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GARCH models for daily stock returns:
Impact of estimation frequency on Value-at-Risk and

Expected Shortfall forecastsI

David Ardiaa, Lennart F. Hoogerheideb,∗

aDépartement de finance, assurance et immobilier, Université Laval, Québec (Québec), Canada
bDepartment of Econometrics and Tinbergen Institute, Vrije Universiteit Amsterdam, The Netherlands

Abstract

We analyze the impact of the estimation frequency — updating parameter estimates on a daily,

weekly, monthly or quarterly basis — for commonly used GARCH models in a large-scale

study, using more than twelve years (2000-2012) of daily returns for constituents of the S&P

500 index. We assess the implication for one-day ahead 95% and 99% Value-at-Risk (VaR) fore-

casts with the test for correct conditional coverage of Christoffersen (1998) and for Expected

Shortfall (ES) forecasts with the block-bootstrap test of ES violations of Jalal and Rockinger

(2008). Using the false discovery rate methodology of Storey (2002) to estimate the percentage

of stocks for which the model yields correct VaR and ES forecasts, we reach the following con-

clusions. First, updating the parameter estimates of the GARCH equation on a daily frequency

improves only marginally the performance of the model, compared with weekly, monthly or

even quarterly updates. The 90% confidence bands overlap, reflecting that the performance is

not significantly different. Second, the asymmetric GARCH model with non-parametric kernel

density estimate performs well; it yields correct VaR and ES forecasts for an estimated 90%

to 95% of the S&P 500 constituents. Third, specifying a Student-t (or Gaussian) innovations’

density yields substantially and significantly worse forecasts, especially for ES. In sum, the

somewhat more advanced model with infrequently updated parameter estimates yields much

better VaR and ES forecasts than simpler models with daily updated parameter estimates.
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1. Introduction

In this paper, we investigate the impact of the estimation frequency of commonly used

GARCH models on one-day ahead forecasts of Value-at-Risk (VaR) and Expected Shortfall

(ES), where the latter is sometimes called Conditional Value-at-Risk. This is of substantial

importance for large risk management systems, which involve thousands of models which need

to be estimated and updated. We perform a large-scale study, using more than twelve years

(2000-2012) of daily returns for constituents of the S&P 500 index. We rely on a rolling-

window estimation approach and forecast the VaR and ES at the 95% and 99% confidence

levels. For the models, we rely on symmetric and asymmetric specifications for the variance

equation (i.e., without and with a so-called leverage effect) and consider Gaussian, Student-t

and kernel-based distributions for the errors. We observe that updating the parameter estimates

of the GARCH equation on a daily frequency improves only marginally and not significantly

the forecasting performance of the model, compared with weekly, monthly or even quarterly

updates. On the other hand, the differences between the model specifications are substantial

and significant. An asymmetric GARCH model with non-parametric kernel density estimate of

the error distribution performs well, yielding correct VaR and ES forecasts for an estimated 90%

to 95% of the S&P 500 constituents, whereas specifying a Student-t (or Gaussian) innovations’

density yields much worse forecasts, especially for ES. Therefore, if one needs to reduce the

computational burden of a large risk management system involving thousands of models, then it

seems much worse to choose a simpler model (with daily updated parameter estimates) than to

infrequently update the parameter estimates of a more advanced model. The latter substantially

reduces the computational efforts without seriously harming the models’ performance.

The remainder of this article is organized as follows. In section 2 we present the model

specifications, the testing and introduce the false discovery rate method. In section 3 we present

and discuss the empirical results. Section 4 concludes.

2. Model specification, testing and false discovery rate method

As in McNeil and Frey (2000), each model considered starts with an AR(1) component in

order to filter a possible autoregressive part of the equity log-returns. The models differ in

the way the volatility of the error terms is specified. For that purpose, we rely on the sym-
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metric GARCH(1,1) model of Bollerslev (1986) and on the asymmetric GJR(1,1) model by

Glosten et al. (1993). The latter accounts for the asymmetric effect of positive and negative

stock returns on next period’s stock return’s variance, known as the leverage effect in the litera-

ture (Black, 1976).

Both models have a long empirical history and have proved to be successful in volatility

modeling in several markets (Bollerslev et al., 1992). They are simple yet powerful GARCH-

type models. More specifically, in the AR(1)-GJR(1,1) model the log-returns rt are expressed

as:

rt = µ+ ρ rt−1 + ut (t = 1, . . . , T ),

ut = σt εt εt ∼ iid fε,

σ2
t = β1 + (β2 + β3 1{ut−1 ≤ 0})u2

t−1 + β4 σ
2
t−1 ,

(1)

where we require β1 > 0 and β2, β3, β4 ≥ 0 to ensure a positive conditional variance σ2
t . 1{}

denotes the indicator function, whose value is one if the constraint holds and zero otherwise.

The covariance stationarity constraint β2 + β3/2 + β4 < 1 is imposed in the estimation. The

symmetric GARCH model results by imposing β3 = 0. For the distribution fε, we consider

the simple Gaussian and Student-t distributions, together with a non-parametric Gaussian ker-

nel estimator. The Student-t distribution is probably the most commonly used alternative to the

Gaussian for modeling stock returns and allows modeling fatter tails than the Gaussian. The ker-

nel approach gives a non-parametric alternative which can deal with skewness and fat tails in a

convenient manner. In addition to the standard GARCH models, we consider the Exponentially

Weighted Moving Average (EWMA) as advocated by RiskMetrics (RiskMetrics Group, 1996);

this amounts to a GARCH model with Gaussian errors and fixed parameter values β1 = β3 = 0,

β2 = 0.94 and β4 = 0.06.

Models are fitted by quasi maximum likelihood. For the non-parametric Gaussian kernel es-

timator, the bandwidth is selected by the rule-of-thumb of Silverman (1986) on the residuals of

the quasi maximum likelihood fit – i.e., on the estimated ut. Alternative bandwidth choices lead

to similar results. We rely on the rolling-window approach where 1000 log-returns – i.e., ap-

proximately four trading years – are used to estimate the models. Similar results were obtained

for windows of 750 and 1500 observations. Then, the next log-return is used as a forecasting
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window. At each time point, the one-day ahead Value-at-Risk (VaR) and Expected Shortfall

(ES) forecasts are obtained for the different models. VaR represents the risk from market move-

ments as one number: the maximum loss expected on an investment, over a given time period

at a specific level of confidence. It is nowadays a standard risk measure of downside risk. In

our study, the VaR is a negative percentage; in the literature it is sometimes quoted as a positive

percentage (i.e., a percentile of the distribution for the negative of the return) or an amount of

dollars. In a similar fashion, the ES is the conditional expectation of the loss given that the loss

exceeds the VaR; in other words, the ES is the conditional expectation of the log-return given

that log-return is more negative than the VaR. The ES is a coherent measure of risk in the sense

of Artzner et al. (2000).

We consider several estimation frequencies for the scedastic function parameters: daily,

weekly (5 days), monthly (20 days) and quarterly (60 days) updates. Our goal is to measure to

which extent the updating process of the parameters has an impact on the forecasting perfor-

mance of the VaR and ES. This is of substantial importance for large risk management systems,

which involve thousands of models which need to be estimated and updated.

To test the ability of our models to capture the true VaR, we compare the realization of the

returns rt with the one-day ahead VaR forecasts (VaRt|t−1) at 95% and 99% risk levels. To

that aim, we adopt the backtesting methodology proposed by Christoffersen (1998) which has

become the standard practice in financial risk management. This approach is based on the study

of the random sequence Vt where Vt
.
= 1{rt < VaRt|t−1}. A sequence of VaR forecasts at

confidence level (1 − α) has correct conditional coverage (CC) if the Vt form an independent

and identically distributed sequence of Bernoulli random variables with parameter α. The test

will reject the null of correct CC if the fraction of VaR violations (Vt = 1) is much lower or

much higher than α, reflecting that the VaR forecasts are generally (in an absolute sense) too

large or too small, or if the VaR violations occur in clusters, reflecting that the VaR forecasts

are too small in specific sub-periods.

To test the ability of our models to capture the true Expected Shortfall, we analyze the

standardized residuals corresponding to returns that exceed the predicted VaR:

et
.
=

rt − ESt|t−1

σt

with rt < VaRt|t−1 . (2)
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If a model yields correct ES forecasts, then the (conditional) mean of these et (with rt <

VaRt|t−1) should be zero. However, even for a model that yields correct ES forecasts, the

standardized residuals may be clustered, ruling out the i.i.d. hypothesis for these et. For this

reason, we use the block-bootstrap test of Jalal and Rockinger (2008), which makes no as-

sumption about the standardized residuals’ underlying dynamics. The test extends the usual

bootstrapped t-test from the algorithm of Efron and Tibshirani (1993, page 224) to the circular

blocks bootstrap (Politis and Romano, 1992; Shao and Yu, 1993). In the latter approach the data

are wrapped around as a circle, so that each of the original observations has an equal chance of

appearing in a simulated series and all the blocks have the same length. The choice of the block

length is crucial in any block-bootstrap method: the block length should be large enough so

that it includes most of the dependence structure, but not too large so that the number of blocks

becomes insufficient. We select the block length following the algorithm based on the spectral

density estimation as proposed by Politis and White (2004).

We will estimate the percentage of the time series for which a model provides correct VaR

forecasts (in the sense of correct conditional coverage) and correct ES forecasts (in the sense that

the standardized residuals et in (2) have mean zero). A naive way to estimate this percentage

is to compute the percentage of time series for which the p-value is above a preset significance

level, say 5%. However, this approach obviously suffers from Type I errors (rejection for ap-

proximately 5% of those time series for which the model performs correctly) and Type II errors

(non-rejection for some – or possibly many – of those time series for which the model performs

incorrectly). Therefore, the naive estimate may underestimate or overestimate the number of

time series for which the model has correct performance, respectively. We therefore correct the

percentage of non-rejections using the false discovery rate method of Storey (2002).

The key insight of the false discovery rate method is that in case of a model that delivers

correct forecasts for a certain time series the p-value is uniformly distributed between zero and

one (see, e.g. Barras et al., 2010). Otherwise, the p-value has an unknown distribution, which

should be relatively close to zero. Let λ be the separating value such that for p-values above

λ, it is almost certain that they correspond to the null of a correctly performing model. By the

properties of the uniform distribution, we can therefore extrapolate the true number of correctly

performing models from the p-values exceeding the λ threshold. We rely on the bootstrap
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method proposed by Barras et al. (2010) to determine the optimal value of λ in a purely data

driven way.

3. Results and discussion

We test the performance of the models on constituents (as of June 29, 2012) of the S&P

500 index for a period ranging from January 3, 2000, to June 29, 2012, thus representing more

than twelve years of daily data. The data are then filtered for liquidity following Lesmond et al.

(1999). In particular, we remove the time series with less than 1500 data points history, with

more than 10% of zero returns and more than two trading weeks of constant price. This filtering

approach reduces the database to 466 equities for which the adjusted daily closing prices are

downloaded from Datastream.

Table 1 reports the forecasting results, from which we draw the following conclusions. First,

the impact of the updating frequency (of the estimated model parameters) on the quality of the

forecasts of VaR and ES is remarkably small. For each model and for each risk measure, we

notice only marginal differences in performance as the updating frequency decreases from daily

to weekly or monthly. Moreover, the confidence bands overlap, reflecting that the performance

is not significantly different. This suggests that a risk system for equities based on a GARCH-

type model could be updated every month only, without altering significantly the forecasting

performance in terms of VaR and ES. Even quarterly parameter updates seem sufficient, except

for the prediction of the 95% VaR using a GJR-Student model (with a substantial and significant

drop from 70% to 46% of the time series for which the GJR-Student model yields correct 95%

VaR forecasts).

Second, the asymmetric GARCH model with non-parametric kernel density estimate (GJR-

Kernel) performs strikingly well; it yields correct VaR and ES forecasts for an estimated 90%

to 95% of the S&P 500 constituents.

Third, specifying a Student-t (or Gaussian) innovations’ density yields substantially and

significantly worse forecasts. Especially for ES, the use of a flexible distribution for the in-

novations ut in (1), such as a kernel density estimate, is crucial. These empirical results

are in line with the interesting findings from the extensive analysis of simulated data sets by

Jalal and Rockinger (2008). Jalal and Rockinger (2008) estimate GARCH models with Gaus-
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Estimation
Model Frequency 95% VaR 99% VaR 95% ES 99% ES

GARCH-Normal daily 30 5 1 1
[23;37] [2;8] [0;3] [0;2]

GARCH-Normal weekly 31 4 1 1
[24;39] [1;6] [0;3] [0;3]

GARCH-Normal monthly 30 4 2 1
[23;37] [1;6] [0;3] [0;3]

GARCH-Normal quarterly 28 3 1 1
[22;35] [1;5] [0;2] [0;2]

GJR-Normal daily 43 4 1 1
[34;51] [1;6] [0;2] [0;2]

GJR-Normal weekly 42 3 1 1
[34;50] [1;5] [0;2] [0;2]

GJR-Normal monthly 41 4 1 1
[33;50] [1;7] [0;2] [0;1]

GJR-Normal quarterly 41 3 1 1
[32;49] [1;5] [0;1] [0;1]

GJR-Student daily 70 75 3 33
[64;75] [69;80] [1;5] [26;41]

GJR-Student weekly 70 75 4 31
[64;75] [70;81] [1;6] [24;39]

GJR-Student monthly 65 71 3 35
[60;70] [66;77] [1;5] [27;43]

GJR-Student quarterly 46 65 4 32
[37;54] [60;71] [1;6] [25;40]

GJR-Kernel daily 91 94 96 95
[86;96] [89;99] [91;100] [90;100]

GJR-Kernel weekly 90 95 96 97
[85;96] [89;100] [91;100] [92;100]

GJR-Kernel monthly 89 94 92 99
[84;95] [89;99] [86;97] [94;100]

GJR-Kernel quarterly 88 89 95 99
[82;93] [84;95] [90;100] [94;100]

EWMA 27 1 1 0
[20;34] [0;3] [0;2] [0;0]

Table 1: False discovery rate results: Estimated percentages of the time series for which the model provides correct
Value-at-Risk forecasts (using the conditional coverage test of Christoffersen (1998)) and correct Expected Short-
fall forecast (using the block-bootstrap test of ES violations of Jalal and Rockinger (2008)). Percentages are com-
puted from the set of p-values for the series using the false discovery rate approach of Storey (2002). []: asymptoti-
cally valid 90% confidence bands derived in Barras et al. (2010). GARCH-Normal: symmetric GARCH(1,1) with
Gaussian innovations; GJR-Normal: asymmetric GJR(1,1) with Gaussian innovations; GJR-Student: asymmet-
ric GJR(1,1) with Student-t innovations; GJR-Kernel: asymmetric GJR(1,1) with non-parametric kernel density
estimate. EWMA: Exponentially Weighted Moving Average of RiskMetrics.
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Estimation
Model Frequency 95% VaR 99% VaR 95% ES 99% ES

GARCH-Normal daily 66 22 3 4
[62;69] [19;25] [2;5] [3;6]

GARCH-Normal weekly 64 22 4 3
[60;68] [19;25] [2;5] [2;5]

GARCH-Normal monthly 64 20 4 4
[60;68] [17;23] [2;5] [3;6]

GARCH-Normal quarterly 64 18 3 4
[60;68] [15;21] [2;5] [3;6]

GJR-Normal daily 76 22 4 5
[73;80] [19;25] [3;6] [3;7]

GJR-Normal weekly 74 22 5 5
[70;77] [19;26] [3;6] [3;7]

GJR-Normal monthly 74 20 4 4
[70;77] [17;23] [3;6] [3;6]

GJR-Normal quarterly 74 17 4 4
[71;77] [14;20] [2;5] [2;5]

GJR-Student daily 84 82 5 54
[82;87] [79;85] [3;7] [50;58]

GJR-Student weekly 84 83 6 52
[82;87] [80;86] [4;7] [48;56]

GJR-Student monthly 84 81 6 51
[81;87] [78;84] [4;7] [47;55]

GJR-Student quarterly 81 77 6 51
[78;84] [74;80] [4;8] [47;55]

GJR-Kernel daily 91 93 98 96
[89;93] [91;95] [97;99] [94;97]

GJR-Kernel weekly 89 93 98 96
[87;91] [91;95] [97;99] [94;97]

GJR-Kernel monthly 88 92 98 95
[86;90] [90;94] [97;99] [93;97]

GJR-Kernel quarterly 86 91 96 94
[83;89] [89;93] [94;97] [92;96]

EWMA 75 3 2 3
[72;78] [2;4] [1;3] [2;5]

Table 2: Naive results: Percentages of non-rejections at 5% significance level for the conditional coverage test of
Christoffersen (1998) for the 95% and 99% Value-at-Risk and percentages of non-rejections at 5% significance
level of the block-bootstrap test of ES violations of Jalal and Rockinger (2008). []: asymptotically valid 90% con-
fidence bands. GARCH-Normal: symmetric GARCH(1,1) with Gaussian innovations; GJR-Normal: asymmetric
GJR(1,1) with Gaussian innovations; GJR-Student: asymmetric GJR(1,1) with Student-t innovations; GJR-Kernel:
asymmetric GJR(1,1) with non-parametric kernel density estimate. EWMA: Exponentially Weighted Moving Av-
erage of RiskMetrics.
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sian and Student-t errors, and apply the conditional Extreme Value Theory (EVT) approach

of McNeil and Frey (2000). They consider huge numbers of simulated data sets from several

models such as the EGARCH model of Nelson (1991), a stochastic volatility with jumps model,

a regime-switching model, and a pure jumps model. For several of these data generating pro-

cesses, the conditional EVT approach – where a generalized Pareto distribution (GPD) with two

parameters is estimated for the relevant tail of the distribution of ut – yields substantially better

ES forecasts than the less flexible GARCH model with Student-t errors, in which merely one

parameter (degrees-of-freedom) is estimated to fit the whole distribution of ut. Figure 1 and

Figure 2 show histograms of the 466 averages of the ratio yt/ESt|t−1 (at risk levels 95% and

99%, respectively) for observations with yt < VaRt|t−1 for the GJR-Student model (top) and

GJR-Kernel model (bottom). For the GJR-Student model the average ratios are mostly smaller

than one: the GJR-Student model fails due to its overestimation (in an absolute sense) of the ES.

This result is also found in the simulation experiments of Jalal and Rockinger (2008). For the

GJR-Kernel model the average ratios lie mostly around one. For the VaR, the difference in fore-

cast quality is much smaller. Note the similarity of the conditional EVT approach and the GJR

model with kernel density estimate: in both approaches the relevant tail of the distribution of ut

is estimated on the basis of only observations from this tail. The kernel density estimate has a

similar (or arguably even larger) flexibility than the GPD. Further, the kernel density estimate

has the advantage that it does not contain parameters which need to be estimated.

Fourth, the Exponentially Weighted Moving Average (EWMA) of RiskMetrics performs

worst. In sum, the GJR-Kernel model with monthly or quarterly updated parameter estimates

yields much better VaR and ES forecasts than simpler models with daily updated parameter

estimates or the EWMA. Further, it seems intuitively clear that the test for correct ES has more

power than the test for correct VaR, since the first takes into account how large excesses over

the VaR are, whereas the latter is merely based on whether the VaR is exceeded.

Table 2 shows the naive estimate of the percentage of stocks for which a model yields cor-

rect VaR or ES forecasts, at the 5% significance level. For several models and risk measures,

the influence of Type II errors is substantial. For example, the 95% VaR forecasts from EWMA

are not rejected for 75% of the time series, whereas the FDR analysis indicates that the VaR is
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Figure 1: Histogram of the 466 averages of the ratio yt/ESt|t−1 (at risk level 95%) for observations with yt <
VaRt|t−1 for the GJR-Student model (top) and GJR-Kernel model (bottom).
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Figure 2: Histogram of the 466 averages of the ratio yt/ESt|t−1 (at risk level 99%) for observations with yt <
VaRt|t−1 for the GJR-Student model (top) and GJR-Kernel model (bottom).
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only correct for approximately 25% of the stocks. This suggests that a Type II error occurs for

roughly half of the time series of EWMA 95% VaR forecasts. Also the quality of VaR fore-

casts from models with Gaussian or Student-t errors would be seriously overestimated, if one

would base one’s conclusions on Table 2. The differences between Table 1 and Table 2 reflect

the relatively low power of the test for correct conditional coverage of the VaR, but also the

usefulness of the false discovery rate methodology, especially when faced with a test suffering

from low power. On the other hand, for the GJR-Kernel model the estimated percentages in

Table 1 and Table 2 are close: here the effect of Type II errors is relatively small and seems to

be approximately canceled by the effect of Type I errors.

Figure 3 and Figure 4 graphically illustrate the differences between the results from the FDR

approach and the naive results. Figure 3 shows that for the GJR-Student model the hypothesis

of correct 99% ES forecasts is rejected for 46% of the stocks (at a 5% significance level),

leading to a naive estimate that the model yields correct ES forecasts for 54% of the time series.

However, the FDR approach extrapolates the number of p-values above λ, where the optimized

value of λ is approximately 0.7 in this case; that is, the number of time series with correct

99% ES forecasts is estimated as the number of p-values above λ multiplied by 1
1−λ

. This

leads to the substantially lower estimate of 33% of the stocks. Especially, many of the p-values

between 0.05 and 0.20 are ‘classified’ as p-values corresponding to time series for which the

GJR-Student model yields incorrect 99% ES forecasts. On the other hand, Figure 4 for the

GJR-Kernel model shows a histogram of the 466 p-values that is much closer to a uniform

distribution. The FDR and naive approaches yield approximately the same estimates for the

percentage of time series for which the GJR-Kernel model yields correct 99% ES forecasts.

The naive approach seems to suffer equally from Type I errors and Type II errors – both for

approximately 5% of the stocks.
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Figure 3: Histogram of the 466 p-values of the 99% ES test for the GJR-Student model. The vertical line indicates
the optimal λ obtained by the method proposed by Barras et al. (2010). The percentage stocks for which we do not
have rejection of the test at the 5% level is 33% for the FDR approach and 54% for the naive approach.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18
FDR 95% ; Naive 96%

Figure 4: Histogram of the 466 p-values of the 99% ES test for the GJR-Kernel model. The vertical line indicates
the optimal λ obtained by the method proposed by Barras et al. (2010). The percentage stocks for which we do not
have rejection of the test at the 5% level is 95% for the FDR approach and 96% for the naive approach.

12



4. Final remarks

The following possible extensions are left as topics for further research. First, differ-

ent model specifications can be considered. The symmetric Student-t distribution can be re-

placed by the skewed Student t distribution of Hansen (1994) or the generalized error distri-

bution. Further, the performance of the conditional Extreme Value Theory (EVT) approach

of McNeil and Frey (2000), which shows good results in the extensive simulation study of

Jalal and Rockinger (2008), can also be assesses for our large empirical data set. Different

GARCH-type models can be considered such as the EGARCH model of Nelson (1991) or the

Markov-Switching GARCH Model (Haas et al., 2004; Ardia, 2008). Alternatively, the several

types of the increasingly popular stochastic volatility models (see e.g., Harvey and Shephard

(1996)) can be analyzed.

Second, different risk measures can be analyzed. For example, the VaR and ES can be pre-

dicted for higher confidence levels such as 99.5% or 99.9%. Especially for very high confidence

levels (regarding the very deep tail) a comparison between the performance of the GJR model

with non-parametric kernel density estimate and the conditional EVT approach may be inter-

esting, as the latter approach – particularly designed as a tool to assess the likelihood of rare but

large events – may be considered theoretically superior in such cases.

Third, stocks of different countries or continents can be considered instead of the S&P 500

constituents. In less mature markets, it may be necessary to update one’s parameter estimates

more frequently. Fourth, one can use different tests such as the recently developed forecast

rationality test of Patton and Timmermann (2012), extended to the assessment of VaR forecasts

by Hoogerheide et al. (2012c).

Fifth, the models can be estimated in the Bayesian framework (instead of the classical/

frequentist framework), see e.g., Hoogerheide and Van Dijk (2010) or Hoogerheide et al. (2012a).

Then for each model parameter a whole posterior distribution of values will be simulated, re-

placing the single value of the quasi maximum likelihood estimate. The effect of the number

of simulations or different simulation methods (see e.g., Hoogerheide et al. (2012b)) can then

also be analyzed. The effect of estimation frequency on VaR and ES can also be assessed for

combinations of multiple models. The Bayesian framework allows for Bayesian Model Aver-

aging (BMA) using marginal likelihoods (Ardia and Hoogerheide, 2010; Ardia et al., 2012),
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as well as other model combination techniques such as the robust time-varying weights of

Hoogerheide et al. (2010). This is our current research focus.
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