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Abstract

We study multiple agents along a general river structure that is expressed by a geography

matrix and who have access to limited local resources, quasi-linear preferences over water

and money and cost functions dependent upon river inflow and own extraction. Unanimity

bargaining determines the water allocation and monetary transfers. We translate Inter-

national Water Law into either disagreement outcomes or individual aspiration levels. In

the former case, we apply the asymmetric Nash bargaining solution, in the latter case the

agents have to compromise in order to agree and we apply the asymmetric Nash rationing

solution. In both cases the optimization problem is separable into two subproblems: the

efficient water allocation that maximizes utilitarian welfare given the geography matrix; and

the determination of the monetary transfers associated with the weights. We show that the

Nash rationing solution may result in nonparticipation, therefore we generalize to the case

with participation constraints.

Keywords: River Basin Management, International Water Law, Negotiations, External-

ities, Political Economy of Property Rights

JEL codes: C70, D60, Q53



1 Introduction

Water is essential. People use it for a variety of purposes: from residential use to industrial

production. Due to population growth and industrialization, water demand and pollution

levels have tremendously increased and the international community has recognized that

fresh water is scarce. Most rivers are transboundary and often agents in upstream locations

use too much water and produce pollution. Hence, efficient use and resource management of

water serves as an important tool to mitigate fresh water scarcity. While many countries do

coordinate their water uses, international disputes do occur. Unfortunately, these disputes

cannot be resolved by International Water Law because in essence it only states that the

countries involved should mutually agree on sharing the river through negotiations, and it

is left in the middle how to resolve disputes over the allocation of water and reduction of

pollution. Therefore, some particular characteristics of the river sharing problem such as the

externalities of pollution from upstream to downstream and the absence of clearly defined

property rights in international river situations have drawn interests from researchers to

study the river sharing problem.

Giannias and Lekakis (1996) and Kilgour and Dinar (2001) analyze the river sharing prob-

lem between two or more countries along an international river that is linear, i.e., a river

originating from one spring where agents are located subsequently from upstream to down-

stream. The model in the first reference distinguishes between upstream and downstream, is

deterministic and has both water quantity and water quality. The second reference analyzes

a stochastic model of water quantity among several countries. Both studies characterize the

unique allocation that maximizes utilitarian welfare. Ambec and Sprumont (2002) mark

the start of embedding legal principles from International Water Law in the river sharing

problem. They translate the legal principles of Absolute Territorial Sovereignty (hereafter,

ATS) and Unlimited Territorial Integrity (hereafter, UTI) into their model. ATS is applied

to every group of agents and can be seen as Core stability. UTI is also applied at the group

level, but it is an aspiration approach. It is impossible that distinct groups of countries can

simultaneously achieve their group aspiration levels. As appropriate requirements, Ambec

and Sprumont (2002) propose group ATS and that no group attains a welfare above its group

aspiration level. For a linear river with insatiable agents, they show that the downstream

incremental solution is the only welfare distribution that satisfies these two requirements.

Ambec and Ehlers (2008) generalize this result by allowing for agents with a fixed satiation

point. In van den Brink, van der Laan and Moes (2012), more general river geographies and

other legal principles are considered.

International Water Law states that countries should mutually agree on sharing the

river through negotiations. For that reason, we approach the river sharing problem from

a bargaining perspective. The downstream incremental solution can be interpreted as the

outcome of a sequential bargaining process in which the countries along the linear river

enter one by one from upstream to downstream and at each entrance the joining member
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gets its incremental contribution. This is as if at every entrance the joining member has

the absolute bargaining power to extract all surplus from cooperation, which is not very

convincing. In a different context, this is as when new countries join the EU, these countries

have the bargaining power to receive all the welfare surplus generated by enlarging the EU.

Clearly, there is a need for a more realistic bargaining perspective that allows for less extreme

distribution of surpluses.

The literature on bargaining does provide a general theory based upon arbitrary distri-

butions of bargaining power. Because International Water Law states that countries should

mutually agree on the water allocation, unanimity among these countries is required. This

makes the asymmetric Nash bargaining solution (hereafter, ANBS) a natural candidate for

analyzing the river sharing problem. The ANBS has been axiomatized in e.g., Kalai (1977),

Kaneko (1980) and Herrero (1989), and it is supported by strategic bargaining models in

e.g., Herrero (1989), Miyakawa (2006), Laruelle and Valenciano (2008) and Herings and

Predtetchinski (2010). Application of the ANBS to the river sharing problem with only two

agents, an upstream and a downstream agent, can be found in e.g. Houba (2008) and Houba,

Do and Zhu (2013). This paper generalizes this approach to a general river geography with

multiple agents.

As noticed in Houba (2008), legal principles not only restrict the negotiations to una-

nimity bargaining, but also have implications for the countries’ strategic possibilities as long

as they do not cooperate, i.e., the disagreement outcome. In this paper we apply the ATS

principle and the UTI principle as the guiding principles for individual countries in case of

disagreement. For UTI, we discuss two interpretations: a strict interpretation in which only

the most downstream country is allowed to use water; and an interpretation in which each

country claims UTI. The ATS and strict UTI imply different disagreement outcomes that are

both feasible. Under the second UTI interpretation the vector of individual aspiration levels

under disagreement is infeasible and yields a utopia point, agreement can only be reached

if the countries are willing to compromise on these levels. In Mariotti and Villar (2005) the

Nash rationing solution is given and axiomatized to study compromise situations in which

unanimity is required. Their solution is symmetric, possibly multi-valued and always con-

tains the maximizers of a modified Nash product over the Pareto frontier. For situations

with transferable utility, the Nash rationing solution is unique and coincides with the unique

maximizer. In this paper, we propose a modification of the Nash rationing solution to allow

for asymmetries.

Compared to the current literature, this paper makes several contributions. First, we

model multiple agents along a general river structure that is expressed by a geography matrix

and who have access to limited local resources. Each agent has quasi-linear preferences over

water and money; where the use of water yields a net benefit being the difference of the

benefit of water use and the cost of water extraction. The extraction costs depend upon the

amount of the available water and the amount of extraction. This may result in a satiation
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point that depends on the amount of water.

Second, translating the ATS principle and two interpretations of the UTI principle into

individual levels of welfare under disagreement, we arrive at three different cases. In the first

two cases the vectors of disagreement levels are feasible and serve as the different disagree-

ment outcomes in the ANBS. Different legal principles define different property rights, and

therefore the associated ANBS outcomes will also be different and allow an interpretation

in terms of a shift in property rights. We also quantify the negotiated welfare distribution.

The most downstream agent always prefers the strict UTI principle, because it gives him

the right to claim all water inflows along the river. At least one of the other agents prefers

the ATS principle, but strong bargainers amongst these agents may prefer the strict UTI

principle as well, which differs from the two-agents case.

Since the individual aspiration levels are infeasible, we apply to this situation the asym-

metric Nash rationing solution (hereafter, ANRS). The asymmetric weights in this solution

cannot be interpreted as bargaining weights, because a larger weight yields a lower welfare.

Instead, it is intuitive to interpret these weights as responsibility weights. Mathematically

the ANRS has many similarities with the ANBS, but we show by means of an example that

at the ANRS some agents might receive a welfare that is below what could be obtained by

blocking agreement, i.e., refrain to use water and nonparticipation in the negotiations. To

avoid such outcomes we propose to add participation constraints to the asymmetric Nash

rationing problem. These constraints can also be justified by modelling a ratification process

that takes place after the negotiations are concluded.

Third, we show that the maximization of the (modified) Nash products is separable

into two subproblems: the efficient water allocation that maximizes utilitarian welfare and

that can be related to the geography matrix; and the monetary transfer associated with

the bargaining weight. In order to derive general formulas that are also applicable if the

consequences of other legal principles from International Water Law are studied, we analyze

the ANBS, respectively ANRS, under unspecified disagreement (utopia) points.

This paper is organized as follows. In Section 2, we specify the river sharing model and

introduce the general river geography. Then, in Section 3, we discuss several legal principles

and translate them in either a disagreement point or a utopia point. In Section 4, we first

analyze the ANBS for unspecified disagreement points and derive the decomposition, before

analyzing specific disagreement points associated with the mentioned legal principles. In

Section 5 the individual aspiration levels are analyzed from a Nash rationing perspective.

Section 6 contains two numerical examples and Section 7 concludes this paper.

2 Model specification

We consider a river that flows through a finite set of locations, for instance cities, agriculture

communities, industrial facilities or countries, at which water is extracted from the river.
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These locations are called agents and the set of agents is denoted by N = {1, 2, ..., n}, where

n ≥ 2 is the number of agents. The river geography is represented by a graph with the

agents as its nodes. In this paper we consider directed trees, where the root of the tree

represents the most downstream agent, numbered by n, and arcs are directed to the root.

This collection of possible river geographies includes the linear river in Ambec and Sprumont

(2002) and rivers that originate at multiple springs, which merge together downwards into

a single stream, as considered in e.g. van den Brink et al. (2012) and Ansink and Houba

(2012). Every agent located downstream to agent i is said to be a successor of i and we

denote the set of all successors of i by Si. Because n is the root of the tree, we have Sn = ∅
and Si 6= ∅ for all i 6= n. Similarly, the set P i denotes the set of all predecessors of i located

upstream of i along the river. An agent i has P i = ∅ if and only if i is located at a spring or

source of the river. Furthermore, we notice that P n = N \ {n}.
The natural water inflow, possibly zero, at the territory of agent i, i ∈ N , is denoted by

ei and the amount of water used by agent i is denoted by xi. Furthermore, all predecessors

of agent i could potentially transfer water to i, whereas i could possibly transfer water to his

successors. The amount of water available for agent i is given by fi = ei +
∑

j∈P i(ej − xj),
which consists of his own local water resource ei plus the inflow of water that his predecessors

transfer to i. Since water only flows from upstream to downstream and inflow at successors

of i can not be allocated to i, the water use of agent i is constrained by xi ≤ fi. In the sequel

we denote e = (e1, . . . , en)> ∈ Rn
+ as the vector of natural inflows, x = (x1, . . . , xn)> ∈ RN

+

as the vector of water uses and f = (f1, . . . , fn)> ∈ Rn
+ as the vector of constraints.

Because it might be convenient to work in matrix notation, following Ansink and Houba

(2012) we model the river geography by the n× n matrix R with components Rji given by

Rji = 1 if j ∈ Si ∪ {i}, and Rji = 0 otherwise. Using this allows us to rewrite the vector f

of available water and all water constraints x ≤ f as

f = e+ (R− I) (e− x) , respectively, Rx ≤ Re.

The next example illustrates the notation.

Example 2.1. Consider a river with two springs at locations 1 and 2 that merge together

at location 3. Then the river flows through location 4. Then the matrix representing the

river geography is given by

R =


1 0 0 0

0 1 0 0

1 1 1 0

1 1 1 1

 .
For instance, since water from location 1 can be used in locations 1, 3 and 4, the first column
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of R is given by (1 0 1 1)>. Then the (in)qualities for water inflows and constraints given by

f = e+ (R− I)(e− x) and Rx ≤ Re.

indeed yield the (in)equalities
f1 = e1

f2 = e2

f3 = e3 + (e2 − x2) + (e1 − x1)
f4 = e4 + (e3 − x3) + (e2 − x2) + (e1 − x1)

 and


x1 ≤ e1

x2 ≤ e2

x1 + x2 + x3 ≤ e1 + e2 + e3

x1 + x2 + x3 + x4 ≤ e1 + e2 + e3 + e4

 .
�

By the tree structure of the river geography we have the following two properties on the

matrix R.

Property 2.2.

(i) If Rji = 1, then Rij = 0.

(ii) If Rji = 1 and Rki = 1, then either Rkj = 1 or Rjk = 1.

The first property reflects that if water can flow from agent i to j 6= i, then it is impossible

that the water flows from j to i. This rules out locations that have a local common pool,

for instance situations in which the river is the common border between two countries. The

second property reflects that we don’t allow that the river splits into a delta, i.e., each agent

i 6= n has precisely one downstream neighbor. This is ruled out, because otherwise additional

information is needed regarding how the water flow divides amongst different branches, which

may depend on geographical factors, for instance the differences in altitude along the several

branches, as well as on the flow level at the point of splitting.

Given the constraints Rx ≤ Re on the use of water, each agent along the river chooses an

amount xi of water use for industrial production, residential use, irrigation etc. An amount

xi yields benefits of the water use and costs of water extraction for each agent. Agent i’s

cost depends upon the amount of water extraction xi and the available water fi.

Assumption 2.3. Agent i ∈ N has a benefit function bi : R+ → R+ with the property that

b
′
i > 0, b

′′
i < 0 and bi(0) = 0.

Assumption 2.4. Agent i ∈ N has a cost function ci : R2
+ → R+ with the property that

∂ci
∂fi

< 0, ∂ci
∂xi

> 0, ∂2ci
∂x2i

> 0, and ci(fi, 0) = 0 for all fi ≥ 0.

The inequality ∂ci
∂fi

< 0 means that water use of upstream agents generates negative

externalities for downstream agents. The costs of extraction are decreasing in the amount of

available water, i.e., more use of water by the predecessors of agent i and thus a decrease of fi

results in higher extraction cost for the same amount xi. So a decrease in fi yields an upward
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shift of the entire cost function, except at xi = 0. The conditions on the first and second

derivative of ci to the extraction xi of water imply that the cost function is convex in agent

i’s own water use. Finally, we assume that zero extraction yields zero costs, independent of

fi. This assumption is merely made for convenience in Section 5 where it implies zero utility

from inaction or nonparticipation in an agreement. None of our other results depends upon

our assumption that zero extraction yields zero costs.

We further assume that utility is transferable in the sense that agents are able to transfer

utility to each other by making monetary transfers. The monetary transfer to agent i is

equal to ti ∈ R. A positive transfer ti > 0 means that agent i receives money, ti < 0 means

that agent i has to pay |ti|. A monetary transfer scheme is a vector t = (t1, . . . , tn) ∈ Rn

such that there is no financial deficit:
∑n

i=1 ti ≤ 0.

The utility of agent i depends on xi, fi and ti and is given by the quasi-linear utility

function

ui(fi, xi, ti) = bi(xi)− ci(fi, xi) + ti,

where bi(xi) − ci(fi, xi) is the net benefit of the water use xi at fi. Notice that by our

assumptions the net benefit bi(0) − ci(fi, 0) of inaction is equal to zero for every fi ≥ 0.

Further, notice that the first-order condition

∂bi
∂xi
− ∂ci
∂xi

= 0

might have a solution depending on fi, say si(fi). In case there is such a solution, si(fi) is

the satiation point of i that depends on fi.

In summary, the river sharing model is fully represented by the quadruple (N,R, u, e),

where N denotes the set of agents, R is the river geography, u is the collection of utility

functions {ui}i∈N and e is the vector of local water resources. In the remainder of the paper

we assume that each agent in this model is a rational utility maximizer and that all benefit

functions, cost functions and water resources are common knowledge.

At this stage, we introduce the maximal utilitarian welfare that we denote as w. Formally,

w = max
x,f≥0

n∑
i=1

ui(fi, xi, 0) = max
x,f≥0

n∑
i=1

(bi(xi)− ci(fi, xi))

s.t. Rx ≤ Re and f = e+ (R− I) (e− x) . (1)

Since individual utilities are transferable through the monetary transfers, the utility possi-

bility set is given by U = {u ∈ Rn|
∑n

i=1 ui ≤ w}, see e.g. page 325 of Mas-Colell, Whinston,

and Green (1995). Therefore, the maximal utilitarian welfare describes what can be achieved

in the river sharing problem (N,R, u, e) in terms of welfare. In the rest of this paper we
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take it for granted that (1) admits a unique maximizer, which we denote by (xUW , fUW ).1

It might be that xUWi = 0 for all i < n, i.e., welfare is maximized at zero extraction by all

agents 1, . . . , n − 1. However this seems to be unrealistic in practice and also for ease of

analysis we exclude this case.

Assumption 2.5. For at least one agent i = 1, . . . , n− 1, it holds that xUWi > 0.

Our framework captures some of the influential models of the river sharing problem.

Ambec and Ehlers (2008) assume that the (net) benefit function only depends on xi, is

strictly concave and might have a satiation point si. Under our assumptions, the concavity

of the benefit function bi and the convexity of the cost function ci in xi yield a concave

net benefit function in xi that might have a satiation point. Since the cost function ci also

depends on the available water resources fi, also the satiation point si(fi) depends upon fi,

and so our model generalizes Ambec and Ehlers (2008).

Our model can also be interpreted in terms of pollution externalities. For instance,

van der Laan and Moes (2012) incorporate pollution in the benefit function and the cost

function. In their model, an agent’s cost function depends on accumulated own pollution and

the pollution of all his upstream agents. If we treat water use as positively correlated with

pollution and, for some convex function ĉi : R+ → R+ define the cost function ci (fi, xi) =

ĉi (fi − xi), then ci depends upon accumulated water use
∑

j∈P i∪{i} xj, which is identical as

in van der Laan and Moes (2012). Our cost function generalizes from this by allowing for

asymmetric effects between upstream pollution and own pollution, but makes the additional

assumption that the costs are zero when the own pollution is zero.

3 Legal principles defining property rights

Legal principles from International Water Law have spurred a new emerging literature in

the river sharing problem following Ambec and Sprumont (2002). In this section, we first

discuss several legal principles that define different property rights regimes for international

rivers, and then, translate these into our framework. As e.g. McCaffrey (2001) writes, two

doctrines are prevalent in the International Water Law: the principle of Absolute Territorial

Sovereignty (hereafter, ATS) and the principle of Unlimited Territorial Integrity (hereafter,

UTI). Each of these principles will be discussed in a separate subsection.

3.1 Absolute Territorial Sovereignty

In 1895, the Mexican government filed a complaint against the US government about the

excessive use of water from the river Rio Grande, which originates in the US and forms part of

1Notice that (1) may admit multiple maximizers to support the unique global maximum w. Since the
uniqueness of w drives our analysis, we assume uniqueness of the maximizer for ease of discussion and to
relieve the notational burden.
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the border between the US and Mexico before flowing into the Gulf of Mexico. The decision

from the Attorney General of the US Department of Justice, Judson Harmon, is that “the

United States is under no obligation to Mexico to refrain its use of the Rio Grande because

its absolute sovereignty within its own territory entitles it to dispose of the water within

that territory in any way it wishes, regardless of the consequences in Mexico” (McCaffrey,

1996). The US therefore had no obligations towards Mexico. In accordance to this, the ATS

principle, also known as the Harmon doctrine, states that a country has absolute sovereignty

over the area of any river basin on its territory: it may freely decide how much water to use

of the water flowing within its borders but cannot claim the continued and uninterrupted

flow from upper basin countries.

In our framework, every agent i has the property rights over his own local water resource

and inflow from upstream under ATS. In this situation, agent i can freely consume fi. This

includes his own local inflow ei and all the unused water from his predecessors without the

obligation to pay any monetary compensation. Starting from the agents i with P i = ∅, we

can recursively solve for the inflows fATSi that will result when all agents maximize their

own net benefits by

fATSi = ei+
∑

j∈P i
(ej−xATSj ), where xATSi = arg max

xi
ui(f

ATS
i , xi, 0), s.t. xi ≤ fATSi . (2)

The disagreement pair (xATS, fATS) differs from the unique maximizer (xUW , fUW ) of (1),

because the ATS does not internalize the externalities of fi on the cost of extraction. So,

there exists a group of at least two agents who can beneficially trade water to increase

utilitarian welfare.

In negotiations, the net benefits associated with these water uses and inflows specify the

disagreement utilities given by dATSi = ui(f
ATS
i , xATSi , 0), i = 1, . . . , n. Since every agent can

guarantee himself a zero net benefit by a zero extraction of water, it holds that dATSi ≥ 0 for

all i. The following result shows that the disagreement point under the ATS principle yields

strictly less welfare than the maximal utilitarian welfare w as defined in (1). The proofs of

the results in this paper are deferred to the appendix.

Proposition 3.1. In the river model (N,R, u, e) it holds that
∑n

i=1 dATSi < w.

3.2 Unlimited Territorial Integrity

Egyptian reliance on the Nile River over the millennia has led it to believe that it has natural

and historical rights over those waters. This belief is reflected in the position taken by Egypt

in international fora that ”no country has the right to undertake any positive or negative

measure that could have an impact on the river’s flow in other countries”, for instance in the

Egypt Country Report at the 1981 Interregional Meeting of International River in Dakar.

Hence, Egypt is particularly sensitive to any action towards the Nile river by the upstream
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countries and strongly opposed the 2010 agreement on sharing the Nile water signed in

Entebbe by Ethiopia, Rwanda, Tanzania and Uganda.

The UTI principle states that a country has the right to demand the natural flow of

an international river into its territory that is undiminished in quantity and unchanged in

quality by the upstream countries. Incorporating it into our framework, an upstream agent

is only allowed to consume water if he has the explicit consent of all his downstream agents.

As recognized in e.g. McCaffrey (1996) and (2001), when all agents invoke the UTI principle,

UTI itself becomes self-contradictory. In the case of one upstream and one downstream agent,

when both agents invoke the UTI principle, the local water resource on the territory of the

upstream agent is claimed by both, leading to inconsistency. In the following discussion, we

consider two interpretations of the UTI principle: according to the first strict interpretation,

only the most downstream agent may claim all water inflows, in the second interpretation

the UTI principle is invoked by all agents.

3.2.1 Strict UTI

The UTI principle clearly favors downstream agents over upstream agents. Hence, in prac-

tice, the UTI principle has often been invoked by downstream agents. In this subsection,

we take the most restrictive case under the UTI principle, namely that only the most down-

stream agent may claim all the water of the river and can restrict all his predecessors to zero

extraction as long as no agreement has been reached.

Formally the disagreement utilities are obtained as follows. For every agent i = 1, 2, ..., n−
1 we have that under disagreement xUTIi = 0 and thus the disagreement flows are given by

fUTIi = ei +
∑

j∈P i ej. For the most downstream agent n, we have that fUTIn =
∑

j∈N ej and

xUTIn is the solution to the the maximization problem

xUTIn = arg max
xn

bn(xn)− cn(fUTIn , xn), s.t. xn ≤ fUTIn . (3)

This gives the disagreement utilities dUTIi = ui(f
UTI
i , 0, 0) = 0 for agents i = 1, . . . , n−1 and

dUTIn = un(fUTIn , xUTIn , 0) = un(
∑

j∈N ej, x
UTI
n , 0) > 0. The disagreement utilities under the

strict UTI principle yield strictly less welfare than the maximal utilitarian welfare w. We

state the following result without proof,2 and the strict inequality is implied by Assumption

2.5 that (xUW , fUW ) and (xUTI , fUTI) are unequal.

Proposition 3.2. In the river model (N,R, u, e) it holds that
∑n

i=1 d
UTI
i < w.

Since
∑n−1

i=1 dATSi ≥ 0 =
∑n−1

i=1 dUTIi and dATSn < dUTIn , agent n has a strict better

bargaining position under UTI than under ATS and the other agents has a reverse order

with respect to the bargaining position. However, the final utility also depends on the net

2The proof is similar to the proof of Proposition 3.1.
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surplus (i.e., the welfare from cooperation minus the sum of disagreement utilities). In the

next section, we will clarify how these two effects determine the final utility for each agent.

Under strict UTI it might happen that xUTIn < fUTIn , so xUTIn = sn(fUTIn ) = sn(
∑

j∈N ej),

i.e., agent n extracts his satiation level of water and leaves some of the total flow
∑

j∈N ej

unused. This raises the issue whether agent n’s predecessors should be allowed to use water.

The answer is negative. An intuitive explanation is that any water use by the upstream agents

generates negative externalities on the most downstream agent in the sense of decreasing his

water inflow, hence increasing his extraction cost. Indeed, denoting x̂n as the solution of

maxxn≤fUTI
n −x−n

bn(xn) − cn(fUTIn − x−n, xn), where x−n denotes the aggregate water use

amount by the predecessors of agent n, it follows that

bn(x̂n)− cn(fUTIn − x−n, x̂n) < bn(x̂n)− cn(fUTIn , x̂n) ≤

max
xn≤fUTI

n

bn(xn)− cn(fUTIn , xn) = bn(xUTIn )− cn(fUTIn , xUTIn ),

and the strict inequality comes from the fact that cn(fn, xn) decreases when the water inflow

fn increases. Therefore, as long as no agreement has been reached, the most downstream

agent will invoke his property rights on all the water resources and forbids his predecessors

to consume any water.

3.2.2 Individual aspiration levels

Ambec and Sprumont (2002) define agent’s i individual aspiration level as the maximal

welfare that i would be able to achieve in the absence of all other agents, i.e., when agent

i would be able to use the entire water inflow fUTIi at his own territory and the territories

of all his upstream agents.3 As noticed before, the individual aspiration levels are infeasible

when the river contains at least two agents and the agents have to compromise on their

aspiration levels in order to reach agreement. Despite feasibility, individual aspiration levels

often provide important reference points for individual decision makers. Also, Locke (1948)

(see page 24) wrote: ”Now, of those good things which nature hath provided in common,

every one had a right, as hath been said, to as much as he could use, and property in all

he could effect with his labor; all that his industry could extend to, to alter from the state

nature had put it in, was his.” In this tradition, each agent has a legitimate right to the

individual aspiration level, but not to more.

Formally, when all agents invoke the UTI principle, the individual aspiration levels are

obtained as follows. For every agent i, the inflow under disagreement fASPi coincides with

fUTIi , i.e., fASPi = ei +
∑

j∈P i ej, and the individual aspiration water use of agent i is given

3Note that Ambec and Sprumont (2002) also define group aspiration levels for coalitions of agents, which
does not appear in our analysis.
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by

xASPi = arg max
xi

bi(xi)− ci(fASPi , xi), s.t.xi ≤ fASPi . (4)

This gives the aspiration level utilities dASPi = bi(x
ASP
i ) − ci(fASPi , xASPi ) ≥ 0 for all agents

i ∈ N . Notice that for all agents i located at a source of the river, i.e., P i = ∅, we have

dASPi = dATSi and for the most downstream agent n we have dASPn = dUTIn . The following

result extends the infeasibility of individual aspiration levels in Ambec and Sprumont (2002).

Proposition 3.3. In the river model (N,R, u, e) it holds that
∑n

i=1 d
ASP
i > w.

4 The ANBS in the river sharing problem

Agents can improve on the inefficient disagreement outcomes associated with the principles

of ATS, respectively strict UTI, by negotiations for joint river management. In this section,

we apply the ANBS to mimic such negotiations. This modeling choice can be justified by

referring to the 1997 UN Convention that requires consent by all countries in the river basin.

It is widely accepted that the ANBS captures unanimity bargaining.

We first establish the ANBS for a general river problem (N,R, u, e) with some maximum

welfare w and an unspecified vector d of disagreement utilities with
∑

i∈N di < w. Next,

we show that by the quasi-linear utilities of the agents the problem to find the ANBS

can be decomposed into two smaller subproblems that facilitates its computation: first the

utilitarian welfare maximum is computed yielding the efficient water use and second the

monetary transfers according to the ANBS are computed. This gives a closed-form solution

for the transfers. Finally, we discuss the political economy of property rights by analyzing

the ANBS for disagreement utilities associated to the principles of ATS and strict UTI.

4.1 The bargaining solution

The ANBS assumes an asymmetric distribution of bargaining weights among N agents.

Without loss of generality, these weights are given by a vector α = (α1, ..., αn), where αi ≥
0 and

∑
i∈N αi = 1. In this subsection we further assume the disagreement utilities as

exogenously given and impose that every agent i has a disagreement utility di ≥ 0 and that∑
i∈N di < w, where w is the maximum welfare that the agents can obtain in the river model

(N,R, u, e). The nonnegativity condition is natural given that inaction gives zero utility.

Given w and the vector d, the bargaining set consists of all utility vectors u ∈ Rn that are

individual rational, thus ui ≥ di for all i, and feasible, thus the sum of components is at

most equal to w.

The ANBS seeks to maximize the asymmetric Nash product
∏n

i=1(ui(fi, xi, ti) − di)
αi

under the constraints that the vector of water uses x ∈ Rn
+, the vector of inflows f ∈ Rn

+
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and the vector of monetary transfers t ∈ Rn are feasible. This gives the following problem4

maxx,f≥0;t
∏n

i=1

(
bi(xi)− ci(fi, xi) + ti − di

)αi

s.t. f = e+ (R− I)(e− x)

Rx ≤ Re, (p) and
∑n

i=1 ti ≤ 0, (λ)

}
, (5)

where p ∈ Rn and λ are the Lagrange multipliers for the water resource constraints and

monetary transfers, respectively. We have the following result.5

Theorem 4.1. Let x∗, f ∗ = e+(R− I) (e− x∗) and t∗ be the water allocation, the vector of

inflows and the monetary transfers in the ANBS for the river sharing problem (N,R, u, e).

Then x∗ and f ∗ satisfy the first-order conditions

G = R>P − (R− I)>F, (6)

with G =


b′1 (x1)− ∂c1(f1,x1)

∂x1

b′2 (x2)− ∂c2(f2,x2)
∂x2

...

b′n (xn)− ∂cn(fn,xn)
∂xn

 , P =


p1
λ
p2
λ
...
pn
λ

 and F =


∂c1(f1,x1)

∂f1
∂c2(f2,x2)

∂f2
...

∂cn(fn,xn)
∂fn

 ,

and t∗ is given by t∗i = αi
∑n

j=1

[
bj(x

∗
j)− cj(f ∗j , x∗j)− dj

]
− [bi(x

∗
i )− ci(f ∗i , x∗i )− di], i =

1, ..., n.

Note that the matrices R and R− I defining the constraints in (5) reappear in (6), which

relates the river geography directly to the ANBS. We can distinguish the effects of resource

scarcity (P ) from the effects of inflows on the cost of extraction (F ).

Theorem 4.1 shows that the monetary transfer paid or received by agent i depends on

his bargaining weight αi of the aggregate net surplus
∑n

j=1

(
bj(x

∗
j)− cj(f ∗j , x∗j)− dj

)
from

cooperation minus his own improvement from cooperation bi(x
∗
i ) − ci(f ∗i , x∗i ) − di. Clearly

his transfer is increasing in his bargaining weight, i.e., agent i pays less or receives more if

he is assigned a larger bargaining weight since
∑n

j=1

(
bj(x

∗
j)− cj(f ∗j , x∗j)− dj

)
> 0.

Next we turn to Equation (6). For agent i, b′i and ∂ci
∂xi

are the marginal benefit of water

use and the marginal cost of water extraction, respectively. Hence, b′i − ∂ci
∂xi

is his marginal

net benefit of water extraction. Noticing that Rji = 1 if and only if j ∈ Si ∪ {i}, it follows

that the i-th row of System (6) can be written as

b′i −
∂ci
∂xi

=
n∑
j=1

Rji
pj
λ

+
n∑

j=1,j 6=i

−Rji
∂cj
∂fj

=
∑

j∈Si∪{i}

pj
λ

+
∑
j∈Si

−∂cj
∂fj

4For convenience, we ignore all individual rationality constraints bi(xi)− ci(fi, xi) + ti ≥ di because these
will be nonbinding, but we do take these into account in the decomposition of the next subsection.

5In accordance with taking for granted a unique maximizer to (1), we also take it for granted that (5)
has a unique maximizer for the ease of discussion.
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=
∑

j∈Si∪{i}

pj
λ

+
∑
j∈Si

∂cj
∂fj

∂fj
∂xi

, (7)

where the last equality comes from the fact that fj = ej +
∑

i∈P j(ei−xi) and thus
∂fj
∂xi

= −1

for j ∈ Si.
First notice from Equation (7) that the marginal net benefit of agent i in the optimum is

independent of the bargaining weights α. Next notice that the first term of the right-hand

side of (7) shows the impact that agent i imposes upon the physical availability of water

for his successors. It reflects the resource scarcity of water for agent i and all his successors

through the shadow prices p of the the local resource constraints Rx ≤ Re, where pj > 0 if

xj ≤ fj is binding, j ∈ N . For agent i this term drops out if x∗j < f ∗j for all j ∈ Si ∪ {i},
i.e., neither the constraint of i nor any of his successors’ constraint is binding. If x∗j = f ∗j for

some j ∈ Si ∪ {i}, then pj decreases when more local water resource ej becomes available.

When pk = 0 for all k = i and all agents k between i and j (and thus all the corresponding

constraints are not binding), then the marginal net benefits of agent i, agent j and all agents

between them will decrease because all these agents could consume some more water when

more local water resource ej becomes available. On the other hand, when pk > 0 for k = i

or some agent k between i and j, then a higher local resource ej does not allow agent i to

consume more water and so the marginal net benefit of i does not change. More water inflow

ej and thus a lower pj then induces a higher price pk for agent k = i or at least one other

agent k between i and j. In this case more local inflow at j induces a higher shadow price,

so relatively more scarcity, for at least one agent upstream of j.

The second term of the right-hand side of (7) is the sum of all externalities that agent i

imposes upon the costs of extraction of all his successors. By assumption
∂cj
∂fj

< 0 and thus
∂cj
∂fj

∂fj
∂xi

> 0 for every successor j of i. So, the negative externalities on the extraction costs

of his successors lead to higher marginal net benefit for agent i. Hence, the consumption x∗i
in the optimum is lower than what i would like to consume when he is maximizing his own

net benefit.

Since every individual term in the summation of the second right-hand term of Equation

(7) is strictly positive and Sj ⊂ Si if j ∈ Si, the next proposition holds, showing that the

marginal net benefits are decreasing from upstream to downstream.

Proposition 4.2. In the ANBS water allocation x∗ of the river sharing problem (N,R, u, e),

for every i ∈ N and j ∈ Si it holds that b′i − ∂ci
∂xi

> b′j −
∂cj
∂xj

.

The intuition is that, the closer agent i is located to one of the sources of the river, the

more downstream successors experience such negative externalities from using an extra drop

of water by agent i. Only the most downstream agent does not induce these externalities.

Similarly, if agent i experiences water scarcity, i.e., pi > 0, then all of his predecessors also

experience water scarcity and this positive shadow price pi will show up in their right-hand

side of (7). This implies that the closer agent i is to the most-downstream location, he
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will have larger sets of predecessors and this agent’s water scarcity is felt by more upstream

agents.

Defining bsi = b′i − ∂ci
∂xi
−
∑

j∈Si
∂cj
∂fj

∂fj
∂xi

as the societal marginal net benefit of agent i, i.e.,

his own marginal net benefit minus the impact of xi on the marginal extraction costs of his

successors, we obtain by rearranging (7) that

bsi =
∑

j∈Si∪{i}

pj
λ
, i ∈ N. (8)

It follows immediately that the societal marginal net benefits are nonincreasing from up-

stream to downstream and they are all equal to each other if and only if pi = 0 for all

i < n.

Corollary 4.3. In the ANBS water allocation x∗ of the river sharing problem (N,R, u, e),

for every i ∈ N and j ∈ Si it holds that bsi ≥ bsj with at least one strict inequality if and only

if pj > 0 for some j 6= n.

The above results generalize the results in Kilgour and Dinar (2001) and Ambec and

Sprumont (2002) for the linear river sharing problem to general river geographies captured

by R and externalities on the cost of extraction. They observe, as stated in Ambec and

Sprumont (2002), that ”the marginal benefits decrease (weakly) as one moves downstream

and, if two agents have different marginal profits, some constraint must be binding between

them.” Corollary 4.3 shows the same result for the societal marginal net benefits, which

include the marginal own extraction costs and the negative marginal externality costs of

extraction on the successors of an agent.

Finally we remark that the ANBS x∗ and f ∗ can not be implemented through a water

market with a uniform water price. What is needed is an institution that can set the correct

agent-dependent prices.

4.2 Decomposition of the computation of the ANBS

In this subsection, we decompose the ANBS into two separate subproblems of which one has

a closed-form solution. The first subproblem immediately arises from the following result.

The water uses and inflows of the ANBS coincide with the utilitarian welfare maximizing

water uses and inflows.6

Theorem 4.4. Let (x∗, f ∗, t∗) be the ANBS for the river sharing problem (N,R, u, e). Then,

x∗ = xUW , f ∗ = fUW .

The theorem implies that the aggregate net surplus
∑n

i=1 [bi(x
∗
i )− ci(f ∗i , x∗i )− di] at the

ANBS is equal to the aggregate net surplus w −
∑n

i=1 di resulting from maximizing the

6When (1) respectively (5) has multiple maximizers, then the result is that (xUW , fUW ) is a maximizer
of (1) if and only of there is a maximizer (x∗, f∗, t∗) of (5) such that x∗ = xUW and f∗ = fUW .
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utilitarian welfare. The intuition of this result is rather straightforward. One of the axioms

of the ANBS requires Pareto efficiency and quasi-linear utility functions induce the utility

possibility set U = {u ∈ Rn|
∑n

i=1 ui ≤ w}. So, Pareto efficiency implies aggregate utilitarian

welfare
∑n

i=1 [bi(x
∗
i )− ci(f ∗i , x∗i )] ≥ w and (b1(x

∗
1)− c1(f ∗1 , x∗1), . . . , bn(x∗n)− cn(f ∗n, x

∗
n)) ∈ U

implies the opposite weak inequality.

Theorem 4.4 can be related to the discussion on the Coase Theorem. The most well-

known version states that, in the absence of transaction costs, Pareto efficiency arises inde-

pendent of the assignment of property rights. Note that, in terms of axiomatic solutions, the

Coase Theorem states a condition under which the efficiency axiom underlying the ANBS is

justified and this axiom is always stated independently of the disagreement points. Hence,

given how property rights are translated into disagreement points, the efficiency axiom un-

derlying the ANBS is trivially independent of property rights. More interesting is that the

Pareto efficient allocation of water at the ANBS is also independent of the disagreement

point and, thus, independent of property rights. Given that we take uniqueness of xUW and

fUW for granted, we also obtain the invariance version of the Coase Theorem: in the absence

of transaction costs, the same physical allocation arises through negotiations independent of

the assignment of property rights.7

Since the maximization of utilitarian welfare already characterizes the Pareto efficient

water uses x∗ and inflows f ∗, the next issue is to determine the transfers that maximize

the Nash product given x∗ and f ∗. We stress once more that unanimity requires that each

agent must obtain at least his disagreement utility, because otherwise agents who get less

will deviate. Without proposing a formal procedure, within our simple framework this can

be thought of as follows. As is common in international negotiations over treaties, the

negotiations result has to be ratified afterwards by all the participants in the negotiations.

If agent i’s utility ui from the treaty is lower than his disagreement utility di, this agent will

not ratify and this will prevent the treaty from being implemented. Ratifying any treaty

that will give an utility at least equal to the disagreement utility and rejecting otherwise,

i.e., ratify if and only if ui ≥ di, is a Nash equilibrium strategy of this ratification process for

every agent i ∈ N . This argument limits the set U of feasible utility vectors to the bargaining

set U IR (d) = {u ∈ U |ui ≥ di, i ∈ N} of all feasible vectors satisfying individual rationality.

Given x∗ and f ∗, the utility of agent i is given by ui(f
∗
i , x

∗
i , ti) = bi(x

∗
i )−ci(f ∗i , x∗i )+ ti, which

we will write more conveniently as ui(f
∗
i , x

∗
i , ti) = ui(f

∗
i , x

∗
i , 0) + ti. Successively, we consider

the following maximization problem with respect to the monetary transfers

maxt∈Rn

∏n
i=1(ui(f

∗
i , x

∗
i , 0) + ti − di)αi ,

s.t.
∑

i∈N ti ≤ 0, and ui(f
∗
i , x

∗
i , 0) + ti ≥ di, i ∈ N.

}
. (9)

We have the following result.

7When (1) respectively (5) has multiple maximizers, then the invariance version of the Coase Theorem
can be reformulated in terms of a set of maximizers that is independent of property rights.
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Theorem 4.5. Let t̂ be the solution of the maximization problem (9). Then, (x∗, f ∗, t̂)

coincides with the ANBS (x∗, f ∗, t∗) for the river sharing problem (N,R, u, e). Moreover,

t̂i = di + αi

(
w −

∑n

j=1
dj

)
− ui(f ∗i , x∗i , 0), i = 1, ..., n.

From Theorems 4.4 and 4.5, it follows that the computation of the ANBS can be decom-

posed into two steps: in Step 1, we find the unique maximizer of (1) and, then, we may set

x∗ = xUW and f ∗ = fUW . In Step 2, we determine t̂, for which we have a closed-form solu-

tion given the Pareto efficient x∗ and f ∗ of Step 1. Note that we rewrote the transfer when

compared to Theorem 4.1. Agent i’s utility in the ANBS is given by di + αi(w −
∑n

j=1 dj)

and it is equal to the utility ui(f
∗
i , x

∗
i , 0) obtained from the use of water plus the monetary

transfer t̂i. Since the welfare w is larger than
∑n

j=1 dj, the monetary transfer of agent i

is increasing in his bargaining weight αi. In terms of our previous discussion of the Coase

Theorem, the assignment of property rights does have welfare consequences for the agents

through the disagreement point, because each agent’s utility at the ANBS depends upon the

disagreement point and the associated net surplus. Also the financial transfers depend upon

the disagreement point. Finally, a central agency with the authority to enforce agreements

and who assigns weights among the agents can implement the ANBS in terms of water uses,

inflows and monetary transfers. Then, the objective of this agency is equivalent to what the

Nash product maximizes in the ANBS.

4.3 The political economy of property rights

In this subsection, we specify the disagreement utilities d ∈ Rn according to the different

legal principles of ATS and strict UTI and we investigate and compare the resulting ANBS as

obtained in the previous subsection. These legal principles implicitly assign property rights

among the agents and an agent may invoke the legal principle that serves his best interest.

Recall from Section 3.2 that dATSi ≥ 0 = dUTIi for i = 1 . . . , n− 1 and that dATSn < dUTIn .

For explanatory simplicity we assume in this subsection that dATSi > 0 for all i < n, so

for all agents except agent n, the ATS disagreement utility is strictly higher than the strict

UTI disagreement utility, only for agent n the opposite holds. However, rational agents are

forward looking and are not interested in the disagreement utilities as such, but rather how

these affect their final utility in the outcome of the negotiations.

By Proposition 3.1 and 3.2, the disagreement points dATS and dUTI both belong to the

utility possibility set U , but the bargaining sets U IR
(
dATS

)
and U IR

(
dUTI

)
of individual

rational utilities differ. According to Theorem 4.5, the final utilities under ATS, respectively

strict UTI, become

uATSi = dATSi + αi

(
w −

∑n

j=1
dATSj

)
, i = 1, . . . , n, and (10)
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uUTIi = αi
(
w − dUTIn

)
, i = 1, . . . , n− 1, uUTIn = dUTIn + αn

(
w − dUTIn

)
. (11)

From the formulas we see two opposite effects that can be related to the disagreement

point and the net surplus. As is well-known from bargaining theory, an increase in agent

i’s disagreement utility improves this agent’s bargaining position in the negotiations and,

keeping the other disagreement utilities fixed, will result in an increase in his final utility.

However, a change in legal principles shifts other disagreement utilities as well and this

results in a different net surplus. The net surplus under UTI is larger than the net surplus

under ATS whenever dUTIn <
∑n

j=1 d
ATS
j , or dUTIn −dATSn <

∑n−1
j=1 d

ATS
j . The latter inequality

means that the aggregate loss of disagreement utility for agents i = 1, . . . , n−1 is larger than

the gain in disagreement utility dUTIn − dATSn for agent n. A lower net surplus means that

the proportional gains from agreement are also lower. The total effect of these two opposite

effects is ambiguous. We have the following result.

Theorem 4.6. Agent n strictly prefers UTI to ATS. If dUTIn <
∑n

j=1 d
ATS
j , then agent i,

i < n, weakly prefers ATS to strict UTI if and only if αi ≤ dATS
i∑n

j=1 d
ATS
j −dUTI

n
.

This result states that the most-downstream agent always prefers the strict UTI principle.

The intuition is straightforward, this agent becomes the sole owner of all the water and if

other agents want to use water they have to pay agent n. For the other agents, the answer

depends upon their bargaining weights. If agent i, i < n, is relatively weak in bargaining,

which is reflected in a low bargaining weight, then this agent prefers the ATS principle as the

principle defining initial property rights. If agent i is a relatively strong bargainer, he might

prefer the strict UTI principle knowing that his bargaining weight can compensate for his

lower disagreement utility under strict UTI. Because agent n obtains a larger utility under

strict UTI when compared to ATS and the aggregate maximal welfare is w, there is at least

one agent i (6= n) who has to get a lower final utility under strict UTI. For an international

river that is shared by two countries, downstream prefers UTI and, consequently, upstream

prefers ATS. For international rivers involving more countries, it is an empirical research

question whether except country n, also other countries are better off under strict UTI than

under ATS and if so, which countries.

5 The asymmetric Nash rationing solution

The individual aspiration levels when all agents invoke UTI, as defined in Section 3.2.2, lie

above the Pareto frontier of the utility possibility set, hence these levels are infeasible and

cannot be achieved. In this case, we treat the individual aspiration levels as a reference point

in which a consensus among the agents requires each agent to bear some losses with respect

to his aspiration level. The question then becomes on what compromise outcome the agents

agree.
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Many compromise solutions exist in the literature. In this section, we focus on Mariotti

and Villar (2005), who study the problem of allocating utility losses among n agents, called

the Nash rationing problem, which can be regarded as the translation of the Nash bargaining

problem to a situation of compromising on utility losses. The Nash rationing solution is a set-

valued solution and consists of the set of points that maximizes a weighted sum of utilities,

in which weights are endogenously chosen so that all agents’ weighted losses are equal. For

problems with transferable utility, the solution is unique and coincides with the unique

maximizer of the Nash rationing product. Translated into the river sharing problem, this

product is defined as
∏n

i=1(d
ASP
i −ui) and the Nash rationing solution is the unique maximizer

of this product over the set of utility vectors u ∈ Rn under the constraints
∑n

j=1 uj ≥ w and

ui ≤ dASPi , i = 1, . . . , n. In this section we propose an asymmetric version of their approach.8

We impose the weights exogenously, and the interpretation of these weights is postponed.

These weights are given by a vector ρ = (ρ1, ..., ρn), where ρi ≥ 0 and
∑

i∈N ρi = 1.

Given a weight vector ρ, we define the asymmetric Nash rationing solution (ANRS), as

the solution of the maximization problem

max
(u1,...,un)

n∏
i=1

(dASPi − ui)ρi , s.t.
n∑
j=1

uj ≥ w, and ui ≤ dASPi , i ∈ N.

This convex program admits a unique maximizer, denoted uNRS. Note that uNRSi is the

utility level that each agent gets from the river sharing problem including the monetary

transfer. Similar as before for the ANBS, agent i’s monetary transfer closes the gap between

his direct net benefit from water use ui (x
∗
i , f

∗
i , 0) and his final utility uNRSi . His transfer is

given by tNRSi = uNRSi − ui (x∗i , f ∗i , 0). Similar to Theorem 4.1, we obtain

uNRSi = dASPi + ρi(w −
n∑
j=1

dASPj ), i ∈ N. (12)

Since according to Proposition 3.3, w−
∑n

j=1 d
ASP
j < 0, each agent gets a utility level below

his individual aspiration level. Moreover, an agent’s final utility is decreasing in the weight

of the agent. Clearly, an interpretation of ρ in terms of bargaining weights makes no sense,

because then a higher bargaining weight implies the counter-intuitive result that this agents

gets less utility. Instead, the weight of an agent represents the responsibility of this agent,

namely the more weight we put on agent i, the more responsibility this agent has to take in

making sacrifices to reach a compromise. More responsibility results in a lower utility for an

agent. Because the utility is decreasing in the weight, it might even happen that the utility

8We do not provide an axiomatization, but given the axiomatization results for the ANBS, e.g., Kalai
(1977), Kaneko (1980) and Herrero (1989); the convergence results to asymmetric bargaining solutions in
strategic bargaining in Herrero (1989); and the axiomatization of the symmetric Nash rationing solution in
Mariotti and Villar (2005), it is reasonable to conjecture that the asymmetric version can also be axiomatized.
Personal communication with professor Mariotti confirmed this conjecture.
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in the ANRS falls below the zero utility that an agent can guarantee himself by blocking

agreement and inaction of refraining from using water. The following example illustrates

this.

Example 5.1. Consider the case that the tributaries originating at location 1 and 2 merge

before location 3. The agents’ responsibility weights are given by ρ = (3
5
, 1
5
, 1
5
). The benefit

functions, cost functions and water resources are given by,

bi(xi) =
√
xi, ci(xi) = x2i , and ei = 1, for i = 1, 2,

b3(x3) = 16
√
x3, c3(f3, x3) = x23/f3 and e3 = 0.

The maximum utilitarian welfare is w = 20.7341 and by application of (4), we obtain

dASP = (0.4725, 0.4725, 20.6274)>. Then, formula (12) applied to agent 1 implies uNRS1 =

0.4725 + 0.6(20.7341− 20.6274− 0.4725− 0.4725) = −0.0305 < 0. �

Given that the utility of inaction is 0, the question is whether an agent who has to com-

promise on a negative utility according to (12) is willing to accept the agreement. Without

his consent, the agreement fails unanimity. In terms of the ratification process of interna-

tional treaties mentioned in Section 4.2, ratifying any treaty that will give an utility of at

least equal to zero and rejecting otherwise, is a Nash equilibrium strategy of the ratification

process for every agent i ∈ N . Therefore, it is natural and, as our example made clear,

necessary to impose the participation constraint ui ≥ 0 for every i ∈ N in the maximization

problem to find the Nash rationing solution. Adding the nonnegativity constraints to the

Nash rationing solution complicates the maximization problem, however similar results ob-

tain only that now we have a boundary solution. For the maximization problem including

the participation constraints ui ≥ 0, i ∈ N , let T ⊂ N be the set of agents j ∈ N that

receive a utility uNRSj > 0 at the ANBS. Then, without going into details, we obtain for the

Nash rationing solution with nonnegativity constraints that uNRSi = 0 if i ∈ N \ T , and

uNRSj = dASPj +
ρj∑
k∈T ρk

(
w −

∑
k∈T

dASPk

)
, if j ∈ T. (13)

So, the agents in T split the deficit with respect to the total aspiration utilities of the agents

in T according to their relative weights within this group. For T = N , Equation (13)

coincides with (12).

6 Two numerical examples

In this section, we provide two numerical examples to illustrate the ANBS under different

legal principles regarding the disagreement point in the International Water Law.
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6.1 Example 1: two agents

Suppose that only two agents are positioned along the river with e1 = 1, e2 = 0 and the

benefit functions and cost functions given by

b1(x1) = 1
4

√
x1, c1(x1) = 1

16
x21, and

b2(x2) = 1
2

√
x2, c2(f2, x2) =

x22
f2
, where f2 = 1− x1.

By application of Theorem 4.4, the maximal utilitarian welfare w = 0.3102 is attained at

x∗1 = 0.55 and x∗2 = 0.15 with associated utilities u∗1 = 0.1665 and u∗2 = 0.1437. Note that

this step does not involve monetary transfers.

Application of Equations (10) and (11) requires providing the disagreement points first.

Under the ATS principle, application of (2) yields the disagreement point dATS = (0.1875, 0)>.

Similarly, under the UTI principle of Section 3.2.1, application of (3) yields the disagree-

ment point dUTI = (0, 0.1875)>. Figure 1 illustrates that different disagreement points give

different bargaining sets, where the utility for agent 1 (2) is positioned on the horizontal

(vertical) axis. In this figure, region A is the bargaining set under the ATS principle. For

any pair of bargaining weights, the vector of ANBS utility levels according to (10) end up on

the segment cd. Region B is the bargaining set under the UTI principle of Section 3.2.1 and

the vector of ANBS utility levels specified by (11) end up on the segment ab. Independent of

the bargaining weights, upstream agent 1 always prefers the ATS principle and downstream

agent 2 the strict UTI principle.

In terms of Ambec and Sprumont (2002), the downstream incremental solution satisfies

the ATS principle and that no coalition of agents can achieve more than their surplus. For

n = 2, their solution maximizes agent 2’s utility while keeping agent 1 at his disagreement

utility under ATS, i.e., u1 = dATS1 = 0.1875 and u2 = w − dATS1 = 0.1227 > dATS2 . This is

point c in Figure 1.

If both agents invoke the UTI principle of Section 3.2.2, application of (4) implies the

unattainable aspiration level dASP = (0.1875, 0.1875)>, as Figure 1 illustrates. Given any

pair of responsibility weights, each agent’s utility level in the ANRS follows from Equation

(12). In order to reach agreement, each agent has to bear utility losses to end up on the

segment bc.

In the above example, when considering the Nash rationing solution of Mariotti and Villar

(2005), we end up with the middle point of the segment bc which minimizes the weighted

sum of individual losses and weights are chosen so that all individual weighted losses are

equal. In this situation, we have equal weights for both agents, i.e., (1
2
, 1
2
), since one unit

increase of the utility level for agent 1 must decrease the utility level of agent 2 by 1 unit as

well.
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Figure 1: The asymmmetric Nash solutions for the ATS, strict UTI principle and the indi-
vidual aspiration levels in Example 6.1 (two agents).

Figure 2: The asymmmetric Nash solutions for the ATS, strict UTI principle and the indi-
vidual aspiration levels in Example 6.2 (three agents).
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Table 1: Utilities of the agents under ATS, UTI and ASP

Legal Principles Surpluses or Losses Utility for Agent i, i = 1, 2 Utility for Agent 3
UTI 0.8586 0+αi 0.8586 0.5953+α3 0.8586
ATS 0.0068 0.4725+αi 0.0068 0.5021+α3 0.0068
ASP 0.0864 0.4725-ρi10.0864 0.5953-ρ3 0.0864

6.2 Example 2: three agents

We continue with Example 5.1 only that we change the benefit function of agent 3 into

b3(x3) =
√
x3 and that we do not specify the weights. Then, the maximum utilitarian

welfare is given by w = 1.4539. Under ATS, application of (2) yields the disagreement

point dATS = (0.4725, 0.4725, 0.5021)>. Under strict UTI, the disagreement point is given

by dUTI = (0, 0, 0.5953)>. The vector of individual aspiration levels is given by dASP =

(0.4725, 0.4725, 0.5953)>. Note that in this situation, we have

dASPi = dATSi , for i = 1, 2; dASP3 = dUTI3 .

In Figure 2, we draw the set of possible utility allocations for three agents in the simplex.

The small upward-pointing triangular is the bargaining set under ATS, and under individual

aspiration levels the bargaining set is the downward-pointing triangular. The large upper

triangle, in which agent 3 gets at least a utility of 0.5953, is the utility bargaining set under

strict UTI.

Given the weights, the Nash solution utilities of the agents under the different legal

principles are given in Table 1. From this table, we see that agent 3 always prefers strict

UTI to ATS, which confirms Theorem 4.6. This can also be deduced from Figure 2, where

agent 3’s utility in any utility vector in the large upper triangular is larger than this agent’s

utility in any utility vector in the small upward-pointing triangular. From Table 1, we see

that agent 3 prefers strict UTI to ASP. To see this, first recall that dASP3 = dUTI3 . Then, agent

3 prefers any share of the positive net surplus under strict UTI on top of his disagreement

utility under this principle to any compromise under ASP that gives him less than his

aspiration level.

Table 1 also implies that agent i = 1, 2 prefers strict UTI to ATS if his bargaining weight

αi > 0.5547, where the lower bound is equal to the threshold stated in Theorem 4.6. Then,

agent i can compensate the lower disagreement utility dUTIi = 0 (when compared to the

more favorable dATSi = 0.4725) with his share from the larger net surplus w−dUTI3 = 0.858 6

(compared to w −
∑

i=1,2,3 d
ATS
i = 0.0068). Table 1 also shows that agents 1 and 2 prefer

negotiations under the ATS principle to compromising under the ASP, which is due to

dASPi = dATSi for i = 1, 2.

22



7 Conclusion

In this paper, we generalize the river geography and cost functions and investigate several

principles from International Water Law. The key finding is that the efficient water al-

locations are completely determined by the water resources, the river geography and the

maximal utilitarian welfare, which can be related to the Coase Theorem. Without monetary

compensations there is no room for negotiations. Under ATS and strict UTI, the sum of

disagreement utilities is feasible and the agents bargain over the monetary compensations

regarding the water transfers with bargaining weights involved. Under the individual as-

piration levels, the sum of disagreement utilities is no longer feasible and all agents have

to compromise on their utopia levels in order to reach agreement. In this situation, the

weights fail an interpretation as bargaining weights and should be interpreted as weights of

responsibility in compromising. Higher responsibility weights require larger sacrifices.

The analysis in this paper can be generalized in several directions. Firstly, the ANBS

framework is rich enough for further investigation of other principles from International Wa-

ter Law to investigate how these resolve the river sharing problem. Also alternative bargain-

ing solutions from the literature may be considered. For example, the Kalai-Smorodinsky

solution under ATS or strict UTI is already implicitly analyzed in our analysis, because

for transferable utility this solution coincides with the symmetric Nash bargaining solution.

Secondly, given that every agent may invoke the legal principle that serves him best, a com-

promise solution over different legal principles may be needed in order to reach agreement.

Thirdly, the implementation of the efficient water allocation needs further discussion as well.

As argued, the marginal benefit of water use and the marginal cost of water extraction can

be interpreted as the consumer price and the producer price, respectively. One potential

institutional setup might be that the local producer claims the producer price to the local

government. Given the producer price, the local government sets the consumer price accord-

ing to the efficient allocation scheme. In the framework of multiple agents, we may also need

a central agency to regulate local agents to implement the efficient water allocation scheme.

Finally, given empirical data, a more ambitious goal is to statistically estimate the bargain-

ing (responsibility) weight in the ANBS (ANRS) from international river treaties, or at the

national level, water allocation between provinces. Although river data is often difficult to

get, some countries do publish suitable data. This allows us to explore the possibility into

the direction of an econometric estimation of the bargaining (responsibility) weight in the

river situation.
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Appendix with Proofs

Proof of Proposition 3.1

The recursive ATS solution (xATSi , fATSi ) satisfies all water resource constraints xATS ≤ fATS

and fATS = e+ (R− I)
(
e− xATS

)
. Therefore, it is a feasible solution of

max
x,f≥0

n∑
i=1

(bi(xi)− ci(fi, xi)) s.t. Rx ≤ Re, f = e+ (R− I) (e− x) .

Hence,
∑n

i=1 d
ATS
i ≤ w. By Assumption 2.4, the recursively derived local optima (xATSi , fATSi )

fail to be the maximizer of (1), because these do not internalize the externalities on the costs

of extraction, i.e., ∂ci(fi,xi)
∂fi

< 0. Hence,
∑n

i=1 d
ATS
i < w. �

Proof of Proposition 3.3

By definition of (1), we have

w =
n∑
i=1

(bi(x
UW
i )− ci(fUWi , xUWi )) <

n∑
i=1

(bi(x
UW
i )− ci(fASPi , xUWi ))

≤
n∑
i=1

(bi(x
ASP
i )− ci(fASPi , xASPi )) =

n∑
i=1

dASPi .

The strict inequality comes from the fact that ci (fi, xi) is decreasing in fi and fUWi < fASPi .

�

Proof of Proposition 4.2

Without loss of generality, renumber the agents such that agent i+1 is agent i’s downstream

neighbor. By the tree structure of the river, i+ 1 ∈ Si = {i+ 1} ∪ Si+1 and combined with
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(7) we obtain

b′i −
∂ci
∂xi

=
∑

j∈Si∪{i}

pj
λ
−
∑
j∈Si

∂cj
∂fj

=
pi
λ
− ∂ci+1

∂fi+1︸ ︷︷ ︸
>0

+
∑

j∈Si+1∪{i+1}

pj
λ
−
∑
j∈Si+1

∂cj
∂fj

>
∑

j∈Si+1∪{i+1}

pj
λ
−
∑
j∈Si+1

∂cj
∂fj

(7)
= b′i+1 −

∂ci+1

∂xi+1

.

Recursive repetition of these arguments implies the stated result. �

Proof of Theorem 4.1

After substitution of f , we define M = Πn
i=1(bi(xi)− ci(ei+

∑
j∈P i(ej−xj), xi)+ ti−di)αi for

notational convenience. Let L (x, t, p, λ) denote the Lagrangian with shadow prices p and λ

are defined in Theorem 4.1. Then, the first-order conditions for x∗ and t∗ read

∂L

∂xi
: αi

M

bi − ci + ti − di
(b
′

i −
∂ci
∂xi

) +
∑
j∈Si

αj
M

bj − cj + tj − dj
Rji

∂cj
∂fj
−

∑
j∈Si∪{i}

Rjipj = 0,

∂L

∂ti
: αi

M

bi − ci + ti − di
− λ = 0.

Writing the first n equations into matrix form, we obtain

RTP = G+ (RT − I)F,

where P , G and F are stated in Theorem 4.1. With respect to the monetary transfers, we

have

M

bi − ci + ti − di
αi = λ, i = 1, . . . , n.

Dividing the equation for i = 1 by the one for i, we obtain

ti =
αi
α1

(b1 − c1 − d1) +
αi
α1

t1 − (bi − ci − di).

This establishes a relationship between ti and t1 for all i ≥ 2. Substitution of these expres-

sions in
∑n

i=1 ti = 0 yields,

t1+[
α2

α1

(b1−c1−d1)+
α2

α1

t1−(b2−c2−d2)]+...+[
αn
α1

(b1−c1−d1)+
αn
α1

t1−(bn−cn−dn)] = 0.

From which, t1 can be solved as,

t1 = α1

n∑
j=1

(bj − cj − dj)− (b1 − c1 − d1).
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Similarly, we obtain

ti = αi

n∑
j=1

(bj − cj − dj)− (bi − ci − di). �

Proof of Theorem 4.4

It suffices to show that the first-order conditions coincide with those for the ANBS given in

the proof of Theorem 4.1. After substitution of f , we have to solve

max
x

∑
i∈N

(
bi(xi)− ci(ei +

∑
j∈P i

(ej − xj), xi)
)
, s.t. Rx ≤ Re (p̃) .

where p̃ is the vector of Lagrange multipliers. The Lagrangian is given by

L̃ (x, p̃) =
∑
i∈N

(
bi(xi)− ci(ei +

∑
j∈P i

(ej − xj), xi)
)

+ p̃>(Re−Rx),

Taking first-order conditions, for xi, we have

b
′

i −
∂ci
∂xi

+
n∑

j=1,j 6=i

Rji
∂ci
∂fi
−

n∑
j=1

Rjip̃j = 0.

We compare these with the first-order conditions for the ANBS

∂L

∂xi
: αi

M

bi − ci + ti − di
(b
′

i −
∂ci
∂xi

) +
n∑

j=1,j 6=i

(αj
M

bj − cj + tj − dj
)Rji

∂cj
∂fj
−

n∑
j=1

Rjipj = 0.

Let αi
M

bi−ci+ti−di = λ. Then, a simple normalization of the Lagrange multipliers (
pj
λ

) will get

the stated result. �

Proof of Theorem 4.5

The Lagrange function for the maximization problem is9

L =
n∏
i=1

(ui(f
∗
i , x

∗
i , 0) + ti − di)αi − λ

∑
i

ti.

The first-order conditions read

∂L

∂ti
: αi

M

ui(f ∗i , x
∗
i , 0) + ti − di

− λ = 0.

9We omit the individual rationality constraint in the Lagrange function. Later on we will check for this.
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For j 6= 1, we have

tj =
αj
α1

[u1(f
∗
1 , x

∗
1, 0)− d1] +

αj
α1

t1 − [uj(f
∗
i , x

∗
i , 0)− dj] .

This establishes a relationship between tj and t1 for all j ≥ 2. Substitution of these expression

into
∑n

i=1 ti = 0 and solve for t1, we obtain,

t̂1 = α1

n∑
j=1

[
uj(f

∗
j , x

∗
j , 0)− dj

]
− [u1(f

∗
1 , x

∗
1, 0)− d1] .

It remains to check for the individual rationality constraint. Indeed,

u1(f
∗
1 , x

∗
1, 0) + t̂1 = d1 + α1(w −

n∑
j=1

dj) > d1

since w >
∑n

j=1 dj. Similar results follow for t̂j for all j ≥ 2. Hence, t̂ coincides with t∗

stated in Theorem 4.1. �

Proof of Theorem 4.6

For agent n, we have

uUTIn > uATSn ⇐⇒ (1− αn)
(
dUTIn − dATSn

)
> −αn

∑n−1

j=1
dATSj .

The inequality always holds, because the right-hand side is positive and the left-hand side

is at most 0. For agent i, we have

uATSi ≤ uUTIi ⇐⇒ αi ≤
dATSi∑n

j=1 d
ATS
j − dUTIn

.

Because dUTIn <
∑n

j=1 d
ATS
j , the ≤ is preserved and the right-hand side is nonnegative. �
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