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Abstract

We consider equilibrium and optimum use of a Vickrey road bottleneck, dis-
tinguishing between long-run and short-run scheduling preferences in an otherwise
stylized scheduling model. The preference structure reflects that there is a distinction
between the (exogenous) ’long-run preferred arrival time’, which would be relevant if
consumers were unconstrained in the scheduling of their activities, versus the ’short-
run preferred arrival time’, which is the result of an adaptation of travel routines
in the face of constraints caused by, in particular, time-varying congestion levels.
We characterize the unpriced equilibrium, the social optimum as well as second-best
situations where the availability of the pricing instruments is restricted. All of them
imply a dispersed distribution of short-run preferred arrival times. The extent of
dispersion in the unpriced equilibrium, however, is higher than socially optimal.
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2 1. INTRODUCTION

1 Introduction

In this paper, we introduce a distinction between long-run and short-run scheduling
preferences in an equilibrium setting. We assume a standard bottleneck technology that is
dynamic in nature. Since the original study by Vickrey (1969), this bottleneck model has
become the workhorse model for the analysis of equilibrium and socially optimal timing of
usage of congestible facilities (e.g. Arnott et al., 1990, 1993). Applied to traffic congestion,
the basic idea is that drivers have common preferences to arrive at a certain place at a
certain time, a typical example being the morning rush hour. If the road capacity is not
sufficient to accommodate all drivers in such a way that all of them can arrive at their
preferred arrival moment, a queue will form in front of the bottleneck. In equilibrium,
drivers who arrive close to their preferred arrival time will spend a considerable amount
of time queuing in front of the bottleneck, while those who decide to travel early or late
in the peak will face lower travel times at the cost of arriving earlier or later than their
preferred arrival time. The costs resulting from earliness and lateness with respect to the
preferred arrival time are commonly referred to as schedule delay costs.

Unlike the standard bottleneck model, the model introduced in this paper distinguishes
between long-run and short-run scheduling decisions. In the long run, commuters decide on
their optimal arrival routines, while in the short run, they choose their optimal departure
times subject to these arrival routines. Individuals are therefore less constrained in their
long-run choices than in their short-run choices. More specifically, this implies that in the
long run they are able to optimize their commuting routines, trading off the time-varying
average congestion levels over time of the day against deviations from their ”long-run
preferred arrival time” (LRPAT). The latter is defined as the preferred arrival time they
would have under uncongested conditions, and can be interpreted as a preference that is
driven by external factors, which may for instance be biological (such as daylight (e.g.
Weiss, 1996)) or institutional (such as positive temporal agglomeration forces at work (e.g.
Henderson, 1981)). Also the number of working hours and scheduling restrictions arising
from other activities may affect this long-run preferred arrival time (e.g. Jenelius et al.,
2011; Zhang et al., 2005). In the short run, the travel routines that have been chosen
in the long run are fixed, and the optimized arrival time from the long-run problem
becomes the preferred moment of arrival, which we refer to as ”short-run preferred arrival
time” (SRPAT). Daily short-run departure time decisions are thus made in the face of
the routines chosen in the long run, taking into account the bottleneck capacity on that
particular day and the resulting time-varying congestion levels.

The distinction between short-run and long-run behavior becomes only relevant when
consecutive peaks are not exact replicas. Otherwise, travelers are likely to end up in a
less interesting corner solution where they either equate their LRPAT and SRPAT, or
to choose the same departure time everyday that results in an arrival time identical to
the SRPAT. To make the distinction useful, we consider a bottleneck with stochastic,



3

day-specific capacity, such that a difference exists between the long-run problem of
choosing the SRPAT considering expected travel times, versus the short-run problem of
choosing the departure time when the capacity realization is known and the SRPAT is
fixed. This reflects that typically more information becomes available in the short run
(e.g. Chorus et al., 2006). Our assumption of a bottleneck capacity that varies between
days for example represents situations where changes in road capacity persist over the
entire day, for instance as a consequence of severe incidents, lane closures or adverse
weather conditions. Comparable representations of capacity fluctuations in a bottleneck
setting have also been used in previous studies (e.g. Lindsey, 1995; Arnott et al., 1996,
1999).

Earlier studies of bottleneck congestion did not distinguish between a long- and
short-run dimension of scheduling. However, a recent paper by Peer et al. (2011) provides
empirical evidence that short-run and long-run preferences, and as a consequence also
the corresponding scheduling choices, may diverge. Their work suggests that drivers plan
their routines to avoid congestion, driving a wedge between the LRPAT and SRPAT.
Estimating a scheduling model that distinguishes explicitly between the long run and
the short run, Peer et al. (2011) furthermore confirm the intuitive notion that the value
of travel time is higher in the long run than in the short run, presumably because an
incidental time gain can be used less effectively than a structural one. The opposite is true
for the values of schedule delays early and late, which may well reflect that scheduling
constraints are more binding in the short run than in the long run. They find that
the long-run and short-run valuations differ substantially, by factors ranging between 2
to 5. Differences between short-run and long-run shadow prices are also present in the
theoretical model introduced in this paper.

In this paper, we do not only characterize the unpriced equilibrium, but also first-
best and second-best optima. We show that the first-best optimum can be achieved by
levying first-best tolls upon passage of the bottleneck - hence, in the short run - while
simultaneously using a long-run pricing instrument to affect the choice of the short-run
preferred arrival time.1 The application of both short-run and long-run pricing instruments
may not always be feasible, for instance due to technical or political restrictions. We
thus consider also second-best situations where either only short-run or long-run pricing
instruments are available. We find that the unpriced equilibrium as well as the first- and

1It is quite straightforward to imagine how a short-run toll can be implemented in practice, namely
by charging a (time-of-day- and capacity-dependent) toll at the entry of the bottleneck. The practical
implementation of a long-run toll, however, is less straightforward, since the SRPAT can usually not be
directly observed nor affected by policy makers. As a consequence, in reality, long-run tolls might have to
be levied in a more indirect way. One example would be to use financial incentives to shift day-care and
school starting times to off-peak hours, possibly resulting in off-peak travel routine choices of the parents.
Also, for some groups of people such as public sector employees, the SRPAT can more easily be observed
and therefore also be influenced by policy makers through pricing instruments.
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second-best optima entail routine arrival times at work (the SRPATs) that are dispersed
across drivers.

The welfare implications of dispersed work starting hours have been studied earlier, for
instance by Henderson (1981) and Arnott (2007), assuming flow congestion, and by Fos-
gerau and Small (2010), assuming bottleneck congestion. In these papers, the equilibrium
pattern of endogenous preferred arrival times at work is driven by positive agglomeration
externalities that increase in the number of individuals who are simultaneously present at
work. Our model shows that the consideration of equilibria with dispersed work starting
hours does not necessarily require the presence of agglomeration economics, but may also
follow from distinguishing between long-run and short-run scheduling decisions.

In the context of our analysis it is natural to define the long run as the time frame
where travel routines are chosen. This may be different from other settings, in particular
those that involve also residential or employment choices (e.g De Vany and Saving, 1982;
Van Ommeren et al., 2000; Van Ommeren and Fosgerau, 2009). Our focus is motivated
by our aim to analyze the distinction between long-run and short-run scheduling decisions
in the framework of the standard bottleneck model. Using a model structure that is
close to the standard formulation of the bottleneck model enables us to compare the
equilibrium solutions of the model that distinguishes between long-run and short-run
scheduling choices, to the solutions obtained in the standard model.

The structure of the paper is as follows. Section 2 introduces the bottleneck model that
distinguishes between long-run and short-run scheduling decisions. Section 3 characterizes
the unpriced equilibrium, while Section 4 discusses the first-best and Section 5 the second-
best optima. Section 6 concludes. Various mathematical proofs are contained in the
appendix of the paper.

2 The Model

2.1 Introduction

Applied to the morning peak hour, the standard bottleneck model assumes that every
day a fixed number of N identical commuters travel from home to work. All of them have
the same route, which includes the passage of a single bottleneck with a fixed capacity s.
The capacity level s therefore denotes the maximum number of vehicles that can pass the
bottleneck per unit of time. Drivers pass the bottleneck in the order of their departure
time from home. If the departure rate from home exceeds s, a so-called ’vertical’ queue
grows, meaning that spill-back effects are ignored. Without loss of generality, the free-flow
time required to travel from home to work is usually normalized to 0. Consequently,
home-work travel times consist only of the queuing time in front of the bottleneck.
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When deciding on their optimal departure time, commuters trade off costs of travel
delays and costs of schedule delays. The former indicate the costs associated with travel
time losses, while the latter are defined as the costs of earliness and lateness of the
actual arrival time relative to the preferred arrival time. The costs of a trip through the
bottleneck then depend linearly on travel times and schedule delays, whereby schedule
delay costs assume a piecewise linear function, which allows the costs attached to being
one minute early to differ from the costs that result from arriving one minute late. The
unit costs associated with travel delays, schedule delay early and schedule delay late are
denoted by α, β and γ, respectively. The unit cost parameters as well as the preferred
arrival time are often assumed identical across drivers (e.g. Arnott et al., 1990, 1993).

In the bottleneck model that is introduced in this paper, long-run and short-run
scheduling decisions are distinguished. More specifically, long-run decisions reflect choices
of travel routines, whereas short-run decisions represent departure time choices. Just as
in the standard bottleneck model, drivers trade off travel delay and schedule delay costs
both in the long run and in the short run. The distinction requires two adaptations to
the standard formulation of the bottleneck model.

First, as argued in the introduction of this paper, a distinction between short-run
and long-run scheduling decisions is not useful if days are exact replicas. Therefore, in
our model, the bottleneck capacity can assume i = 1, . . . , J possible discrete values, each
of which is realized with probability pi. The regarding capacity levels are then denoted
by si. Clearly, it must hold that

∑J
i=1 pi equals 1. As in the models of Lindsey (1995)

and Arnott et al. (1996, 1999), these capacity levels are day-specific, and therefore do
not vary during a given day. We assume that in the long run commuters only know these
probabilities, while in the short run (hence, before deciding on their departure time on a
specific day) they know the actual realization of the bottleneck capacity.

Second, we distinguish between two different preferred arrival times: the ”long-run
preferred arrival time” (LRPAT) and the ”short-run preferred arrival time” (SRPAT).
The LRPAT is exogenously given, and is assumed to be identical across all drivers. The
SRPAT, in contrast, is endogenous and may differ across drivers. It represents the
preferred arrival routine. We introduce a function Z(t) that describes the cumulative
distribution of SRPATs over time of the day. The corresponding density function is
denoted by Ż(t).

The relation between the LRPAT and the SRPAT is established in the long-run model,
where drivers choose their SRPAT as a function of their LRPAT. Drivers will choose a
SRPAT that differs from their LRPAT if the long-run scheduling costs - due to deviating
from the LRPAT- are counterbalanced by lower costs due to shorter travel delays (in
the long and/or short run) or schedule delays (in the short run). In reality, this may
for instance translate to the situation where a commuter with a LRPAT at 9:00 chooses
a routine arrival time at work (his SRPAT) at 7:00, in order to avoid lengthy average
travel times, when these are higher at 9:00 than at 7:00. Given the traffic conditions on a
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specific day, he may choose a departure time that results in an arrival time different from
the SRPAT. For example, on a day with low road capacity, she may depart from home
such that she arrives at work already at 6:30.

2.2 Short-run scheduling decision

Short-run decisions are analogous to the decisions represented in the standard bottleneck
model. Therefore, when we will later on compare the results of the bottleneck model that
distinguishes between long-run and short-run scheduling decisions with the results of the
standard bottleneck model, we can refer to the results of the latter by using the results
presented in this section.

The short-run costs of passing the bottleneck for a driver with a SRPAT equal
to t, CSR(t, si), consist of travel delay (’queuing’) costs, CSRT (t, si), and schedule delay
(’scheduling’) costs, CSRSD(t, si):

CSR(t, si) = CSRT (t, si) + CSRSD(t, si) (1)

Note that in contrast to earlier studies where t, besides being the time index, usually
denotes the timing of the departure time decisions, t is used here as a short-hand for the
SRPAT. We adopt this notation for all cost, price and toll functions for which t serves
as an argument. This renders it easier to integrate short-run and long-run scheduling
decisions using a common notation. Moreover, we add si as function argument - not
only to the cost functions but also to departure and arrival rates, and the starting and
end time of the queue - in order to emphasize the capacity-dependency of the short-run
equilibrium.

While not added as an argument explicitly, short-run costs depend on the cumulative
distribution of SRPATs, Z(t); specifically, on the relation between the density function
of the SRPATs, Ż(t), and the bottleneck capacity si. So, unless the density of SRPATs,
Ż(t), is smaller than (or equal to) si for all time instances t between the earliest SRPAT,
tl, and the latest SRPAT, tl′ , the equilibrium outcome will entail queuing. In the following
analysis, we distinguish these two cases: Ż(t) > si (Case 1) and Ż(t) ≤ si (Case 2) (for all
tl ≤ t ≤ tl′). Other cases will only be discussed briefly, as they turn out to be irrelevant
in the analysis of our model.

Case 1: Density of SRPATs exceeds si for all tl ≤ t ≤ tl′

If Z(t) is consistently steeper than the cumulative arrivals at work, A(t, si), and therefore
intersects A(t, si) only once (at a moment in time that will be denoted by t∗), Hendrickson
and Kocur (1981) showed that, regardless of the exact shape of Z(t), the cumulative
departures from home, D(t, si), will be such that there is only one time interval where
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the queue in front of the bottleneck will grow ([tq(si), t
∗]), and another one where the

queue will dissipate ([t∗, tq′(si)]); tq(si) thus denotes the start of the peak, and tq′(si) the
end of it. Between these two time instances, the bottleneck operates at its maximum
capacity. Hence, all drivers except the first and last one departing experience queuing.
The following conditions need to be satisfied in equilibrium:

A(t∗, si) = Z(t∗) (2a)

tq′(si)− tq(si) =
N

si
(2b)

D(tq(si), si) = A(tq(si), si) = Z(tq(si)) = 0 (2c)

D(tq′(si), si) = A(tq′(si), si) = Z(tq′(si)) = N (2d)

Eq. 2a provides the definition of t∗ as the intersection point of Z(t) and A(t, sI), and
Eq. 2b defines the duration of the peak as the ratio between N and si. Eq. 2c states
that at the time the queue starts to form tq(si), no driver has yet passed the bottleneck,
and all drivers have a SRPAT equal or later than tq(si). At the other end, Eq. 2d states
that at the time the queue has disappeared, tq′(si), all drivers N must have passed the
bottleneck, and none of them has a SRPAT later than tq′(si).

One of the properties that has been shown to hold in the standard model, and that is
therefore also valid in the short-run model here, is that in the case when drivers have
different preferred arrival times (and are identical otherwise), the equilibrium order of
departure is undetermined (Lindsey, 2004; Smith, 1979; Daganzo, 1985). This is a direct
consequence of the linear formulation of the cost function.2 In all subsequent analyses,
we make the assumption that drivers pass the bottleneck in order of increasing SRPAT.
Although this equilibrium is not unique, it is equivalent to other equilibria in terms of
costs, both in the aggregate and for every driver individually.

Schedule delays for a driver with a SRPAT equal to t are then defined as the difference
between t and the actual arrival time. The latter is given by tq(si) + Z(t)/si, because
the bottleneck is active since tq(si) and drivers are assumed to arrive in order of their
SRPAT. All drivers with a SRPAT between tl and t∗ arrive early, while all with a SRPAT
between t∗ and tl′ arrive late. Depending on whether a driver arrives early or late, the
unit costs of β and γ, respectively, are relevant, and the schedule delay costs, CSRSD(t, si),
can therefore be expressed as follows:

CSRSD(t, si) =

β
(
t− tq(si)− Z(t)

si

)
if tl < t ≤ t∗

γ
(
−t+ tq(si) + Z(t)

si

)
if t∗ < t < tl′

(3)

2 Due to the linearity of the cost function, drivers are indifferent between arrival times in the interval
[tq(si), t

∗], and in the interval [t∗, tq′(si)].
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It can be shown that not only in the case when all drivers share the same preferred
arrival time, but also when the preferred arrival times are dispersed in time, the equilibrium
departure rate, Ḋ(t, si), is such that the marginal benefits of shifting one’s departure
time closer to the preferred arrival time are exactly offset by an increase in queuing costs
of the same size (Hendrickson and Kocur, 1981). This is a necessary condition for a
driver not to have an incentive to marginally adjust the travel moment. The equilibrium
departure rates for early and late arrivals, again as a function of the SRPAT t, can thus
be expressed as follows:3

Ḋ(t, si) =

{
si

α
α−β if tl < t ≤ t∗

si
α

α+γ if t∗ < t < tl′
(4)

Travel times are defined as the difference between arrival and departure times4The
corresponding cost, CSRT (t), are obtained by multiplying travel times by parameter α:

CSRT (t, si) =

α
(
β
α
Z(t)
si

)
= β Z(t)si

if tl < t ≤ t∗

α
(
γ
α
N−Z(t)

si

)
= γN−Z(t)

si
if t∗ < t < tl′

(5)

From the conditions given in Eq. 2b–2d, the equilibrium travel delay and queuing
costs (Eqs. 3 and 5) and the fact that the first driver and the last driver must face equal
costs in equilibrium5, we can derive the following equilibrium results for the relative share
of drivers who arrive before their SRPAT, θ (hence, Z(t∗) = θN), as well as the start
and the end time of the queue.

θ =
γ

β + γ
, tq(si) = t∗ − θN

si
and tq′(si) = t∗ + (1− θ)N

si
(6)

As a next step, we can then derive total travel delay and scheduling costs in equilibrium,
which we denote by TCSRT (si) and TCSRSD(si):

TCSRT (si) =
δ

2

N2

si
, where δ =

βγ

β + γ
(7)

3We assume that α > β, which is in accordance with empirical findings (e.g. Small, 1982). Without
this assumption, cost equality among equal drivers can only be established if a mass departure of drivers
takes place at tq(si).

4Departure times can be derived by solving the equations Z(t) = Ḋ(t, si)(t− tq(si)) (if tl < t ≤ t∗)
and Z(t) = N − Ḋ(t, si)(tq′(si) − t) (if t∗ < t < tl′) with respect to t. It therefore follows that the

departure times for a driver with a SRPAT at t are given by tq(si) + α−β
α

Z(t)
si

and tq′(si)− α+γ
α

N−Z(t)
si

.

Subtracting them from the respective arrival times tq(si) + Z(t)
s

and tq′(si)− N−Z(t)
s

results in the travel
times given in Eq. 5.

5This follows from the rationale that the driver with a SRPAT equal to t∗ must be willing to exchange
with both the first and the last driver (see Footnote 2).
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TCSRSD(si) =

∫ tl′

tl

CSRSD(t, si)Ż(t)dt ≤ δ

2

N2

si
(8)

We cannot give a closed-form analytical expression for total scheduling costs TCSRSD(si),
since we have not explicitly defined a distribution of SRPATs, Z(t). However, we can
use the setting where all drivers have equal SRPATs as a benchmark. Then, all drivers
face equal costs in equilibrium, and total travel delay and scheduling costs are equal. For
obvious reasons, scheduling costs are at their maximum in that case. For any setting with
dispersed preferred arrival times, total scheduling costs will thus be lower than travel
delay costs.

Figure 1 provides an example of a bottleneck where the bottleneck operates at full
capacity throughout the peak, showing cumulative departures and arrivals in equilibrium.
Travel times are then given by the horizontal difference between cumulative departures
and arrivals; and schedule delays by the horizontal difference between the cumulative
arrivals and the cumulative distribution of SRPATs, Z(t).

Figure 1: Standard bottleneck model
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Case 2: Density of SRPATs is smaller than (equal to) si for all
tl ≤ t ≤ tl′

The bottleneck congestion technology implies that total costs become 0 if the density of
SRPATs, Ż(t) is below the bottleneck capacity si for all time instances between tl and tl′ .
Both queuing and scheduling costs are equal to 0 then, as each driver is able to arrive at
this SRPAT without queuing. It must therefore hold that:

D(t, si) = A(t, si) = Z(t) (9)

CSRT (t, si) = CSRSD(t, si) = 0

Other cases

Besides the equilibria that entail congestion throughout the entire peak, or no congestion
at all, one can also imagine equilibria where the queue does not start with the first driver
but only after some drivers have arrived under uncongested conditions. This is the case
if A(t, si) and Z(t) intersect multiple times. While the start and end of the queue will
change in such a setting, the optimal departure rates for drivers who depart and arrive
under congested conditions (see Eq. 4) still remain valid also in this case (e.g. Newell,
1987).

2.3 Long-run scheduling decision

Drivers decide on their travel routine by minimizing overall costs, EC(t).6 Their long-run
choices thus determine the distribution of SRPATs, Z(t). The overall costs consist of
long-run costs as well as (equilibrium) short-run costs. In accordance with empirical
findings (e.g. Peer et al., 2011), the long-run values of travel time and schedule delay early
and late may differ from the corresponding short-run valuations. The long-run values are
denoted by aα, bβ, cγ, respectively, where a, b, c thus reflect the ratios of long-run and
short-run costs.

In the long run, only the probability distribution of capacity realizations is known,
rather than a deterministic single capacity realization. Since we assume that drivers
perceive the probability distribution of capacities correctly, long-run travel delay costs
are a function of expected short-run travel times. More specifically, long-run travel
delay costs, CLRT (t), differ from expected short-run travel delay costs ECSRT (t) only by
parameter a. The overall travel delay costs that determine the choice of the SRPAT,
CT (t) are then equal to:

CT (t) = ECSRT (t) + CLRT (t) = (1 + a)ECSRT (t) (10)
6Just as in the short-run cost functions, we do not explicitly add Z(t) as a function argument, in

order to keep the notation simple.
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On the basis of intuition and empirical estimates obtained by Peer et al. (2011) and
Tseng et al. (2011), which show that the costs related to one hour of queuing are higher
in the long-run model (taking into account overall costs) than in the short-run model,
one might expect α > 0.

Note that here, as well as in the rest of the paper, we define the expectation operator
attached to any capacity-dependent (and hence, short-run) function f(si), Ef , as the
weighted average across the capacity levels si (i = 1, . . . , J), with the weights being given
by pi:

Ef =

J∑
i

pif(si) (11)

Next, we define the costs related to long-run schedule delays, CLRSD(t), as the deviations
of the SRPAT t from the LRPAT, evaluated by bβ or cγ, depending on whether they
concern earliness or lateness (with respect to the LRPAT). For the sake of notational
convenience we set the LRPAT, which is assumed to be identical across drivers, at 0.
Based on the results obtained by Börjesson (2009), Börjesson et al. (2012), and Peer et al.
(2011) and the intuition that delays are less costly if they are known far in advance (and
thus allow for adjustments in one’s schedule), it is expected that 0 < b < 1 and 0 < c < 1.

CLRSD(t) =

{
−tbβ if tl < t ≤ 0

tcγ if 0 < t < tl′
(12)

Finally the overall cost function can be stated as follows:

EC(t) = CT (t) + CSRSD(t) + CLRSD(t) (13)

2.4 Further assumptions

In order to maintain a simple model structure, we assume in the subsequent analysis
of the unpriced equilibrium and the social optima that only two different realizations
of capacity levels are possible. The lower capacity state, denoted by smin, occurs with
probability p, and the higher state, smax, occurs with probability 1− p. Moreover, the
analyses below assume that b equals c. Drivers thus attach the same value to long-run
schedule delays relative to short-run schedule delays for both earliness and lateness,
which is a rather realistic assumption judging by the estimates in Peer et al. (2011). We
denote this common scheduling parameter by g. Moreover, we focus on the parameter
range of p < g < 1, which leads to the most insightful solutions, and is consistent with
empirical findings of g < 1. Outside this range, mostly corner solutions arise.7 Finally,

7For instance, if g was larger than 1, the social optimum would imply that each driver has a SRPAT
equal to his LRPAT. On the other side, if g was smaller than p, the social optimum would entail a density
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for reasons that will become clear in the next section of the paper that discusses the
unpriced equilibrium (see in particular Footnote 9), the parameters are set such that the
following inequality holds: a < g

p − 1 < a smaxsmin
.

Some figures will be added as an illustration of the analytical results in the following
sections. These assume the following parameter values: N = 1000, smin = 10/min, smax =
20/min, α = 10 Euro/h, β = 5 Euro/h, γ = 15 Euro/h, a = 0.4, g = 0.8, p = 0.5.8 The
long-run costs of travel delay are thus 14 Euro/h and the long-run schedule delay costs
12 Euro/h. The duration of the peak (N/si) will then be 100 min in the smin state, and
50 min in the smax state (if the bottleneck operates at its maximum capacity throughout).
The short-run unit cost parameters have been chosen such that the usual relation of
β < α < γ holds (e.g. Small, 1982). For the long-run unit cost parameters, the values are
specified in a rather conservative way, understating the differences between long-run and
short-run values by factors 2–5 that were found by Peer et al. (2011). If the differences
were assumed larger in the theoretical model, again corner solutions would be obtained
for many instances.

3 Unpriced equilibrium

In the unpriced equilibrium, each driver choses the SRPAT in an attempt to minimize the
sum of expected short-run and long-run costs of traveling through the bottleneck, ECE(t)
(Eq. 13). Since drivers are identical in their valuations of travel time and schedule delays,
and have the same LRPAT, they must face equal values of ECE(t). The cost equality
condition is therefore satisfied if the derivative of the expected costs in Eq. 13 with respect
to the SRPAT t, dECE(t)/dt, equals 0. From the resulting differential equation we can
obtain an expression for the equilibrium density of SRPATs, ŻE(t) (see Section A.1 for
the derivations). We find that in equilibrium, queuing only occurs in the smin state, and
is absent in the smax state. The equilibrium density of SRPATs in equilibrium, ŻE(t), is
then given by:

ŻE(t) =
g − p
ap

smin (14)

Eq. 14 shows that ŻE(t) is constant, implying that the SRPATs are uniformly
distributed. Moreover, ŻE(t) is proportional to smin, which is a natural result as smin
determines short-run scheduling and queuing costs, while these costs are equal to 0 in the
smax state (where no queuing takes place). A similar reasoning holds for the finding that
ŻE(t) is a decreasing function of p: The higher the probability that the smin state occurs,
the flatter and therefore closer to smin Ż

E(t) will be. Moreover, ŻE(t) is increasing in

of SRPATs equal to the low capacity state, and therefore no queuing even in the absence of tolling. The
underlying argumentation can be found in Section 4.2.

8Note that a < g
p
− 1 < a smax

smin
holds: 0.4 < 0.6 < 0.8.
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g and decreasing in a. Naturally, relatively high long-run scheduling costs (i.e. a high
g) lead to a steeper ZE(t), as deviations from the LRPAT become more costly. Higher
long-run travel delay costs (i.e. a high a), on the other hand, render a relatively flat
ŻE(t) necessary in order to compensate for the high travel delay costs for drivers with a
SRPAT close to their LRPAT.

For the cost equality condition to be satisfied, ZE(t) must then intersect cumulative
arrivals at the LRPAT (i.e. t∗ = 0) both in the smin as well as in the smax state, resulting
in θN drivers who have a SRPAT that is earlier than their LRPAT, while the remaining
(1 − θ)N drivers have a SRPAT that is later than their LRPAT (Section A.1). This
means that drivers with a SRPAT that is earlier than their LRPAT always arrive early
(in the smin state) or on time (in the smax state), while all drivers with a SRPAT later
than their LRPAT either arrive late (in the smin state) or on time (again in the smax
state). This result is closely related to the finding in the standard bottleneck framework
that θN drivers arrive before their preferred arrival time (Eq. 6). It follows directly from
ZE(0) = θN and the linearity of ZE(t) that the timing of the earliest SRPAT, tEl , and
the latest SRPAT, tEl′ , must be equal to the inverse of ŻE(t) times −θN and (1− θ)N ,
respectively.9

tEl = −θN ap

(g − p)smin
and tEl′ = (1− θ)N ap

(g − p)smin
(15)

It is easy to show that drivers do not have an incentive to shift their SRPAT when the
equilibrium density of SRPATs as derived above as well as the corresponding tEl and
tEl′ prevail. For instance, the driver with the earliest SRPAT (who also departs first
and hence does not face queuing) has no incentive to choose an earlier SRPAT (a shift
size denoted by ∆), as this would cause him to lose gβ∆ from moving away from the
LRPAT, while gaining only pβ∆ for decreasing the short run schedule delay costs. Since
we assumed g to be larger than p, losses would prevail. If he moved his SRPAT to a later
moment in time, his costs cannot decrease due to the cost equality condition under which
ZE(t) has been derived. Figure 2 shows an example of an equilibrium situation, with
queueing in the smin and no queuing in the smax state.

Finally, we can specify the expected total costs faced by the commuters in equilibrium,
ETCE . We can split them up into costs related to overall travel times (both long- and
short-run), ETCET , short-run schedule delay costs, ETCE,SRSD , and long-run schedule

9 Note that here as well as in the further analysis, we focus on the case when the parameters of the
model are such that smin < ŻE(t) < smax. It is easy to show that this inequality holds if the parameters
are chosen such that a < g

p
− 1 < a smax

smin
.
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Figure 2: Unpriced equilibrium
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delay costs, TCE,LRSD (see Section A.2 for the analytical derivations):

δ
N2

2
p

1 + a

smin︸ ︷︷ ︸
ETCET

+ δ
N2

2

p

smin

(
1 + a− ap

(g − p)smin

)
︸ ︷︷ ︸

ETCE,SRSD

+ (16)

δ
N2

2

p

smin

ap

(g − p)smin︸ ︷︷ ︸
TCE,LRSD

= δN2p
1 + a

smin︸ ︷︷ ︸
ETCE

We find that half of total costs are due to travel delay costs. Also this outcome is
closely related to the regarding expression in the standard bottleneck model, for which
the same result holds if all drivers have the same preferred arrival time. The regarding
total costs are then given by δN2/(2si) (see Eqs. 7 and 8). It is straightforward to show
that ETCE converges to the solution obtained in the standard bottleneck framework
if a goes to 0, and p goes to 1. The proportionality of the cost function with respect
to p can be attributed to the finding that drivers incur costs only if smin is realized,
which happens with probability p. The factor (1 + a), on the other hand, is due to the
additional long-run travel delay costs, which are not present in the standard bottleneck
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model. The second half of total costs consists of scheduling costs. The relative shares
being attributed to short-run and long-run scheduling costs are dependent on the inverse
of ŻE(t). Clearly, the steeper ZE(t), the smaller are the long-run schedule delay costs.

4 Social optima

4.1 Introduction

The unpriced equilibrium as derived in the previous section is not an efficient outcome,
because it entails queuing when capacity is low, and the average private costs that drivers
face for traveling through the bottleneck are only half the marginal social costs that they
cause. These average private costs can be derived by dividing total costs in equilibrium
(ETCE , see Eq. 16) by the number of drivers N , while the marginal cost are defined as
the derivative of ETCE with respect to N :

δN
p

smin
(1 + a)︸ ︷︷ ︸

ETCE/N

< δ2N
p

smin
(1 + a)︸ ︷︷ ︸

dETCE/dN

(17)

The difference between marginal social costs and private costs is referred to as marginal
external congestion cost, which arises because drivers do not internalize the costs they
impose on other drivers by contributing to overall congestion. The social (first-best)
optimum can be achieved if all drivers face the marginal social costs that result from
their scheduling decisions. Pigou (1920) was the first to show that the social optimum
can be decentralized by applying tolls that are equal to the marginal external congestion
cost. In the standard bottleneck model (with Z(t) > si for all tl ≤ t ≤ tl′), this can be
achieved by levying a time-varying toll, which follows exactly the pattern of travel delay
costs in the unpriced equilibrium. The first-best toll is thus 0 for the first and the last
driver, and largest (βθN/si) for the driver who arrives exactly at his preferred arrival
time (the θNth driver). In the standard bottleneck model, drivers will then arrive at the
same time as in the unpriced equilibrium; however, without facing any queuing delay,
while the bottleneck will operate at its capacity throughout the peak. Travel delays are
thus always a deadweight loss in the bottleneck model, as they can be reduced without
increasing scheduling costs.

In our model that distinguishes between long-run and short-run scheduling decisions,
two types of pricing instruments are conceivable: long-run tolls and short-run tolls. Both
can vary freely over the time of the day. The former would vary with the choice of the
SRPAT, and the latter with the choice of departure time. We will consider the first-best
situation where both instruments are available, as well as second-best optima, where only
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one of these two pricing instruments is available, for instance for political or technical
reasons.

Short-run tolls are levied at the bottleneck. They depend on both the realized
bottleneck capacity as well as the departure time chosen by a specific driver (for the
realized capacity state), and are denoted by τSR(t, si). We differentiate between two
different forms of short-run pricing. The first one are the conventional first-best short-run
tolls, which are by definition equal to the marginal external costs. These tolls are therefore
only relevant if congestion would occur without the application of the toll; otherwise they
are equal to 0. First-best short-run tolls can be determined without the regulator knowing
about the underlying long-run choice process that gives rise to the distribution of SRPATs.
The reason is that just as queuing costs, first-best short-run tolls are independent of Z(t)
as long as it holds that Z(t) > si for all time instances between tl and tl′ .

In addition to the first-best short-run tolls, we define a second form of short-run
tolling, which we refer to as complementary short-run tolls. We use this label to refer to
tolls that are levied on days where the capacity of the bottleneck is high enough such
that no queuing would occur in the absence of tolls. We will show that under specific
conditions it is welfare-improving to levy such tolls in addition to first-best short-run tolls,
since they can be used to affect the long-run choice of the SRPAT such that schedule delay
costs are minimized. To set the complementary short-run tolls optimally, the regulator
must therefore be aware of the long-run choice problem of the drivers.

In contrast to the short-run tolls, long-run tolls are independent of the bottleneck
capacity, and only depend on a driver’s SRPAT. They are denoted by τLR(t). The
interpretation behind such a long-run pricing instrument is that the regulator levies a
tax on the choice of the routine work starting time (i.e. the SRPAT).10

Finally, the expected price function EP (t) can be defined. For the first-best optimum
it consists of the overall costs EC(t) (Eq. 13) as well as expected short-run and long-run
tolls:

EP (t) = EC(t) + EτSR(t) + τLR(t) (18)

This price function can be adjusted easily for the second-best optima, leaving out one of
the pricing instruments. Similar to the cost equality condition in the unpriced equilibrium
and for the same reasons (drivers share a common LRPAT and attach identical values to
reductions in travel delays and schedule delays), expected prices must be equal across
drivers if first- and second-best optima are decentralized. We will show that the social
optima derived in the following sections of the paper again imply a uniform distribution
of SRPATs. Consequently, the relative share of drivers who have a SRPAT earlier than
their LRPAT must again be equal to θ, and the timing of the earliest SRPAT and the
latest SRPAT are given by tl = −θN/Ż(t) and tl′ = (1− θ)N/Ż(t), respectively.

10We do not worry here about the realism of such a tax (see also Footnote 1); what is of interest to us
is the question of how it would be set if it were available.
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4.2 First-best optimum

Specification of the optimum

In this section, we will first characterize the optimum, and then derive the tolls required
to achieve it. Since it is feasible to levy first-best short-run tolls, the optimum entails no
queuing. It is easy to see that scheduling costs are minimized if the density of SRPATs,
ŻF (t), is equal to the higher capacity state smax. Starting from that, a ŻF (t) below smax
would induce a decrease in aggregate short-run schedule delays (evaluated at pβ and pγ
per unit of time adjustment of the SRPAT)11 and an increase in long-run schedule delays
(evaluated at gβ and gγ). These changes in short-run and long-run aggregate schedule
delays are equally big, but since we assumed that p < g, the value of the decrease in
short-run scheduling costs does not outweigh the increase in long-run scheduling costs.
At the same time, an increase in ŻF (t) above smax would induce a decrease in aggregate
long-run schedule delays (again evaluated at gβ and gγ), and an increase in aggregate
short-run schedule delays of the same size (now evaluated at β, because short-run schedule
delays would then result for both capacity states). Since g < 1 is assumed, the decrease
in long-run scheduling costs does not outweigh the increase in short-run scheduling costs.
The socially optimal density of SRPATs is therefore equal to smax, and therefore higher
than in the unpriced equilibrium:

ŻF (t) = smax (19)

A higher concentration of SRPATs in the optimum than in the no-toll equilibrium
may seem counterintuitive, given the standard notion that optimal pricing would lead to
a more dispersed traffic pattern over the day. The intuition behind the results is that
the stronger concentration of SRPATs is combined with an elimination of queuing. The
optimal concentration of SRPATs therefore results from a trade-off between scheduling
costs only; the free-market concentration adds a desire to avoid the peak because of travel
delay costs on top of these schedule delay components.

The expected total (social) costs corresponding to the first-best optimum, ETCF ,
consisting of short-run and long-run scheduling costs, ETCF,SRSD and TCF,LRSD , are then
given in Eq. 20. They can be derived in a similar way as the total costs in the unpriced
equilibrium, the derivations of which are shown in Section A.2, with the only difference
being that in the unpriced equilibrium queuing costs are 0 and Ż(t) is equal to smax
(instead of ŻE(t)).12

11This is true if smin ≤ ŻF (t). But any decrease of ŻF (t) below smin is inefficient for obvious reasons,
inducing unnecessarily high long-run scheduling costs, while not decreasing short-run schedule delay any
further.

12It can be easily shown that the social optimum entails lower costs than the unpriced equilibrium:
ETCF < ETCE ⇔ g

p
− 1 < (1 + 2a) smax

smin
. Since we assumed g

p
− 1 < a smax

smin
(see Footnote 9) and a > 0,

g
p
− 1 < (1 + 2a) smax

smin
holds too.
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δ
N2

2
p

(
1

smin
− 1

smax

)
︸ ︷︷ ︸

ETCF,SRSD

+ δ
N2

2

g

smax︸ ︷︷ ︸
TCF,LRSD

= δ
N2

2

(
p

smin
+
g − p
smax

)
︸ ︷︷ ︸

ETCF

(20)

Short-run scheduling costs are increasing in p. This is an intuitive outcome since
short-run scheduling costs only arise in the smin state, which occurs with probability
p. Moreover, short-run scheduling costs decrease in smin and increase in smax. This
outcome is not unexpected either. If smin increases and thus becomes closer to smax, each
driver is able to arrive closer to his SRPAT (distributed with density smax), decreasing
short-run scheduling costs. An increase in smax leads to exactly the opposite result.
It can furthermore be shown that the costs derived for the first-best optimum again
approach the corresponding costs for the standard bottleneck case, if parameters are
set accordingly. So, if the long-run scheduling parameter g is assumed equal to 0, and
ŻF (t) is set equal to infinity (indicating that all drivers have equal SRPATs), long-run
scheduling costs approach 0 and total scheduling costs approach the scheduling costs
found in the standard model for the case that all drivers have an identical preferred
arrival time: δN2/2si (Eq. 8).

Total (social) costs in the first-best case are less than half of total costs in the unpriced
equilibrium.13 Besides the elimination of both short-run and long-run queuing costs,
also the sum of short and long-run scheduling costs is lower in the first-best optimum
than in the unpriced equilibrium. The reason for this result, which is different from the
solution found for the standard bottleneck case (where scheduling costs are equal in the
unpriced and the first-best optimum), is that the dispersion of SRPATs in the unpriced
equilibrium is higher than socially optimal (ŻE(t) < ŻF (t)).

Tolls

If smax applies, first-best short-run tolls will be equal to 0 for all time instances. Since
ZF (t) is equal to smax, also without toll no queuing would occur in this case. The
first-best short-run tolls for the smin state are set such that the queuing that occurs under
unpriced conditions is eliminated. As in the standard bottleneck model, this entails that
the tolls are equal to short-run travel delay costs (Eq. 5). Consequently, the departure
rate becomes equal to the capacity of the bottleneck (in this case smin) and all queuing

13Given that the parameter values are chosen such that (g − p)/(ap) < smax/smin (see Footnote 9 for
the underlying rationale).
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disappears:

τF,SR(t, smin) =

β
ZF (t)
smin

= β
(
θN
smin

+ t smaxsmin

)
if tl < t ≤ 0

γN−ZF (t)
smin

= γ
(
(1−θ)N
smin

− t smaxsmin

)
if 0 < t < tl′

(21)

τF,SR(t, smax) =0

However, if only first-best short-run tolls were levied, drivers would not choose for
the socially optimal density of SRPATs, i.e. ŻF (t) = smax, since the expected price of
traveling through the bottleneck would then differ across drivers, rendering the equilibrium
under tolls as in Eq. 21 inefficient (see Section A.3 for the derivations). In particular, if
ŻF (t) were equal to smax, the driver with the SRPAT equal to LRPAT would face the
lowest expected price, while the drivers with the earliest and latest SRPAT, respectively,
would face the highest one. A long-run toll is thus applied in addition to the short-run
tolls to bridge this gap, and hence to reach full efficiency. The optimal long-run toll,
τF,LR(t), assumes the following shape (note that g is assumed to be larger than p, meaning
that τF,LR(t) will always be positive):

τF,LR(t) =

(g − p)β Z
F (t)
smax

= (g − p)β
(

θN
smax

+ t
)

if tl < t ≤ 0

(g − p)γN−ZF (t)
smax

= (g − p)γ
(
(1−θ)N
smax

− t
)

if 0 < t < tl′
(22)

Figure 3 provides the graphical intuition for why both short-run and long-run pricing
instruments are required to reach the full optimum. Each instrument by itself is insufficient
to equalize the price across across drivers. Only if both of them are used, the social
optimum can be decentralized as the sum of scheduling costs and tolls is equal for all
drivers, both in the short and the long run.

5 Second-best optima

As discussed above, we consider two second-best optima, both of which are characterized
by the availability of only one type of pricing instrument: either a long-run or a short-run
pricing instrument. In contrast to other possible second-best situations that are frequently
considered in the literature, we assume that the available instrument is not restricted in
its form as long as its short or long-run character, respectively, is not altered (e.g. the
long-run toll cannot become capacity-specific).14

14An overview of alternative second-best optima, for instance involving the restriction that the toll
cannot be varied freely over time of the day, can be found in Small and Verhoef (2007, pp. 137–148).
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Figure 3: First-best tolls and schedule delay costs
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5.1 Short-run toll only

We first consider the second-best situation when only short-run tolls are available. Again
these can be used to fully eliminate queuing. As we argued for the first-best optimum,
the remaining costs, the sum of (expected) short-run and long-run scheduling costs, is
minimized if the SRPATs are distributed with density smax (Eq. 19). We will show that
ZS = smax can be achieved by introducing a complementary short-run toll in the smax
state, leading to the same welfare level as in the first-best optimum (Eq. 20):

ŻS(t) = ŻF (t) = smax and ETCS = ECTF (23)

Tolls

As in the first-best optimum, first-best short-run tolls are levied in the smin state (Eq. 21).
Moreover, a complementary short-run toll is introduced in the smax state in order to
affect the choice of the SRPATs such that ZS(t) becomes equal to smax, maximizing
social welfare. The complementary short-run toll must be set such that the expected price
in this second-best situation becomes equal to the expected price that drivers face in the
first-best optimum. This can be attained by replacing the long-run toll of the first-best
equilibrium by an appropriate combination of short-run tolls. Since the short-run toll in
the state with smin should be set exactly such that it eliminates queuing while keeping
the departure rate at smin, we can only use the toll in the state with smax for this purpose.
Because the smax state occurs with probability 1− p, τS(t, smax) should be equal to the
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contribution of the long-run toll in the first-best optimum, τF,LR(t), divided by 1− p:

τS(t, smin) = τF,SR(t, smin) (24)

τS(t, smax) =
1

1− p
τF,LR(t) (25)

Recalling from Eq. 22 that the slopes of τF,LR are (g− p)β and −(g− p)γ, the toll in
Eq. 25 will be consistent with the short-run optimum with smax of every driver arriving
at her SRPAT, as long as g < 1. This is true by assumption, reflecting that the unit cost
of schedule delay cannot be smaller in the short run, when there is less flexibility, than in
the long run.

Figure 4 gives a graphical overview of the tolls and schedule delay costs in this
second-best optimum. Long-run and short-run schedule delay costs are the same as in
Figure 3. This holds true also for the sum of schedule delays and tolls. However, unlike
in Figure 3, the sum of tolls consists only of the weighted average of short-run tolls rather
than both long-run and short-run tolls.

Figure 4: Tolls and schedule delays if only short-run tolls are available
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5.2 Long-run toll only

Specification of the optimum

If long-run tolls are the only pricing instrument available to the regulator, queuing can
only then be eliminated fully, if the density of SRPATs, Ż(t)L, is equal or smaller than
smin. Also, short-run scheduling costs are then equal to 0, as each driver can arrive at
his SRPAT. However, the downside is that this low density of SRPATs induces high
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total long-run scheduling costs. A higher Ż(t)L, on the other hand, decreases long-run
scheduling costs, but leads to queuing, and to higher short-run scheduling costs. In fact,
we find that for the parameter ranges under consideration, these trade-offs yield two
possible local second-best optima. The parameter values determine which of these is the
most efficient one. The first optimum has Ż(t)L equal to smin (Case 1), while the second
one has it equal to smax (Case 2). Both possible optima are corner solutions, with the
density of SRPATs in the unpriced equilibrium, ŻE(t), being located between.

The existence of two local optima arises from the discontinuity in total travel delay cost
at Ż(t) = smin, where all queuing disappears while travel delay cost in state smin would
be independent of Ż(t) as long as it exceeds smin. For any constant Ż(t) between smin
and smax, it is easy to see that total schedule delay cost increase in Ż(t), as they decrease
in N/Ż(t) by a marginal amount N 1

2(g − p)(θβ + (1− θ)γ). This suggests Ż(t) = smax
would be optimal. But it is the said discontinuity that may make Ż(t) = smin optimal as
well.

Case 1: Ż(t)L equals smin

In this case, drivers do not face any queuing nor short-run delays. Total costs TCL thus
consist only of total long-run schedule delay costs TCLSD that arise for Ż(t)L = smin.
These can be obtained by integrating long-run scheduling costs (Eq. 12) across all drivers,
starting from the driver with the earliest SRPAT, tl = −θN/smin, and ending at the
driver with the latest tl′ = (1− θ)N/smin.

TCLSD = TCL = δ
N2

2

g

smin
(26)

Case 2: Ż(t)L equals smax

If Ż(t)L is equal to smax, drivers face queuing as well as short-run schedule delays if
smin but not not if smax is realized. Expected total costs, ETCL, are thus composed of
expected (short-run and long-run) queuing costs, ETCLT , short-run schedule delay costs,

ETCL,SRSD , and long-run schedule delay costs TCL,LRSD . Note that the expected total costs
differ from the total costs in the first-best optimum (Eq. 20) only by the queuing costs,
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which are absent in the first-best optimum:

δ
N2

2
p

(1 + a)

smin︸ ︷︷ ︸
ETCLT

+ δ
N2

2
p

(
1

smin
− 1

smax

)
︸ ︷︷ ︸

ETCL,SRSD

+ (27)

δ
N2

2

g

smax︸ ︷︷ ︸
TCL,LRSD

= δ
N2

2

(
g − p
smax

+ p
2 + a

smin

)
︸ ︷︷ ︸

ETCL

Clearly, if the parameters have been chosen such that TCL is lower for Case 1, the
second-best optimum entails that Ż(t)L equals smin. In the opposite case, hence when
total costs are lower for Case 2, Ż(t)L = smax applies.

From the comparison of cases we find that Eq. 26 is smaller than Eq. 27 so that
the long-run policy seems to eliminate queuing when a is sufficiently large (i.e. the
long-run costs of travel delays should be sufficiently high), g sufficiently small (i.e. the
long-run schedule delay costs should be sufficiently low), and p sufficiently large. The

exact condition is g
p <

(2+a)smax−smin
smax−smin .

Tolls

Finally, we can derive the long-run pricing instruments required to achieve the second-best
distribution of SRPATs.

Case 1: Ż(t)L equals smin

If Ż(t)L equals smin, drivers only face long-run schedule delay costs. The corresponding
toll τL(t), which ensures that all drivers face equal (expected) prices, must therefore be
highest for the driver who has a SRPAT equal to the LRPAT, and thus long-run schedule
delay costs of 0. They decrease linearly towards the first and the last driver at a rate
equal to the increase in long-run schedule delay costs: gβ and gγ, respectively.

τL(t) =

gβ
ZL(t)
smin

= gβ
(
θN
smin

+ t
)

if tl < t ≤ 0

gγN−ZL(t)
smin

= gγ
(
(1−θ)N
smin

− t
)

if 0 < t < tl′
(28)

Case 2: Ż(t)L equals smax

For the case that Ż(t)L is equal to smax, the expected costs, EC(t), are highest for the
driver who has a SRPAT equal to the LRPAT. The corresponding toll, τL(t), which
again ensures that all drivers face equal prices, is therefore lowest for this driver. Note
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that this unusual result of a toll that is highest for the drivers that depart first and
last, respectively, is driven by the fact that in the model that distinguishes long-run and
short-run scheduling decisions, long-run travel delay costs are evaluated at aα rather
than α, rendering it relatively more costly to have long travel times (and hence to have a
SRPAT close to the LRPAT). The tolls can be derived by taking the derivative of the cost
function, based on the assumption that Ż(t)L equals smax (see Eq. 31 in Section A.1).
The toll that provides for price equality among drivers must then be equal to (−1) times
the derivative:

τL(t) =

tβ
(
g − p− apsmax

smin

)
if tl < t ≤ 0

tγ
(
apsmax
smin

− g + p
)

if 0 < t < tl′
(29)

Note that from the assumption that ZE(t) is smaller than smax and hence g − p <
apsmax/smin (see Footnote 9 for an explanation), it follows that τL(t) is always positive
for all tl ≤ t ≤ tl′ .

6 Conclusions

In this paper, we develop a bottleneck model that distinguishes between long-run decisions
on travel routines and short-run decisions on departure times, with an application to the
morning commute. The bottleneck capacity varies between days, and can either assume
a high or low capacity state. We assume that in the long run only the distribution of
capacities is known by the drivers, whereas in the short run they are informed about the
exact realization of the bottleneck capacity on a specific day. Our model incorporates
the intuitive notion that, in the face of congestion, people may change their schedules
such that the desired arrival time at work deviates from what would be the most desired
moment if congestion would not exist.

We show that in the unpriced equilibrium, routine arrival times at work, which we
refer to as short-run preferred arrival times (SRPATs) and which are chosen by the
drivers in the long run, are uniformly distributed in time, and therefore different from the
long-run preferred arrival time (LRPAT), which is identical for all drivers by assumption.
Congestion occurs only in the low capacity state, whereas it is absent in the high capacity
state.

We also characterize first- and second-best optima, the latter being defined by a
limited availability of pricing instruments. We examine how these can be decentralized by
applying short-run and long-run tolls. While short-run tolls are used to affect departure
time choices, long-run instruments are used to affect the choice of the routine arrival
time at work. Both instruments have in common that they can vary by time of the day.
However, while short-run tolls depend depend on the bottleneck capacity realized on a
specific day, long-run tolls are capacity-independent.
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We show that just as in the unpriced equilibrium, the first-best optimum implies a
uniform distribution of SRPATs. However, the extent of dispersion is lower than in the
unpriced equilibrium. This is surprising, as conventional wisdom tells us that a greater
dispersion of desired arrival times (work start times), would be desirable if congestion
exists. The first-best optimum can be reached by simultaneously applying first-best
short-run and long-run. First-best short-run tolls as standalone pricing instrument are
thus insufficient for reaching the socially efficient outcome. We find that the same level
of welfare as in the first-best optimum can be attained if only short-run tolls are feasible.
However, this second-best situation requires that, in addition to the first-best short-run
toll that is applied in the low-capacity state, tolls are levied also on days when the high-
capacity state is realized, and thus on days when - even without tolling - no congestion
would occur; we refer to these tolls as complementary short-run tolls. Moreover, we
investigate the case when only long-run tolls are feasible, and find that the social optimum
can no longer be reached under this restriction.

Also, in the second-best optimum, it may be true that it is desirable to achieve a
greater rather than smaller concentration of desired arrival times. The intuition is that a
marginal change in the concentration of desired arrival times usually does not reduce
travel delay costs (except for the discontinuity where all queues suddenly disappear -
in our model, for a density of desired arrival times equal to the lowest capacity smin).
For higher densities, travel cost fall if that density is increased, which is due to the
benefit from having SRPATs closer to the LRPAT exceeding the probability-weighted
short-run schedule delay costs (if the ratio of long-run and short-run schedule delay values
exceeds the probability that the lower capacity state occurs). This long-run schedule
delay cost, associated with changing daily schedules and desired arrival times in the face
of congestion, is not accounted for in typical analyses that propose spreading of work
start times.

In this paper, we focus on developing a model that maintains a structure similar to
the one of the standard bottleneck model, in particular to the version established by
Arnott et al. (1990). In follow-up research we will investigate whether the main results
of this paper still hold if an alternative congestion technology, in particular dynamic
flow congestion, is assumed. Moreover, future work might focus on relaxing the rather
restrictive assumptions on the distribution of bottleneck capacities and the extent of
information available to drivers that are used in this paper. On a more general level,
future research may also focus on alternative definitions of the long run. For instance, it
would be interesting to extend the model such that it captures also decisions that concern
the even longer run such as locational and job choices.



26 APPENDIX A. PROOFS

A Proofs

A.1 Derivation of ŻE(t)

As stated in Section 2, drivers choose their SRPAT t by minimizing expected costs
ECE(t). Since drivers are identical regarding their LRPAT and their valuations of time
and schedule delays, costs must be equal across drivers. Clearly, the costs depend on
whether queuing takes place in both capacity states, or only in the smin state.15 We
find that in equilibrium the latter is true, and queuing is therefore absent in the smax
state.16 The costs function, ECE(t), can then be determined using the results obtained
for queuing costs (Eqs. 5 and 10), short-run schedule delay costs (Eq. 3) and long-run
schedule delay costs (Eq. 12). We first derive ŻE(t) for the case of a driver who faces
schedule delays early both in the short run (i.e. in the smin state) and in the long run.
Later we will argue, that in equilibrium a driver will either face earliness both in the short
and the long run, or lateness both in the short and the long run. Hence, no combinations
of earliness in one time dimension and lateness in the other time dimension are part of
the equilibrium solution. The expected costs for earliness in both time dimensions are
then given by:

ECE(t) = (1 + a)pβ
ZE(t)

smin︸ ︷︷ ︸
ECT (t)

+ pβ

(
t− tq(smin)− ZE(t)

smin

)
︸ ︷︷ ︸

ECSRSD(t)

+ gβ(−t)︸ ︷︷ ︸
CLRSD(t)

(30)

The equilibrium starting time of the peak in the smin state, tq(smin) = t∗ − θN/smin
(Eq. 6), is a function of ZE(t), since t∗ defines the moment when A(t, smin) and ZE(t)
intersect. So, an explicit expression for tq(smin) in Eq. 30, as a function of ZE(t), is only
feasible if the functional form of ZE(t) is known. Given that the cost function is linear,
it is a natural guess that linearity would also hold for ZE(t), and ŻE(t) would thus be
a constant. If that is the case, t∗ must be equal to the LRPAT(i.e. 0). This can most
easily be demonstrated by comparing the costs of the driver with the earliest and the
one with the latest SRPAT. Both of them will face equal short-run scheduling costs as

15It is straightforward to show that no queuing in either state cannot be an equilibrium solution. In
the absence of queuing costs, all drivers would have an incentive to minimize their long-run scheduling
costs by choosing a SRPAT equal to their LRPAT, and then depart at their SRPAT=LRPAT, in turn,
inducing queuing.

16If queuing occurred in both states, the resulting equilibrium density of SRPATs, ŻE(t), that is

consistent with the cost equality condition shows to be negative (− (1−d)sminsmax

a(p(smax−smin)+smin)
< 0). Since for

obvious reasons ŻE(t) cannot be negative, we discard this solution, and focus on the case when queuing
only occurs in the smin state. ŻE(t) for the case of queuing in both capacity states can be derived by
performing the same computations as for the case that queuing occurs only in the smin state, but then
adding queuing and short-run schedule delay costs for the smax state.
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a consequence of behaving optimally in their short-run scheduling problem. Since they
both do not face queuing costs, the only costs they face besides the short-run scheduling
costs are long-run scheduling costs, which thus have to be equal across these two drivers.
Given the assumption that ZE(t) is linear as well as our assumption that g := b = c, this
is only the case if t∗ = 0 and Z(0) = θN . We can thus substitute −θN/smin for tq(smin)
in Eq. 30 and take the derivative with respect to t. Setting the derivative equal to 0, the
equilibrium density of SRPATs (Eq. 14) can be derived:

dECE(t)

dt
=pβ

ŻE(t)

smin
+ pβ

(
1− ŻE(t)

smin

)
+ apβ

ŻE(t)

smin
+−gβ (31)

=β

(
p− g + ap

ŻE(t)

smin

)
= 0⇒ ŻE(t) =

g − p
ap

smin

Indeed it shows that ŻE(t) is a constant, and ZE(t) therefore linear. The same
ZE(t) as given in Eq. 31 is obtained if the cost function is defined such that it implies
lateness both in the short as well as in the long run. The SRPATs are therefore uniformly
distributed in equilibrium.

A.2 Derivation of ETCE

The total expected costs in the unpriced equilibrium, ETCE , consist of the sum of
(expected) short-run and long-run queuing costs, ETCET , as well as l(expected) short-run

and long-run scheduling costs, denoted by ETCE,SRSD and TCE,LRSD , respectively. Each
of these cost elements can be derived by integrating the corresponding driver- (or more
precisely, SRPAT-) specific costs across all drivers, starting from the driver with the
earliest SRPAT, tE′ , to the driver with the latest SRPAT, tEl′ (Eq. 15). The density of
SRPATs, ŻE(t) has been derived in Eq. 14.

Based on the definitions of the expected short-run and long-run queuing costs in
equilibrium (see Eqs. 5 and 10, respectively) and the finding that no queuing occurs if the
smax state is realized, total expected queuing costs can be derived in the following way:

ETCET =(1 + a)

∫ tE
l′

tEl

ECSRT (t)ŻE(t)dt = (32)

(1 + a)p

(∫ tE
l′

tEl

CSRT (t, smin)dt

)
= δ

N2

2
p

1 + a

smin
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Similarly, expected short-run schedule delay costs (Eq. 3) can be computed, again taking
into account only delay costs in the smin state:

ETCE,SRSD =

∫ tE
l′

tEl

ECSRSD(t)ŻE(t)dt = (33)

p

∫ tE
l′

tEl

CSRSD(t, smin)ŻE(t)dt = δ
N2

2

p

smin

(
1 + a− ap

(g − p)smin

)
Finally, it follows from Eq. 12 that long-run schedule delay costs are equal to:

TCE,LRSD =

∫ tE
l′

tEl

CLRSD(t)ŻE(t)dt = δ
N2

2

p

smin

ap

(g − p)smin
(34)

A.3 Derivation τF,LR(t)

If only first-best short-run tolls were implemented, the price function, EPF (t), would be
given by the following equation, using the earlier derived results for the costs of short-run
and long-run schedule delays (Eq. 3 and 12) and first-best short-run tolls (Eq. 21) (for
the case that t ≤ 0 (hence, SRPAT≤LRPAT)).

EPF (t) = pβ

(
t− tq(smin)− Z(t)

smin

)
︸ ︷︷ ︸

ECSRSD(t)

+ gβ(−t)︸ ︷︷ ︸
CLRSD(t)

+ pβ
Z(t)

smin︸ ︷︷ ︸
EτSR

(35)

As argued in Section A.1, tq(smin) must be equal to −θN/smin if the distribution of
SRPATs is uniform, which is true also in the first-best optimum, where ZF (t) is equal to
smax (Eq. 19). We can then substitute this expression for tq(smin) in Eq. 35. Moreover, it
is easy to see that the pβZ(t)smin terms cancel out. The derivative of the price function
with respect to t, dEPF (t)/dt, is thus equal to (p− g)β. In order to provide for price
equality among travelers in the optimum, the long-run toll, τ̇F,LR(t), must therefore
be set such that its derivative is equal to (g − p)β. The toll itself, τF,LR(t), must then
equal (g − p)βZF (t)/smax, since it starts from 0 for the driver with the earliest SRPAT.
Similarly, it can be shown that for t > 0, τ̇F,LR(t) must be equal to (p− g)γ, and τF,LR(t)
to (g − p)γZF (t)/smax
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