̂w,st }, estimates of phase-dependence in ρzw,s
provide information about phase-dependence in the true underlying and unobserved

correlation sequence {ρt}. Accordingly, the Monte Carlo also reveals that the statistic
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ρ̃w,s,zT introduced in Proposition 1 can be used as a nonparametric test statistic for

the hypothesis of no phase-dependence in the true unobserved sequence {ρt}. The

optimal choice of w is shown to be related with the autocorrelation in the business

cycle indicator zt (and hence with the average cycle length). Finally, the Monte

Carlo reveals that the asymptotic distribution of ρ̃w,s,zT derived above constitutes a

reasonable approximation to the finite sample distribution in moderate sample sizes.

For the Monte Carlo study we consider stochastic sequences {yt} and {xt} gener-

ated according to a state space model with a single time-varying parameter {φt}

 yt

xt

 =

 φy

φx

+

 φyx φt

φxy φxx


 yt

xt

+

 εt

wt

 (2)

where {εt} and {wt} are iid Gaussian sequences with εt ∼ N(0, σε) and wt ∼ N(0, σw),

the scalar parameters φy, φx, φyx and φxx are time invariant and {φt} is a time-varying

two-regime threshold parameter generated according to,

φt =


α + vt if zt < z̄

α + β + vt if zt ≥ z̄
and zt = θ0 + θzt−1 + ut , (3)

with {vt} and {ut} also iid Gaussian vt ∼ N(0, σv) and ut ∼ N(0, σu) and α, β,

θ0 and θ fixed scalar parameters. For β > 0 the time-varying parameter {φt} has

a ‘low regime’ (when zt < z̄) where it fluctuates around a mean α, and and ‘high

regime’ (when zt ≥ z̄) where it fluctuates around α + β. If β = 0 then there is no

phase-dependence in the ‘observed data’ {(yt, xt)} simulated using (1) and (2).

It is trivial to show that, under certain parameter restrictions, the simulated data

satisfies the conditions required by Proposition 1 for the consistency and asymptotic

normality results. The following lemma is thus given without proof. For simplicity,

we set φyx = φxy = 0 so that {xt} is an exogenous process whose influence on {yt}
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depends on the business cycle indicator zt through the time-varying parameter {φt}.

Lemma 1. Let 0 < σε < ∞, 0 < σw < ∞, 0 ≤ σv < ∞, 0 < σu < ∞, |φy| < ∞,

|φx| < ∞, |θ0| < ∞, |α| < ∞, |β| < ∞, φyx = φxy = 0, |φxx| < 1 and |θ| < 1. Then

{(yt, xt, zt)} is SE and satisfies E|xt|2 <∞, E|yt|2 <∞ and E|zt|2 <∞.

Data simulated using (1) and (2) is now used to assess the small sample distri-

bution of ρ̂w,s,zT and ρ̃w,s,zT in Proposition 1 for alternative parameter values various

choices of sample size T and window-size w. Unless stated otherwise, the follow-

ing parameter values have been selected σε = 0.1, σw = 0.1, σv = 0.02, σu = 0.1,

φy = φx = θ0 = 0, α = 0.5, θ = 0.8 and s = w/2. Figure 3 shows the small sample

distribution of the double correlation coefficient under no phase-dependence (β = 0)

in the true unobserved correlation process {ρt} and reveals how the measure ρ̂w,s,zT

based on the approximate sequence {ρ̂w,st } is correctly centered at zero.

Figure 3: Density plots of ρ̂w,s,z
T obtained from S = 1000 Monte Carlo simulated paths of

{(yt, xt, zt)}T
t=1 under no-phase-dependence (β = 0), for window size w = 4 (left), w = 8 (center)

and w = 16 (right), and sample size T = 100, 250 and 500. The larger T densities are identifiable
by the higher concentration of mass around the origin.

On the contrary, Figure 4 plots the small sample distribution of ρ̂w,s,zT when there

is phase-dependence (β = −0.3). Figure 4 reveals once again that the measure ρ̂w,s,zT

based on the approximate sequence {ρ̂w,st } reflects the phase-dependence in the true

underlying and unobserved correlation sequence {ρt}.
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Figure 4: Density plots of ρ̂w,s,z
T obtained from S = 1000 Monte Carlo simulated paths of

{(yt, xt, zt)}T
t=1 under phase-dependence (β = −0.3), for window size w = 4 (left), w = 8 (center)

and w = 16 (right), and sample size T = 100, 250 and 500. The larger T densities are identifiable
by the smaller variance.

Table 2 provides information about the finite sample power of the no phase-

dependence test statistic ρ̃w,s,zT by stating rejection frequencies for the null hypothesis

of no phase dependence when β = 1 and β = 2. Naturally, the power of the test

increases with sample size, and rejection frequencies are better at β = 2 than β = 1.

β = 1 β = 2

T w = 2 w = 4 w = 8 w = 16 w = 2 w = 4 w = 8 w = 16

θ
=
.4

100 0.23 0.30 0.24 0.19 0.38 0.46 0.35 0.23
200 0.42 0.52 0.45 0.30 0.71 0.77 0.64 0.42
500 0.68 0.79 0.69 0.47 0.94 0.96 0.89 0.65
1000 0.93 0.98 0.93 0.72 1.00 1.00 1.00 0.92

θ
=
.8

100 0.40 0.56 0.63 0.52 0.65 0.78 0.80 0.65
200 0.71 0.86 0.91 0.83 0.95 0.98 0.98 0.93
500 0.95 0.99 1.00 0.97 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

θ
=
.9

7 100 0.39 0.55 0.66 0.70 0.59 0.73 0.77 0.78
200 0.72 0.85 0.93 0.94 0.91 0.95 0.96 0.97
500 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Power of ρ̃w,s,z
T as measured by rejection frequencies from S = 1000 Monte Carlo draws at

95% confidence level for the null hypothesis of no phase-dependence H0 : ρz
w,s = 0 and a two-sided

alternative H1 : ρz
w,s 6= 0 using the asymptotic N(0, 1) critical values derived in Proposition 1.
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The optimal choice of w depends on the amount of temporal dependence in {zt}

as measured by θ. In particular, smaller window sizes perform better under low

dependence (e.g. w = 4 under θ = 0.4), while larger window sizes perform better

under high dependence (e.g. w = 16 at θ = 0.97).

The relation between the optimal choice of window-size w and the temporal de-

pendence in {zt} is made clear in Figure 5. As expected, large window sizes perform

badly in low dependence setting where the average cycle length in {zt} is quite short

and the large window choice ends up averaging over various periods of high and low

correlation. For low dependence, small windows have higher power. Strong depen-

dence in {zt} is favorable to large window sizes that calculate correlations with a

larger number of observations and hence a smaller degree of uncertainty. When cy-

cles in zt are large, the advantage of large window correlation sequences in better

filtering the signal from the noise is reflected in their higher power.
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Figure 5: Null hypothesis rejection frequencies from S = 1000 Monte Carlo draws at 95% confidence
level for the null hypothesis of no phase-dependence H0 : ρz

w,s = 0 and a two-sided alternative
H1 : ρz

w,s 6= 0 using asymptotic N(0, 1) critical values derived in Proposition 1 for β = 1 and
T = 200 under low (θ = 0.4), medium (θ = 0.8) and strong (θ = 0.97) dependence.

Table 3 now shows the finite sample size of the test ρ̃w,s,zT . The Monte Carlo

reveals that size is always better with small window size w and naturally improving

with sample size T . Furthermore, it is clear that the finite sample size is reasonably

close to nominal size for small θ and small w, yet considerably distorted under a

local-to-unit root strong dependence (θ = 0.97) and large w.
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β = 0

T w = 2 w = 4 w = 8 w = 16

θ
=
.4

100 0.084 0.093 0.109 0.125
200 0.062 0.082 0.084 0.099
500 0.057 0.074 0.079 0.091

1000 0.057 0.068 0.076 0.088
θ

=
.8

100 0.093 0.131 0.205 0.264
200 0.082 0.113 0.167 0.232
500 0.073 0.106 0.159 0.214

1000 0.071 0.104 0.143 0.201

θ
=
.9

7 100 0.104 0.148 0.246 0.381
200 0.084 0.124 0.221 0.350
500 0.078 0.117 0.206 0.332

1000 0.076 0.110 0.191 0.312

Table 3: Size of ρ̃w,s,z
T as measured by rejection frequencies (under β = 0) from S = 4000 Monte

Carlo draws at 95% confidence level for the null hypothesis of no phase-dependence H0 : ρz
w,s = 0

and a two-sided alternative H1 : ρz
w,s 6= 0 using asymptotic results in Proposition 1.

A conservative test will thus favor a small window size w despite the cost that

this might bring in terms of power evidenced by Table 2 and Figure 5. The trade-off

between power and size for w = 2 and w = 4 might however be worth consideration

depending on the application, since under strong dependence (θ = 0.97) the gains in

power can be larger than 15% (see e.g. Table 2 under β = 1).

Alternative parameter choices in terms of 0 < σε <∞, 0 < σw <∞, 0 ≤ σv <∞,

0 < σu < ∞, |φy| < ∞, |φx| < ∞, |θ0| < ∞, |α| < ∞ seem to have only marginal

effects on the results presented in Tables 2 and 3.

Finally, Figure 6 shows a finite sample power function that summarizes the test

behavior under local-to-null-hypothesis parameter values and the effects of temporal

dependence in {zt} for various sample sizes T . In accordance to the previous results,

power increases as β diverges from 0, as T increases, and size distortion is worse under

strong dependence.
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Figure 6: Finite sample power as function of β obtained from S = 2000 Monte Carlo draws for
(w, θ) = (2, 0.4) (left) and (w, θ) = (16, 0.97) (right).

5 Phase Dependence in the US Business Cycle

Making use of the theory established in Section 3, we now turn our attention back to

the data presented in Section 2 and assess wether the presence of phase-dependence

in the correlation between US macroeconomic aggregates is a statistically significant.

The phase-dependence measures and test statistics are obtained using a window

size of w = 4 and a shift of s = 2 for centering. According to the small sample Monte

Carlo evidence collected in Section 4, this will give us conservative testing procedures

with small sample size that very close to nominal at the cost of loosing some power.

Table 4 shows that the presence of phase-dependence in the correlation between

US macroeconomic aggregates is statistically significant at standard confidence lev-

els. Correlation strengths between macroeconomic aggregates are generally negatively

related with the NBER business cycle. In particular, correlations are statistically

stronger during recessions and weaker during expansions. Indeed, except for the

correlation between consumption and investment which shows no sign of phase de-

pendence with the business cycle, all other correlations (both contemporaneous and

lagged) appear significantly different from zero. Table 4 thus documents a rich time-

varying correlation structure of macroeconomic data that is usually ignored.
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y i c y−1 i−1 c−1

y - −0.23∗∗ −0.18∗ −0.29∗∗ −0.26∗∗ −0.30∗∗
- (-5.44) (-2.45) (-6.28) (-5.41) (-6.87)

i −0.23∗∗ - -0.08 −0.24∗∗ −0.25∗∗ −0.25∗∗
(-5.44) - (0.20) (-4.21) (-4.47) (-5.19)

c −0.18∗ -0.08 - −0.18∗∗ −0.19∗∗ −0.21∗∗
(-2.45) (0.20) - (-2.85) (-2.88) (-2.91)

Table 4: NBER business cycle phase-dependence characterization of log US HP-filtered auto-
covariance structure. Table shows values of nonparametric phase-dependence measure ρ̂w,s,z

T with
associated test statistic ρ̃w,s,z

T in brackets. ∗ and ∗∗ indicate rejection at 5% and 1% significance
levels.

A Proof of Proposition 1

This proof follows from standard well known results. Continuity of the sample s-

shifted w-window correlation ρ̂w,st on {xt}t∈Z and {yt}t∈Z ∀ (t, w, s) : t − w + s ≥

1 ∧ t + s ≤ T ensures measurability when relevant sets are equipped with a Borel

sigma-algebra. As a result, {ρ̂w,st }t=T−st=w−s is SE by Proposition 4.3 of Krengel (1985,

p.26), the SE nature of {xt}Tt=1 and {yt}Tt=1 and ρ̂w,st being a continuous function of a

finite subset of {xt}t∈Z and {yt}t∈Z ∀ (t, w, s). Naturally, E|ρ̂w,st |k < ∞ ∀ (k, w, s) ∈

N × {1, ..., T} × {1, ..., w − 1} holds for one t and hence all t by the SE nature of

{ρ̂w,st }t=T−st=w−s and the fact that its elements take values in [0, 1]. Since {ρ̂w,st }t=T−st=w−s

and {zt}t=Tt=1 are both subsets of SE sequences with E|ρ̂w,st |2 < ∞ and E|zt|2 < ∞, it

follows that {ρ̂w,st − µρ̂,w,s}t=T−st=w−s and {zt − µz}t=Tt=1 are SE with E|ρ̂w,st − µρ̂,w,s|2 < ∞

and E|zt − µz|2 < ∞ (by Cauchy-Schwartz inequality) where µρ̂,w,s := Eρ̂w,st and

µz := Ezt, and furthermore, by Minkowsky’s inequality

E
∣∣∣(ρ̂w,st − µρ̂,w,s)(zt − µz)

∣∣∣ ≤ (E|ρ̂w,st − µρ̂,w,s|2
) 1

2
(
E|zt − µz|

) 1
2 <∞.
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Application of the ergodic theorem (see e.g. Davidson (1994, Theorem 13.12)) yields

1
T − w

t=T−s∑
t=w−s

ρ̂w,st
a.s.→ Eρ̂w,st ,

1
T − w

t=T−s∑
t=w−s

zt
a.s.→ Ezt ,

1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)2 a.s.→ E(ρ̂w,st − µρ̂,w,s)2 = Var(ρ̂w,st ) ,

1
T − w

t=T−s∑
t=w−s

(zt − µz)2 a.s.→ E(zt − µz)2 = Var(zt) and

1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)(zt − µz)
a.s.→ E(ρ̂w,st − µρ̂,w,s)(zt − µz) = Cov(ρ̂w,st , zt) ,

as T →∞ ∀ (w, s) ∈ N× {1, ..., w − 1}. Hence,

1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − ¯̂ρw,s)(zt − z̄)

= 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s + µρ̂,w,s − ¯̂ρw,s)(zt − µz + µz − z̄)

= 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)(zt − µz) + (µz − z̄) 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)

+ (µρ̂,w,s − ¯̂ρw,s) 1
T − w

t=T−s∑
t=w−s

(zt − µz) + (µz − z̄) 1
T − w

t=T−s∑
t=w−s

(µρ̂,w,s − ¯̂ρw,s)

a.s.→ E(ρ̂w,st − µρ̂,w,s)(zt − µz) + 0 + 0 + 0 = Cov(ρ̂w,st , zt) as T →∞ and
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( 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − ¯̂ρw,s)2
)( 1

T − w

t=T−s∑
t=w−s

(zt − z̄)2
)

=
( 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s + µρ̂,w,s − ¯̂ρw,s)2
)( 1

T − w

t=T−s∑
t=w−s

(zt − µz + µz − z̄)2
)

=
( 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)2 + T − w
T − w

(µρ̂,w,s − ¯̂ρw,s)2

+ (µρ̂,w,s − ¯̂ρw,s) 2
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)
)( 1

T − w

t=T−s∑
t=w−s

(zt − µz)2

+ T − w
T − w

(µz − z̄)2 + (µz − z̄) 2
T − w

t=T−s∑
t=w−s

(zt − µz)
)

a.s.→
(
E(ρ̂w,st − µρ̂,w,s)2 + 02 + 0

)(
E(zt − µz)2 + 02 + 0

)
= Var(ρ̂w,st )Var(zt)

as T → ∞. Application of a continuous mapping theorem yields the desired consis-

tency result as T →∞ and for every (w, s) ∈ N× {1, ..., w − 1}

ρ̂w,s,zT :=
1

T−w
∑t=T−s
t=w−s(ρ̂

w,s
t − ¯̂ρw,s)(zt − z̄)√

1
T−w

∑t=T−s
t=w−s(ρ̂

w,s
t − ¯̂ρw,st )2 1

T−w
∑t=T−s
t=w−s(zt − z̄)2

a.s.→ ρzw,s := Corr(ρ̂w,s,zT , zt).

Asymptotic normality of
√
T − w(ρ̂w,s,zT − ρzw,s) ∀ (w, s) ∈ N × {1, ..., w − 1} as

T →∞ follows from

√
T − w(ρ̂w,s,zT − ρzw,s) =

1√
T−w

∑t=T−s
t=w−s rtst√

1
T−w

∑t=T−s
t=w−s r

2
t

1
T−w

∑t=T−s
t=w−s s

2
t

− rs√
r2
√
s2

=
√
r2
√
s2 1√

T−w
∑t=T−s
t=w−s rtst − rs

√
1

T−w
∑t=T−s
t=w−s r

2
t

1
T−w

∑t=T−s
t=w−s s

2
t√

1
T−w

∑t=T−s
t=w−s r

2
t

1
T−w

∑t=T−s
t=w−s s

2
t

√
r2
√
s2

where rt := (ρ̂w,st − ¯̂ρw,s), st = (zt − z̄), rs := Cov(ρ̂w,s,zT , zt), r2 := Var(ρ̂w,s,zT ) and
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s2 := Var(s2
t ). Now the numerator satisfies,

√
r2
√
s2 1√

T − w

t=T−s∑
t=w−s

rtst − rs

√√√√ 1
T − w

t=T−s∑
t=w−s

r2
t

1
T − w

t=T−s∑
t=w−s

s2
t

=
√
r2
√
s2 1√

T − w

t=T−s∑
t=w−s

rtst − rs
√
r2
√
s2

+ rs
√
r2
√
s2 − rs

√√√√ 1
T − w

t=T−s∑
t=w−s

r2
t

1
T − w

t=T−s∑
t=w−s

s2
t

=
√
r2
√
s2
( 1√

T − w

t=T−s∑
t=w−s

rtst − rs
)

+ rs

√r2
√
s2 −

√√√√ 1
T − w

t=T−s∑
t=w−s

r2
t

1
T − w

t=T−s∑
t=w−s

s2
t

 .
Asymptotic normality of the numerator is thus obtained by application of the central

limit theorem Billingsley (1961) to the SE martingale difference sequence {rtst− rs}

in to obtain, for some 0 < σrs := E(rtst)2 <∞,

1√
T − w

t=T−s∑
t=w−s

rtst − rs
d→ N(0, σ2

rs) as T →∞

and an ergodic theorem in Davidson (1994, Theorem 13.12) to obtain a denominator,

√
r2
√
s2

√√√√ 1
T − w

t=T−s∑
t=w−s

r2
t

1
T − w

t=T−s∑
t=w−s

s2
t

a.s.→ r2s2 as T →∞

and hence, application of a continuous mapping theorem and Slutsky’s theorem yields,

√
T − w(ρ̂w,s,zT − ρzw,s)

d→ N(0, σ2
ρ) as T →∞ where σ2

ρ := σ2
rs/(r2s2)2.

The claim that ρ̃w,s,zT
d→ N(0, 1) ∀ (w, s) ∈ N × {1, ..., w − 1} as T → ∞ under the

null hypothesis of no phase-dependence H0 : ρzw,s = 0 now follows immediately since

under H0 we have rs := Cov(ρ̂w,s,zT , zt) = 0 and hence,
√
T − w ρ̂w,s,zT

d→ N(0, σ2
ρ)
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as T → ∞, and furthermore and σ2
rs = E(rtst)2 = Er2

tEs2
t = r2s2, and hence by

Slutsky’s theorem,

ρ̃w,s,zT :=
(
t=T−s∑
t=w−s

s2
t

) 1
2
(
t=T−s∑
t=w−s

r2
t

) 1
2

×
√
T − w ρ̂w,s,zT

d→ N(0, 1) as T →∞.

Finally, the claim that ρ̃w,s,zT →∞ as T →∞ under the alternative H1 : ρzw,s 6= 0 is

obtained since under H1 we have rs := Cov(ρ̂w,s,zT , zt) 6= 0 and hence
√
T − wrs→∞

and
√
T − wρzw,s →∞ as T →∞ and hence,

ρ̃w,s,zT : =
(
t=T−s∑
t=w−s

s2
t

) 1
2
(
t=T−s∑
t=w−s

r2
t

)− 1
2

×
√
T − w ρ̂w,s,zT

=
(
t=T−s∑
t=w−s

s2
t

) 1
2
(
t=T−s∑
t=w−s

r2
t

)− 1
2

×
√
T − w (ρ̂w,s,zT − ρzw,s)

+
(
t=T−s∑
t=w−s

s2
t

) 1
2
(
t=T−s∑
t=w−s

r2
t

)− 1
2

×
√
T − wρzw,s →∞ as T →∞. �
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Abstract

This paper proposes the use of a double correlation coefficient as a nonpara-
metric measure of phase-dependence in time-varying correlations. An asymp-
totically Gaussian test statistic for the null hypothesis of no phase-dependence
is derived from the proposed measure. Finite-sample distributions, power and
size are analyzed in a Monte-Carlo exercise. An application of this test provides
evidence that correlation strength between major macroeconomic aggregates is
both time-varying and phase dependent in the business cycle.

Keywords: nonparametric; phase-dependence; time-varying correlation.
JEL Codes: C01, C14, C32.

1 Introduction

Many economic time-series exhibit correlation strengths that change over time. Para-

metric state-space models like the dynamic conditional correlation (DCC) model of

Engle (2000) attempt to capture these time-variations in correlation strength be-

tween financial time-series. Structural parametric models with nonlinearities and

time-varying parameters in macroeconomics and microeconomics are also capable of
∗The author is thankful to Andre Lucas and Siem Jan Koopman for helpful comments and sugges-

tions and thankful to the Dutch Science Foundation (NWO) for financial support. Correspondence
address: Francisco Blasques, VU University Amsterdam, FEWEB/FIN, de Boelelaan 1105, 1081
HV Amsterdam, Netherlands. Email: f.blasques@vu.nl.
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generating time-varying correlations. Nonparametric methods are however desirable

in cases where the researcher does not wish to impose a potentially restrictive para-

metric model structure on the data. Evidence of model misspecification in certain

applications is thus a possible reason to adopt, or at least complement, econometric

analysis with nonparametric methods. Nonparametric methods are also appealing

when searching for ‘descriptive statistics’ that reflect simple and agnostic ‘stylized

facts’. For example, in empirical macroeconomics, considerable effort has been in-

vested since Kydland and Prescott (1982) in the design and estimation of structural

macroeconomic models capable of describing the correlation structure of the data.

Even estimated macroeconomic structural models are usually evaluated by their abil-

ity to accurately describe a matrix of correlations between contemporaneous macroe-

conomic variables and their lags; see e.g. Dave and Dejong (2007).

This paper proposes the use of a double correlation coefficient as a nonparametric

measure of phase-dependence in the correlation between two time-series. Under ap-

propriate regularity conditions the proposed statistic is easily shown to be consistent

a asymptotically normal. The asymptotic distribution of a derived test statistic is also

obtained. The small sample distributions, power and sizes of the phase-dependence

measure and associated test statistic are obtained by means of a Monte Carlo exercise.

In an application, the proposed test is used to provide evidence that the autocorre-

lation structure of macroeconomic aggregates for the US economy evolves over time,

and most importantly, that these time-varying correlations are systematically linked

to the phase of the business cycle, i.e. that they are phase-dependent. In particular,

the data reveals that correlations between aggregate output and aggregate investment

in the US are significantly stronger during recessions and weaker during expansions.

Section 2 motivates the problem by analyzing some stylized evidence of time-

varying correlation and phase-dependence in US macroeconomic aggregates. Sec-
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tion 3 proposes the nonparametric measure of phase-dependence and related test of

no phase-dependence and obtains their asymptotic properties. Section 4 provides a

Monte Carlo description of their small sample behavior. Finally, Section 5 assesses

the existence of phase-dependence in correlations between macroeconomic aggregates.

2 Time-Varying and Phase-Dependent Correlations

in Macroeonomic Aggregates

Since Kydland and Prescott (1982) the characterization of the business cycle in

macroeconomics has been typically restricted to the second-order unconditional mo-

ments of filtered data. The following table contains a standard characterization of the

business cycle for US quaterly data (1947 Q1 - 2012 Q1) based on the variance and

cross-autocorrelation between HP-filtered logarithms of three macroeconomic aggre-

gates: real private investment (it), rel private consumption (ct) and real gross domestic

product (yt).1

σ/σy ry rc ri ry−1 rc−1 ri−1

yt 1.00 - 0.69 0.78 0.82 0.62 0.66
ct 1.18 0.69 - 0.55 0.69 0.91 0.54
it 3.20 0.78 0.55 - 0.62 0.52 0.81

Table 1: Log US HP-filtered business cycle characterization of auto-correlation structure. Col-
umn σ/σy shows ratio of estimated variance with output’s estimated variance, rx shows estimated
correlation with variable x, and rx−1 shows estimated correlation with the lag of x.

Table 1 provides however a rather incomplete picture of the correlation between

these aggregates. In particular, it ignores the rich time-variation that occurs in the

correlation structure, and most importantly, the fact that this time-variation depends
1Data obtained from the Federal Reserve Bank of Saint Louis in billions of chained 2005 dollars.
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itself on the business cycle; i.e. that correlations are phase-dependent w.r.t. the busi-

ness cycle. For example, Figure 1 reveals the striking fact that the correlation strength

between output and investment is phase-dependent in NBER cycles. In particular,

NBER recession periods are marked by very high correlations and large drops in

correlation strength seem to occur only during NBER expansions.

−0.04

0

0.04

1949 1979 2009

0

0.5

1

Figure 1: Time series of HP-filtered log US output {yt} (above) and an estimated s-shifted w-
window correlation series {ρ̂w,s

t } between aggregate output {yt} and aggregate investment {it} (be-
low) with NBER recession indicator in shaded areas.2

A careful inspection of the data shows that correlations between output and in-

vestment never dropped below 0.5 in recession periods. Even correlations below 0.8

are rare during recessions. In contrast, in expansion periods, drops of correlation be-

low 0.5 do occur, and correlations below 0.8 are quite frequent. This apparent relation

can however be spurious and requires statistical verification. It is thus important to

assess the statistical significance of such findings. In particular, it is crucial to un-

derstand the properties of the estimated correlation series and to find a statistically

sound method of evaluating the presence of phase-dependence. We now address this

issue.
2The series plotted in Figure 1 make use of the s-shifted w-window uniformly weighted rolling

window defined in (1) with a small positive shift to guarantee centering s = 2. The span of the
kernel w = 4 was selected to be no larger than the average length of the NBER output cycle.
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3 A Measure of Phase-Dependence

The estimated time-varying correlation series {ρ̂w,st } in Figure 1 are Pearson cor-

relations calculated over a rolling window. In its simplest form, given a bivariate

time-series {(yt, xt)}, the sequence {ρ̂w,st } of s-shifted w-window correlations between

y and x is defined, for every t, as the sample Pearson correlation Corr
(
yw,st ,xw,st

)
between yw,st = (yt−w+s, ..., yt+s) and xw,st = (xt−w+s, ..., xt+s) where s is a shift index

that defines the centering of the window over the time period of interest,

ρ̂w,st :=
∑j=t+s
j=t−w+s(xj − x̄

w,s
j )(yj − ȳw,sj )√∑j=t+s

j=t−w+s(xj − x̄
w,s
j )2

√∑j=t+s
j=t−w+s(yt − ȳ

w,s
j )2

(1)

where x̄w,sj = ∑j=t+s
j=t−w+s xj/w and ȳw,sj = ∑j=t+s

j=t−w+s yj/w.

Figure 2 (right) illustrates various window sizes with shift parameter s = 0 (dash-

dotted line), s > 0 (dashed line), and s = w/2 (solid line) centering the window at

t and including ±n observations around (xt, yt) so that w = 2n. In a more general

form, Figure 2 (left) shows how different data points can be weighted by using an

appropriate kernel and shift parameter.

t−2n t−n t t+n t+2n t−2n t−n t t+n t+2n

Figure 2: Alternative weighing Kernels for estimation of local window correlations.

As a measure of phase-dependence for time-varying correlations, we propose the

calculation of a double correlation coefficient: the Pearson correlation coefficient be-

tween the sequence of estimated local s-shifted w-window correlations {ρ̂w,st } and an
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appropriate indicator of the business cycle {zt}. This correlation coefficient summa-

rizes the strength of agreement and linear co-movement between the business cycle

indicator z and the correlation strength between the macroeconomic aggregates x and

y. This allows us to conduct statistical inference on the relation between ρ̂w,st and zt.

Proposition 1 below reveals the statistical soundness of such a measure. In particular,

it shows that the consistency and asymptotic normality of the estimator ρ̂w,s,zT of the

double correlation coefficient ρzw,s = Corr(ρ̂w,st , zt) follows easily under standard regu-

larity conditions. Proposition 1 proposes also a test statistic with known asymptotic

distribution under the null hypothesis of no phase-dependence in {ρ̂w,st }.3

Proposition 1. Let {xt}t∈Z, {yt}t∈Z and {zt}t∈Z be strictly stationary and ergodic

(SE) stochastic sequences. Then {ρ̂w,st }t=T−st=w−s with elements defined in (1) is a subset

of an SE random sequence satisfying E|ρ̂w,st |k < ∞ ∀ (k, w, s) ∈ N × {1, ..., T} ×

{1, ..., w − 1}. Suppose furthermore that E|zt|2 <∞ and define

ρ̂w,s,zT :=
∑t=T−s
t=w−s(ρ̂

w,s
t − ¯̂ρw,s)(zt − z̄)√∑t=T−s

t=w−s(ρ̂
w,s
t − ¯̂ρw,st )2

√∑t=T−s
t=w−s(zt − z̄)2

and ρzw,s := Corr(ρ̂w,s,zT , zt)

where ¯̂ρw,s = ∑t=T−s
t=w−s ρ̂

w,s
t /(T −w) and z̄w,st = ∑t=T−s

t=w−s zt/(T −w). Then ∃ σ2
ρ > 0 such

that ρ̂w,s,zT
a.s.→ ρzw,s and

√
T (ρ̂w,s,zT − ρzw,s)

d→ N(0, σ2
ρ) ∀ (w, s) ∈ N × {1, ..., w − 1} as

T →∞. Finally, define the test statistic,4

ρ̃w,s,zT :=
(
t=T−s∑
t=w−s

(zt − z̄)2
) 1

2
(
t=T−s∑
t=w−s

(ρ̂w,st − ¯̂ρw,st )2
) 1

2

×
√
T − w ρ̂w,s,zT

3Note that while for Gaussian data the finite sample distribution of the Pearson correlation
coefficient is known since Fisher (1925), this well known result will not extend to the double cor-
relation considered here as the Gaussianity assumption cannot hold for the sequence {ρ̂w,s

t } with
elements in [0, 1]. The same is true for the approximate variance stabilizing Fisher’s z transfor-
mation F (ρ̂w,s,z

T ) = tanh−1(ρ̂w,s,z
T ) whose finite sample distribution is known to be approximately

N(tanh−1(ρz
w,s, 1/(T − 3)) but only under a Gaussianity assumption; see Pearson (1931), Rider

(1932), Kowalski (1972) and Duncan and Layard (1973).
4Normalization by T−w instead of T is asymptotically equivalent but preferable on finite samples.
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Then ρ̃w,s,zT
d→ N(0, 1) ∀ (w, s) ∈ N×{1, ..., w−1} as T →∞ under the null hypothesis

of no phase-dependence H0 : ρzw,s = 0 and ρ̃w,s,zT → ∞ ∀ (w, s) ∈ N × {1, ..., w − 1}

as T →∞ under the alternative H1 : ρzw,s 6= 0.

Proposition 1 defines implicitly a ‘two-sided’ size α test that rejects the null hy-

pothesis H0 : ρzw,s = 0 against the alternative H1 : ρzw,s 6= 0 if |ρ̃w,s,zT | > z∗α/2 where

z∗α/2 is taken from the standard normal table. The ‘one-sided’ size α tests for H0 :

ρzw,s > 0 or H0 : ρzw,s < 0 against H1 : ρzw,s ≤ 0 or H1 : ρzw,s ≥ 0 are naturally rejected

if ρ̃w,s,zT > z∗α or ρ̃w,s,zT < −z∗α respectively.

Proposition 1 above is limited in that (i) it does not provide guidance on the

selection of window-size w; (ii) it is silent about the small sample behavior of ρ̂w,s,zT

and ρ̃w,s,zT , and (iii) it does not convey a structural interpretation to the correlation

Corr(ρ̂w,st , zt) = ρzw,s between {zt} and the constructed rolling-window correlation

series. The following Monte Carlo exercise reveals that (i) the optimal window size

may depend on the average cycle length, (ii) the asymptotic results derived above

constitute a reasonable approximation to the finite sample distribution of ρ̂w,s,zT and

ρ̃w,s,zT ; and (iii) the proposed test statistic can be used as a test of no phase-dependence

in the unobserved sequence {ρt} of ‘true correlations’ between {yt} and {xt}.

4 Monte Carlo Evidence of Small Sample Behavior

Let {yt} and {xt} be sequences with time-varying correlation
{
ρt = Corr(yt, xt)

}
between them that is phase dependent (i.e. correlated with some sequence {zt}).

The following Monte Carlo shows that estimates of ρzw,s = Corr(ρ̂w,st , zt) approximate

ρz = Corr(ρt, zt). In other words, despite ρzw,s being a measure of phase-dependence in

the approximate constructed sequence {ρ̂w,st }, estimates of phase-dependence in ρzw,s
provide information about phase-dependence in the true underlying and unobserved

correlation sequence {ρt}. Accordingly, the Monte Carlo also reveals that the statistic

7



ρ̃w,s,zT introduced in Proposition 1 can be used as a nonparametric test statistic for

the hypothesis of no phase-dependence in the true unobserved sequence {ρt}. The

optimal choice of w is shown to be related with the autocorrelation in the business

cycle indicator zt (and hence with the average cycle length). Finally, the Monte

Carlo reveals that the asymptotic distribution of ρ̃w,s,zT derived above constitutes a

reasonable approximation to the finite sample distribution in moderate sample sizes.

For the Monte Carlo study we consider stochastic sequences {yt} and {xt} gener-

ated according to a state space model with a single time-varying parameter {φt}

 yt

xt

 =

 φy

φx

+

 φyx φt

φxy φxx


 yt

xt

+

 εt

wt

 (2)

where {εt} and {wt} are iid Gaussian sequences with εt ∼ N(0, σε) and wt ∼ N(0, σw),

the scalar parameters φy, φx, φyx and φxx are time invariant and {φt} is a time-varying

two-regime threshold parameter generated according to,

φt =


α + vt if zt < z̄

α + β + vt if zt ≥ z̄
and zt = θ0 + θzt−1 + ut , (3)

with {vt} and {ut} also iid Gaussian vt ∼ N(0, σv) and ut ∼ N(0, σu) and α, β,

θ0 and θ fixed scalar parameters. For β > 0 the time-varying parameter {φt} has

a ‘low regime’ (when zt < z̄) where it fluctuates around a mean α, and and ‘high

regime’ (when zt ≥ z̄) where it fluctuates around α + β. If β = 0 then there is no

phase-dependence in the ‘observed data’ {(yt, xt)} simulated using (1) and (2).

It is trivial to show that, under certain parameter restrictions, the simulated data

satisfies the conditions required by Proposition 1 for the consistency and asymptotic

normality results. The following lemma is thus given without proof. For simplicity,

we set φyx = φxy = 0 so that {xt} is an exogenous process whose influence on {yt}

8



depends on the business cycle indicator zt through the time-varying parameter {φt}.

Lemma 1. Let 0 < σε < ∞, 0 < σw < ∞, 0 ≤ σv < ∞, 0 < σu < ∞, |φy| < ∞,

|φx| < ∞, |θ0| < ∞, |α| < ∞, |β| < ∞, φyx = φxy = 0, |φxx| < 1 and |θ| < 1. Then

{(yt, xt, zt)} is SE and satisfies E|xt|2 <∞, E|yt|2 <∞ and E|zt|2 <∞.

Data simulated using (1) and (2) is now used to assess the small sample distri-

bution of ρ̂w,s,zT and ρ̃w,s,zT in Proposition 1 for alternative parameter values various

choices of sample size T and window-size w. Unless stated otherwise, the follow-

ing parameter values have been selected σε = 0.1, σw = 0.1, σv = 0.02, σu = 0.1,

φy = φx = θ0 = 0, α = 0.5, θ = 0.8 and s = w/2. Figure 3 shows the small sample

distribution of the double correlation coefficient under no phase-dependence (β = 0)

in the true unobserved correlation process {ρt} and reveals how the measure ρ̂w,s,zT

based on the approximate sequence {ρ̂w,st } is correctly centered at zero.

Figure 3: Density plots of ρ̂w,s,z
T obtained from S = 1000 Monte Carlo simulated paths of

{(yt, xt, zt)}T
t=1 under no-phase-dependence (β = 0), for window size w = 4 (left), w = 8 (center)

and w = 16 (right), and sample size T = 100, 250 and 500. The larger T densities are identifiable
by the higher concentration of mass around the origin.

On the contrary, Figure 4 plots the small sample distribution of ρ̂w,s,zT when there

is phase-dependence (β = −0.3). Figure 4 reveals once again that the measure ρ̂w,s,zT

based on the approximate sequence {ρ̂w,st } reflects the phase-dependence in the true

underlying and unobserved correlation sequence {ρt}.
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Figure 4: Density plots of ρ̂w,s,z
T obtained from S = 1000 Monte Carlo simulated paths of

{(yt, xt, zt)}T
t=1 under phase-dependence (β = −0.3), for window size w = 4 (left), w = 8 (center)

and w = 16 (right), and sample size T = 100, 250 and 500. The larger T densities are identifiable
by the smaller variance.

Table 2 provides information about the finite sample power of the no phase-

dependence test statistic ρ̃w,s,zT by stating rejection frequencies for the null hypothesis

of no phase dependence when β = 1 and β = 2. Naturally, the power of the test

increases with sample size, and rejection frequencies are better at β = 2 than β = 1.

β = 1 β = 2

T w = 2 w = 4 w = 8 w = 16 w = 2 w = 4 w = 8 w = 16

θ
=
.4

100 0.23 0.30 0.24 0.19 0.38 0.46 0.35 0.23
200 0.42 0.52 0.45 0.30 0.71 0.77 0.64 0.42
500 0.68 0.79 0.69 0.47 0.94 0.96 0.89 0.65
1000 0.93 0.98 0.93 0.72 1.00 1.00 1.00 0.92

θ
=
.8

100 0.40 0.56 0.63 0.52 0.65 0.78 0.80 0.65
200 0.71 0.86 0.91 0.83 0.95 0.98 0.98 0.93
500 0.95 0.99 1.00 0.97 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

θ
=
.9

7 100 0.39 0.55 0.66 0.70 0.59 0.73 0.77 0.78
200 0.72 0.85 0.93 0.94 0.91 0.95 0.96 0.97
500 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Power of ρ̃w,s,z
T as measured by rejection frequencies from S = 1000 Monte Carlo draws at

95% confidence level for the null hypothesis of no phase-dependence H0 : ρz
w,s = 0 and a two-sided

alternative H1 : ρz
w,s 6= 0 using the asymptotic N(0, 1) critical values derived in Proposition 1.
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The optimal choice of w depends on the amount of temporal dependence in {zt}

as measured by θ. In particular, smaller window sizes perform better under low

dependence (e.g. w = 4 under θ = 0.4), while larger window sizes perform better

under high dependence (e.g. w = 16 at θ = 0.97).

The relation between the optimal choice of window-size w and the temporal de-

pendence in {zt} is made clear in Figure 5. As expected, large window sizes perform

badly in low dependence setting where the average cycle length in {zt} is quite short

and the large window choice ends up averaging over various periods of high and low

correlation. For low dependence, small windows have higher power. Strong depen-

dence in {zt} is favorable to large window sizes that calculate correlations with a

larger number of observations and hence a smaller degree of uncertainty. When cy-

cles in zt are large, the advantage of large window correlation sequences in better

filtering the signal from the noise is reflected in their higher power.

Low Dependence Medium Dependence Strong Dependence
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Figure 5: Null hypothesis rejection frequencies from S = 1000 Monte Carlo draws at 95% confidence
level for the null hypothesis of no phase-dependence H0 : ρz

w,s = 0 and a two-sided alternative
H1 : ρz

w,s 6= 0 using asymptotic N(0, 1) critical values derived in Proposition 1 for β = 1 and
T = 200 under low (θ = 0.4), medium (θ = 0.8) and strong (θ = 0.97) dependence.

Table 3 now shows the finite sample size of the test ρ̃w,s,zT . The Monte Carlo

reveals that size is always better with small window size w and naturally improving

with sample size T . Furthermore, it is clear that the finite sample size is reasonably

close to nominal size for small θ and small w, yet considerably distorted under a

local-to-unit root strong dependence (θ = 0.97) and large w.
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β = 0

T w = 2 w = 4 w = 8 w = 16

θ
=
.4

100 0.084 0.093 0.109 0.125
200 0.062 0.082 0.084 0.099
500 0.057 0.074 0.079 0.091

1000 0.057 0.068 0.076 0.088
θ

=
.8

100 0.093 0.131 0.205 0.264
200 0.082 0.113 0.167 0.232
500 0.073 0.106 0.159 0.214

1000 0.071 0.104 0.143 0.201

θ
=
.9

7 100 0.104 0.148 0.246 0.381
200 0.084 0.124 0.221 0.350
500 0.078 0.117 0.206 0.332

1000 0.076 0.110 0.191 0.312

Table 3: Size of ρ̃w,s,z
T as measured by rejection frequencies (under β = 0) from S = 4000 Monte

Carlo draws at 95% confidence level for the null hypothesis of no phase-dependence H0 : ρz
w,s = 0

and a two-sided alternative H1 : ρz
w,s 6= 0 using asymptotic results in Proposition 1.

A conservative test will thus favor a small window size w despite the cost that

this might bring in terms of power evidenced by Table 2 and Figure 5. The trade-off

between power and size for w = 2 and w = 4 might however be worth consideration

depending on the application, since under strong dependence (θ = 0.97) the gains in

power can be larger than 15% (see e.g. Table 2 under β = 1).

Alternative parameter choices in terms of 0 < σε <∞, 0 < σw <∞, 0 ≤ σv <∞,

0 < σu < ∞, |φy| < ∞, |φx| < ∞, |θ0| < ∞, |α| < ∞ seem to have only marginal

effects on the results presented in Tables 2 and 3.

Finally, Figure 6 shows a finite sample power function that summarizes the test

behavior under local-to-null-hypothesis parameter values and the effects of temporal

dependence in {zt} for various sample sizes T . In accordance to the previous results,

power increases as β diverges from 0, as T increases, and size distortion is worse under

strong dependence.
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Figure 6: Finite sample power as function of β obtained from S = 2000 Monte Carlo draws for
(w, θ) = (2, 0.4) (left) and (w, θ) = (16, 0.97) (right).

5 Phase Dependence in the US Business Cycle

Making use of the theory established in Section 3, we now turn our attention back to

the data presented in Section 2 and assess wether the presence of phase-dependence

in the correlation between US macroeconomic aggregates is a statistically significant.

The phase-dependence measures and test statistics are obtained using a window

size of w = 4 and a shift of s = 2 for centering. According to the small sample Monte

Carlo evidence collected in Section 4, this will give us conservative testing procedures

with small sample size that very close to nominal at the cost of loosing some power.

Table 4 shows that the presence of phase-dependence in the correlation between

US macroeconomic aggregates is statistically significant at standard confidence lev-

els. Correlation strengths between macroeconomic aggregates are generally negatively

related with the NBER business cycle. In particular, correlations are statistically

stronger during recessions and weaker during expansions. Indeed, except for the

correlation between consumption and investment which shows no sign of phase de-

pendence with the business cycle, all other correlations (both contemporaneous and

lagged) appear significantly different from zero. Table 4 thus documents a rich time-

varying correlation structure of macroeconomic data that is usually ignored.
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y i c y−1 i−1 c−1

y - −0.23∗∗ −0.18∗ −0.29∗∗ −0.26∗∗ −0.30∗∗
- (-5.44) (-2.45) (-6.28) (-5.41) (-6.87)

i −0.23∗∗ - -0.08 −0.24∗∗ −0.25∗∗ −0.25∗∗
(-5.44) - (0.20) (-4.21) (-4.47) (-5.19)

c −0.18∗ -0.08 - −0.18∗∗ −0.19∗∗ −0.21∗∗
(-2.45) (0.20) - (-2.85) (-2.88) (-2.91)

Table 4: NBER business cycle phase-dependence characterization of log US HP-filtered auto-
covariance structure. Table shows values of nonparametric phase-dependence measure ρ̂w,s,z

T with
associated test statistic ρ̃w,s,z

T in brackets. ∗ and ∗∗ indicate rejection at 5% and 1% significance
levels.

A Proof of Proposition 1

This proof follows from standard well known results. Continuity of the sample s-

shifted w-window correlation ρ̂w,st on {xt}t∈Z and {yt}t∈Z ∀ (t, w, s) : t − w + s ≥

1 ∧ t + s ≤ T ensures measurability when relevant sets are equipped with a Borel

sigma-algebra. As a result, {ρ̂w,st }t=T−st=w−s is SE by Proposition 4.3 of Krengel (1985,

p.26), the SE nature of {xt}Tt=1 and {yt}Tt=1 and ρ̂w,st being a continuous function of a

finite subset of {xt}t∈Z and {yt}t∈Z ∀ (t, w, s). Naturally, E|ρ̂w,st |k < ∞ ∀ (k, w, s) ∈

N × {1, ..., T} × {1, ..., w − 1} holds for one t and hence all t by the SE nature of

{ρ̂w,st }t=T−st=w−s and the fact that its elements take values in [0, 1]. Since {ρ̂w,st }t=T−st=w−s

and {zt}t=Tt=1 are both subsets of SE sequences with E|ρ̂w,st |2 < ∞ and E|zt|2 < ∞, it

follows that {ρ̂w,st − µρ̂,w,s}t=T−st=w−s and {zt − µz}t=Tt=1 are SE with E|ρ̂w,st − µρ̂,w,s|2 < ∞

and E|zt − µz|2 < ∞ (by Cauchy-Schwartz inequality) where µρ̂,w,s := Eρ̂w,st and

µz := Ezt, and furthermore, by Minkowsky’s inequality

E
∣∣∣(ρ̂w,st − µρ̂,w,s)(zt − µz)

∣∣∣ ≤ (E|ρ̂w,st − µρ̂,w,s|2
) 1

2
(
E|zt − µz|

) 1
2 <∞.
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Application of the ergodic theorem (see e.g. Davidson (1994, Theorem 13.12)) yields

1
T − w

t=T−s∑
t=w−s

ρ̂w,st
a.s.→ Eρ̂w,st ,

1
T − w

t=T−s∑
t=w−s

zt
a.s.→ Ezt ,

1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)2 a.s.→ E(ρ̂w,st − µρ̂,w,s)2 = Var(ρ̂w,st ) ,

1
T − w

t=T−s∑
t=w−s

(zt − µz)2 a.s.→ E(zt − µz)2 = Var(zt) and

1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)(zt − µz)
a.s.→ E(ρ̂w,st − µρ̂,w,s)(zt − µz) = Cov(ρ̂w,st , zt) ,

as T →∞ ∀ (w, s) ∈ N× {1, ..., w − 1}. Hence,

1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − ¯̂ρw,s)(zt − z̄)

= 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s + µρ̂,w,s − ¯̂ρw,s)(zt − µz + µz − z̄)

= 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)(zt − µz) + (µz − z̄) 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)

+ (µρ̂,w,s − ¯̂ρw,s) 1
T − w

t=T−s∑
t=w−s

(zt − µz) + (µz − z̄) 1
T − w

t=T−s∑
t=w−s

(µρ̂,w,s − ¯̂ρw,s)

a.s.→ E(ρ̂w,st − µρ̂,w,s)(zt − µz) + 0 + 0 + 0 = Cov(ρ̂w,st , zt) as T →∞ and
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( 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − ¯̂ρw,s)2
)( 1

T − w

t=T−s∑
t=w−s

(zt − z̄)2
)

=
( 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s + µρ̂,w,s − ¯̂ρw,s)2
)( 1

T − w

t=T−s∑
t=w−s

(zt − µz + µz − z̄)2
)

=
( 1
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)2 + T − w
T − w

(µρ̂,w,s − ¯̂ρw,s)2

+ (µρ̂,w,s − ¯̂ρw,s) 2
T − w

t=T−s∑
t=w−s

(ρ̂w,st − µρ̂,w,s)
)( 1

T − w

t=T−s∑
t=w−s

(zt − µz)2

+ T − w
T − w

(µz − z̄)2 + (µz − z̄) 2
T − w

t=T−s∑
t=w−s

(zt − µz)
)

a.s.→
(
E(ρ̂w,st − µρ̂,w,s)2 + 02 + 0

)(
E(zt − µz)2 + 02 + 0

)
= Var(ρ̂w,st )Var(zt)

as T → ∞. Application of a continuous mapping theorem yields the desired consis-

tency result as T →∞ and for every (w, s) ∈ N× {1, ..., w − 1}

ρ̂w,s,zT :=
1

T−w
∑t=T−s
t=w−s(ρ̂

w,s
t − ¯̂ρw,s)(zt − z̄)√

1
T−w

∑t=T−s
t=w−s(ρ̂

w,s
t − ¯̂ρw,st )2 1

T−w
∑t=T−s
t=w−s(zt − z̄)2

a.s.→ ρzw,s := Corr(ρ̂w,s,zT , zt).

Asymptotic normality of
√
T − w(ρ̂w,s,zT − ρzw,s) ∀ (w, s) ∈ N × {1, ..., w − 1} as

T →∞ follows from

√
T − w(ρ̂w,s,zT − ρzw,s) =

1√
T−w

∑t=T−s
t=w−s rtst√

1
T−w

∑t=T−s
t=w−s r

2
t

1
T−w

∑t=T−s
t=w−s s

2
t

− rs√
r2
√
s2

=
√
r2
√
s2 1√

T−w
∑t=T−s
t=w−s rtst − rs

√
1

T−w
∑t=T−s
t=w−s r

2
t

1
T−w

∑t=T−s
t=w−s s

2
t√

1
T−w

∑t=T−s
t=w−s r

2
t

1
T−w

∑t=T−s
t=w−s s

2
t

√
r2
√
s2

where rt := (ρ̂w,st − ¯̂ρw,s), st = (zt − z̄), rs := Cov(ρ̂w,s,zT , zt), r2 := Var(ρ̂w,s,zT ) and
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s2 := Var(s2
t ). Now the numerator satisfies,

√
r2
√
s2 1√

T − w

t=T−s∑
t=w−s

rtst − rs

√√√√ 1
T − w

t=T−s∑
t=w−s

r2
t

1
T − w

t=T−s∑
t=w−s

s2
t

=
√
r2
√
s2 1√

T − w

t=T−s∑
t=w−s

rtst − rs
√
r2
√
s2

+ rs
√
r2
√
s2 − rs

√√√√ 1
T − w

t=T−s∑
t=w−s

r2
t

1
T − w

t=T−s∑
t=w−s

s2
t

=
√
r2
√
s2
( 1√

T − w

t=T−s∑
t=w−s

rtst − rs
)

+ rs

√r2
√
s2 −

√√√√ 1
T − w

t=T−s∑
t=w−s

r2
t

1
T − w

t=T−s∑
t=w−s

s2
t

 .
Asymptotic normality of the numerator is thus obtained by application of the central

limit theorem Billingsley (1961) to the SE martingale difference sequence {rtst− rs}

in to obtain, for some 0 < σrs := E(rtst)2 <∞,

1√
T − w

t=T−s∑
t=w−s

rtst − rs
d→ N(0, σ2

rs) as T →∞

and an ergodic theorem in Davidson (1994, Theorem 13.12) to obtain a denominator,

√
r2
√
s2

√√√√ 1
T − w

t=T−s∑
t=w−s

r2
t

1
T − w

t=T−s∑
t=w−s

s2
t

a.s.→ r2s2 as T →∞

and hence, application of a continuous mapping theorem and Slutsky’s theorem yields,

√
T − w(ρ̂w,s,zT − ρzw,s)

d→ N(0, σ2
ρ) as T →∞ where σ2

ρ := σ2
rs/(r2s2)2.

The claim that ρ̃w,s,zT
d→ N(0, 1) ∀ (w, s) ∈ N × {1, ..., w − 1} as T → ∞ under the

null hypothesis of no phase-dependence H0 : ρzw,s = 0 now follows immediately since

under H0 we have rs := Cov(ρ̂w,s,zT , zt) = 0 and hence,
√
T − w ρ̂w,s,zT

d→ N(0, σ2
ρ)
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as T → ∞, and furthermore and σ2
rs = E(rtst)2 = Er2

tEs2
t = r2s2, and hence by

Slutsky’s theorem,

ρ̃w,s,zT :=
(
t=T−s∑
t=w−s

s2
t

) 1
2
(
t=T−s∑
t=w−s

r2
t

) 1
2

×
√
T − w ρ̂w,s,zT

d→ N(0, 1) as T →∞.

Finally, the claim that ρ̃w,s,zT →∞ as T →∞ under the alternative H1 : ρzw,s 6= 0 is

obtained since under H1 we have rs := Cov(ρ̂w,s,zT , zt) 6= 0 and hence
√
T − wrs→∞

and
√
T − wρzw,s →∞ as T →∞ and hence,

ρ̃w,s,zT : =
(
t=T−s∑
t=w−s

s2
t

) 1
2
(
t=T−s∑
t=w−s

r2
t

)− 1
2

×
√
T − w ρ̂w,s,zT

=
(
t=T−s∑
t=w−s

s2
t

) 1
2
(
t=T−s∑
t=w−s

r2
t

)− 1
2

×
√
T − w (ρ̂w,s,zT − ρzw,s)

+
(
t=T−s∑
t=w−s

s2
t

) 1
2
(
t=T−s∑
t=w−s

r2
t

)− 1
2

×
√
T − wρzw,s →∞ as T →∞. �
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