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Abstract

We propose a new methodology for the Bayesian analysis of nonlinear non-

Gaussian state space models with a Gaussian time-varying signal, where the signal

is a function of a possibly high-dimensional state vector. The novelty of our ap-

proach is the development of proposal densities for the joint posterior density of

parameter and state vectors: a mixture of Student’s t-densities as the marginal pro-

posal density for the parameter vector, and a Gaussian density as the conditional

proposal density for the signal given the parameter vector. We argue that a highly

efficient procedure emerges when these proposal densities are used in an indepen-

dent Metropolis-Hastings algorithm. A particular feature of our approach is that

smoothed estimates of the states and an estimate of the marginal likelihood are

obtained directly as an output of the algorithm. Our methods are computationally

efficient and produce more accurate estimates when compared to recently proposed

alternatives. We present extensive simulation evidence for stochastic volatility and

stochastic intensity models. For our empirical study, we analyse the performance of

our method for stock return data and corporate default panel data.
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mail:a.lucas@vu.nl. Address: VU University Amsterdam, De Boelelaan 1105, 1081 HV.
‡ Corresponding author.

1



1 Introduction

Empirical studies based on nonlinear non-Gaussian state space models are widespread in

economics and finance. It is well known that the Bayesian estimation of parameters and

states can be difficult. In particular, the evaluation of the marginal likelihood function

is a challenging task. One of the complications is that the joint posterior density of the

parameter and state vectors is typically high-dimensional which makes it cumbersome to

develop successful proposal distributions and Monte Carlo algorithms. It is standard prac-

tice to overcome this difficulty by disentangling the target density into lower dimensional

densities and develop proposal densities for each of them. However, this approach leads

to other problems. Although the curse of dimensionality may be resolved to some extent,

it is rather demanding to design a proposal density on a case by case basis for each lower

dimensional target density. Furthermore, these separately defined proposal densities may

not adequately characterize the properties of the joint posterior density, possibly resulting

in unsatisfactory computational performance of the method and to biased estimates of

posterior moments and marginal likelihoods.

The aim of our paper is to develop an independent Metropolis-Hastings (MH) proce-

dure to sample from the joint posterior density of the parameters and states. The proposal

density in our Joint Independent Metropolis-Hastings method consists of two components:

(i) a mixture of Student’s t-densities that targets the marginal posterior density of the

parameters, and (ii) an approximating density that targets the density of the states given

the observations and the parameters. The mixture of Student’s t-densities is constructed

by means of the Mixture of t by Importance Sampling weighted Expectation Maximization

(MitISEM) method of Hoogerheide et al. (2012). The proposal density for the states is

then based on a given set of parameters. For this, we can take any reasonable approximat-

ing density for the states including those developed by Shephard and Pitt (1997), Durbin

and Koopman (1997), Richard and Zhang (2007), Koopman et al. (2011) and McCaus-

land (2012). We can use the proposal densities in an independent MH algorithm or in an

importance sampling procedure to estimate the marginal likelihood and parameters. The

resulting procedure can be almost fully automated and requires no user intervention.

We argue and show that our approach is computationally efficient and robust and can

be regarded as an effective alternative to existing Markov chain Monte Carlo (MCMC)

methods. Our method provides at least two advantages. First, the methodology can be

fully automated. There is no need for case by case fine tuning of the algorithm whenever

a different model specification with a possibly different observation density is considered.

Second, the necessary computations can be implemented in a parallel manner. This
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implies that we can use state-of-the-art computer technology based on graphics cards to

further reduce the computing time of our method.

In an extensive simulation study we show that our Joint Independent Metropolis-

Hastings method is a viable alternative to the Adaptive Independent Metropolis-Hastings

method as recently proposed by Pitt et al. (2012). We compare the methods in detail for

two cases: the stochastic volatility model and the stochastic intensity model. In our Monte

Carlo study, we find that our new method is computationally faster than the recently

developed particle filter MCMC methods of Andrieu et al. (2010). In particular, our

method provides posterior draws and estimates of posterior moments in a computationally

more efficient manner.

Our work relates to two strands in the literature. First, we contribute to the more

recent literature on Bayesian estimation of nonlinear non-Gaussian state space models

by jointly sampling parameters and state paths. McCausland (2012) suggests a proposal

density based on a higher order approximation of the states given the parameter vector.

Although his sampler appears to be efficient, it relies on the assumption that the state

vector is univariate. Chan and Strachan (2012) propose a method that overcomes this

restriction. Their proposal density for the state vectors, however, is derived from a local

approximation of the smoothed density, which can lead to poor performance in higher

dimensional problems.

Second, our paper relates to the literature on the Bayesian estimation of nonlinear

non-Gaussian state space models using particle filters. Andrieu et al. (2010) develop a

collection of Particle Markov Chain Monte Carlo (PMCMC) methods for parameter es-

timation. As argued by Flury and Shephard (2011), the key idea of PMCMC methods

is that the unknown true likelihood can be replaced by an unbiased estimator of the

likelihood within any MCMC procedure. Although PMCMC methods provide a general

solution to parameter and state estimation in nonlinear non-Gaussian state space models,

they require the application of a particle filter for each iteration, see for example Doucet

et al. (2012). To overcome this computational burden, Lindsten and Schon (2012) pro-

pose a modified version of the particle Gibbs sampler. For the same motivation, Pitt

et al. (2012) develop an adaptive version of the particle independent Metropolis-Hastings

algorithm with partially adapted auxiliary particle filters. We show in our simulations

that in settings of empirical interest, particle filters may not always be the most efficient

or robust approach from a numerical perspective.

The remainder of this paper is organized as follows. In Section 2 we introduce the

new methodology. In Section 3 we demonstrate the performance of the methodology

against state-of-the-art alternatives in a Monte Carlo study designed for parameter and
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state estimation in stochastic volatility and stochastic intensity models. In Section 4, we

empirically illustrate the methods by considering a long time series of IBM stock returns

and a large panel data set of U.S. corporate defaults. Section 5 concludes.

2 Joint independent Metropolis-Hastings method

For a time series of observations y1, . . . , yT , we define the nonlinear non-Gaussian state

space model by the observation density and the state equation

yt ∼ py(yt|xt; θ), xt = ct + Ztαt, (1)

αt+1 = dt + Ttαt + ηt, ηt ∼ N(0, Qt) , (2)

where py is the observation density, xt is the signal, θ is the parameter vector, and αt is the

state vector, for t = 1, . . . , T . For expositional purposes, we assume that the observation

yt and the signal xt are scalars. We discuss generalizations in Section 2.4. The signal

is a linear function of the state vector αt, with scalar intercept ct and loading vector Zt

both possibly depending in a deterministic way on time and on the parameter vector θ,

we have ct = c(t; θ) and Zt = Z(t; θ). The state vector αt evolves as a linear Gaussian

dynamic process given by (2) where the intercept vector dt = d(t; θ), transition matrix

Tt = T (t; θ) and variance matrix Qt = Q(t; θ) are deterministic functions of t and θ. We

assume that all vectors and matrices have appropriate dimensions. Bayesian inference for

model (1) and (2) involves the estimation of the properties of interest of the posterior

density p(θ|y) of the parameter vector θ and the smoothed density of the signal p(x|y),
where y = (y1, . . . , yT )

′ and x = (x1, . . . , xT )
′.

2.1 Independent Metropolis-Hastings

We base our analysis on the development of an independent Metropolis-Hastings sampler;

see Metropolis et al. (1953) and Hastings (1970) for the original contributions. We draw

from the joint posterior density of the parameters and states p(x, θ|y). Our procedure

consists of two phases: the training phase and the Markov chain Monte Carlo (MCMC)

phase.

In the training phase we construct a proposal density that approximates the joint

posterior p(x, θ|y). We construct the approximation from proposal densities q(x|θ, y) and
qζ(θ|y), where q(x|θ, y) is the conditional proposal density of x given θ, and qζ(θ|y) is

the marginal proposal density for θ, where ζ refers to a set of auxiliary parameters. We
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approximate the target density p(x|y; θ)p(θ|y) well if q(x|θ, y) and qζ(θ|y) are sufficiently

close to p(x|y; θ) and p(θ|y), respectively. We take qζ(θ|y) as a mixture of Student’s t-

densities and use it to approximate p(θ|y), where ζ includes mode vectors, scale matrices,

degrees of freedom and mixing weights for the Student’s t-distributions in the candidate

mixture qζ(θ|y); see Hoogerheide et al. (2012) for further details. We take q(x|θ, y) as

a Gaussian density following the numerically accelerated importance sampling (NAIS)

method of Koopman et al. (2011), which is argued to be numerically more efficient than

alternative approximations as suggested by Richard and Zhang (2007), Shephard and Pitt

(1997), or Durbin and Koopman (1997).

In the Markov chain Monte Carlo phase we use the candidate as the proposal density

in an independent Metropolis-Hastings algorithm to draw from the joint posterior density

p(x, θ|y). We sample the joint candidate draws (θ(j), x(j)) by first sampling

θ(j) ∼ qζ(θ|y), (3)

and then, conditioning on θ(j), sampling

x(j) ∼ q(x|θ(j), y). (4)

Let (θ(i−1), x(i−1)) and (θ+, x+) denote the previous accepted draw of the Markov chain

and the new candidate draw, respectively. We set (θ(i), x(i)) = (θ+, x+) with probability

α = min

{
p (θ+, x+|y) q(x(i−1)|θ(i−1), y)qζ(θ

(i−1)|y)
p (θ(i−1), x(i−1)|y) q(x+|θ+, y)qζ(θ+|y)

, 1

}
, (5)

and (θ(i), x(i)) = (θ(i−1), x(i−1)) otherwise.

2.2 A novel modification of MitISEM for nonlinear non-Gaussian

state space models

In the original MitISEM procedure, Hoogerheide et al. (2012) propose to approximate the

posterior density p(θ|y) (of which only a kernel is required) by considering the Student’s

t mixture qζ(θ|y) and by minimizing the Kullback and Leibler (1951) divergence∫
p(θ|y) log p(θ|y)dθ −

∫
p(θ|y) log qζ(θ|y)dθ. (6)

Since the first term does not depend on the proposal, an approximation of the Kullback-

Leibler divergence can be minimized by maximizing

1

N

N∑
j=1

p(θ(j)|y)
q0(θ(j)|y)

log qζ(θ
(j)|y), (7)
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where θ(j) ∼ q0(θ|y) is an independent and identically distributed (i.i.d) sequence for

j = 1, . . . , N . Unfortunately, in nonlinear non-Gaussian state space models we do not

know (a kernel of) the posterior density p(θ(j)|y) in closed form, so that we have to modify

the original MitISEM method.

The Kullback-Leibler divergence between our target density p(x, θ|y) and the joint

proposal density qζ(x, θ|y) is given by∫
p(x, θ|y) log p(x, θ|y)dxdθ −

∫
p(x, θ|y) log qζ(x, θ|y)dxdθ. (8)

Minimizing the KL divergence is therefore equivalent to maximizing∫
p(x, θ|y) log qζ(x, θ|y)dxdθ =

∫
p(x, θ|y)
q0(x, θ|y)

q0(x, θ|y) log qζ(x, θ|y)dxdθ, (9)

where q0(x, θ|y) is a previous candidate, which is used as an importance density. By

decomposing the joint density qζ(x, θ|y) = q(x|θ, y)qζ(θ|y), where q(x|θ, y) is obtained

using the NAIS method, we obtain∫
p(x, θ|y)
q0(x, θ|y)

q0(x, θ|y) log q(x|θ, y)dxdθ +
∫

p(x, θ|y)
q0(x, θ|y)

q0(x, θ|y) log qζ(θ|y)dxdθ. (10)

The first term in (10) does not depend on ζ. Hence we maximize the second term in (10)

that is approximated by∫
p(x, θ|y)
q0(x, θ|y)

q0(x, θ|y) log qζ(θ|y)dxdθ ≈
1

N

N∑
j=1

p(x(j), θ(j)|y)
q0(x(j), θ(j)|y)

log qζ(θ
(j)|y), (11)

where (x(j), θ(j)) ∼ q0(x, θ|y) is an i.i.d. sequence for j = 1, . . . , N .

If we compare (7) with (11), we see that the only difference with the original MitISEM

approach is that we replace the weight p(θ(j)|y)/q0(θ(j)|y) by p(x(j), θ(j)|y) /q0(x(j), θ(j)|y).
This novel result implies that we can use the MitISEM algorithm as described in Appendix

A, with only a slight modification. The new weights

w(j) =
p(x(j), θ(j)|y)

q(x(j)|θ(j), y)qζ(θ(j)|y)
∝ p(y|x(j), θ(j))p(x(j)|θ(j))p(θ(j))

q(x(j)|θ(j), y)qζ(θ(j)|y)
, (12)

can be replaced by

w(j) ∝ q(y|θ(j)) p(y|x(j), θ(j))p(θ(j))
q(y|x(j), θ(j))qζ(θ(j)|y)

, (13)

where we used the relations

q(x(j)|θ(j), y) = q(y|x(j), θ(j))q(x(j)|θ(j))
q(y|θ(j))

, (14)

and p(x(j)|θ(j)) = q(x(j)|θ(j)), since we have the same Gaussian linear state equation in

the true model and the approximating Gaussian linear state space model upon which our
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Figure 1: Flow diagram of the joint independent Metropolis-Hastings (JIMH) procedure.

qζ(θ|y) θ(j) and x(j)

calculate w(j) update qζ(θ|y)
q(x|θ, y)

Training phase

MCMC phase

MitISEM

Independent MH

proposal density for the signal is based, see Appendix B for the details on this approxi-

mating model and the proposal density for the signal. The formulation in (13) is more

convenient than (12), as we do not have to evaluate the density q(x(j)|θ(j), y).

2.3 The joint independent Metropolis-Hastings algorithm

We present a summary of our newly proposed Joint Independent Metropolis-Hastings

(JIMH) algorithm in the flow-diagram of Figure 1. The algorithm can be described in

more detail by the following steps.

1. Training phase:

(a) Initialization: Simulate a series of N parameter vector draws θ(1), . . . , θ(N)

from a Student’s t distribution with its mode equal to the simulated maximum

likelihood estimate of θ and with its scale equal to minus the inverse Hessian

of the log likelihood evaluated at the current parameter estimates. We refer to

this initial density as qζ0 . Conditionally on the draws θ(1), . . . , θ(N) we simulate

a corresponding series of N signal paths for x from q(x|θ(j), y) and denote

these by x(1), . . . , x(N). Finally, we evaluate the joint importance sampling (IS)

weights w(1), . . . , w(N) given by (13).
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(b) Adaptation: Estimate the mean and variance of the target distribution via

IS using the draws from qζ0 . We adopt the estimated mean and variance as

the mode and scale of the new proposal distribution that we denote by qζa0 .

We simulate draws θ(1), . . . , θ(N) from qζa0 . Finally we simulate signal paths

x(1), . . . , x(N) conditionally on the parameter draws, and evaluate the joint IS

weights w(1), . . . , w(N) given by (13).

(c) IS weighted EM algorithm: We obtain the updated proposal qζ from the IS

weighted EM algorithm of MitISEM, using the latest draws and corresponding

IS weights in (13). Appendix A provides further details about the MitISEM

algorithm. We simulate draws θ(1), . . . , θ(N) from the updated proposal qζ ,

and signal paths x(1), . . . , x(N) conditionally on these parameter draws. We

compute the corresponding IS weights w(1), . . . , w(N) in (13).

(d) Iterate on the number of mixture components: We now consider 10% of

the simulated draws that corresponds to the highest IS weights, based on the

current candidate mixture density. We use this smaller set of draws and weights

to compute a new mode and scale matrix. The new mode and scale are used as

starting parameters for the additional Student’s t component in the mixture.

The reason for this choice is that the new Student’s t component should cover

a part of the parameter space that is insufficiently covered by the previous

candidate, when compared to the target density. The starting values for the

mixture probability and degrees of freedom parameter for the new Student’s t

component are set to 0.1 and 5, respectively. The starting values of the mixture

probabilities for the older Student’s t components are obtained by multiplying

the latest values by 0.9. Given the last set of N simulated draws and the

corresponding importance weights, we apply the IS weighted EM algorithm to

update the new mixture distribution. We simulate draws θ(1), . . . , θ(N) from

the updated proposal qζ , and signal paths x(1), . . . , x(N) conditionally on these

parameter draws. We compute the corresponding IS weights w(1), . . . , w(N) in

(13).

(e) Evaluate the IS weights: We estimate the coefficient of variation (i.e., the

standard deviation divided by the mean) of the IS weights of the last candidate.

We terminate the iterations when the coefficient of variation changes by less

than 5%; otherwise we go to Step 1(d).

2. MCMC phase: We carry out the independent Metropolis-Hastings algorithm us-

ing the acceptance probability given in (5).
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In the training phase, there is a trade-off between the quality of the proposal and the

speed of the estimation procedure. When more draws are used in the training phase,

the approximation generally becomes better, but at the cost of an increased computation

time. Fortunately, the draws and corresponding weights can be recycled such that we

do not require the sampling of new draws when going through the iterations to obtain

the mixture components. To be able to recycle previous draws, we need to implement a

slight modification when computing the coefficient of variation of the importance weights

that correspond to the latest candidate. Given the draws (x(1), θ(1)), . . . , (x(N), θ(N)) from

the proposal q0(x, θ|y) = q0(x|θ, y)q0(θ|y) with only one Student’s t component, we can

evaluate the coefficient of variation of the weights based on the new proposal qζ(x, θ|y)
using the following results:∫

p(x, θ|y)
qζ(x, θ|y)

qζ(x, θ|y)dθdx =

∫
p(x, θ|y)
q0(x, θ|y)

q0(x, θ|y)dθdx, (15)

and ∫
p(x, θ|y)2

qζ(x, θ|y)
dθdx =

∫
p(x, θ|y)

q0(x|θ, y)qζ(θ|y)
p(x, θ|y)
q0(x, θ|y)

q0(x, θ|y)dθdx. (16)

The variance of the importance weights corresponding to the latest candidate can then

be estimated via

1

N

N∑
j=1

[
p(x(j), θ(j)|y)

q0(x(j)|θ(j), y)qζ(θ(j)|y)
p(x(j), θ(j)|y)
q0(x(j), θ(j)|y)

]
−

[
1

N

N∑
j=1

p(x(j), θ(j)|y)
q0(x(j), θ(j)|y)

]2
, (17)

where (x(j), θ(j)) ∼ q0(x, θ|y) is an i.i.d. sequence for j = 1, . . . , N . This modification of

the procedure leads to our modified JIMH method, which realizes a substantial gain in

speed.

2.4 Discussion and relation to other methods

Since the most intensive part of the computations in our algorithm is the generation of the

signal paths x conditional on the parameters and observations, it is interesting to compare

the number of signal draws that are required in our algorithm and in the PMCMC based

methods. Our modified JIMH procedure requires 3×N + I draws where N is the size of

the training sample and I is the number of iterations in the MCMC phase. In contrast,

the PMCMC methods require I × S signal draws where S is the number of draws used
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to estimate the likelihood. In the two examples in our simulation and empirical studies,

we use I = 25, 000, N = 10, 000 and S = 50. It implies that for the PMCMC we require

around 20 times more signal paths than in our modified JIMH method.

Our estimation procedure and the method proposed by Pitt et al. (2012) are similar

in spirit. The independent Metropolis-Hastings algorithm is the core of both algorithms.

However, there are several clear differences between the two estimation routines. First,

our method is not adaptive, which means that it is easier to paralellize as the proposal

density is constant throughout the MCMC phase. Candidate draws are fully independent

both in the training phase and in the MCMC phase. Second, we sample one state path

at each iteration, instead of integrating out the state. This implies that we do not rely

on the PMCMC arguments of Andrieu et al. (2010). We also emphasize that our method

directly provides the smoothed state estimates; we do not require additional algorithms

for this task. Finally, we use a mixture of Student’s t-distributions instead of a mixture

of normals to approximate the posterior distribution of the parameters.

The choice of the mixture of Student’s t-densities as a proposal for the posterior

of the parameters has several theoretical and practical advantages over other choices.

First, under certain regularity conditions any density can be approximated by a mixture

of Student’s t-densities if we use a sufficient number of mixture components as shown

by Zeevi and Meir (1997). Second, sampling from a mixture of Student’s t-densities is

fast. Third, the fat tails make the Student’s t-distribution (with small enough degrees of

freedom) a robust importance sampler. We are less prone to importance weights with an

infinite variance and posterior estimates are more reliable and more efficient. Finally the

construction of Student’s t-distributions in the mixture and the mixing weights can be

carried out efficiently by means of the MitISEM procedure, using the novel modification

discussed in subsection 2.2.

The exposition above concentrated on the case of a univariate signal. However, the

method can be extended when the observation and signal are vectors by using the approach

of Scharth (2012). This extended version of the NAIS method is able to treat the signal

vector via the use of quasi-random numbers for the numerical evaluation of the variance

of the log weights and subsequently for its minimization.

A promising feature of JIMH is that the evaluation of marginal likelihoods can take

place in a straightforward way via importance sampling. On the basis of the proposal

density obtained in the training phase we can approximate the marginal likelihood by

p(y) =

∫
p(y|x; θ)p(x|θ)p(θ)

qζ(x, θ|y)
qζ(x, θ|y)dθ ≈

1

N

N∑
j=1

w(j), (18)

where w(j) is defined as the right-hand side of (13), and N is the number of draws used
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to evaluate the marginal likelihood.

The JIMH method does not provide a treatment for state space models with a non-

linear or a non-Gaussian state equation. However we emphasize here that the MitISEM

approach remains feasible and valid when we use an unbiased estimator of the likelihood

p̂(θ(j)|y) in equation (7) instead of the joint density p(x(j), θ(j)|y): both can be used to

approximate the relevant term in the Kullback-Leibler divergence measure. Hence the

MitISEM approach can still be applied as in Hoogerheide et al. (2012) with the only dif-

ference that we need to use the weights ŵ(j) = p̂(θ(j)|y)/q0(θ(j)|y) instead of the weights

p(θ(j)|y)/q0(θ(j)|y) in (7).

We are faced with a possible limitation of our method when the time dimension T

increases. In this case the variance of the importance weights also increases and the

Monte Carlo approximation (11) may become unreliable. This can negatively affect the

performance of both the MitISEM and JIMH procedures.

3 Simulation study

We carry out a detailed simulation experiment to demonstrate the performance of our

estimation procedure against two alternative procedures. We estimate parameters for

a stochastic volatility model and for a stochastic intensity model using simulated data

sets. The stochastic volatility model is well known and provides an important benchmark

model with many challenges for parameter estimation, see the discussions in Shephard

(2005). Similar challenges emerge for the stochastic intensity model, but this model also

illustrates a new and interesting application of a nonlinear non-Gaussian state space model

for which the full conditional density of the parameter vector is not known in closed form.

The stochastic intensity models are particularly used in portfolio credit risk modeling,

see Koopman et al. (2008), Duffie et al. (2009) and Azizpour et al. (2010) for interesting

illustrations of the problem. The details of the stochastic volatility and stochastic intensity

models are given in Sections 3.2 and 3.3, respectively,

We choose to compare the performance of our proposed JIMH method with state-of-

the-art alternatives rather than with some feeble benchmark procedures. In particular,

we compare the performances of parameter estimation by using the new JIMH method

and by using two competing methods of Pitt et al. (2012). The first competing method is

the adaptive random walk Metropolis-Hastings (ARWMH) algorithm and is an extension

of the method of Roberts and Rosenthal (2009). Our second benchmark method is the

adaptive independent Metropolis-Hastings (AIMH) algorithm where the proposal is a

mixture of normals. It is an extension of the method of Giordani and Kohn (2010).
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These two recent and advanced methods provide fast and efficient solutions to parameter

estimation for nonlinear non-Gaussian state space models by taking advantage of the

powerful framework provided in Andrieu et al. (2010). To further enhance the numerical

efficiency of the benchmark methodologies, we use a modified version of these methods by

introducing the numerically accelerated importance sampling (NAIS) method of Koopman

et al. (2011) for integrating out the signal vector. For the purpose of likelihood estimation,

the NAIS method is used as an alternative to the partially adapted auxiliary particle filter

of Pitt et al. (2012).

We use NAIS as a state sampler for the following three reasons: (i) it can provide

an approximation to the state smoothing density that minimizes the variance of the log

importance weights; (ii) the approximating Gaussian linear state space model can be

constructed in a computationally efficient way by taking advantage of standard Kalman

filter methods and deterministic integration methods for one-dimensional integrals; (iii)

the simulated signal paths can be efficiently computed via the simulation smoothers of

de Jong and Shephard (1995) or Durbin and Koopman (2002). We have found that the

NAIS method yields estimates of the likelihood with lower variance and in less computing

time than methods based on the particle filter. The findings are discussed in Section 3.1.

In Appendix B we provide the details of the NAIS method. For its use in the ARWMH

and AIMH methods, we use 50 simulated paths of the signal for likelihood estimation. We

notice that JIMH requires one simulated signal path from NAIS only at each iteration.

Further implementation details of the competitive benchmark methods are discussed in

Appendices C and D.

We estimate the parameters for 56 data sets on an 8-core computer. The data sets

are generated with parameter values that are close to those estimated from the empirical

data sets of Section 4. For each simulated data set, we re-estimate the parameters using

the JIMH method, its modified version (which we denote by JIMH mod.), the ARWMH

method and the AIMH methods. For the modified JIMH method, the candidate draws are

recycled after the first MitISEM update in the training phase. After 5,000 burn-in draws

we perform 20,000 iterations of the algorithms. We calculate medians and interquartile

ranges (over the 56 simulated data sets) of the parameter estimates, acceptance rates,

and inefficiencies. In order to assess the quality of the simulation methods we compute

the inefficiency factor (IF ), which is defined as the variance of the parameter estimate

divided by the variance in case the sampling scheme would generate independent posterior

draws. The IF statistic is discussed, amongst others, by Pitt et al. (2012). In our case,
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we define the inefficiency factor as

IF = 1 + 2

max(L,1000)∑
j=1

rj, (19)

where rj is the j-th order sample serial correlation amongst the 20,000 parameter draws,

and where L is the lowest order j for which rj is not significant.

3.1 Likelihood estimation: NAIS versus particle filters

We have discussed that the ARWMH and AIMH methods can be based on both the

PMCMC and NAIS algorithms for drawing the signal vectors. To assess the difference

between the two implementations of the methods, we use the particle filter and NAIS

methods to evaluate the likelihood function. A review of different particle filtering meth-

ods is provided in Doucet et al. (2001). For the case of a stochastic volatility model,

we obtain more efficient likelihood estimates when using NAIS in comparison to using

particle filters. The NAIS importance sampling estimates of the likelihood function have

lower variance and need less computing time than the particle filter likelihood estimates.

We simulate 56 data sets using the same data generation process for the stochastic

volatility model of Section 3.2. We estimate the likelihood value at the “true” parameter

values 100 times for each simulated data set using the bootstrap filter of Gordon et al.

(1993), the auxiliary particle filter of Pitt and Shephard (1999) and the NAIS method

of Koopman et al. (2011). We compute 100 likelihood estimates for each data set and

we calculate the variance of the estimates together with the mean computing time for

each data set. We report the median variance and computing times over the 56 data sets.

Table 1 presents the results. For all considered time series lengths, the median variance

of the NAIS estimate is lower than the median variance of the particle filter estimates for

all numbers of particles considered. Moreover, the estimation using importance sampling

takes much less time than the estimation using particle filters. We therefore use the NAIS

in all algorithms to create a level playing field.
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Table 1: Comparison of the variance of the particle filter and importance sampling estimate of the likelihood in the

SV model based on 56 simulated data sets. We compare the likelihood estimates from the bootstrap filter (BF), the

auxiliary particle filter (APF) and the numerically accelerated importance sampling (NAIS). M denotes the number of

particles/number of draws. T is the length of the simulated data set. For different M and T we report the median of the

variances over the 56 data sets, where these variances are calculated from 100 runs per data set.

Method M
Variance Time

T=1000 T=2000 T=1000 T=2000

BF

250 1.079 1.505 5.970 37.901

500 0.743 1.071 18.435 88.828

1000 0.541 0.735 44.018 173.432

APF

250 0.988 1.420 6.362 37.434

500 0.674 0.963 21.025 88.764

1000 0.490 0.687 42.663 195.456

NAIS 50 0.140 0.233 0.283 0.527

3.2 Stochastic volatility model

Many macroeconomic and financial time series exhibit volatility clustering, which results

in autocorrelated time varying variances and volatilities. To capture autocorrelation in

volatilities we can adopt the stochastic volatility (SV) model. A basic specification of the

stochastic volatility model is given by

yt = exp(xt/2)εt, εt ∼ N(0, 1) , (20)

xt − δ = ϕ(xt−1 − δ) + ηt, ηt ∼ N
(
0, σ2

η

)
, (21)

where xt is the unobserved log-volatility process, which follows an autoregressive process

of order 1, εt is a standardized error term, δ is the overall mean of xt, 0 < ϕ < 1 is the

persistence parameter, and σ2
η > 0 is the innovation variance of the log-volatility process.

The three unknown parameters δ, ϕ, and σ2
η need to be estimated. More discussions on

the SV model and its extensions can be found in Kim et al. (1998) and Shephard (2005).

The 56 data sets are generated from the basic SV model (20) and (21) with parameters

set equal to δ = 0.48, ϕ = 0.97, and σ2
η = 0.049, which correspond closely to the estimates

obtained in our empirical study in Section 4. We simulate time series of length 1,250 and

use the following prior specifications for the parameters

δ ∼ N(0, 1),
ϕ+ 1

2
∼ Beta(20, 1.5),

1

σ2
η

∼ Gamma

(
5

2
,
0.05

2

)
.

Table 2 presents the medians and interquartile ranges of acceptance rates, parameter

estimates and inefficiency factors. We also present the estimated posterior means of the

14



Table 2: Performance for the Stochastic Volatility model: acceptance rates, parameter estimates, and inefficiency factors

(19) for different Metropolis-Hastings algorithms. The table presents the medians and interquartile ranges (within paren-

theses) over 56 simulated data sets. The estimates are based on 20,000 draws after a burn-in sample of 5,000 observations.

We use 50 simulated draws to evaluate the likelihood in the ARWMH and AIMH algorithms.

Algorithm Time (in s) Ac. Rate
Estimate Inefficiency

δ ϕ σ2
η δ ϕ σ2

η

ARWMH 8401 0.305 0.445 0.971 0.049 14.538 14.312 13.265

(485) (0.017) (0.195) (0.014) (0.016) (2.588) (2.151) (2.079)

AIMH 8020 0.604 0.445 0.971 0.049 2.905 2.979 2.900

(277) (0.092) (0.204) (0.014) ( 0.016) (0.687) (1.719) (1.390)

JIMH 10k 3526 0.507 0.450 0.970 0.048 4.833 5.070 5.561

(1062) (0.065) (0.195) (0.014) (0.016) (1.106) (2.139) (2.210)

JIMH mod.10k 2406 0.509 0.442 0.971 0.049 5.113 5.056 5.572

(131) (0.071) (0.195) (0.014) (0.016) (2.072) (1.934) (2.550)

JIMH mod. 2k 1417 0.501 0.444 0.971 0.049 6.354 5.471 4.970

(75) (0.061) (0.201) (0.013) (0.017) (3.398) (3.324) (2.818)

parameters to indicate that the different simulation methods provide similar results.

The results suggest that none of the methods considered produce biased estimates

due to the omission of relevant parts of the parameter space. Therefore we focus the

comparisons of the alternative methods in terms of their differences in accuracy and

computing time.

The interquartile ranges of the estimated posterior means are similar among the dif-

ferent methods. This finding does not imply that for example ARWMH is performing

as well as the other methods, because the interquartile ranges are mainly driven by the

differences between the 56 simulated data sets and in particular by the differences be-

tween the 56 true posterior means. The reported inefficiency factors (IF ) in the last

three columns of the table suggest that the ARWMH method is close to 3-4 times less

efficient than the competing methods. The medians of the inefficiency factor and the

acceptance rates show that the AIMH is successful in approximating the posterior density

of the parameters. The interquartile range of the inefficiency factors are indicative of the

robustness of the methods across different data sets. The JIMH methods perform slightly

worse compared to the AIMH approach for both acceptance rates and inefficiencies. How-

ever, the JIMH methods requires substantially less computing time. The modified version

of JIMH provides a slightly lower quality proposal than the standard JIMH, but comes
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Figure 2: Performance for the Stochastic Volatility model: average effective sample size per computing time (in sec-

onds). The average (over the three parameters) of the ESS(s) is computed for one simulated data set for the different

estimation procedures. The average ESS(s) is calculated every five minutes, after which linear interpolation gives a crude

approximation of the average ESS(s) as a function of computing time.
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with a clear reduction in computing time. Finally, the results for modified JIMH with a

training sample of only 2,000 draws (instead of the default of 10,000 draws) suggest that

we are able to obtain further efficiency gains at the cost of a moderate loss of robustness

of the procedure.

To obtain further insight in the efficiency of the estimation procedures, we look at

the trade-off between the inefficiency factor and computing time. We obtain a crude

approximation of the effective sample size as a function of computing time. During the

estimation process, after each five-minute period, we approximate the effective sample

size by ESS(s) = N(s)/IF (s), where N(s) and IF (s) are the number of draws (after the

discarded burn-in sample) and the inefficiency factor in period s, respectively. We report

the average ESS(s) for the three parameters for a randomly chosen simulated data set in

Figure 2. Similar patterns are obtained for the other simulated data sets.

For the AIMH and ARWMH algorithms it takes five periods of five minutes (1500 sec-

onds) to draw the burn-in sample. After 1500 seconds, the average ESS(s) value starts to

increase. The average ESS(s) for AIMH increases more steeply than for ARWMH since

the inefficiencies are higher for ARWMH, while the computing times are similar because

both methods integrate out the state vector at each iteration. The ESS(s) slopes for
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JIMH are much steeper than for AIMH and ARWMH. This confirms the efficiency and

good acceptance rates of JIMH. A smaller size of the training sample or the use of the

modified version of the JIMH algorithm clearly lead to further efficiency gains.

3.3 Stochastic intensity model

For our second simulation experiment, we consider a stylized version of the point processes

model with stochastic intensity as used in our second empirical application in Section 4.2.

Koopman et al. (2008) and Duffie et al. (2009) consider the stochastic intensity model for

studying the systematic dynamics of U.S. corporate defaults and credit rating migrations.

For the simulation version of the model, we consider a pool of K firms and a jump

process yk(t) for each firm k = 1, . . . , K with common jump intensity λ(t) as given by

λ(t) = exp [ω + β′c(t) + γx(t)] , (22)

where ω is the base log-intensity, β is a vector of regression parameters, c(t) is a vector

of covariates and γ is a scale factor for the unobserved signal x(t). The cumulative jump

process over all firms is given by

y(t) =
K∑
k=1

yk(t). (23)

The signal x(t) is often referred to as an unobserved frailty factor. We follow standard

practice and model it as a zero mean Ornstein-Uhlenbeck (OU) process, standardized to

have unit variance at t = 1,

dx(t) = −ρx(t) dt+
√

2ρ dW (t), (24)

where ρ > 0 is a persistence parameter and W (t) is a standard Brownian motion. The set

of covariates we use in the simulation is the same as in the empirical section, namely the (i)

one year difference of the S&P500 index, (ii) term spread between the 10-year and 1-year

Treasury Bond (with constant maturity rates), (iii) secondary market rate on 3 month

Treasury Bills, and (iv) year-to-year percentage change of US industrial production (final

output), all at the monthly frequency over the period from January 1, 1970 to March 4,

2010; compare Duffie et al. (2007), Lando and Nielsen (2010) and Azizpour et al. (2010).

The covariates are obtained from the FRED and CRSP databases. We set the parameters

to ω = −4.75, β = (−0.85, 0.01,−0.055,−5.1), γ = 1.15 and ρ = 0.12, which are close to

the empirical estimates from Section 4.
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We simulate data for K = 3, 000 firms over the period January 1, 1970 to March 4,

2010. As K is kept fixed, a firm can jump repeatedly over the sample. If a jump is

interpreted as default, this implies that the firm is directly re-started after default at the

same pre-default intensity. In the empirical application, we depart from this construction

and allow for an absorbing default state as well as for firms that enter the sample or leave

the sample for other reasons than default.

The simulations are conditional on the four covariates and are sampled by using a

discretization of the continuous time processes y(t), x(t) and λ(t), where the discretization

takes steps of 1/32 part of a day. Within each 1/32 part of the day, we use a Bernoulli

approximation to generate defaults. We generate 56 data sets in this way. In starting

the estimation process, we use (weakly informative) uniform priors on relatively wide

intervals: [−8,−2] for ω, [0.01, 3] for γ, [0.01, 1] for ρ and [−20, 20] for each of the four

elements of β.

We consider the ith event time ti and define the indicator variable Dki to be one,

Dki = 1, if firm k jumps at the ith event time ti, and zero otherwise. The number of

jumps at event time ti over all firms is given by Di =
∑K

k=1Dki. The discrete time

approximation of the jump process y(t) leads to the following dynamic model in event

time,

p(yi|xi, θ) = exp [Di log λi − λiK∆i] , (25)

xi = e−ρ∆ixi−1 + ηi, ηi ∼ N
(
0, 1− e−2ρ∆i

)
,

where p(yi|xi, θ) is the density of yi = y(ti) conditional on signal xi = x(ti) and parameter

vector θ, with λi = λ(ti) and ∆i = ti − ti−1. Further details of the model are presented

at the empirical application in Section 4.2.

Table 3 presents the means and interquartile ranges of the parameter estimates for

the 56 simulated data sets. The different simulation methods provide similar results,

which suggests that none of the methods provides biased estimates. Table 4 presents

the means and interquartile ranges of acceptance rates and inefficiency factors. We find

that the ARWMH algorithm is clearly outperformed by the other methods. Moreover, for

the stochastic intensity model, the AIMH algorithm performs generally less favourable

compared to JIMH. Further, the AIMH method appears to be less robust for certain

simulated data sets. The median inefficiencies are higher and also the interquartile ranges

of the inefficiencies are larger compared to JIMH. A possible explanation is that AIMH

uses a mixture of normal distributions, such that the algorithm can sometimes fail at

parameter draws from the tails. In contrast, the JIMH method uses a mixture of Student’s

t-densities to approximate the posterior distribution of the parameters. The fat tails of
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Table 3: Performance for the stochastic intensity model: parameter estimates for different Metropolis-Hastings algorithms.

The table presents the medians and interquartile ranges (within parentheses) over 56 simulated data sets. The estimates are

based on 20,000 draws after a burn-in sample of 5,000 observations. We use 50 simulated draws to evaluate the likelihood

in the ARWMH and AIMH algorithms.

Estimate

ω β1 β2 β3 β4 γ ρ

True values -4.75 -0.85 0.01 -0.055 -5.1 1.15 0.12

Algorithm:

ARWMH -4.559 -0.909 0.021 -0.044 -4.611 1.307 0.154

(1.212) (0.498) (0.202) (0.107) (2.280) (0.400) (0.111)

AIMH -4.621 -0.895 0.026 -0.043 -4.546 1.256 0.149

(1.247) (0.501) (0.206) (0.103) (2.330) (0.459) (0.111)

JIMH 10k -4.624 -0.896 0.025 -0.044 -4.591 1.286 0.151

(1.183) (0.483) (0.209) (0.108) (2.182) (0.382) (0.106)

JIMH mod.10k -4.580 -0.899 0.024 -0.044 -4.562 1.283 0.150

(1.220) (0.482) (0.211) (0.105) (2.219) (0.389) (0.107)

JIMH mod. 5k -4.599 -0.897 0.023 -0.044 -4.559 1.302 0.145

(1.189) (0.477) (0.206) (0.106) (2.115) (0.394) (0.106)

the Student’s t-density prevent that the MH method repeats a draw from one of the tails

for a long sequence of iterations. The performance of the modified versions of JIMH are

again comparable to the standard version. According to the results in Table 4, the size

of the training sample can be reduced to obtain higher efficiency gains.

Figure 3 presents the average ESS(s) per computing time for the different methods

and for a randomly chosen data set. We can see that the relative performance of the

alternative methods for the stochastic intensity model is similar to that for the stochastic

volatility model. After the burn-in draws are computed in the first 3,000 seconds, the

average ESS(s) for the AIMH and ARWMH methods starts to increase relatively slowly

compared to that of JIMH. It shows that the JIMH methods are computationally more

efficient. They outperform the alternative methods both in terms of computing speed and

in terms of the fit of the proposal. Furthermore, Figure 3 shows for this particular data

set that the average ESS(s) of AIMH is only increasing steadily after 6300 seconds. The

decrease and standstill of the estimated average ESS(s) between 5100 and 6300 seconds

is caused by having a long sequence of draws at a particular parameter value in a remote

part of the posterior distribution that had not yet been explored by earlier draws (that

were simulated in the first 5100 seconds).
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Table 4: Performance for the stochastic intensity model: acceptance rates and inefficiency factors (19) for different

Metropolis-Hastings algorithms. The table presents the medians and interquartile ranges (within parentheses) over 56

simulated data sets. The estimates are based on 20,000 draws after a burn-in sample of 5,000 observations. We use 50

simulated draws to evaluate the likelihood in the ARWMH and AIMH algorithms.

Algorithm
Time Acc. Inefficiency

(in s) Rate ω β1 β2 β3 β4 γ ρ

ARWMH 10053 0.247 41.833 31.735 29.212 29.428 32.037 39.873 33.523

(7380) (0.015) (13.621) (6.883) (4.619) (5.650) (7.931) (21.481) (1.469)

AIMH 8953 0.411 25.256 8.308 10.812 9.439 8.592 26.513 10.777

(6406) (0.150) (181.847) (22.293) (12.817) (13.771) (15.356) (135.075) (39.141)

JIMH 10k 5858 0.658 3.431 2.586 2.575 2.624 2.642 3.406 2.893

(3684) (0.031) (0.769) (0.374) (0.380) (0.327) (0.559) (0.879) (0.666)

JIMH mod.10k 3124 0.633 4.863 2.900 2.884 2.899 3.024 4.934 3.355

(2386) (0.041) (3.950) (0.735) (0.804) (0.946) (0.728) (5.605) (1.210)

JIMH mod. 5k 2089 0.618 5.877 3.265 3.169 3.279 3.303 5.926 4.117

(1616) (0.037) (4.823) (0.851) (1.012) (0.985) (1.062) (7.377) (2.038)

Figure 3: Performance for the stochastic intensity model: average effective sample size per computing time (in seconds).

The average (over the seven parameters) of the ESS(s) is computed for one simulated data set for the different esti-

mation procedures. The average ESS(s) is calculated every five minutes, after which linear interpolation gives a crude

approximation of the average ESS(s) as a function of computing time.
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We conclude from the results presented for both stochastic volatility and stochastic

intensity models that the JIMH algorithm offers an efficient alternative to PMCMC.

Substantial improvements are obtained with respect to computational speed, accuracy,

numerical efficiency, and robustness.

4 Empirical examples

In this section we illustrate the performance of the Joint Independent Metropolis-Hastings

method using empirical data. First, we estimate the parameters and the signal for the

stochastic volatility model for a time series of daily IBM stock returns. Second, we esti-

mate the stochastic intensity model using a large panel of U.S. corporate defaults.

4.1 Stochastic volatility model

We consider the stochastic volatility model for IBM stock returns over the period January

3, 2007 to December 30, 2011. The data are obtained from CRSP. The sample period

includes the financial crisis at the end of 2008 and the subsequent recession. Table 5

presents a selection of descriptive statistics. The average return is close to zero. The

excess kurtosis and skewness indicate that the density of returns is heavy-tailed and

nearly symmetrically distributed. The sample autocorrelation functions of the returns

and squared returns are shown in Figure 4. The autocorrelations of the squared returns

clearly display that the returns exhibit volatility clustering.

The estimated parameters and the inefficiencies of the chains of JIMH draws are

reported in Table 6. The estimated parameter values are typical of what is found in

similar empirical studies. The unconditional mean of the log volatility process is estimated

close to 0.48. The estimated autoregressive coefficient in the state equation is 0.97, which

implies a highly persistent log-volatility process.

The inefficiency of the posterior draws is 5 for the mean δ and persistence coefficient ϕ,

and 10 for the variance σ2
η. The acceptance rate for JIMH is 50.85%. Figure 6 displays the

IBM return series along with the smoothed signal estimates. The JIMH method provides

these smoothed estimates and the corresponding confidence band as a direct byproduct

of the algorithm: they are computed directly from the accepted MH draws of the signal

paths. We observe increased volatility levels at the end of 2008, the first half of 2009, and

at the end of 2011.

As mentioned earlier, the computation of marginal likelihoods is also straightforward
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Table 5: Descriptive statistics for the IBM returns from January 3, 2007 to December 30, 2011.

IBM

Number of obs. 1260

Mean 0.051

Standard deviation 1.621

Skewness 0.095

Kurtosis 7.004

Table 6: Stochastic Volatility model: parameter estimates for IBM returns from January 3, 2007 to December 30, 2011.

The 90% credible intervals are within parentheses. The inefficiency factor is computed as (19).

Parameter Estimate Inefficiency

δ
0.479

4.979
(0.065 , 0.875)

ϕ
0.973

5.849
(0.956, 0.988)

σ2
η

0.049
9.639

(0.029 , 0.076)

in the JIMH approach. We obtain the marginal likelihood estimate as the average of

the importance sampling weights. These weights have already been computed during

the algorithm to construct the MH acceptance probabilities. As an alternative to the

independent Metropolis-Hastings method, we could use importance sampling to estimate

the model parameters or smoothed log volatility process x(t) using the candidate draws

and corresponding importance weights obtained during the JIMH algorithm. As the

candidate draws are independent, we would not have to discard burn-in draws. Also, the

independence allows us to more easily compute reliable numerical standard errors for the

estimated posterior means. However, when using importance sampling the computation

of the posterior density of a parameter or of its confidence band would require additional

works. This stems from the fact that the importance sampling method yields a series

of weighted candidate draws instead of draws from the posterior itself. In any case, the

results from importance sampling and from the independent MH algorithm are typically

rather close if based on the same set of draws.
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Figure 4: Sample autocorrelation functions for the IBM returns (top panel) and for the squared IBM returns (bottom

panel) from January 3, 2007 to December 30, 2011.
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Figure 5: IBM returns from January 3, 2007 to December 30, 2011 (top panel) and the smoothed estimate of the log

volatility process with its 90% credible interval (bottom panel).
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4.2 Stochastic intensity model

For our second empirical illustration we consider the stochastic intensity model for a large

panel data set of U.S. corporate defaults obtained from Moody’s. The core of the model

is the same as in Section 3.3, with a slight change to account for sample extension and

attrition for other reasons than default. The dummy variable Dki is defined as before,

with Dki = 1 if firm k jumps into default at time ti, and Dki = 0 otherwise. We introduce

the new dummy variables Rki, with Rki = 1 if firm k is at risk of defaulting at time ti− ε,

for ε > 0 arbitrarily small, and Rki = 0 otherwise. An event time ti occurs when one of

the control variates changes its value (e.g., at the end of the month or quarter), when a

firm is added to the sample, or when a firm leaves the sample, either due to default or

due to other reasons. We denote the default intensity of firm k at time ti as λki = λk(ti).

The conditional density of the observations given the complete paths of the covariates

ci = c(ti), i = 1, . . . , T and the complete path of the unobserved process xi = x(ti), i =

1, . . . , T is given by

p(y|x, θ) =
T∏
i=1

p(yi|xi, θ) =
T∏
i=1

K∏
k=1

exp [Dki log λki −Rkiλki∆i] , (26)

for y = (y1, . . . , yT )
′ and x = (x′1, . . . , x

′
T )

′. Firm k only contributes to the likelihood

function when it is at risk of defaulting, that is when Rki = Rk(ti) = 1. The state

equation remains the same as in Section 3.3.

Our data set contains 1,627 defaults from 12,881 U.S. firms observed daily over the

period January 1, 1970 to March 4, 2010. The number of firms in the portfolio increases

over time from about 1,000 firms at the beginning of the sample to around 5,000 firms

around 2010. Defaults originating from parent-subsidiary relationships are excluded: if

there are multiple defaults with the same parental ID, we only keep the oldest firm as

this is likely to be the parent firm. Event times and durations are measured in business

days. As in Koopman et al. (2008), we winsorize the number of defaults per day to one

to account for outliers and other data irregularities, see Koopman et al. (2008) for further

details on data cleaning.

The top panel of Figure 6 shows the number of defaults per day. The concentration of

the vertical lines clearly presents evidence of default clustering over time. In particular, we

find high levels of defaults during 1989-1991 at the end of the savings and loan crisis and

during the subsequent recession, in 2001 after the burst of the dot-com bubble, and after

the 2008 financial crisis and during the subsequent recession. The increasing numbers

of defaults in the last two decades do not immediately imply an increase in the frailty

process x(t), because also the number of firms increased substantially in the later part of
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Table 7: Stochastic intensity model: parameter estimates for U.S. corporate defaults from January 1, 1970 to March 4,

2010. The 90% credible intervals are within parentheses. The inefficiency factor is calculated as (19).

Parameter Estimate Inefficiency

ω Constant
-4.750

2.755
(-6.357 , -3.287)

β1 S&P500 1 year return
-0.862

2.097
(-1.346 , -0.375)

β2 Term spread
0.013

3.495
(-0.164, 0.191)

β3 3M TBill
-0.054

2.489
(-0.167 , 0.058)

β4 Change in indust. prod.
-5.115

2.450
(-7.798 , -2.292)

γ Loading on frailty
1.148

2.809
(0.548 , 2.294)

ρ Mean reversion
0.120

2.688
(0.014 , 0.351)

the sample. Furthermore, the covariates may also partly explain the movements in the

data. The covariates are S&P500 returns, Treasury Bond spreads, 3 month Treasury Bill

yields, and yearly changes in U.S. industrial production, see also Section 3.3.

The parameter estimates and the inefficiency factors for the chains of the JIMH draws

are presented in Table 7. The 90% credibility intervals of the coefficients β2 (for the

term spread) and β3 (for the U.S. Treasury Bill rate) include zero which indicates that

these parameters are not significantly different from zero. The signs of the parameters

are consistent with what we expect. Both lower returns on the S&P500 index and lower

percentage changes in industrial production imply a higher default intensity. The mean

reversion parameter ρ is estimated as 0.12. At the yearly frequency, this implies an

autoregressive coefficient e−ρ ≈ 0.9, such that the frailty process has a high persistence.

The inefficiency factors have values around 3 and the acceptance rate is 71.04%. The

bottom panel of Figure 6 displays the smoothed estimate of the frailty process together

with the 90% confidence interval. We emphasize that the confidence interval includes

all uncertainties due to the observation noise, the randomness of the frailty process, and

the uncertainty about the parameter vector θ. This contrasts with the confidence bands

around the estimated frailty process as based on classical analysis and as shown in most
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Figure 6: Default data from 1st January 1970 to 4th March 2010 (top panel) and the smoothed estimate of the frailty

process with its 90% credible interval (bottom panel).
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of the literature. There, the parameter uncertainty is usually ignored. The estimated

frailty process represents the credit cycle dynamics in excess of the dynamics caused by

the observable controls in c(ti). We clearly recognize the local peaks of the 1991 recession,

the burst of the dot-com bubble, and the aftermath of the financial crisis of 2008.

5 Conclusion

We have introduced the Joint Independent Metropolis-Hastings (JIMH) algorithm for the

estimation of nonlinear non-Gaussian state space models with a Gaussian signal. We have

concentrated on a univariate signal constructed out of a possibly high-dimensional state

vector. We can conclude that the JIMH method is a computationally efficient alternative

to competing MCMC methods such as the adaptive particle independent Metropolis-

Hastings method. In a Monte Carlo study, we have shown that our method outperforms

competing methods in terms of efficiency and computation time. An interesting extension

for future research is to explore the sampling of state paths with the backward smoothing

algorithm described in Lindsten and Schon (2012). This will relax the requirement of a

Gaussian transition density, but may come at higher computational costs.
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A The Expectation and Maximization steps in

MitISEM

We want to maximize the weighted log-density

1

N

N∑
j=1

w(j) log qζ(θ
(j)|y), (A1)

where the weight w(j) is the ratio of the target density kernel and the candidate density

from which the d-dimensional vector draws θ(j) have been simulated, with weight w(j)

and where qζ(θ
(j)|y) is a mixture of H Student’s t-densities. The target density kernel is

either the marginal posterior density kernel of θ or the joint posterior density kernel of θ

and the signal x; in the latter case the candidate density is the joint candidate density

for θ(j) and x(j) where x(j) has been simulated conditionally on θ(j). We can write the

mixture of Student’s t-densities using a latent variable representation where z(j) is a latent

H dimensional vector consisting of H − 1 zeros and one element zjh = 1 that indicates

that the draw θ(j) belongs to the h-th Student’s t-distribution. The mixing weight is

Pr[zjh = 1] = ηh, and

θ(j) ∼ N(µ,Σ), µ =
H∑
i=1

zjhµh, Σ =
H∑
i=1

zjhκ
j
hΣh, (A2)

where µh and Σh are the mode vector and scale matrix of the h-th Student’s t-distribution,

and where the random variable κjh has an Inverse-Gamma distribution

κjh ∼ IG(νh/2, νh/2),

where νh is the degrees of freedom parameter of the h-th Student’s t-distribution.

The Expectation-Maximization (EM) algorithm proceeds with iterations L (L =

1, 2, . . .), which consist of an expectation and maximization step, until it has converged

to a (local) optimum. In the expectation step of iteration L the conditional expectations
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of the expressions involving the latent variables zj and κj that occur in the log-density,

given the draws θ(j) and ζ = ζ(L−1) = {µh,Σh, νh, ηh; h = 1, . . . , H}, the parameters from

the previous EM iteration (L− 1), are the following:

z̃jh ≡ E
[
zjh
∣∣θ(j), ζ = ζ(L−1)

]
=

t(θ(j)|µh,Σh, νh)ηh∑H
i=1 t(θ

(j)|µi,Σi, νi)ηi
, (A3)

where t(·|µ,Σ, ν) is a Student’s t-density with mode µ, scale matrix Σ and degree of

freedom ν,

z̃/κ
j

h ≡ E

[
zjh
κjh

∣∣∣∣∣ θ(j), ζ = ζ(L−1)

]
= z̃jh

d+ νh

ρjh + νh
, (A4)

ξih ≡ E
[
log κjh|θ

(j), ζ = ζ(L−1)
]
=

=

[
log

(
ρjh + νh

2

)
− ψ

(
d+ νh

2

)]
z̃jh +

[
log
(νh
2

)
− ψ

(νh
2

)]
(1− z̃jh), (A5)

δih ≡ E

[
1

κjh

∣∣∣∣∣ θ(j), ζ
]
= z̃/κ

j

h + (1− z̃jh), (A6)

with ρjh ≡ (θ(j) − µh)
′Σ−1

h (θ(j) − µh), and ψ(.) is the digamma function.

The maximization step of iteration L consists of the following updates

µ
(L)
h =

[
N∑
j=1

w(j)z̃/κ
j

h

]−1 [ N∑
j=1

w(j)θ(j)z̃/κ
j

h

]
, (A7)

Σ
(L)
h =

∑N
j=1w

(j)(θ(j) − µ
(L)
h )(θ(j) − µ

(L)
h )′z̃/κ

j

h∑N
j=1w

(j)z̃jh
, (A8)

η
(L)
h =

∑N
j=1w

(j)z̃jh∑N
j=1w

(j)
. (A9)

Finally ν
(L)
h is obtained by solving the first-order condition

−ψ(νh/2) + log(νh/2) + 1−
∑N

j=1w
(j)ξjh∑N

j=1w
(j)

−
∑N

j=1w
(j)δjh∑N

j=1w
(j)

= 0 (A10)

for νh. For more details we refer to Hoogerheide et al. (2012).
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B NAIS

We can write the likelihood of the state space model given by (1) and (2) as

L(y|θ) =
∫
p(x, y|θ)
q(y|x, θ)

q(y|x, θ)dx = q(y|θ)
∫
ω(x, y|θ)q(y|x, θ)dx, (A11)

where x = (x1, . . . , xT )
′, with xt = ct + Ztαt being the signal at time t for t = 1, . . . , T ,

and where

ω(x, y|θ) ≡ p(y|x, θ)/q(y|x, θ). (A12)

The Gaussian importance or proposal density can be written as

q(yt|xt, θ) = exp

{
at + b′txt −

1

2
x′tCtxt

}
(A13)

where at, bt and Ct depend on the observations y and the parameters in θ for t = 1, . . . , T .

The importance density at time t is effectively determined by bt and Ct as the constant

at is chosen such that the density integrates to one. This restriction and at do not play a

role when we represent the Gaussian importance density as the smoothed density in the

linear Gaussian state space model with its observation equation given by

y∗t = xt + εt, ε ∼ N(0, C−1
t ), t = 1, . . . , T, (A14)

where y∗t = C−1
t bt for t = 1, . . . , T and the transition density given in equation (2).

To formulate an effective importance density we choose its parameters, as collected in

χ = {b1, . . . , bT , C1, . . . , CT}, by minimizing a conveniently chosen metric associated with

the importance sample variation, that is

min
χt

∫
λ2(xt, yt|θ)ω(xt, yt|θ)q(xt|y∗, θ)dxt, (A15)

for every t, where

λ(xt, yt|θ) = log p(yt|xt, θ)− log q(y∗t |xt, θ)− λ0t. (A16)

We can rewrite the minimization as

min
χt

M∑
j=1

λ2(x̃tj, yt|θ)ωtj, ωtj = q(x̃tj|y∗, θ)ω(x̃tj, yt|θ)h(zj)ez
2
j , (A17)

with x̃tj = x̂t + V
1/2
t zj, for j = 1, . . . ,M , and

q(x̃tj|y∗, θ) = exp

{
−1

2
z2j

}
/
√
2π, t = 1, . . . , T, (A18)
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where x̂t is the smoothed signal, Vt is smoothed signal variance and zj are the abscissa

designated by the Gauss-Hermite quadrature. The minimization is carried out iteratively.

First, for a given χ we obtain x̂t and Vt for t = 1, . . . , T from the linear Gaussian state

space model in (A14). Second, we obtain the optimal χt = {Ct, bt} for t = 1, . . . , T by

a weighted least squares computation with “dependent” variable log p(yt|x̃tj, θ) and “ex-

planatory variables” x̃tj and x̃2tj. We iterate these steps until convergence of χ. For a

more detailed discussion, we refer to Koopman et al. (2011).

C Adaptive random-walk Metropolis-Hastings

Roberts and Rosenthal (2009) propose an adaptive random walk Metropolis-Hastings

algorithm, with a proposal of the following form

qn(θ; θn−1) = ω1nϕd(θ; θn−1, κ1Σ1) + ω2nϕd(θ; θn−1, κ2Σ2n), (A19)

where ϕd(θ; θ̂,Σ) is a d dimensional multivariate normal density with mean θ̂ and covari-

ance matrix Σ. We set ω1n = 1 until n > n0 , and ω1n = 0.05 afterwards. The scalars

κ1 = 0.12/d and κ2 = 2.382/d and Σ1 = Id are constant throughout the procedure, while

Σ2n covariance matrix is estimated using the first n− 1 iterates.

D Adaptive mixture of normals

Giordani and Kohn (2010) and Pitt et al. (2012) suggest an adaptive mixture of normals

proposal, which has the form

qn(θ) =
4∑

k=1

ωknqkn(θ) ωkn ≤ 0, for k = 1, . . . , 4 and
4∑

k=1

ωkn = 1, (A20)

at iteration n. The adaptation has two stages. We start the first stage with setting

ω1n = 0.8, ω2n = 0.2 and we use a Gaussian density for q1n with mean equal to the

simulated maximum likelihood estimates and variance equal to minus the inverse Hessian

at the mean. Moreover we set q2n as a heavy tailed version of q1n by setting the covariance

matrix 15 times the covariance matrix of q1n. After 5d accepted draws (where d is equal

to the dimension of θ) we set q3n and q4n and we change the component weights in (A20).

q3n is obtained as a mixture of normals using k-means clustering on the previous draws.

q4n is the fat tailed version of q3n, it has the same means and mixture probabilities as
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q3n but the covariance matrices are multiplied by 20. The new weights are the following

ω1n = 0.15, ω2n = 0.05, ω3n = 0.7, ω4n = 0.1. In the rest of the first stage we update

q3n at predetermined updating times or after rejecting 10 candidate draws in a row. We

always set q4n to be the fat tailed version of q3n. The first stage ends if the minimal

acceptance rate (i.e., the conditional acceptance probability in the MH algorithm) in the

last 1000 draws is above 0.02. After the first stage we set q1n = q3n, i.e., the last version

of the mixture of normals, and q2n is again the fat tailed version of the new q1n. In the

second stage we only update at predetermined updating times.
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