
TI 2013-011/III 
Tinbergen Institute Discussion Paper 

 
Posterior-Predictive Evidence on US 
Inflation using Phillips Curve Models 
with Non-Filtered Time Series 
 
 

Nalan Basturk1,3 

Cem Cakmakli2 

Pinar Ceyhan1,3 

Herman K. van Dijk1,3,4 
 
 

 
 
 
1Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam; 
2 Faculty of Economics and Business, University of Amsterdam; 
3Tinbergen Institute; 
4 Faculty of Economics and Business Administration, VU University Amsterdam. 
 
 

 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the 
ambition to support innovative research and offer top quality academic education in core areas of 
finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



Posterior-Predictive Evidence on US Inflation using

Phillips Curve Models with non-filtered Time Series∗

Nalan Basturk1,3, Cem Cakmakli†.,2, Pinar Ceyhan1,3, and Herman

K. van Dijk1,3,4

1
Econometric Institute, Erasmus University Rotterdam

2Department of Quantitative Economics, University of Amsterdam
3Tinbergen Institute

4VU University Amsterdam

December 2012

Abstract

Changing time series properties of US inflation and economic activity are
analyzed within a class of extended Phillips Curve (PC) models. First, the
misspecification effects of mechanical removal of low frequency movements of
these series on posterior inference of a basic PC model are analyzed using
a Bayesian simulation based approach. Next, structural time series models
that describe changing patterns in low and high frequencies and backward
as well as forward inflation expectation mechanisms are incorporated in the
class of extended PC models. Empirical results indicate that the proposed
models compare favorably with existing Bayesian Vector Autoregressive and
Stochastic Volatility models in terms of fit and predictive performance. Weak
identification and dynamic persistence appear less important when time vary-
ing dynamics of high and low frequencies are carefully modeled. Modeling
inflation expectations using survey data and adding level shifts and stochastic
volatility improves substantially in sample fit and out of sample predictions.
No evidence is found of a long run stable cointegration relation between US
inflation and marginal costs. Tails of the complete predictive distributions
indicate an increase in the probability of disinflation in recent years.
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1 Introduction

Modelling the relation between inflation and fluctuations in economic activity has

been one of the building blocks of macroeconomic policy analysis. Often, the anal-

ysis of this relation, denoted as Phillips Curve (PC) models, is conducted using the

short-run variations in inflation and economic activity. The conventional method

for extracting this short run variation in the observed series is to demean and de-

trend the data prior to analysis, see Gaĺı and Gertler (1999); Smets and Wouters

(2003); Mavroeidis (2004); DeJong and Dave (2011). However, mechanical removal

of the low frequency movements in the data may lead to misspecification in the

models, as suggested in Canova (2012) for DSGE models. The existence of complex

low frequency movements, such as potential structural breaks and level shifts in the

observed series, requires more sophisticated models, which can handle this time vari-

ation together with the standard PC parameters. Unfortunately, there is no consen-

sus on the appropriate method of detrending these series, see Gorodnichenko and Ng

(2010) for a comprehensive list of such methods used in the literature.

The existence of complex low frequency movements, in particular in the infla-

tion series, is well documented in the literature (McConnell and Perez-Quiros, 2000;

Stock and Watson, 2008; Zhang et al., 2008; Bianchi, 2010). For instance two dis-

tinct periods with different patterns can be observed for the non-filtered inflation

series. The period between the beginning of 1970s and beginning of 1980s is often

labelled as a high inflationary period compared to the latter periods. The decline in

the level and volatility after this period is linked to credible monetary policy that sta-

bilized inflationary expectations at a low level via commitment to a nominal anchor

since the early eighties, see McConnell and Perez-Quiros (2000); Stock and Watson

(2002); Ahmed et al. (2004); Stock and Watson (2007); Cecchetti et al. (2007). A

similar discussion is also relevant for the economic activity in the sense that the real

marginal cost series, often used as a proxy for the economic activity, see Gaĺı and Gertler
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(1999); Clarida et al. (2000); Gaĺı et al. (2001), follows a negative trend which is am-

plified further in the recent decade. The importance of the joint analysis of such high

and low frequency movements in macroeconomic data has recently been documented

in the literature (Delle Monache and Harvey, 2010; Canova, 2012).

In this paper we model the low and high frequency movements in the inflation

and marginal cost series jointly, by extending the Phillips curve models in order to

explain the observed time series instead of the a priori filtered series. As a prelim-

inary step we illustrate the possible effect of prior filtering of the data on posterior

inference using simulated datasets from a generic PC type mode. The issue is that

the observed inflation levels have a complex time series structure, which is not taken

into account in standard Phillips curve models. We show that this misspecification

deteriorates posterior inference of the structural Phillips curve parameters. Specifi-

cally, the estimated persistence in inflation levels tends to be higher than the actual

persistence.

Next, we specify extended Phillips Curve models, namely the New Keynesian

Phillips Curve (NKPC) and the Hybrid New Keynesian Phillips Curve (HNKPC),

with complex time series structures which allow for stochastic trends and/or struc-

tural breaks in the inflation and marginal cost series. In addition to modeling the

low frequency movements we also include changing patterns in high frequency move-

ments by incorporating a stochastic volatility structure for inflation. This complex

model structure enables the identification of the relation between macroeconomic

variables inherent in the Phillips Curve models, together with possible long and

short run dynamics in each series. For the proposed HNKPC model, richer expecta-

tional mechanisms are employed depending on inflation expectations obtained from

survey data.

We apply the proposed models to quarterly U.S. data over the period between the

first quarter of 1960 and the first quarter of 2012. We compare the forecasting perfor-
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mance of the proposed models with NKPC models with demeaned and/or detrended

data, with a standard stochastic volatility model proposed by Stock and Watson

(2007) and, further, with an extended Bayesian vector autoregressive model which

accounts for changing levels and trends the data. The model comparison is based

on predictive likelihood and out-of-sample Mean Squared Forecast Error (MSFE)

comparisons.

The proposed class of models capture time variation in the low frequency mo-

ments of both inflation and marginal cost data. For the inflation series, the model

identifies two distinct periods with different inflation levels. The relatively high

inflationary period spans the period between the beginning of 1970s and begin-

ning of 1980s. This period is replaced rapidly by a relatively low inflation period,

where annual inflation is anchored at a level around 2%, accompanying the changing

monetary policy in the U.S.. This changing behavior of the inflation levels cannot

be accurately captured by the conventional NKPC models using a priori filtered

data. In terms of the marginal cost series, the trend specification accommodates the

smoothly changing trend observed in the series, specifically after 2000.

For all models we consider, posterior and predictive results are obtained using

a simulation based Bayesian approach. The Bayesian approach we adopt has sev-

eral appealing features particularly for the NKPC models considered. In terms of

inflation predictions, several measures of interest, such as disinflation probabilities

obtained from the lower tail of the complete the predictive densities, are obtained

automatically for each model. Furthermore, for the models with general trend and

level structures, the non-existence of a stable long-run relationship, i.e. possible coin-

tegration relation, between inflation and marginal cost series, can be easily assessed

using the posterior draws of the trends and levels.

The structure of this paper is as follows: Section 2 illustrates the effects of

misspecified low frequency moments on inference and prediction using a canonical
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backward looking Phillips Curve model with filtered data. Section 3 presents the

extensions to the standard NKPC model and extended NKPC models. Section 4

summarizes the likelihood, prior and the posterior sampling algorithm. Section 5

provides the application of the proposed models and the standard NKPC model on

U.S. inflation and marginal cost data. Section 6 concludes. In the appendices details

on parametric structures, state space specification of our models and the sampling

algorithm are provided.

2 Effect of misspecified level shifts on posterior

estimates of inflation persistence

The linear Backward Looking Phillips Curve (BLPC) captures the relation between

real marginal cost z̃t and inflation π̃t. We illustrate in this section that model

misspecification resulting from ignoring level shifts in inflation data leads to overes-

timation of persistence in the inflation equation within a linear BLPC.

The linear BLPC model can be written as

π̃t = λz̃t + γbπ̃t−1 + ǫ1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ǫ2,t,
(1)

with (ǫ1,t, ǫ2,t)
′ ∼ NID(0,Σ). This model is a triangular simultaneous equations

model and can also be interpreted as an instrumental variable model with two in-

struments. We specify an AR(2) model for the marginal cost in order to mimic

for the cyclical behavior of the observed series, see Basistha and Nelson (2007);

Kleibergen and Mavroeidis (2011) for a similar specification. The AR(2) parame-

ters are restricted to the stationary region |φ1| + φ2 < 1, |φ2| < 1, and the lagged

adjustment parameter in the inflation equation is restricted as 0 ≤ γb < 1. The

structural parameter λ is restricted as 0 ≤ λ < 1 using the economic considerations
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underlying BLPC.

Since BLPC in (1) specifies the relation between the short-run stationary fluc-

tuations in real marginal cost and inflation, π̃t and z̃t can be interpreted as the

transitory components of inflation and marginal cost, in deviation from their long-

run components. In fact, the observed non-filtered data can be decomposed into

permanent and transitory components in a straightforward way as

πt = π̃t + cπ,t,

zt = z̃t + cz,t,
(2)

where πt and zt are the inflation and marginal cost data, respectively, and cπ,t and

cz,t are the permanent components of the series.

In our simulation experiment, we model the steady state inflation as a constant

level subject to regime shifts that mimic the high inflationary period during the

1970s. For modelling the permanent component of the real marginal cost series,

we use a linear negative trend in order to mimic the declining real marginal cost

levels in the U.S. over the sample starting from the 1960s. This specification can be

formulated as follows

cπ,t = cπ,t−1 + κtηt−1, cz,t = cz,t−1 + µz,t−1,

µz,t = µz,t−1, ηt ∼ NID(0, ω2),
(3)

where κt is a binary variable indicating a level shift in the level series, cπ,t and cz,t

indicate the level value of inflation and real marginal cost, respectively, in period t

and µz,t is the slope of the trend in the real marginal cost series. By excluding the

stochastic component for the slope and the trend of the real marginal cost in (3),

we specify a deterministic trend for this series.

We simulate three sets of data from the model in (1)–(3). For the first set, the

inflation series show no level shifts, i.e. κt = 0, ∀t. For the other two sets of data, we
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impose different level shifts with moderate (ω2 = 2.5) and large (ω2 = 5) changes in

the level values, respectively. For each specification we simulate 100 datasets with

T = 200 observations, where two level shifts occur in periods t = 50 and t = 150.

The observation error variance is set to ( 1 0.01
0.01 0.01 ), which leads to a correlation of

0.1 between the disturbances, and parameter λ is set to 0.1. Note that parameters

φ1 = 0.1 and φ2 = 0.5 are chosen such that the transitory component of the series

is stationary.

In order to capture the effect of model misspecification on posterior inference,

when computing the transitory component, we ignore level shifts in the simulated

inflation series and simply demean the series. For the marginal cost series, we remove

the linear trend prior to the analysis and only focus on the effect of misspecification

in the inflation series. This implies that for the simulated data with no level shifts,

the model is correctly specified and the posterior results should be close to the true

values. For each simulated data set we estimate the model in (1) using flat priors

on restricted parameter regions:

p(φ1, φ2, γb, λ) ∝











1, if |φ1|+ φ2 < 1, |φ2| < 1, 0 ≤ γb < 1, 0 ≤ λ < 1

0, otherwise
. (4)

Given that model (1) is equivalent to an instrumental variables model with 2

instruments, it can be shown that the likelihood function for such a model combined

with the flat prior on a large space yields a posterior distribution that exists but it has

no first or higher moments. Due to the bounded region condition on the parameters,

where the structural parameter λ in restricted to the unit interval, all moments exist.

For details, we refer to Zellner, Ando, Baştürk, Hoogerheide and Van Dijk (2012).

We mention this existence result since it explains why it is often difficult to estimate

model for macro-economic data (1). Since the posterior surface will be rather flat, in

particular, when φ2 is close to zero. Posterior moments are in our case computed by
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means of standard Metropolis-Hastings method on φ1 and φ2 and λ and γb. Other

Monte Carlo methods like Gibbs sampling are also feasible in this case.

Figure 1 presents the overestimation results from 100 different simulations for

each setting we consider. We report the average overestimation in posterior γb

estimates and 95% intervals for this overestimation.

Figure 1: Overestimation illustration for the backward looking Phillips curve model
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Note: The figure presents overestimation probability of parameter
γb for simulated data from the BLPC model with different struc-
tural breaks structures. We report average quantiles of overestima-
tion based on 100 simulation replications for each parameter setting.

The persistence parameter γb is overestimated in all cases except for the correctly

specified model. The degree of overestimation becomes larger with a larger shift

in the level in of inflation. Note that the average 95% HPDI of overestimation

becomes tighter for data with extreme changes in levels. Hence the effect of model

misspecification on the persistence estimates is more pronounced if the regime shifts

are extreme.

In summary, our simulation experiments using BLPC show that when the shifts

in the inflation level are not modelled, inference on model persistence parameters

may be severely biased due to the model misspecification. This will also hold for

predictive estimates.
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We note that we focused on misspecification effects on persistence measures

when level shifts in the series are ignored. Similar experiments can be set up

for the BLPC with weak identification (or weak instruments) by setting φ2 ≈ 0.

The effect of misspecification on posterior and predictive estimates in the case of

weak identification is a topic outside the scope of the present paper. We refer to

Kleibergen and Mavroeidis (2011) for details on Bayesian estimation in case of weak

identification.

3 New Keynesian Philips Curve models

In this section we specify several members of the class of New Keynesian Phillips

Curve (NKPC) models. In the pure forward looking form of the NKPC model, the

expectations of economics agents are explicitly taken into account by replacing the

first lag of inflation in the BLPC by the one period ahead inflation expectation.

The NKPC model can be constructed using pricing decision of the firms when prices

are sticky (Gaĺı and Gertler, 1999). Using the Calvo formulation, see (Calvo, 1983),

sticky prices are modeled as pt = ψpt−1 + (1− ψ)p∗t , where ψ ∈ [0, 1] is the Calvo

parameter indicating the weight firms allocate to previous price level in comparison

to the expected optimal reset price p∗t . The optimal reset price is determined by the

current and future stream of the marginal cost, p∗t = (1− γfψ)
∑∞

k=0(γfψ)
kEt(zt+k),

taking the Calvo price stickiness parameter, ψ, and discount factor, γf ∈ [0, 1], into

account.

We start with an NKPC model based on filtered data. Next, we extend this

model with a structural time series model with time varying components in order

to deal with low and high frequencies that are present in non-filtered data. Thirdly,

we extend the latter NKPC model by introducing a Hybrid NKPC model (HNKPC)

with both backward and forward looking inflation expectations where the long-run

expectations are anchored around observed values of inflation expectations obtained
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from survey data.

NKPC models with filtered time series

The structural form (SF) representation for the basis NKPC model derived from

the firm’s price setting for filtered data is given as

π̃t = λz̃t + γfEt(π̃t+1) + ǫ1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ǫ2,t,
(5)

where (ǫ1,t, ǫ2,t)
′ ∼ NID (0,Σ) and standard stationary restrictions hold for φ1, φ2.

The model can be solved for the inflation expectation by iterating the model

forward. This implies that the entire stream of future inflation expectations are

taken into account. The NKPC model together with AR(2) dynamics for the forcing

variable takes the form of triangular simultaneous equations model with nonlinear

parameters in the inflation equation1

π̃t = λ
1−(φ1+φ2γf )γf

z̃t +
φ2γfλ

1−(φ1+φ2γf )γf
z̃t−1 + ǫ1,t

z̃t = φ1z̃t−1 + φ2z̃t−2 + ǫ2,t,
(6)

One way to estimate the structural parameters is to start from the unrestricted

reduced form representation of the above system. As there exists a one-to-one map-

ping between the unrestricted reduced form and the structural parameters one can

generate random draws from the reduced form posterior and solve for the struc-

tural posterior draws. However, this transformation involves a complex Jacobian

structure that includes ratios of structural model parameters. This may seriously

obscure the inference on the structural parameters, even though posterior inference

of the reduced form parameters is straightforward. Hence, we opt for estimating

the structural parameters directly, without relying on the reduced form estimation,

1The model in (6) can be written as a triangular simultaneous equations model:
(

1 −α1

0 1

)

( πt
zt ) =

(

1 −α1 −α2 0

0 1 −φ1 −φ2

)

( cπ,t, cz,t, cz,t−1, cz,t−2 )′+
(

0 α2

0 φ1

) ( πt−1

zt−1

)

+
(

0 0

0 φ2

) ( πt−2

zt−2

)

+
( ǫ1,t
ǫ2,t

)

,
where unobserved states cπ,t and cz,t follow from the last three equations in (10), and the following
parameter restrictions hold: α1 = λ/ (1− (φ1 + φ2γf )γf ) and α2 = φ2γfλ/ (1− (φ1 + φ2γb)γb).
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see Kleibergen and Mavroeidis (2011) for a discussion. In Appendix A, we provide

further details of the transformation from reduced form parameters to structural

parameters for the NKPC model.

Extended NKPC models with non-filtered time series

We first consider the data features for the empirical application. For the empirical

analysis, we consider U.S. inflation and real marginal cost series over the period from

the first quarter of 1960 until the first quarter of 2012. Inflation is computed as the

growth rate of the implicit GDP deflator and for the real marginal cost series we

use labor share in non-farm business sector2, see Gaĺı and Gertler (1999) for details.

The non-filtered series of US inflation is displayed in the top panel of in Figure 2

and real marginal cost is displayed in the bottom panel of in Figure 2.

From the top panel in Figure 2, we observe two stylized facts. First, there exist

distinct periods with differing patterns for the inflation series. The period between

the beginning of the 1970s and the beginning of the 1980s can be labelled as a high

inflationary period compared to the remaining periods. Existing evidence shows

that the decline in level and volatility is due to credible monetary policy that sta-

bilized inflationary expectations at a low level via commitment to a nominal anchor

since the early eighties, see McConnell and Perez-Quiros (2000); Stock and Watson

(2002); Ahmed et al. (2004); Stock and Watson (2007); Cecchetti et al. (2007). We

include the level (unconditional mean) of the inflation series in the upper panel of

Figure 2 with level shifts in the fourth quarter of 1967 and the first quarter of 1983

in line with the existing findings.3 Indeed, the figure demonstrates a temporary in-

crease in the level of inflation during 1970s, while this increase in inflation switches

back to the earlier levels after the second break in the first quarter of 1983. One way

2http://research.stlouisfed.org/fred2/
3This pattern does not change with marginal changes in terms of the timing of the breaks,

which correspond to the period where the Federal Reserve Board reserve-targeting policies had
been replaced with the interest rate-targeting policy rule. Moreover, Cecchetti et al. (2007), among
other papers, point out another shift in the level of inflation around the late 1960s as the start of
the high inflationary period.
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Figure 2: Inflation, inflation expectations and real marginal cost series over first
quarter of 1960 and the first quarter 2012

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011

Inflation

Unconditional m ean with structural breaks in 1967 Q4 and 1983 Q1

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011

Inflation expectations from the survey data

92

96

100

104

108

112

92

96

100

104

108

112

1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011

Labor share

Trend extracted using HP filter

12



to model this changing behavior of the series to allow for regime changes in param-

eters to capture the change in the structure of the series, see Cogley and Sargent

(2005); Canova and Gambetti (2006); Kim and Nelson (2006); Sims and Zha (2006);

Cogley and Sbordone (2008), among others. We consider two cases. In the first case,

we assume that the level shifts occur in each time period continuously. Then we can

model the changing inflation level using a random walk process for the level of in-

flation as follows

cπ,t+1 = cπ,t + η1,t+1, (7)

where η1,t ∼ NID(0, σ2
η1
).

Alternatively, we assume that inflation is subject to occasional and discrete shifts.

For this case we model the level of the inflation allowing for permanent level shifts.

This can be incorporated to the previous case using a regime indicator function as

follows

cπ,t+1 = cπ,t + κtη1,t+1 (8)

where κt is a binary variable taking the value of 1 with probability pκ if there is

level shift and it takes the value 0 with probability 1 − pκ if the level does not

change and η1,t ∼ N(0, σ2
η1
). This model structure allows for occasional level shifts

depending on the probability pκ of the binomial process preserving a parsimonious

model structure with only a single additional parameter. Occasional and large level

shifts corresponds to low values of 1− pκ together with relatively high values of σ2
η1

and the opposite case corresponds to the local level model, see Giordani et al. (2007)

for a similar approach. We will use both specifications (7) and (8) in the empirical

analysis.

The real marginal cost series is analyzed in the bottom panel of Figure 2. For a

visual inspection, we also include a time varying trend extracted using the Hodrick-

Prescott (HP) filter (Hodrick and Prescott, 1997). Unlike the inflation series we do
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not observe discrete changes during the course of time for the the real marginal cost

series. Instead, it exhibits a continuously changing pattern around a negative trend,

which can be attributed to technology shocks. Since in the figure this trend is more

prominent in the second half of the sample period, we allow for a changing trend

using a local linear trend specification as follows

cz,t+1 = µz,t + cz,t + η2,t+1,

µz,t+1 = µz,t + η3,t+1,
(9)

where η2,t ∼ NID(0, σ2
η2
) and η3,t ∼ NID(0, σ2

η3
), see Durbin and Koopman (2001)

for details. This specification is flexible enough to encompass many types of filters

used for detrending, see Delle Monache and Harvey (2011), see also Canova (2012)

for a similar specification in the more general context of DSGE models. When

σ2
η3

= 0, for example, the level of the real marginal cost follows a random walk with

a drift, µz. Additionally, when σ
2
η2

= 0, a deterministic trend is obtained. Note that,

setting only σ2
η2

= 0 but allowing σ2
η3

to be positive results in an integrated random

walk process which can approximate many types of nonlinear trends including the

Hodrick-Prescott (HP) filter.

Together with the level specifications of the inflation and real marginal cost series

the NKPC model in (6) using (2) and (3) takes the following form

πt − cπ,t = λ
1−(φ1+φ2γf )γf

(zt − cz,t) +
φ2γfλ

1−(φ1+φ2γf )γf
(zt−1 − cz,t−1) + ǫ1,t,

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ǫ2,t,

cπ,t+1 = cπ,t + κtη1,t+1,

cz,t+1 = µz,t + cz,t + η2,t+1,

µz,t+1 = µz,t + η3,t+1,

(10)

where (ǫ1,t, ǫ2,t)
′ ∼ NID

(

0,
(

σ2
ǫ1

ρσǫ1
σǫ2

ρσǫ1
σǫ2

σ2
ǫ2

))

, (η1,t, η2,t, η3,t)
′ ∼ NID

(

0,

(

σ2
η1

0 0

0 σ2
η2

0

0 0 σ2
η3

))
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and the residuals (ǫ1,t, ǫ2,t)
′ and (η1,t, η2,t, η3,t)

′ are independent for all t.

Adding Stochastic Volatility

A further refinement in the NKPC model can be achieved allowing for time

dependency in residual variances. This extension is particularly appealing for the

inflation series, as the variance of this series changes over time substantially, see

e.g. Stock and Watson (2007) for a reduced form model with a stochastic volatility

component. To extend the NKPC model with a stochastic volatility process in the

inflation shocks, we add the following state equation to the system

ht+1 = ht + η4,t+1, η4,t+1 ∼ NID(0, σ2
η4
), (11)

where the error term of the first equation in (10) has a time-varying variance σ2
ǫ1,t

=

exp(ht/2). We follow the practice in Stock and Watson (2007) by fixing the value of

σ2
η4

prior to analysis to facilitate inference. We set σ2
η4

= 0.5, which seems to work

well for the U.S. inflation series.

Hybrid NKPC

While the BLPC model only considers the backward looking dynamics in infla-

tion, the NKPC model replaces this backward looking dynamics with forward looking

inflation expectations. The ‘Hybrid’ NKPC (HNKPC) model combines both back-

ward and forward looking dynamics by including the first lag of inflation deviation

in the model along with forward looking dynamics, see Gaĺı and Gertler (1999);

Gaĺı et al. (2001) for details. Hence, the hybrid NKPC model takes the form of

π̃t = λz̃t + γfEt(π̃t+1) + γbπ̃t−1 + ǫ1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ǫ2,t,
(12)

together with the AR(2) process for the forcing variable z̃t. Iterating the first equa-

tion forward the HNKPC implies the following triangular simultaneous equations
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system nonlinear in the parameters and still containing an expectations operator

π̃t = λ
(1−γbγf )(1−(φ1+φ2γf )γf )

z̃t +
φ2γfλ

(1−γbγf )(1−(φ1+φ2γf )γf )
z̃t−1

+
γbγf

(1−γbγf )

∑∞
k=1 γ

k
fEt(π̃t+k) +

γb
(1−γbγf )

π̃t−1 +
1

(1−γbγf )
ǫ1,t

z̃t = φ1z̃t−1 + φ2z̃t−2 + ǫ2,t.

(13)

Since this system involves the infinite sum of expectations, a closed form solution

only exists under certain assumptions such as rational expectations. Here, we do

not follow this practice but model the inflation expectations using an unobserved

component to be estimated along with other parameters. Specifically, let St be

the next period inflation expectation, St = Et(πt+1). We assume that inflation

expectations are anchored around long-term expectations, µ, and deviations from

this long-term expectations follow an AR(1) process as follows

St+1 = µ+ β(St − µ) + η5,t+1, (14)

where |β| < 1 such that inflation expectations converge to the long-run expectations,

µ. When β = 1, we arrive at the random walk process for the inflation expectations

and µ is dropped out from the specification indicating that inflation expectations are

not anchored around µ. Notice that this formulation specifies a Bayesian learning

rule for the inflation expectations in the sense that each period when the new infor-

mation about the inflation arrives, the states including the inflation expectations St

are updated using this new piece of information. We do not estimate µ explicitly nor

we assume a constant long-run inflation expectations, instead we use the inflation

expectations data from University of Michigan Research Center, which provide quar-

terly one year ahead inflation expectations, shown in the middle panel of Figure 2.45

4This approach is also followed in other applications, such as trend-cycle decomposition tech-
niques. For example, the Beveridge-Nelson decomposition (Beveridge and Nelson, 1981) defines
the trend as the long-horizon expectation of an integrated time series.

5The data is taken from http://www.src.isr.umich.edu/.
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This implies that the inflation expectations are anchored around the survey values,

see Roberts (1995, 1997); Del Negro and Schorfheide (2012) for a similar approach.

Specifying inflation expectations as in (14), the HNKPC model becomes

πt − cπ,t = λ
(1−γbγf )(1−(φ1+φ2γf )γf )

(zt − cz,t) +
φ2γfλ

(1−γbγf )(1−(φ1+φ2γf )γf )
(zt−1 − cz,t−1) ,

+
γbγf

(1−γbγf )

γf
1−γfβ

(St − µt) +
γb

(1−γbγf )
(πt−1 − cπ,t−1) +

1
(1−γbγf )

ǫ1,t,

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ǫ2,t.

(15)

Similar to the NKPC model, we consider three case of the HNKPC model: (i)

continuous changes for the inflation level; (ii) discrete but occasional changes for the

inflation level; and (iii) discrete but occasional changes for the inflation level and

stochastic volatility for inflation.

4 Bayesian inference

In this section we summarize the Bayesian inference steps for the proposed models,

which are obtained by the product of the likelihood function and the prior density

for the model parameters. The likelihood functions of the proposed models are

multivariate normal densities, as we assume normal error distributions. We elaborate

on the prior specifications and the posterior sampler in this section. More details

are presented in Appendices B and C.

The prior specification in the NKPC models is of primary importance since the

likelihood of the NKPC models is often flat (see Kleibergen and Mavroeidis (2011)).

One way to overcome this difficulty is to impose informative priors on the model

parameters. However, this may obscure posterior inference of the structural pa-

rameters. Therefore we use flat priors for the structural parameters but we specify

informative priors for the observation variances.

For the structural parameters of the NKPC and HNKPC models, we define

17



independent flat priors on restricted regions. The choice of these regions are based

on the underlying economic theory. We restrict parameters γb, γf and λ to be in

the unit interval. For the β parameter in the HNKPC models, we use a flat prior on

the unit interval. We restrict the autoregressive parameters, φ1 and φ2, to be in the

stationary region.

The prior specifications of the observation and state covariance matrices are

important in this class of models and for the case of macroeconomic data. Since

the sample size is typically small, differentiating the short-run variation in series

(the observation variances) from the variation in the long-run behavior (the state

variation) can be cumbersome (Canova, 2012). For this reason, we impose a data

based prior structure on the observation covariance matrices. We first estimate the

implied unrestricted reduced form VAR model using demeaned inflation series and

(linear) detrended real marginal cost series, and base the observation variance priors

on the covariance matrix estimates from this model. This specification imposes

smoothness for the estimated levels and trends and ensures that the state errors

do not capture all variation in the observed variables. For the states, we assume a

diagonal covariance matrix with an uninformative prior implying that the shocks to

the long-run inflation and real marginal cost are independent.

When estimating the models with stochastic volatility together with the level

shifts in inflation, the prior specifications on the covariance matrices play also an

important role for the identification of the level shifts and observation volatility.

This leads us to consider also informative priors on the state covariance matrix

when estimating models with a stochastic volatility component, where we specify

informative priors that limit the variation in the states enabling identification of the

stochastic volatility in the inflation series.

For the models with level shifts, we fix the level shift probability as 0.04 (0.01)

for the NKPC (HNPC) models, implying an expected number of shifts of 8 (2) for

18



200 observations in the sample. Alternatively, we could also estimate this param-

eter together with other model parameters. However, often the limited level shift

observations plague the inference of this parameter. Hence, we opt for setting the

value prior to analysis where the values are selected trough an extensive search over

intuitive values of this parameter.

We note that we also anchor the inflation expectations by using survey data in

the NKPC models. Therefore we use slightly informative priors on the variance of

the error term in (14). This ensures that the implied inflation expectations of the

models do not diverge from the survey expectations.

Posterior distributions are obtained as the product of the prior distributions and

the likelihood function. As the number and the location of the structural breaks

are unknown the likelihood function is intractable. Therefore, we set up an MCMC

algorithm to sample from the full conditional posterior distributions. Specifically,

we use Gibbs sampling together with data augmentation (see Geman and Geman,

1984; Tanner and Wong, 1987) to obtain posterior results. Gibbs sampling steps

are based on Kim and Nelson (1999); Gerlach et al. (2000); Çakmaklı et al. (2011).

Details of the MCMC algorithm are given in Appendix B.

5 Posterior and Predictive Evidence

In this section we present posterior and predictive evidence on several features of New

Keynesian Phillips Curve (NKPC) models using U.S. data on inflation and marginal

costs. We compare these results with those obtained from alternative reduced form

models like Bayesian Vector Auto Regressive models and the stochastic volatility

model from Stock and Watson (2007). Specifically, we estimate eight NKPC models,

where the first two models use a Linear Trend filter, labelled as NKPC-LT, and the

HP filter, labelled as NKPC-HP. In the other six NKPC models we make use of

structural time series models to specify low and high frequencies and level shifts in
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the inflation series and a time-varying trend in the marginal cost series. Three models

use the NKPC framework, where in the first model we only allow for continuous

changes in the level of inflation, denoted as NKPC-TVP, in the second we allow for

discrete occasional level shifts, denoted as NKPC-TVP-LS and in the third we allow

for stochastic volatility for the inflation in addition to the level shifts, denoted as

NKPC-TVP-LS-SV. The final three models use the Hybrid form of NKPC framework

and corresponding extensions are denoted as HNKPC-TVP, HNKPC-TVP-LS and

HNKPC-TVP-LS-SV similar to the NKPC based models.

The evidence reported refers to such posterior features as the slope of the Phillips

curve, the value of the Calvo parameter on price stickiness, the strength of endo-

geneity in the inflation equation, persistence in the dynamics of the model and the

relative importance of forward and backward looking expectations. Next, the models

are compared in terms of fit of estimated inflation and cost levels, their volatilities

and break probabilities. Predictive performances of the models are reported us-

ing mean squared forecast errors, predictive likelihoods and full predictive densities

which enable us to report on the tail probability of disinflation. Finally, we present

evidence on the absence of a long term stable relation between inflation and marginal

costs.

Posterior evidence

We display the estimation results in Table 1. The first two rows of the table

show the estimation results of the NKPC-LT and NKPC-HP models where the data

is demeaned and detrended prior to analysis. We focus on three features. First, the

slope of the Phillips curve is estimated around 0.07 and 0.09 which is slightly higher

than the conventional estimates of the Philips curve slope, that indicate an almost

flat curve (see e.g. Gaĺı and Gertler (1999); Gali et al. (2005)).
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Table 1: Posterior results of alternative Phillips curve models

Model λ γf γb Calvo β ρ φ1 φ2

NKPC-LT 0.067 (0.028) 0.349 (0.254) 0.911 (0.017) -0.011 (0.024) 0.837 (0.045) 0.074 (0.045)
NKPC-HP 0.090 (0.046) 0.432 (0.279) 0.871 (0.048) -0.066 (0.051) 0.657 (0.045) -0.003 (0.045)

NKPC-TVP 0.052 (0.026) 0.380 (0.256) 0.926 (0.023) -0.045 (0.037) 0.815 (0.052) 0.065 (0.052)
NKPC-TVP-LS 0.054 (0.029) 0.375 (0.258) 0.924 (0.028) -0.044 (0.043) 0.817 (0.053) 0.066 (0.052)
NKPC-TVP-LS-SV 0.063 (0.001) 0.322 (0.056) 0.919 (0.000) -0.016 (0.005) 0.871 (0.003) 0.093 (0.003)

HNKPC-TVP 0.041 (0.020) 0.011 (0.022) 0.463 (0.138) 0.927 (0.032) 0.461 (0.242) 0.006 (0.043) 0.812 (0.056) 0.066 (0.055)
HNKPC-TVP-LS 0.032 (0.021) 0.009 (0.009) 0.557 (0.140) 0.926 (0.055) 0.407 (0.242) 0.009 (0.034) 0.821 (0.064) 0.069 (0.063)
HNKPC-TVP-LS-SV 0.043 (0.018) 0.008 (0.013) 0.428 (0.104) 0.930 (0.027) 0.439 (0.249) 0.001 (0.008) 0.824 (0.064) 0.072 (0.062)

Note: The table presents posterior means and standard deviations (in parentheses) of parameters for the competing New Keynesian Phillips Curve
(NKPC) type models estimated for quarterly inflation and real marginal cost over over the period from the first quarter of 1960 and the first quarter
of 2012. NKPC-LT (NKPC-HP) refers to the NKPC model where the real marginal cost series is detrended using linear trend (Hodrick-Prescott)
filter. NKPC-TVP refers to the NKPC model with time varying levels and trends defined in (7) and (9). NKPC-TVP-LS refers to the NKPC model
with time varying levels and trends defined in (8) and (9). NKPC-TVP-LS-SV refers to the NKPC model with time varying levels, trends and
volatility defined in (8), (9) and (11). HNKPC-TVP refers to the Hybrid NKPC model with time varying levels, trends and inflation expectations
defined in (7), (9) and (14). HNKPC-TVP-LS refers to the HNKPC model with time varying levels, trends and inflation expectations defined in
(8), (9) and (14). HNKPC-TVP-LS-SV refers to the HNKPC model with time varying levels, trends, inflation expectations and volatility defined
in (8), (9), (14) and (11). λ is the slope of the Phillips Curve in (6). γf is the coefficient of inflation expectations in NKPC in (6). γb is the
coefficient of the backward looking component in the HNKPC model in (15). ‘Calvo’ is the parameter representing the degree of price stickiness. β
is the autoregressive parameter for the deviation inflation expectations from the long-run trend, as defined in (14). ρ is the correlation coefficient
of the residuals ǫ1 and ǫ2. φ1 and φ2 are the autoregressive parameters for the real marginal cost specification in (6). Posterior results are based
on 40000 simulations of which the first 20000 are discarded for burn-in.
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Second, the coefficient of the short-run inflation expectation, γf is much lower

than the conventional estimates, which is above 0.9 in most of the cases. A po-

tential reason for this finding is the methodology used for inference. Conventional

analysis replaces inflation expectation of the next period by the real leading value

of the inflation relying on the rational expectations hypothesis, see e.g. McCallum

(1976); Roberts (1995); Gaĺı and Gertler (1999); Sims (2002). However, we opt for

explicitly solving for expectations resulting in a highly nonlinear system of simul-

taneous equations. We also notice a relatively higher posterior standard deviation

for this parameter, hence another potential cause of this parameter is the relatively

low information content in the data about this parameter. Still more conventional

values of this parameter is inside the 95% HPDI.

Third, the posterior mean of the Calvo parameter estimates are around 0.9,

indicating a high degree of price stickiness in the new Keynesian model. Low values

of posterior standard deviation indicate that the data are highly informative about

this parameter. These values are in line with the previous findings suggesting that on

average, prices remain fixed for between roughly 6-8 quarters (see Gaĺı and Gertler

(1999) for a comparison).

In the second panel of Table 1 results are given for cases: NKPC-TVP, NKPC-

TVP-LS and NKPC-TVP-LS-SV. Posterior means and standard deviations of the

structural form parameters are similar across all three models with the NKPC struc-

ture. The posterior means for the Phillips curve slope, λ, are around 0.055, slightly

lower than those obtained from the NKPC model with demeaned and detrended

data. As for the posterior means, posterior standard deviations are also lower com-

pared to the NKPC-LT and NKPC-HP models. Hence, 0 is outside the 95% HPDI

for most cases.

Posterior distribution of the γf parameter closely resembles those obtained from

the NKPC models with a prior detrended data. This implies that the data informa-
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tion about this parameter is limited regardless of the level and trend specification.

As in the first two models, the estimated Calvo parameters in the NKPC models in-

dicate a high degree of price stickiness. Furthermore, the estimates from the NKPC

models are slightly higher than those obtained from the NKPC models estimated

using demeaned and detrended data.

Posterior results for the HNKPC models are displayed in the third panel of Ta-

ble 1. Posterior slopes of the Phillips curve for the HNKPC models are close to

the NKPC counterparts, albeit slightly lower. These lower values, however, are ac-

companied by lower standard deviations. Consequently, 0 is outside the 95% HPDI,

indicating an almost flat but a significant positive slope for the Phillips curve. A

striking result from Table 1 is related to the relative importance of the forward

and backward looking components of the Phillips curve, measured by parameters

γf and γb. While the evidence in Clarida et al. (2000); Gaĺı et al. (2001); Gali et al.

(2005) suggests a dominant forward looking effect, in contrast, many studies in-

cluding Fuhrer and Moore (1995); Rudd and Whelan (2005) document a dominant

backward looking effect in NKPC. Our results favor the latter view since the effect

of the backward looking components of inflation estimated by the HNKPC models

in the bottom panel of Table 1 are substantially higher than those of the forward

looking components. More specifically, Table 1 shows that the HNKPC and NKPC

model results differ in terms of the forward looking components’ coefficient γf .

Posterior means of the β parameter, which shows the persistence in deviations

of inflation expectations from the long-run trend, are given in the fifth column of

Table 1. All HNKPC models indicate a mediocre persistence for these deviations,

as the posterior means are around 0.4. This implies that inflation expectations in

subsequent periods are dependent on the current inflation expectations, albeit to a

limited extend.

The estimated degree of price stickiness, i.e. the Calvo parameter, from the
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HNKPC models are in line with those obtained from the NKPC models where levels

and trends are estimated along with other model parameters. Hence, Calvo param-

eter estimates are not sensitive to the inclusion of the backward looking component

for the models where levels and trends are modelled explicitly.

A further consideration in these models is the contemporaneous correlation be-

tween observation errors determining the degree of endogeneity of real marginal cost

in the Phillips curve specification. The estimates of this correlation parameter ρ

are displayed in the sixth column of Table 1. Posterior means of ρ from all NKPC

models are negative and close to 0, with a high standard deviation. Consequently, 0

is inside the 95% HPDI. For the HNKPC models, posterior means of ρ are positive

with an even smaller magnitude. Therefore, the endogeneity problem does not seem

to be severe for these models.

Estimated Levels, Volatilities, Breaks and Inflation Expectations

Figure 3 shows the estimated levels from the three NKPC models. Estimated

inflation levels, computed as the posterior mean of the smoothed states, are given

in the first row of Figure 3. Shaded areas around the posterior means represent the

95% HPDI for the estimated levels. For all three models, estimated inflation levels

nicely track the observed inflation. Effects of the level specification are reflected

in the estimates in various ways. First, when we model inflation level changes as

discrete level shifts rather than continuous changes, we observe a relatively smoother

pattern in estimated inflation levels. This effect can be seen by comparing the second

and first graphs in the first row of Figure 3. While estimated inflation level in the

first graph follows the observed inflation patterns closely, estimated inflation level in

the second (and third to a less extent) graph mostly indicates three distinct periods.

These periods are the high inflation periods capturing 1970s with a constant inflation

level around 1.7% (quarterly inflation) following a low inflation period in 1960s, and

the period after the beginning of 1980s with a stable inflation level around 0.5%, see
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Cecchetti et al. (2007) for similar findings. Second, when we include the stochastic

volatility component in inflation series, the uncertainty of the estimated inflation

levels decreases as part of the uncertainty is reflected in the stochastic volatility

process. Put differently, a more flexible volatility structure captures part of the

inflation uncertainty. This is also visible when we compare the second and the third

graphs in the first row of the figure. Adding the stochastic volatility together with

level shifts results in discrete level shifts in inflation which are more frequent than

the model with only level shifts.

The second panel in Figure 3 presents the estimated levels for the real marginal

cost series for all models. A common feature of all these estimates is the smooth-

ness of the estimated levels. In all models, marginal cost series follows a slightly

nonlinear trend during the sample period. The estimated slopes of these trends for

all models are given in the bottom panel of Figure 3, together with the 95% HPDIs.

Nonlinearity of the negative trend is reflected in the negative values for the slope

of the trend, with an increasing magnitude at the end of the sample. This change

in the slope of the trend is accompanied by the increasing uncertainty about the

slope. The difference between the models in terms of the estimated marginal cost

structures is negligible.

Figure 4 presents the estimated inflation volatilities for the NKPC model with

level shifts and stochastic volatility. The stochastic volatility pattern in the figure

coincides nicely with the findings on Great Moderation, which refer to the decline of

the volatility of many U.S. macroeconomic series, see McConnell and Perez-Quiros

(2000) among others. The period before the beginning of 1980s are characterized

by high inflation levels accompanied by a high volatility, whereas inflation becomes

more stable in the second half of the sample period. The decline in inflation volatility

after 1980s is linked to credible monetary policy that stabilized inflationary expec-

tations at a low level via commitment to a nominal anchor since the early eighties,
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Figure 3: Level, trend and slope estimates from the NKPC models
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Note: The top panel exhibits estimated inflation levels. The middle and the bottom panels show estimated real marginal cost levels and the slopes of
the levels, respectively. Grey shaded areas correspond to the 95% HPDI. Model abbreviations are as in Table 1 Results are based on 4000 simulations
of which the first 2000 are discarded for burn-in.
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Figure 4: Estimated inflation volatility from the NKPC-TVP-LS-SV model
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Note: The solid line is the posterior mean of the time varying inflation volatility. The dashed line
is the observed inflation level. Results are based on 4000 simulations of which the first 2000 are
discarded for burn-in.

see Stock and Watson (2002); Ahmed et al. (2004); Stock and Watson (2007). This

period of low volatility is replaced by a highly volatile period after 2005 and during

the recent financial crisis.

We next report the break probabilities for the NKPC models with level shifts in

Figure 5 for the NKPC-TVP-LS and NKPC-TVP-LS-SV models. On the one hand,

estimated level shift probabilities from the NKPC-TVP-LS model identify two major

shifts in the inflation level around 1973 and 1982, which comprise the beginning and

the end of the high inflationary periods. The models indicate two further level

shifts around 1966 and 2005 although the estimated level shift probabilities in these

years are much lower than those for the high inflationary periods. On the other

hand, estimated shift probabilities in the NKPC-TVP-LS-SV model demonstrate the

complementarity of level shifts with the changing volatility. The probabilities follow

a similar pattern with the NKPC-TVP-LS model, however, the periods subject to

level shifts are much longer. During the highly volatile periods of 1970s, the model

produces quite clear signals of changing inflation levels, as high volatility levels cause
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Figure 5: Estimated level shift probabilities for the NKPC models
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Note: The solid and long-dashed lines are the posterior means of the estimated level shift proba-
bilities from the NKPC-TVP-LS model and the NKPC-TVP-LS models, respectively. The dashed
line is the observed inflation level. Results are based on 4000 simulations of which the first 2000
are discarded for burn-in.

rapid changes in inflation. Accordingly, low volatility periods are characterized by

mild changes in inflation, leading to a stable inflation level. Still, for the low volatility

periods, mild but significant changes in the inflation level are attributed to level shifts

leading to higher level shift probabilities and more clear signals of level shifts.

The top panel of Figure 6 shows estimated levels from all three HNKPC models.

In line with the NKPC models’ findings, models that only allow for discrete and

occasional level shifts lead to smoother inflation level estimates compared to the

model that allows for continuous level changes, especially in the second half of the

sample period. Furthermore, the model with a stochastic volatility component,

presented in the third graph, provides more precise inflation level estimates. As in

the NKPC counterpart, the model with stochastic volatility indicates frequent level

shifts with a more stable inflationary pattern between these level shifts. Estimated
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levels for the real marginal cost series for all models are given in the middle panel of

Figure 6. Similar to the NKPC model results, marginal cost series follows a slightly

nonlinear trend during the sample period.

Figure 7 presents estimated volatility levels from the HNKPC model with level

shifts and the stochastic volatility component. Comparable to the findings of the

NKPC models, highly volatile periods of 1970s and the beginning of 1980s, together

with the recent recession are nicely captured by the volatility process. A slight differ-

ence between the two models is related to the volatility peaks during 1972 and 1978,

which are higher than the volatility estimates of the NKPC model. Accordingly, the

volatility peak around 1975 is lower in the HNKPC model. It seems that the high

volatility is distributed more evenly in the HNKPC model with stochastic volatil-

ity, whereas for the NKPC counterpart, high volatility is concentrated around 1975.

Finally, the peak points of estimated volatility coincide with rapid and substantial

changes in inflation.

Estimated break probabilities for the HNKPC models with and without the

stochastic volatility component are given in Figure 8. Both models indicate sub-

sequent level shifts from the beginning of the sample period until 1975, which corre-

sponds to the period during which inflation increased from around 0.20% to around

3%. Unlike the NKPC model, HNKPC based models indicate continuous inflation

changes during this period. This picture is reversed for the remaining sample period,

as the level shift probabilities for both HNKPC models are considerably smaller. The

model with only level shift signals a clear level change in the inflation at the begin-

ning of 1980s, where inflation is subject to a rapid decrease. However, for the period

of Great Moderation, the model implies a stable inflationary pattern with moderate

signals of level shifts around 1990 and around 2005. As for the NKPC model with

level shifts and stochastic volatility, the periods of level changes indicated by high

break probabilities are longer and more clear compared to the counterpart with-
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Figure 6: Level, trend and slope estimates from the HNKPC models

Note: The top panel exhibits estimated inflation levels. The middle and the bottom panels show estimated real marginal cost levels and the slopes of
the levels, respectively. Grey shaded areas correspond to the 95% HPDI. Model abbreviations are as in Table 1 Results are based on 4000 simulations
of which the first 2000 are discarded for burn-in.
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Figure 7: Estimated inflation volatility from the HNKPC-TVP-LS-SV model
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Note: The solid line is the posterior mean of the time varying inflation volatility. The dashed line
is the observed inflation level. Results are based on 4000 simulations of which the first 2000 are
discarded for burn-in.

out stochastic volatility. Again, this shows the complementarity of the stochastic

volatility component to the level shifts.

Finally, we report implied inflation expectations, computed as the posterior mean

of the unobserved component St, for all HNKPC models in Figure 9. The shaded

areas around the posterior means represent the 95% HPDI for the estimated long-

term inflation expectations. All models estimate similar inflation expectations that

track nicely the observed long-term inflation expectations. A noticeable difference

between unobserved inflation expectations and the survey data is that the former

are smoother than the latter. Particularly around 1970s, the implied expectations

by the HNKPC models are lower than those based on the survey data. This results

in repeated negative deviations from the survey expectations for this period. This is

also apparent in the estimates of the β parameter, which is around 0.45 in Table 1,

indicating a positive correlation between these deviations and the inflation level. In
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Figure 8: Estimated level shift probabilities for the HNKPC models
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32



line with the volatility findings, these deviations become considerably smaller during

the second half of the sample period. This indicates that model based expectations

are quite close to survey expectations for the latter half of the sample period.

Figure 9: Implied inflation expectations by HNKPC models
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Predictive Performance

Our next consideration is to evaluate the performance of the eight NKPC models

in terms of their ability to predict inflation. The first metric we consider is the

predictive likelihoods of all models in order to compare the density forecasts ability

of the models. The one-step ahead predictive likelihood of the observation at t0+1,

yt0+1, conditional on the previous observations y1:t0, is given by

f(yt0+1|y1:t0) =

∫

p(yt0+1|Xt0+1, θ)p(Xt0+1, θ|y1:t0)dXt0+1dθ. (16)
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This can be computed as by first generating {Xt0+1}
M
m=1 for M posterior draws,

using the corresponding state equations of the models. Next, the predictive likeli-

hood of the observation at t0 + 1 can be computed as

f(yt0+1|y1:t0) ≈
1

M

M
∑

m=1

p(yt0+1|X
m
t0+1, θ

m
1:t0

), (17)

where p(yt0+1|X
m
t0+1, θ

m
1:t0

) is a multivariate normal density and M is a sufficiently

large number. A feature of the predictive likelihoods is that these can be used to

compute the marginal likelihood as

p(yt0+1:T ) =

T
∏

t=t0

f(yt+1|y1:t). (18)

This provides a tool to analyze the contribution of each observation at time period

t to the (log) marginal likelihoods as in (18), see Geweke and Amisano (2010).

Accurate point predictions of inflation is of key importance for economic agents

such as investors and central banks. Therefore, we also consider the MSFE which is

computed as the mean of the sum of squares of the prediction errors. For inflation

forecasts we use mean of the posterior predictive distribution of inflation consistent

with a quadratic loss function. We consider the MSFE for one and four period

ahead forecasts in order to examine the forecasting ability of the models also for

longer horizons.

As a third performance criteria, we report the disinflation risk indicated by each

model. Typically, increased uncertainty about future inflation is penalized by the

predictive likelihood comparisons. This uncertainty, however, may simply indicate

the increasing inflationary risk. We include this criterion in order to gain insights on

the inflationary risk implied by each model. Disinflation probabilities are computed

as the tail probability of the predictive distributions such that the one step ahead

predicted inflation values are below zero.
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Apart from the models we considered so far, we also consider alternative reduced

form models that are proven to have superior predictive abilities. The first model we

include is the unobserved component model proposed by Stock and Watson (2007),

henceforth denoted as SW2007. This model captures the unobserved trend in infla-

tion where both the inflation and the trend volatility follow a stochastic process. We

refer to Stock and Watson (2007) for the details of this model. The second model

we consider is an unrestricted Bayesian VAR (BVAR) model with four lags of quar-

terly inflation and real marginal cost series. BVAR models are one of the workhorse

models used for forecasting macroeconomic series. For the sake of brevity, we do not

provide the details of this model, and refer to standard textbooks such as Canova

(2011). As for the structural models, we use the identical structural time series meth-

ods for modeling the level and the trends of the inflation and marginal cost series

in the BVAR. Hence, both SW2007 and the BVAR models are strong competitors

models for the extended NKPC and HNKPC models we propose.

Marginal likelihoods and the MSFE of the alternative models are presented in

Table 2. The likelihood contribution of each observation and the corresponding

cumulative predictive likelihoods are displayed in Figure 10.

We present the (log) marginal likelihood of the competing models in the first

column of Table 2. These values together with Figure 10 indicate three groups of

models in terms of their predictive performances. The first group of models include

the BVAR and the conventional NKPC models with demeaned and detrended data

(NKPC-LT and NKPC-HP). The second group consists of the NKPC models with

discrete and continuous changes in inflation levels (NKPC-TVP, NKPC-TVP-LS)

and the SW2007 model. The models in the second group have much superior perfor-

mance in terms of the marginal likelihood values. A second increase in the marginal

likelihood values can be observed when we consider the models in the third group,

namely the HNKPC models (HNKPC-TVP, HNKPC-TVP-LS, HNKPC-TVP-LS-
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Figure 10: Predictive likelihoods from competing models
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Note: The figure displays the evolution of the (log) predictive likelihoods for the computing models
between the third quarter of 1973 and the first quarter of 2012. Model abbreviations are based on
Table 1. Results are based on 4000 simulations of which the first 2000 are discarded for burn-in.
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Table 2: Predictive performance of alternative Phillips curve models

Model (Log) Marg. MSFE MSFE
Likelihood 1 period ahead 4 period ahead

SW2007 -90.10 0.182 0.295
BVAR -152.53 0.133 0.252

NKPC-LT -139.23 0.352 0.398
NKPC-HP -152.34 0.449 0.438

NKPC-TVP -87.48 0.175 0.297
NKPC-TVP-LS -94.90 0.203 0.292
NKPC-TVP-LS-SV -43.76 0.146 0.231

HNKPC-TVP -40.83 0.117 0.216
HNKPC-TVP-LS -38.98 0.090 0.203
HNKPC-TVP-LS-SV -30.11 0.084 0.205

Note: The table reports the predictive performances of all competing models
for the prediction sample over the second quarter of 1973 and the first quarter of
2012. ‘(Log) Marg. Likelihood’ stands for the natural logarithm of the marginal
likelihoods. ‘MSFE’ stands for the Mean Squared Forecast Error. Marginal
likelihood values in the first column are calculated as the sum of the predictive
likelihood values in the prediction sample. Posterior results are based on 2000
burn-in and 4000 posterior draws. ‘SW2007’ stands for the model proposed
by Stock and Watson (2007), and ‘BVAR’ stands for the Bayesian VAR model
with time varying levels and trends. Remaining abbreviations are as in Table 1.

SV) and the NKPC model together with discrete level shifts and stochastic volatility

for inflation (NKPC-TVP-LS-SV).

A similar clustering of models is observed when we compare the models’ perfor-

mances using the one period ahead MSFE, with the exception of the BVAR model.

Unlike the model fit performance, measured by the marginal likelihood values, BVAR

model performs considerably better in terms of point prediction.

Three main conclusions can be drawn from these findings. First, the conventional

NKPC models with demeaned and detrended data (NKPC-LT and NKPC-HP) per-

form worse than the competing models both in terms of MSFE and in terms of the

marginal likelihood metric. However, the difference between HNKPC and NKPC

models in terms of point forecasts is less pronounced compared to the increase in

precision when switching from models using demeaned and detrended data to the

models that use the raw data. This indicates the importance of estimating levels

and trends together with the structural model parameters.
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Second, still the difference between the NKPC model with level shifts and stochas-

tic volatility with the remaining NKPC models is considerably large. The perfor-

mance of this model is comparable to the HNKPC models which perform superior

both in terms of point forecasts and the model fit. On the one hand, models with

level shifts and stochastic volatility deliver the most accurate point predictions con-

sidering the MSFE and marginal likelihood values. These results pinpoint the im-

portance of incorporating the high and low frequency movements in the structural

models. On the other hand, this model performance can be increased further by

incorporating the survey data and the backward looking component in the HNKPC

models.

Third, structural models perform at least as well as the strong reduced form

candidates, the SW2007 and BVAR modes. These findings are crucial in the sense

that the structural models deliver both structural macroeconomic information and

predictive performance, whereas the reduced form models are solely designed for

improving the predictive performance. Incorporating high and low frequency move-

ments in structural models increase the predictive power of the structural models

substantially while still exploiting the macroeconomic information indicated by the

economic theory. These findings also hold for four period ahead forecasts, as shown

in the last column of Table 2.

We next consider the evolution of the model performance over the forecast sample

in detail, shown in Figure 10. An important finding from the figure is the increasing

performance of the HNKPC models and the models with stochastic volatility compo-

nents after mid 1980s. Note that this period is characterized by a decrease in inflation

volatility also denoted as the Great Moderation period. It seems that the stochastic

volatility component captures this decrease in volatility accurately. Moreover, the

effect of the level shifts can be observed when we compare the NKPC-TVP-LS-SV

model with the SW2007 model. Much of the difference in the performance of these
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models can be attributed to the changes in inflation levels. This shows that the in-

flation process exhibits rare regime changes and within each regime inflation follows

a stable path.

The last metric we use for model comparison considers the implied inflationary

risk. Figure 11 shows the entire distribution of the inflation predictions for the

NKPC and HNKPC models where the levels and trends are estimated together with

the structural parameters. Posterior means of predicted inflation for all models are

represented by the solid lines, and the widths of the predictive distributions are

indicated by the white areas under the inflation densities. As expected, inflation

predictions are concentrated around high (low) values during the high (low) infla-

tionary periods. The uncertainty around the inflation predictions are also high for

these periods, together with the periods when inflation is subject to a transition

to low values around 1980s. When the observed inflation values are close to the

zero bound, the predictive densities indicate disinflationary risk, computed as the

fraction of the predictive distribution below zero.

Figure 12 displays this disinflationary risk in detail. The ability to predict the

disinflationary risk is of key importance especially for policy making purposes. From

the figure it is seen that NKPC models with a priori demeaned and detrended data

do not signal any pronounced disinflation risk except for the low disinflation prob-

abilities during mid 1970s and mid 1980s. However, NKPC and HNKPC models

incorporating raw data information by exploiting the high and low frequency move-

ments produce clear signals of disinflation risk during the recent recession. This

reflects the disinflationary pressure of the recent recession, denoted as the ‘Great

Recession’, and the enlarged NKPC models can predict these effects successfully.

Analysis of cointegration in inflation and marginal cost levels

The models we considered so far rely on the implicit assumption of the absence of

a long-run cointegrating relationship between the inflation and marginal cost series.
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Figure 11: Predicted inflation densities from NKPC and HNKPC models

NKPC-TVP HNKPC-TVP

NKPC-TVP-LS HNKPC-TVP-LS

NKPC-TVP-LS-SV HNKPC-TVP-LS-SV

Note: The figure presents one period ahead predictive distributions of inflation from the NKPC
and HNKPC models, for the period between the third quarter of 1973 and the first quarter of 2012.
Model abbreviations are based on Table 1. Results are based on 4000 simulations of which the first
2000 are discarded for burn-in.
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Figure 12: Disinflation probabilities implied by different Phillips curve models
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We assess whether this assumption is plausible for the U.S. data. For this reason, we

consider the NKPC-TVP model that provides the unobserved levels of both series at

each posterior draw. For each of these obtained posterior draws, we perform a simple

two-step analysis to check the existence of the cointegrating relationship, which can

be seen as a Bayesian extension of the method of Engle and Granger (1987).

We perform a two step analysis, where in the first step we obtain the residuals

from the regression of the estimated level of inflation on a constant and the esti-

mated level of marginal cost, for each posterior draw. This implies that we take the

estimation uncertainty in the analysis into account. Next, we obtain the posterior

distribution of the autoregressive parameter, ρ, for each set of residuals from the

following regression using flat priors on the identified region ρ ∈ [−1, 1]

∆ǫ̂t = ρǫ̂t−1 + ηt, ηt ∼ NID(0, σ2), (19)

where ǫ̂t denotes the residuals from the first stage, and ρ = 0 implies that there

is no cointegrating relationship between the series. An HPDI including the value

of 0 indicates that a cointegrating relation between inflation and marginal cost is

unlikely.

We compute the mean and the quantiles of these individual densities using 5000

posterior draws, and report the average values of the mean and the quantiles of

ρ based on 3000 simulations. These results are presented in Figure 13. Posterior

means of parameter ρ are around 0 for all posterior draws of inflation and marginal

cost levels, and the 80% an 90% percent quantiles of the distribution are around 0

as well. Hence this simulation experiment does not indicate a cointegrating relation-

ship between the inflation and marginal cost levels. This pattern is also found for

other TVP-NKPC models we considered for the U.S. data, but these results are not

reported for the sake of brevity. We conclude that the underlying assumption of ‘no

cointegrating relationship’ is found to be feasible for the Phillips curve models we
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consider.

Figure 13: Cointegration analysis for the marginal cost and inflation series, using
the NKPC-TVP model
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Note: The figure presents the posterior means and quantiles of the ρ parameter from 5 × 103

posterior draws from the NKPC-TVP models, where for each draw, the the reported values are
calculated using 3000 simulations. ρ = 0 implies that there is no cointegrating relationship between
the series.

6 Conclusion

The NKPC model constitutes an integral part of macroeconomic models used for

policy analysis. These models are estimated mostly after demeaning and/or detrend-

ing the series. In this paper it is shown that mechanical removal of the low frequency

movements in the data may lead to misspecification plaguing inference. Potential

structural breaks and level shifts as well as changing volatility in the observed series

require more complex models, which can handle these time variation together with

the standard NKPC parameters. We propose a set of models where low and high

frequency movements in the inflation and marginal cost series are taken into account

explicitly. This is achieved by modeling the levels and trends of the series together

with the volatility process explicitly in the NKPC model and estimating these along

with other model parameters simultaneously. Furthermore, we consider richer expec-
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tational mechanisms for the inflation series in enlarged Hybrid-NKPC models, where

the inflation expectations are anchored around the inflation expectations obtained

from survey data.

The proposed models capture time variation in the low frequency moments of

both inflation and marginal cost data. For the inflation series we identify three dis-

tinct periods with high and low inflation. The high inflationary period corresponds

to 1970s, following a low inflationary period of 1960s. The last period starting with

1980s is characterized by low inflation levels corresponding to an annual inflation

level around 2%. When this model is blended with the stochastic volatility compo-

nent, the level shifts can be identified even more precisely.

The use of macroeconomic information in the structural models together with the

remaining high and low frequency movements in the data improves the predictive

ability also compared to celebrated reduced form models, including the Bayesian

VAR and the stochastic volatility model (Stock and Watson, 2007). Furthermore,

modelling inflation expectations using survey data and adding stochastic volatility

to the NKPC model structure improves in sample fit and out of sample predictive

performance substantially. We also analyze the disinflation probabilities indicated

by each competing model. The complete predictive densities, most notably from the

enlarged models, indicate an increase in the probability of disinflation in the U.S. in

recent years.

Modelling forward and backward looking components of inflation has important

effects on empirical results. Weak endogeneity and persistence do not appear to be

important issues in NKPC model structures. Finally, we also analyze the existence

of a long-run relation between the low frequency movements of both series. No

evidence is found on a long run stable cointegrating relation between U.S. inflation

and marginal costs.

We show that incorporating low and high frequency movements explicitly in
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macroeconomic models provides additional insights for both policy analysis and

more accurate predictions. Hence we plan to enlarge the proposed model to a more

general DSGE framework in future work. Another interesting possibility of future

research is to combine different NKPC models using their predictive performances,

which seems to be time varying.
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Appendix

A Structural and reduced form inference of the

NKPC model

This section presents the unrestricted reduced form inference (URF) of the NKPC

model, and the inference of the corresponding structural form (SF) model parame-

ters. We show that the posterior draws from the structural form parameters can be

obtained using the reduced form representation of (5):

π̃t = α1z̃t−1 + α2z̃t−2 + ǫ1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ǫ2,t,
(20)

where (ǫ1,t, ǫ2,t)
′ ∼ NID (0,Σ), and the restricted reduced form (RRF) representa-

tion is obtained by introducing the following restrictions on parameters in (5):

α1 = λ(φ1+γφ2)
1−γ(φ1+γφ2)

, α2 =
λφ2

1−γ(φ1+γφ2)
. (21)

Finally, the model in (5) is related to an Instrumental Variables (IV) model with

exact identification. Bayesian estimation of the unrestricted reduced form model in

(20) is straightforward under flat or conjugate priors. Given the posterior draws of

reduced form parameters, posterior draws of structural form parameters in (5) can be

obtained using the transformation in (21). This nonlinear transformation, however,

causes difficulties in setting the priors in an adequate way. The determinant of the

Jacobian of this nonlinear transformation is | J |=
λφ2

2

(1−γ(φ1+γφ2))
2 , where the Jacobian

is non-zero and finite if γ(φ1 + γφ2) 6= 1, φ2 6= 0 and λ 6= 0.6

Figure 14 illustrates the nonlinear transformation for the SF and RRF repre-

6We only consider the transformation from {λ, γ, φ1, φ2} to {α1, α2, φ1, φ2}, i.e. variance pa-
rameters in the transformed model are left as free parameters.
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sentations, for a grid of parameter values from SF representations, and plot the

corresponding RRF parameter values, and vice versa. The top panel in Figure 14

shows the transformations from SF to RRF. Reduced form parameters α1 and α2

tend to infinity when persistence in inflation and marginal cost series are high, i.e.

when the structural form parameters λ and φ1 + φ2 tend to 1. The bottom panel in

Figure 14 shows the RRF to SF transformations. The corresponding SF parameters

lead to an irregular shape, for example, when the instrument zt−2 has no explanatory

power with φ2 = 0 or when α2 = 0.

Figure 14: Nonlinear parameter transformation from structural form to reduced
form (top panel) and reduced form to structural form parameters (bottom panel)
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Note: The top panel presents the implied unrestricted reduced form parameters in (20) given
structural form parameters in (5). The top panel presents implied structural form parameters in
(5) given unrestricted reduced form parameters in (20). Parameter transformations are obtained
using the RRF restrictions in (21).
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B Bayesian inference of the extended NKPC model

This section presents the MCMC scheme for the posterior inference of the NKPC

model. Specifically, we use a Gibbs sampler together with data augmentation (see

Geman and Geman, 1984; Tanner and Wong, 1987).

The NKPC model in (10) can be cast into the state-space form as follows

Yt = HXt +BUt + ǫt, ǫt ∼ N(0, Qt)

Xt = FXt−1 +Rtηt, ηt ∼ N(0, I)
(22)

where

Yt =







πt

zt






, Xt =

(

cπ,t, cz,t, µz,t, cz,t−1, cz,t−2

)′

, Ut =













zt

zt−1

zt−2













, ǫt =







ǫ1,t

ǫ2,t






,

H =







1 −α1 0 −α2 0

0 1 0 −φ1 −φ2






, B =







α1 α2 0

0 φ1 φ2






, Qt =







σ2
ǫ1,t

ρσǫ1,tσǫ2

ρσǫ1,tσǫ2 σ2
ǫ2






,

F =

























1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

























, Rt =

























κtση1 0 0

0 ση2 0

0 0 ση3

0 0 0

0 0 0

























, ηt =













η1,t

η2,t

η3,t













,

where α1 =
λ

1−(φ1+φ2γf )γf
and α2 =

λγφ2

1−(φ1+φ2γ)γ
.

Once the state-space form of the model is set as in (22) standard inference

techniques in state-space models can be carried out. Let Y1:T = (Y1, Y2, . . . , YT )
′,

X1:T = (X1, X2, . . . , XT )
′, U1:T = (U1, U2, . . . , UT )

′, σ2
ǫ1,1:T

= (σ2
ǫ1,1, σ

2
ǫ1,2, . . . , σ

2
ǫ1,T

)′

and θ = (φ1, φ2, γf , λ)
′. For the most general NKPC model with level shifts and
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stochastic volatility, the simulation scheme is as follows

1. Initialize the parameters by drawing κt using the prior for κ and unobserved

states Xt, ht for t = 1, 2, . . . , T from standard normal distribution and condi-

tional on κt for t = 0, 1, . . . , T . Initialize m = 1.

2. Sample θ(m) from p(θ|Y1:T , X1:T , U1:T , R1:T , Q1:T ).

3. Sample X
(m)
t from p(Xt|θ

(m), Y1:T , h1:T , U1:T , R1:T , Q1:T ) for t = 1, 2, . . . , T .

4. Sample h
(m)
t from p(ht|X

(m)
1:T , θ

(m), Y1:T , X1:T , U1:T , R1:T , ρ
m−1, σ

2,(m−1)
ǫ2 , σ

2,(m−1)
η4 )

for t = 1, 2, . . . , T .

5. Sample κ
(m)
t from p(κ(m)|θ(m), Y1:T , h1:T , U1:T , R1:T , Q1:T ) for t = 1, 2, . . . , T .

6. Sample σ
2,(m)
ηi from p(σ

2,(m)
ηi |X

(m)
1:T , h

(m)
1:T , κ

(m)
1:T ) for i = 1, 2, 3, 4.

7. Sample ρ(m) from from p(ρ(m)|X
(m)
1:T , h

(m)
1:T , Y1:T , X1:T , U1:T , θ

(m), σ
2,(m−1)
ǫ2 ).

8. Sample σ
2,(m)
ǫ2 from from p(σ

2,(m)
ǫ2 |ρ(m), X

(m)
1:T , h

(m)
1:T , Y1:T , X1:T , U1:T , θ

(m)).

9. Set m = m+ 1, repeat (2)-(9) until m =M .

Steps (3)-(5) are common to many models in the Bayesian state-space framework,

see for example Kim and Nelson (1999); Gerlach et al. (2000). Note that parameter

pκ is set a priori using heuristics.

Sampling of θ

Conditional on the states cπ,t, cz,t and ht for t = 1, 2, . . . , T , redefining the vari-

ables such that π̃t = πt − cπ,t, z̃t = zt − cz,t and εt = ǫt/ exp(ht/2), the measurement

equation in (22) can be rewritten as

π̃t = λ
1−(φ1+φ2γf )γf

z̃t +
φ2γfλ

1−(φ1+φ2γf )γf
z̃t−1 + εt

z̃t = φ1z̃t−1 + φ2z̃t−2 + ǫ2,t.
(23)
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Posterior distributions of the structural parameters under flat priors are non-

standard since zt term also is on the right hand side of (23) and the model is highly

non-linear in parameters. We therefore use two Metropolis Hastings steps to sample

these structural parameters (Metropolis et al., 1953; Hastings, 1970). For sampling

φ1, φ2 conditional on λ, γf and other model parameters, the candidate density is a

multivariate student-t density on the stationary region with a mode and scale with

the posterior mode and scale using only the second equation in (23) and 1 degrees

of freedom. For sampling λ, γf conditional on φ1, φ2 and other model parameters,

the candidate is a uniform density.

Sampling of states, Xt

Conditional on the remaining model parameters, drawing X0:T can be imple-

mented using standard Bayesian inference. This constitutes running the Kalman

filter first and running a simulation smoother using the filtered values for drawing

smoothed states as in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). We

start the recursion for t = 1, . . . , T

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +R′

tRt

ηt|t−1 = yt −HXt|t−1 −BUt

ζt|t−1 = HPt|t−1H
′ +Qt

Kt = Pt|t−1H
′ζ ′t|t−1

Xt|t = Xt|t−1 +Ktηt|t−1

Pt|t = Pt|t−1 −KtH
′ζ ′t|t−1,

(24)

and store Xt|t and Pt|t. The last filtered state XT |T and its covariance matrix PT |T

correspond to the smoothed estimates of the mean and the covariance matrix of

the states for period T . Having stored all the filtered values, simulation smoother
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involves the following backward recursions for t = T − 1, . . . , 1

η∗t+1|t = Xt+1 − FXt|t

ζ∗t+1|t = FPt|tF
′ +R′

t+1Rt+1

Xt|t,Xt+1
= Xt|t + Pt|tF

′ζ∗−1
t+1|tη

∗
t+1|t

Pt|t,Pt+1
= Pt|t − Pt|tF

′ζ∗−1
t+1|tFPt|t.

(25)

Intuitively, the simulation smoother updates the states using the same principle as in

the Kalman filter, where at each step filtered values are updated using the smoothed

values obtained from backward recursion. For updating the initial states, using the

state equation X0|t,X1
= F−1(X1) and P0|t,P1

= F−1(P1 +R′
1R1)F

′−1 can be written

for the first observation. Given the mean Xt|t,Xt+1
and the covariance matrix Pt|t,Pt+1

,

the states can be sampled from Xt ∼ N(Xt|t,Xt+1
, Pt|t,Pt+1

) for t = 0, ..., T .

Sampling of inflation volatilities, ht

Conditional on the remaining model parameters, we can draw h0:T using stan-

dard Bayesian inference as in the case of Xt. One important difference, however,

stems from the logarithmic transformation of the variance in (11). As the transfor-

mation concerns the error structure, the square of which follows a χ2 distribution,

the system is not Gaussian but follows a log-χ2 distribution. Noticing the properties

of log-χ2 distribution, Kim et al. (1998) and Omori et al. (2007) approximate this

distribution using mixture of Gaussian distributions. Hence, conditional on these

mixture components the system remains Gaussian allowing for standard inference

outlined above. For details, see Omori et al. (2007).

Sampling of structural break parameters, κt

Sampling of structural break parameters, κt relies on the conditional posterior of

the binary outcomes, i.e. the posterior value in case of a structural break in period t

and the posterior value of the case of no structural breaks. However, evaluating this

posterior requires one sweep of filtering, which is of order O(T ). As this evaluation
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should be implemented for each period t the resulting procedure would be of order

O(T 2). When the number of sample size is large this would result in an infeasible

scheme. Gerlach et al. (2000) propose an efficient algorithm for sampling structural

break parameters, κt, conditional on the observed data, which is still of order O(T ).

We implement this algorithm for estimation of the structural breaks and refer to

Gerlach et al. (2000); Giordani and Kohn (2008) for details.

Sampling of state error variances, σ2
η

Using standard results from a linear regression model with a conjugate prior for

the variances in (22), it follows that the conditional posterior distribution of σ2
ηi
,

with i = 1, 2, 3, 4 is an inverted χ2 distribution with scale parameter Φηi +
∑T

t=1 η
2
i,t

and with T + νηi degrees of freedom for i = 2, 3, 4 where Φηi and νηi are the scale

and degrees of freedom parameters of the prior density. For i = 1 the parameters of

the inverted χ2 distribution becomes Φη1 +
∑T

t=1 κtη
2
1,t and

∑T

t=1 κt + νη1 .

Sampling of marginal cost variance and correlation coefficient

To sample the variance of marginal cost and correlation coefficient, we decompose

the multivariate normal distribution of ǫt into the conditional distribution of ǫ2,t

given ǫ1,t and the marginal distribution of ǫ1,t, as in Çakmaklı et al. (2011). This

results in

T
∏

t=1

f(ǫt) =

T
∏

t=1

1

σǫ1,t
φ

(

ǫ1,t
σǫ1,t

)

1

σǫ2,t
√

(1− ρ2)
φ

(

ǫ2,t − ρǫ1,t
σǫ2,t(1− ρ2)

)

, (26)

Hence, together with prior for the variance in (22), variance of the marginal cost

series can be sampled using (26) by setting up a Metropolis-Hasting step using an

inverted χ2 candidate density with scale parameter
∑T

t=1 ǫ
2
2,t and with T degrees of

freedom. To sample ρ from its conditional posterior distribution we can again use

58



(26). Conditional on the remaining parameters the posterior becomes

(1− ρ2)−
3

2

T
∏

t=1

(

1
√

(1− ρ2)
φ

(

ǫ2,t − ρǫ1,t
σǫ2,t(1− ρ2)

)

)

. (27)

We can easily implement the griddy Gibbs sampler approach of Ritter and Tanner

(1992). Given that ρ ∈ (−1, 1) we can setup a grid in this interval based on the

precision we desire about the value of ρ.
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C Bayesian inference of the extended HNKPC

model

Posterior inference of the HNKPC models with time varying parameters follow sim-

ilar to Appendix B, using the Gibbs sampler with data augmentation. The HNKPC

models with time varying parameters (HNKPC-TVP), with level shifts in infla-

tion (HNKPC-TVP-LS), and with level shifts and stochastic volatility in inflation

(HNKPC-TVP-LS-SV) in (9) and (12), and the inflation expectation specification

in (14) can be cast into the state-space form in (22) using the following definitions

Yt =







πt

zt






, Xt =

(

cπ,t cz,t µz,t, cz,t−1 cz,t−2 St cπ,t−1

)′

, ǫt =







ǫ1,t

ǫ2,t






,

Ut =

(

zt zt−1 zt−2 µt πt−1

)′

, Bt =







α1 α2 0 −α3 α4

0 φ1 φ2 0 0






,

Ht =







1 −α1 0 −α2 0 α3 −α4

0 1 0 −φ1 −φ2 0 0






, Qt =







σ2
ǫ1,t

ρσǫ1,tσǫ2

ρσǫ1,tσǫ2 σ2
ǫ2






,

Ft =







































1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 β 0

1 0 0 0 0 0 0







































, Rt =







































κtση1 0 0 0

0 ση2 0 0

0 0 ση3 0

0 0 0 0

0 0 0 ση5

0 0 0 0

0 0 0 0







































, ηt =



















η1,t

η2,t

η3,t

η5,t



















,
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where parameters α1, α2, α3, α4 are defined as functions of the structural form pa-

rameters

α1 =
λ

(1− (φ1 + φ2γf)γf) (1− γbγf)
, α2 =

λγfφ2

(1− (φ1 + φ2γf)γf) (1− γbγf)
,

α3 =
γbγf

(1− γbγf)

γf
(1− γfβ)

, α4 =
γb

(1− γbγf)
.

Given this setup, posterior inference can be carried out using the steps outlined

in Appendix B.
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